A mixed precision LOBPCG algorithm

The locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm is a popular approach for computing a few smallest eigenvalues and the corresponding eigenvectors of a large Hermitian positive definite matrix A . In this work, we propose a mixed precision variant of LOBPCG that uses a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical algorithms Ročník 94; číslo 4; s. 1653 - 1671
Hlavní autoři: Kressner, Daniel, Ma, Yuxin, Shao, Meiyue
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2023
Springer Nature B.V
Témata:
ISSN:1017-1398, 1572-9265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm is a popular approach for computing a few smallest eigenvalues and the corresponding eigenvectors of a large Hermitian positive definite matrix A . In this work, we propose a mixed precision variant of LOBPCG that uses a (sparse) Cholesky factorization of A computed in lower precision as the preconditioner. To further enhance performance, a mixed precision orthogonalization strategy is proposed. To analyze the impact of reducing precision in the preconditioner on performance, we carry out a rounding error and convergence analysis of PINVIT, a simplified variant of LOBPCG. Our theoretical results predict and our numerical experiments confirm that the impact on convergence remains marginal. In practice, our mixed precision LOBPCG algorithm typically reduces the computation time by a factor of 1.4 – 2.0 on both CPUs and GPUs.
AbstractList The locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm is a popular approach for computing a few smallest eigenvalues and the corresponding eigenvectors of a large Hermitian positive definite matrix A. In this work, we propose a mixed precision variant of LOBPCG that uses a (sparse) Cholesky factorization of A computed in lower precision as the preconditioner. To further enhance performance, a mixed precision orthogonalization strategy is proposed. To analyze the impact of reducing precision in the preconditioner on performance, we carry out a rounding error and convergence analysis of PINVIT, a simplified variant of LOBPCG. Our theoretical results predict and our numerical experiments confirm that the impact on convergence remains marginal. In practice, our mixed precision LOBPCG algorithm typically reduces the computation time by a factor of 1.4–2.0 on both CPUs and GPUs.
The locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm is a popular approach for computing a few smallest eigenvalues and the corresponding eigenvectors of a large Hermitian positive definite matrix A . In this work, we propose a mixed precision variant of LOBPCG that uses a (sparse) Cholesky factorization of A computed in lower precision as the preconditioner. To further enhance performance, a mixed precision orthogonalization strategy is proposed. To analyze the impact of reducing precision in the preconditioner on performance, we carry out a rounding error and convergence analysis of PINVIT, a simplified variant of LOBPCG. Our theoretical results predict and our numerical experiments confirm that the impact on convergence remains marginal. In practice, our mixed precision LOBPCG algorithm typically reduces the computation time by a factor of 1.4 – 2.0 on both CPUs and GPUs.
Author Ma, Yuxin
Shao, Meiyue
Kressner, Daniel
Author_xml – sequence: 1
  givenname: Daniel
  surname: Kressner
  fullname: Kressner, Daniel
  organization: Institute of Mathematics, EPFL
– sequence: 2
  givenname: Yuxin
  surname: Ma
  fullname: Ma, Yuxin
  email: yxma18@fudan.edu.cn
  organization: School of Mathematical Sciences, Fudan University
– sequence: 3
  givenname: Meiyue
  surname: Shao
  fullname: Shao, Meiyue
  organization: School of Data Science, Fudan University, MOE Key Laboratory for Computational Physical Sciences, Fudan University
BookMark eNp9kMtKAzEUhoMo2FZfwNWg6-hJYm7LWrQKhbrQdUgmmZrSztRkCvr2RkcQXHR1zuL_zuUbo-O2awNCFwSuCYC8yYSA5Bgow0A4B6yP0IhwSbGmgh-XHojEhGl1isY5rwEKRuUIXU6rbfwIvtqlUMccu7ZaLO-eZ_PKblZdiv3b9gydNHaTw_lvnaDXh_uX2SNeLOdPs-kC10ywHhOqrdDOOSDUKSG8o9Z5Wd9qT0ERK0EIrXloiHBCWseCo0J63njmNVGKTdDVMHeXuvd9yL1Zd_vUlpWGloCgiitZUnRI1anLOYXG7FLc2vRpCJhvF2ZwYYoL8-PC6AKpf1Ade9uXb_tk4-YwygY0lz3tKqS_qw5QX136coU
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3338443
Cites_doi 10.1016/j.jocs.2010.07.002
10.1137/17M1129830
10.1007/s11075-022-01327-6
10.1145/1391989.1391995
10.1017/S0962492922000022
10.1007/s13160-019-00348-4
10.1177/10943420211003313
10.1090/S0025-5718-01-01357-6
10.1137/S1064827500366124
10.1137/17M1140819
