Convex semi-infinite programming algorithms with inexact separation oracles

Solving convex semi-infinite programming (SIP) problems is challenging when the separation problem, namely, the problem of finding the most violated constraint, is computationally hard. We propose to tackle this difficulty by solving the separation problem approximately, i.e., by using an inexact or...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization letters Ročník 19; číslo 3; s. 437 - 462
Hlavní autoři: Oustry, Antoine, Cerulli, Martina
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.04.2025
ISSN:1862-4472, 1862-4480
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Solving convex semi-infinite programming (SIP) problems is challenging when the separation problem, namely, the problem of finding the most violated constraint, is computationally hard. We propose to tackle this difficulty by solving the separation problem approximately, i.e., by using an inexact oracle. Our focus lies in two algorithms for SIP, namely the cutting-planes (CP) and the inner-outer approximation (IOA) algorithms. We prove the CP convergence rate to be in O (1/ k ), where k is the number of calls to the limited-accuracy oracle, if the objective function is strongly convex. Compared to the CP algorithm, the advantage of the IOA algorithm is the feasibility of its iterates. In the case of a semi-infinite program with a Quadratically Constrained Quadratic Programming separation problem, we prove the convergence of the IOA algorithm toward an optimal solution of the SIP problem despite the oracle’s inexactness.
ISSN:1862-4472
1862-4480
DOI:10.1007/s11590-024-02148-3