10.1137/1.9781611970739
10.1007/s10208-015-9297-1
10.1016/j.cam.2019.112512
10.1016/j.jcp.2006.02.007
10.1137/14M0973773
10.1007/s10444-009-9141-8
10.1137/1.9780898718027
10.1007/s13160-018-0310-3
10.1145/356012.356016
10.56021/9781421407944
10.1145/2832080.2832082
10.1145/3578178.3578240
10.14569/IJACSA.2016.070160
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11075-023-01550-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9265
EndPage 1671
ExternalDocumentID 10_1007_s11075_023_01550_9
GrantInformation_xml – fundername: the State Scholarship Fund of China Scholarship Council
  grantid: 20210610009
– fundername: National Key R&D Program of China
  grantid: 2021YFA1003305
– fundername: National Natural Science Foundation of China
  grantid: 71991471; 11971118
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c363t-129a69bbb012b866db2abd7c49d2081a7066995ef16b67ab3eb267d5fd3d91883
IEDL.DBID M7S
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000986804900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1017-1398
IngestDate Wed Nov 05 04:06:05 EST 2025
Sat Nov 29 01:35:00 EST 2025
Tue Nov 18 22:27:59 EST 2025
Fri Feb 21 02:41:42 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Symmetric eigenvalue problem
65F50
65F15
LOBPCG algorithm
65F08
Mixed precision algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-129a69bbb012b866db2abd7c49d2081a7066995ef16b67ab3eb267d5fd3d91883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://infoscience.epfl.ch/record/302705
PQID 2918628587
PQPubID 2043837
PageCount 19
ParticipantIDs proquest_journals_2918628587
crossref_primary_10_1007_s11075_023_01550_9
crossref_citationtrail_10_1007_s11075_023_01550_9
springer_journals_10_1007_s11075_023_01550_9
PublicationCentury 2000
PublicationDate 20231200
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Numerical algorithms
PublicationTitleAbbrev Numer Algor
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Chen, Davis, Hager, Rajamanickam (CR23) 2008; 35
Abdelfattah, Anzt, Boman, Carson, Cojean, Dongarra, Fox, Gates, Higham, Li, Loe, Luszczek, Pranesh, Rajamanickam, Ribizel, Smith, Swirydowicz, Thomas, Tomov, Tsai, Yang (CR7) 2021; 35
Carson, Higham (CR9) 2018; 40
Ogita, Aishima (CR10) 2018; 35
Ogita, Aishima (CR11) 2019; 36
Bujanović, Kressner, Schröder (CR13) 2023; 92
Argentati, Knyazev, Neymeyr, Ovtchinnikov, Zhou (CR5) 2017; 17
Higham, Mary (CR8) 2022; 31
CR14
Higham (CR22) 2002
Rohwedder, Schneider, Zeiser (CR21) 2011; 34
Golub, Van Loan (CR16) 2013
Knyazev (CR6) 2001; 23
Saad (CR3) 2011
CR2
Neymeyr (CR4) 2002; 71
Balcan, Gonçalves, Hu, Ramasco, Colizza, Vespignani (CR1) 2010; 1
Hetmaniuk, Lehoucq (CR18) 2006; 218
CR25
CR24
Yamazaki, Tomov, Dongarra (CR19) 2015; 37
CR20
Dongarra (CR15) 1982; 8
Duersch, Shao, Yang, Gu (CR17) 2018; 40
Ogita, Aishima (CR12) 2020; 369
T Ogita (1550_CR10) 2018; 35
M Argentati (1550_CR5) 2017; 17
E Carson (1550_CR9) 2018; 40
1550_CR20
I Yamazaki (1550_CR19) 2015; 37
D Balcan (1550_CR1) 2010; 1
JJ Dongarra (1550_CR15) 1982; 8
Y Chen (1550_CR23) 2008; 35
K Neymeyr (1550_CR4) 2002; 71
T Ogita (1550_CR11) 2019; 36
T Ogita (1550_CR12) 2020; 369
AV Knyazev (1550_CR6) 2001; 23
1550_CR24
1550_CR25
GH Golub (1550_CR16) 2013
A Abdelfattah (1550_CR7) 2021; 35
NJ Higham (1550_CR8) 2022; 31
JA Duersch (1550_CR17) 2018; 40
NJ Higham (1550_CR22) 2002
1550_CR2
Y Saad (1550_CR3) 2011
Z Bujanović (1550_CR13) 2023; 92
U Hetmaniuk (1550_CR18) 2006; 218
1550_CR14
T Rohwedder (1550_CR21) 2011; 34
References_xml – volume: 1
  start-page: 132
  issue: 3
  year: 2010
  end-page: 145
  ident: CR1
  article-title: Modeling the spatial spread of infectious diseases: the GLobal Epidemic and Mobility computational model
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2010.07.002
– volume: 40
  start-page: 655
  issue: 5
  year: 2018
  end-page: 676
  ident: CR17
  article-title: A robust and efficient implementation of LOBPCG
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/17M1129830
– ident: CR14
– ident: CR2
– volume: 92
  start-page: 247
  issue: 1
  year: 2023
  end-page: 267
  ident: CR13
  article-title: Iterative refinement of Schur decompositions
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-022-01327-6
– volume: 35
  start-page: 22
  issue: 3
  year: 2008
  end-page: 12214
  ident: CR23
  article-title: Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/1391989.1391995
– volume: 31
  start-page: 347
  year: 2022
  end-page: 414
  ident: CR8
  article-title: Mixed precision algorithms in numerical linear algebra
  publication-title: Acta Numer.
  doi: 10.1017/S0962492922000022
– volume: 36
  start-page: 435
  issue: 2
  year: 2019
  end-page: 459
  ident: CR11
  article-title: Iterative refinement for symmetric eigenvalue decomposition II: clustered eigenvalues
  publication-title: Japan J. Indust. Appl. Math.
  doi: 10.1007/s13160-019-00348-4
– volume: 35
  start-page: 344
  issue: 4
  year: 2021
  end-page: 369
  ident: CR7
  article-title: A survey of numerical linear algebra methods utilizing mixed-precision arithmetic
  publication-title: Int. J. High Perform. Comput. Appl.
  doi: 10.1177/10943420211003313
– volume: 71
  start-page: 197
  issue: 237
  year: 2002
  end-page: 216
  ident: CR4
  article-title: A geometric theory for preconditioned inverse iteration applied to a subspace
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-01-01357-6
– volume: 23
  start-page: 517
  issue: 2
  year: 2001
  end-page: 541
  ident: CR6
  article-title: Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827500366124
– ident: CR25
– volume: 40
  start-page: 817
  issue: 2
  year: 2018
  end-page: 847
  ident: CR9
  article-title: Accelerating the solution of linear systems by iterative refinement in three precisions
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/17M1140819
– year: 2011
  ident: CR3
  publication-title: Numerical Methods for Large Eigenvalue Problems
  doi: 10.1137/1.9781611970739
– volume: 17
  start-page: 713
  year: 2017
  end-page: 727
  ident: CR5
  article-title: Convergence theory for preconditioned eigenvalue solvers in a nutshell
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-015-9297-1
– volume: 369
  year: 2020
  ident: CR12
  article-title: Iterative refinement for singular value decomposition based on matrix multiplication
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2019.112512
– volume: 218
  start-page: 324
  issue: 1
  year: 2006
  end-page: 332
  ident: CR18
  article-title: Basis selection in LOBPCG
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.02.007
– volume: 37
  start-page: 307
  issue: 3
  year: 2015
  end-page: 330
  ident: CR19
  article-title: Mixed-precision Cholesky QR factorization and its case studies on multicore CPU with multiple GPUs
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/14M0973773
– volume: 34
  start-page: 43
  issue: 1
  year: 2011
  end-page: 66
  ident: CR21
  article-title: Perturbed preconditioned inverse iteration for operator eigenvalue problems with applications to adaptive wavelet discretization
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-009-9141-8
– year: 2002
  ident: CR22
  publication-title: Accuracy and Stability of Numerical Algorithms
  doi: 10.1137/1.9780898718027
– volume: 35
  start-page: 1007
  issue: 3
  year: 2018
  end-page: 1035
  ident: CR10
  article-title: Iterative refinement for symmetric eigenvalue decomposition
  publication-title: Japan J. Indust. Appl. Math.
  doi: 10.1007/s13160-018-0310-3
– ident: CR24
– volume: 8
  start-page: 371
  issue: 4
  year: 1982
  end-page: 375
  ident: CR15
  article-title: Algorithm 589: SICEDR: A FORTRAN subroutine for improving the accuracy of computed matrix eigenvalues
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/356012.356016
– year: 2013
  ident: CR16
  publication-title: Matrix Computations
  doi: 10.56021/9781421407944
– ident: CR20
– volume: 71
  start-page: 197
  issue: 237
  year: 2002
  ident: 1550_CR4
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-01-01357-6
– volume: 17
  start-page: 713
  year: 2017
  ident: 1550_CR5
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-015-9297-1
– volume: 35
  start-page: 1007
  issue: 3
  year: 2018
  ident: 1550_CR10
  publication-title: Japan J. Indust. Appl. Math.
  doi: 10.1007/s13160-018-0310-3
– volume-title: Numerical Methods for Large Eigenvalue Problems
  year: 2011
  ident: 1550_CR3
  doi: 10.1137/1.9781611970739
– ident: 1550_CR20
  doi: 10.1145/2832080.2832082
– ident: 1550_CR24
  doi: 10.1145/3578178.3578240
– volume: 369
  year: 2020
  ident: 1550_CR12
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2019.112512
– volume: 35
  start-page: 22
  issue: 3
  year: 2008
  ident: 1550_CR23
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/1391989.1391995
– ident: 1550_CR14
– volume: 40
  start-page: 655
  issue: 5
  year: 2018
  ident: 1550_CR17
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/17M1129830
– volume: 35
  start-page: 344
  issue: 4
  year: 2021
  ident: 1550_CR7
  publication-title: Int. J. High Perform. Comput. Appl.
  doi: 10.1177/10943420211003313
– volume: 31
  start-page: 347
  year: 2022
  ident: 1550_CR8
  publication-title: Acta Numer.
  doi: 10.1017/S0962492922000022
– volume-title: Accuracy and Stability of Numerical Algorithms
  year: 2002
  ident: 1550_CR22
  doi: 10.1137/1.9780898718027
– volume: 1
  start-page: 132
  issue: 3
  year: 2010
  ident: 1550_CR1
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2010.07.002
– volume: 40
  start-page: 817
  issue: 2
  year: 2018
  ident: 1550_CR9
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/17M1140819
– volume: 218
  start-page: 324
  issue: 1
  year: 2006
  ident: 1550_CR18
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.02.007
– volume: 34
  start-page: 43
  issue: 1
  year: 2011
  ident: 1550_CR21
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-009-9141-8
– ident: 1550_CR2
– volume: 92
  start-page: 247
  issue: 1
  year: 2023
  ident: 1550_CR13
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-022-01327-6
– volume: 36
  start-page: 435
  issue: 2
  year: 2019
  ident: 1550_CR11
  publication-title: Japan J. Indust. Appl. Math.
  doi: 10.1007/s13160-019-00348-4
– ident: 1550_CR25
  doi: 10.14569/IJACSA.2016.070160
– volume: 8
  start-page: 371
  issue: 4
  year: 1982
  ident: 1550_CR15
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/356012.356016
– volume: 37
  start-page: 307
  issue: 3
  year: 2015
  ident: 1550_CR19
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/14M0973773
– volume: 23
  start-page: 517
  issue: 2
  year: 2001
  ident: 1550_CR6
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827500366124
– volume-title: Matrix Computations
  year: 2013
  ident: 1550_CR16
  doi: 10.56021/9781421407944
SSID ssj0010027
Score 2.3955424
Snippet The locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm is a popular approach for computing a few smallest eigenvalues and the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1653
SubjectTerms Algebra
Algorithms
Approximation
Cholesky factorization
Computer Science
Convergence
Eigenvalues
Eigenvectors
Error analysis
Impact analysis
Mathematical analysis
Matrices (mathematics)
Numeric Computing
Numerical Analysis
Numerical prediction
Original Paper
Theory of Computation
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60etCD1apYrbKIN13oPprHsRarB60FH_S2JJukFvpidxV_vsk220VRQa95ESbJzDdMZj6AM46N3lfKpU1iimoT6fKQUZcJJRQimCmf52QTuNcjgwHt26SwtPjtXoQkc01dJrtpT8VkE5v_PxpXu3QV1lqm2ozx0R-el7ED42nlMU6tfzW-ITZV5vs1PpujEmN-CYvm1qZb_d8-t2HLokunvbgOO7AipzWoWqTp2Hec6qaCzKFoq8Hm3bKAa7oLp21nMnrXc-aJJeFxbu8v-51rh42Hs2SUvUz24Kl79di5cS2dghsHKMhcbdkZopxzbZM4QYZIinGB45AKXwMDhjX6oLQllYc4wowH2ulGWLSUCAT1CAn2oTKdTeUBOFwrRaahjGjSOCQiJiqgkoakKX0eeEjWwSukGsW21rihvBhHZZVkI6VISynKpRTROpwv58wXlTZ-Hd0oDiuyry6NfL1NkxJKcB0uisMpu39e7fBvw49gw7DOL361NKCSJa_yGNbjt2yUJif5bfwA_f7Vcg
  priority: 102
  providerName: Springer Nature
Title A mixed precision LOBPCG algorithm
URI https://link.springer.com/article/10.1007/s11075-023-01550-9
https://www.proquest.com/docview/2918628587
Volume 94
WOSCitedRecordID wos000986804900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFH8R8KAHUdSIIlmMN21kH6ztyQABTVQkoIbb0q6bkvAlm8Y_33Z0LJrIxcsu67qtr33v176PH8A5x0rvhyGiNaKKapMAcYdRxEQoQpdgFlo8IZvA3S4ZDmlPH7hFOqwy1YmJohYzX52RX1nUJCrdj-Dr-TtSrFHKu6opNHJQUFUSzCR0b7DyIqg9V-LtlJpYIh2ik2aWqXNy36Nyk1U0kUTpiP40TBna_OUgTexOp_jfL96FHY04jcZyiuzBRjAtQVGjT0Ov7agE2w-rCq7RPpw1jMnoSzaYLzQLj3H_2Oy1bgw2fpVvid8mB_DcaT-1bpHmU0C-7doxkqaduZRzLo0SJ65ikmJcYN-hwpLIgGEJPyitB6Hpchczbstdt4tFPRS2kP9C7EPIT2fT4AgMLrUik1hG1KjvEOGT0KYBdUgtsLhtukEZzHQwPV8XG1ecF2MvK5OsBOBJAXiJADxahovVM_NlqY21rSvpqHt62UVeNuRluEzllt3-u7fj9b2dwJaimV-GsVQgHy8-glPY9D_jUbSoQqHZ7vb6VcjdYVRNpqC89gcv3x2B3O0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2VggQcKKsoa4TgBBFtkjr2AaGWXZRSIZB6C3bsABJdaMr2U3wj49RpBRLcOHCOYzmZyZuZzPIANoWvcT-KbFageqg2VbbwOLO5jGREqM8jRyRkE36tRhsNVs_AR9oLo8sqU0xMgFq2Q_2PfNdhRarb_ai_33myNWuUzq6mFBp9tThX768YssV7Z4co3y3HOT66Pji1DauAHbrE7dlo4DhhQgiEZkGJ5lPiQvqhx6SD9pH7aIQZK6moSATxuXAx9iS-LEXSlXgG6uK-IzDquR4pZWG0clSrXw3yFjrKS_KriP3oW1HTptNv1sNIS3dD6_oljAts9tUUDv3bbynZxNId5_7bO5qGKeNTW-X-RzADGdWahZzxry2DXvEsTF4MZtTGc7BRtpoPb7ig0zU8Q1b1slI_OLH44x0-Ve--OQ83f3LuBci22i21CJZA3OforckCCz0qQxq5TDGPFpQj3CJReSimwgtCM05ds3o8BsNB0FrgAQo8SAQesDxsD-7p9IeJ_Lp6JZVyYIAlDoYizsNOqifDyz_vtvT7buswfnp9UQ2qZ7XzZZhwtJomRTsrkO11n9UqjIUvvYe4u2ZU3oLbv9agTyOyN3Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEHp1NxOrWIb1q2XpYmj3M6Fecc3vCtJE2jg60bbRV_vkkvq4oK4uvJhXByOV84lw_ggDnq3RdCJw2simpjX2c2JTrlgguEHSpMlpBNOL0efnwk_Q9Z_Em0e-6STHMaVJWmIK5PuKgXiW_y16Iyi1UskMTYOpmFOVvKVFDXze3D1I-gfl2Jv1O-xRLr4Cxt5vs5PpumAm9-cZEmlqdT_v-aV2A5Q51aKz0mqzDjBxUoZwhUy-53JEU5yUMuq8DS1bSwa7QG-y1tNHiTYyZhRs6jda-P--0zjQ6fxuEgfh6tw33n9K59rmc0C7pnISvWpcWniDDGpK1iGCmCKcq449mEmxIwUEeiEkKavjAQQw5llvyMI4c3Bbc4MTC2NqAUjAN_EzQmH0sqIQ5vEM_G3MPCIj6xccM3mWUgvwpGrmHXy2qQKyqMoVtUT1ZacqWW3ERLLqnC4XTMJK3A8WvvWr5xbnYbI9eUy1SpotipwlG-UUXzz7Nt_a37Hiz0Tzpu96J3uQ2Lipg-DXypQSkOX_wdmPde40EU7iaH9B0MQOE6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+mixed+precision+LOBPCG+algorithm&rft.jtitle=Numerical+algorithms&rft.au=Kressner%2C+Daniel&rft.au=Ma%2C+Yuxin&rft.au=Shao%2C+Meiyue&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=94&rft.issue=4&rft.spage=1653&rft.epage=1671&rft_id=info:doi/10.1007%2Fs11075-023-01550-9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon