A mixed precision LOBPCG algorithm
The locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm is a popular approach for computing a few smallest eigenvalues and the corresponding eigenvectors of a large Hermitian positive definite matrix A . In this work, we propose a mixed precision variant of LOBPCG that uses a...
Uloženo v:
| Vydáno v: | Numerical algorithms Ročník 94; číslo 4; s. 1653 - 1671 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.12.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 1017-1398, 1572-9265 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm is a popular approach for computing a few smallest eigenvalues and the corresponding eigenvectors of a large Hermitian positive definite matrix
A
. In this work, we propose a mixed precision variant of LOBPCG that uses a (sparse) Cholesky factorization of
A
computed in lower precision as the preconditioner. To further enhance performance, a mixed precision orthogonalization strategy is proposed. To analyze the impact of reducing precision in the preconditioner on performance, we carry out a rounding error and convergence analysis of PINVIT, a simplified variant of LOBPCG. Our theoretical results predict and our numerical experiments confirm that the impact on convergence remains marginal. In practice, our mixed precision LOBPCG algorithm typically reduces the computation time by a factor of
1.4
–
2.0
on both CPUs and GPUs. |
|---|---|
| AbstractList | The locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm is a popular approach for computing a few smallest eigenvalues and the corresponding eigenvectors of a large Hermitian positive definite matrix A. In this work, we propose a mixed precision variant of LOBPCG that uses a (sparse) Cholesky factorization of A computed in lower precision as the preconditioner. To further enhance performance, a mixed precision orthogonalization strategy is proposed. To analyze the impact of reducing precision in the preconditioner on performance, we carry out a rounding error and convergence analysis of PINVIT, a simplified variant of LOBPCG. Our theoretical results predict and our numerical experiments confirm that the impact on convergence remains marginal. In practice, our mixed precision LOBPCG algorithm typically reduces the computation time by a factor of 1.4–2.0 on both CPUs and GPUs. The locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm is a popular approach for computing a few smallest eigenvalues and the corresponding eigenvectors of a large Hermitian positive definite matrix A . In this work, we propose a mixed precision variant of LOBPCG that uses a (sparse) Cholesky factorization of A computed in lower precision as the preconditioner. To further enhance performance, a mixed precision orthogonalization strategy is proposed. To analyze the impact of reducing precision in the preconditioner on performance, we carry out a rounding error and convergence analysis of PINVIT, a simplified variant of LOBPCG. Our theoretical results predict and our numerical experiments confirm that the impact on convergence remains marginal. In practice, our mixed precision LOBPCG algorithm typically reduces the computation time by a factor of 1.4 – 2.0 on both CPUs and GPUs. |
| Author | Ma, Yuxin Shao, Meiyue Kressner, Daniel |
| Author_xml | – sequence: 1 givenname: Daniel surname: Kressner fullname: Kressner, Daniel organization: Institute of Mathematics, EPFL – sequence: 2 givenname: Yuxin surname: Ma fullname: Ma, Yuxin email: yxma18@fudan.edu.cn organization: School of Mathematical Sciences, Fudan University – sequence: 3 givenname: Meiyue surname: Shao fullname: Shao, Meiyue organization: School of Data Science, Fudan University, MOE Key Laboratory for Computational Physical Sciences, Fudan University |
| BookMark | eNp9kMtKAzEUhoMo2FZfwNWg6-hJYm7LWrQKhbrQdUgmmZrSztRkCvr2RkcQXHR1zuL_zuUbo-O2awNCFwSuCYC8yYSA5Bgow0A4B6yP0IhwSbGmgh-XHojEhGl1isY5rwEKRuUIXU6rbfwIvtqlUMccu7ZaLO-eZ_PKblZdiv3b9gydNHaTw_lvnaDXh_uX2SNeLOdPs-kC10ywHhOqrdDOOSDUKSG8o9Z5Wd9qT0ERK0EIrXloiHBCWseCo0J63njmNVGKTdDVMHeXuvd9yL1Zd_vUlpWGloCgiitZUnRI1anLOYXG7FLc2vRpCJhvF2ZwYYoL8-PC6AKpf1Ade9uXb_tk4-YwygY0lz3tKqS_qw5QX136coU |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3338443 |
| Cites_doi | 10.1016/j.jocs.2010.07.002 10.1137/17M1129830 10.1007/s11075-022-01327-6 10.1145/1391989.1391995 10.1017/S0962492922000022 10.1007/s13160-019-00348-4 10.1177/10943420211003313 10.1090/S0025-5718-01-01357-6 10.1137/S1064827500366124 10.1137/17M1140819 10.1137/1.9781611970739 10.1007/s10208-015-9297-1 10.1016/j.cam.2019.112512 10.1016/j.jcp.2006.02.007 10.1137/14M0973773 10.1007/s10444-009-9141-8 10.1137/1.9780898718027 10.1007/s13160-018-0310-3 10.1145/356012.356016 10.56021/9781421407944 10.1145/2832080.2832082 10.1145/3578178.3578240 10.14569/IJACSA.2016.070160 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s11075-023-01550-9 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics Computer Science |
| EISSN | 1572-9265 |
| EndPage | 1671 |
| ExternalDocumentID | 10_1007_s11075_023_01550_9 |
| GrantInformation_xml | – fundername: the State Scholarship Fund of China Scholarship Council grantid: 20210610009 – fundername: National Key R&D Program of China grantid: 2021YFA1003305 – fundername: National Natural Science Foundation of China grantid: 71991471; 11971118 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 29N 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c363t-129a69bbb012b866db2abd7c49d2081a7066995ef16b67ab3eb267d5fd3d91883 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000986804900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1017-1398 |
| IngestDate | Wed Nov 05 04:06:05 EST 2025 Sat Nov 29 01:35:00 EST 2025 Tue Nov 18 22:27:59 EST 2025 Fri Feb 21 02:41:42 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Symmetric eigenvalue problem 65F50 65F15 LOBPCG algorithm 65F08 Mixed precision algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-129a69bbb012b866db2abd7c49d2081a7066995ef16b67ab3eb267d5fd3d91883 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | http://infoscience.epfl.ch/record/302705 |
| PQID | 2918628587 |
| PQPubID | 2043837 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2918628587 crossref_primary_10_1007_s11075_023_01550_9 crossref_citationtrail_10_1007_s11075_023_01550_9 springer_journals_10_1007_s11075_023_01550_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20231200 2023-12-00 20231201 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 20231200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Numerical algorithms |
| PublicationTitleAbbrev | Numer Algor |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Chen, Davis, Hager, Rajamanickam (CR23) 2008; 35 Abdelfattah, Anzt, Boman, Carson, Cojean, Dongarra, Fox, Gates, Higham, Li, Loe, Luszczek, Pranesh, Rajamanickam, Ribizel, Smith, Swirydowicz, Thomas, Tomov, Tsai, Yang (CR7) 2021; 35 Carson, Higham (CR9) 2018; 40 Ogita, Aishima (CR10) 2018; 35 Ogita, Aishima (CR11) 2019; 36 Bujanović, Kressner, Schröder (CR13) 2023; 92 Argentati, Knyazev, Neymeyr, Ovtchinnikov, Zhou (CR5) 2017; 17 Higham, Mary (CR8) 2022; 31 CR14 Higham (CR22) 2002 Rohwedder, Schneider, Zeiser (CR21) 2011; 34 Golub, Van Loan (CR16) 2013 Knyazev (CR6) 2001; 23 Saad (CR3) 2011 CR2 Neymeyr (CR4) 2002; 71 Balcan, Gonçalves, Hu, Ramasco, Colizza, Vespignani (CR1) 2010; 1 Hetmaniuk, Lehoucq (CR18) 2006; 218 CR25 CR24 Yamazaki, Tomov, Dongarra (CR19) 2015; 37 CR20 Dongarra (CR15) 1982; 8 Duersch, Shao, Yang, Gu (CR17) 2018; 40 Ogita, Aishima (CR12) 2020; 369 T Ogita (1550_CR10) 2018; 35 M Argentati (1550_CR5) 2017; 17 E Carson (1550_CR9) 2018; 40 1550_CR20 I Yamazaki (1550_CR19) 2015; 37 D Balcan (1550_CR1) 2010; 1 JJ Dongarra (1550_CR15) 1982; 8 Y Chen (1550_CR23) 2008; 35 K Neymeyr (1550_CR4) 2002; 71 T Ogita (1550_CR11) 2019; 36 T Ogita (1550_CR12) 2020; 369 AV Knyazev (1550_CR6) 2001; 23 1550_CR24 1550_CR25 GH Golub (1550_CR16) 2013 A Abdelfattah (1550_CR7) 2021; 35 NJ Higham (1550_CR8) 2022; 31 JA Duersch (1550_CR17) 2018; 40 NJ Higham (1550_CR22) 2002 1550_CR2 Y Saad (1550_CR3) 2011 Z Bujanović (1550_CR13) 2023; 92 U Hetmaniuk (1550_CR18) 2006; 218 1550_CR14 T Rohwedder (1550_CR21) 2011; 34 |
| References_xml | – volume: 1 start-page: 132 issue: 3 year: 2010 end-page: 145 ident: CR1 article-title: Modeling the spatial spread of infectious diseases: the GLobal Epidemic and Mobility computational model publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2010.07.002 – volume: 40 start-page: 655 issue: 5 year: 2018 end-page: 676 ident: CR17 article-title: A robust and efficient implementation of LOBPCG publication-title: SIAM J. Sci. Comput. doi: 10.1137/17M1129830 – ident: CR14 – ident: CR2 – volume: 92 start-page: 247 issue: 1 year: 2023 end-page: 267 ident: CR13 article-title: Iterative refinement of Schur decompositions publication-title: Numer. Algorithms doi: 10.1007/s11075-022-01327-6 – volume: 35 start-page: 22 issue: 3 year: 2008 end-page: 12214 ident: CR23 article-title: Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate publication-title: ACM Trans. Math. Software doi: 10.1145/1391989.1391995 – volume: 31 start-page: 347 year: 2022 end-page: 414 ident: CR8 article-title: Mixed precision algorithms in numerical linear algebra publication-title: Acta Numer. doi: 10.1017/S0962492922000022 – volume: 36 start-page: 435 issue: 2 year: 2019 end-page: 459 ident: CR11 article-title: Iterative refinement for symmetric eigenvalue decomposition II: clustered eigenvalues publication-title: Japan J. Indust. Appl. Math. doi: 10.1007/s13160-019-00348-4 – volume: 35 start-page: 344 issue: 4 year: 2021 end-page: 369 ident: CR7 article-title: A survey of numerical linear algebra methods utilizing mixed-precision arithmetic publication-title: Int. J. High Perform. Comput. Appl. doi: 10.1177/10943420211003313 – volume: 71 start-page: 197 issue: 237 year: 2002 end-page: 216 ident: CR4 article-title: A geometric theory for preconditioned inverse iteration applied to a subspace publication-title: Math. Comp. doi: 10.1090/S0025-5718-01-01357-6 – volume: 23 start-page: 517 issue: 2 year: 2001 end-page: 541 ident: CR6 article-title: Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827500366124 – ident: CR25 – volume: 40 start-page: 817 issue: 2 year: 2018 end-page: 847 ident: CR9 article-title: Accelerating the solution of linear systems by iterative refinement in three precisions publication-title: SIAM J. Sci. Comput. doi: 10.1137/17M1140819 – year: 2011 ident: CR3 publication-title: Numerical Methods for Large Eigenvalue Problems doi: 10.1137/1.9781611970739 – volume: 17 start-page: 713 year: 2017 end-page: 727 ident: CR5 article-title: Convergence theory for preconditioned eigenvalue solvers in a nutshell publication-title: Found. Comput. Math. doi: 10.1007/s10208-015-9297-1 – volume: 369 year: 2020 ident: CR12 article-title: Iterative refinement for singular value decomposition based on matrix multiplication publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2019.112512 – volume: 218 start-page: 324 issue: 1 year: 2006 end-page: 332 ident: CR18 article-title: Basis selection in LOBPCG publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.02.007 – volume: 37 start-page: 307 issue: 3 year: 2015 end-page: 330 ident: CR19 article-title: Mixed-precision Cholesky QR factorization and its case studies on multicore CPU with multiple GPUs publication-title: SIAM J. Sci. Comput. doi: 10.1137/14M0973773 – volume: 34 start-page: 43 issue: 1 year: 2011 end-page: 66 ident: CR21 article-title: Perturbed preconditioned inverse iteration for operator eigenvalue problems with applications to adaptive wavelet discretization publication-title: Adv. Comput. Math. doi: 10.1007/s10444-009-9141-8 – year: 2002 ident: CR22 publication-title: Accuracy and Stability of Numerical Algorithms doi: 10.1137/1.9780898718027 – volume: 35 start-page: 1007 issue: 3 year: 2018 end-page: 1035 ident: CR10 article-title: Iterative refinement for symmetric eigenvalue decomposition publication-title: Japan J. Indust. Appl. Math. doi: 10.1007/s13160-018-0310-3 – ident: CR24 – volume: 8 start-page: 371 issue: 4 year: 1982 end-page: 375 ident: CR15 article-title: Algorithm 589: SICEDR: A FORTRAN subroutine for improving the accuracy of computed matrix eigenvalues publication-title: ACM Trans. Math. Software doi: 10.1145/356012.356016 – year: 2013 ident: CR16 publication-title: Matrix Computations doi: 10.56021/9781421407944 – ident: CR20 – volume: 71 start-page: 197 issue: 237 year: 2002 ident: 1550_CR4 publication-title: Math. Comp. doi: 10.1090/S0025-5718-01-01357-6 – volume: 17 start-page: 713 year: 2017 ident: 1550_CR5 publication-title: Found. Comput. Math. doi: 10.1007/s10208-015-9297-1 – volume: 35 start-page: 1007 issue: 3 year: 2018 ident: 1550_CR10 publication-title: Japan J. Indust. Appl. Math. doi: 10.1007/s13160-018-0310-3 – volume-title: Numerical Methods for Large Eigenvalue Problems year: 2011 ident: 1550_CR3 doi: 10.1137/1.9781611970739 – ident: 1550_CR20 doi: 10.1145/2832080.2832082 – ident: 1550_CR24 doi: 10.1145/3578178.3578240 – volume: 369 year: 2020 ident: 1550_CR12 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2019.112512 – volume: 35 start-page: 22 issue: 3 year: 2008 ident: 1550_CR23 publication-title: ACM Trans. Math. Software doi: 10.1145/1391989.1391995 – ident: 1550_CR14 – volume: 40 start-page: 655 issue: 5 year: 2018 ident: 1550_CR17 publication-title: SIAM J. Sci. Comput. doi: 10.1137/17M1129830 – volume: 35 start-page: 344 issue: 4 year: 2021 ident: 1550_CR7 publication-title: Int. J. High Perform. Comput. Appl. doi: 10.1177/10943420211003313 – volume: 31 start-page: 347 year: 2022 ident: 1550_CR8 publication-title: Acta Numer. doi: 10.1017/S0962492922000022 – volume-title: Accuracy and Stability of Numerical Algorithms year: 2002 ident: 1550_CR22 doi: 10.1137/1.9780898718027 – volume: 1 start-page: 132 issue: 3 year: 2010 ident: 1550_CR1 publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2010.07.002 – volume: 40 start-page: 817 issue: 2 year: 2018 ident: 1550_CR9 publication-title: SIAM J. Sci. Comput. doi: 10.1137/17M1140819 – volume: 218 start-page: 324 issue: 1 year: 2006 ident: 1550_CR18 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.02.007 – volume: 34 start-page: 43 issue: 1 year: 2011 ident: 1550_CR21 publication-title: Adv. Comput. Math. doi: 10.1007/s10444-009-9141-8 – ident: 1550_CR2 – volume: 92 start-page: 247 issue: 1 year: 2023 ident: 1550_CR13 publication-title: Numer. Algorithms doi: 10.1007/s11075-022-01327-6 – volume: 36 start-page: 435 issue: 2 year: 2019 ident: 1550_CR11 publication-title: Japan J. Indust. Appl. Math. doi: 10.1007/s13160-019-00348-4 – ident: 1550_CR25 doi: 10.14569/IJACSA.2016.070160 – volume: 8 start-page: 371 issue: 4 year: 1982 ident: 1550_CR15 publication-title: ACM Trans. Math. Software doi: 10.1145/356012.356016 – volume: 37 start-page: 307 issue: 3 year: 2015 ident: 1550_CR19 publication-title: SIAM J. Sci. Comput. doi: 10.1137/14M0973773 – volume: 23 start-page: 517 issue: 2 year: 2001 ident: 1550_CR6 publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827500366124 – volume-title: Matrix Computations year: 2013 ident: 1550_CR16 doi: 10.56021/9781421407944 |
| SSID | ssj0010027 |
| Score | 2.3955424 |
| Snippet | The locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm is a popular approach for computing a few smallest eigenvalues and the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1653 |
| SubjectTerms | Algebra Algorithms Approximation Cholesky factorization Computer Science Convergence Eigenvalues Eigenvectors Error analysis Impact analysis Mathematical analysis Matrices (mathematics) Numeric Computing Numerical Analysis Numerical prediction Original Paper Theory of Computation |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60etCD1apYrbKIN13oPprHsRarB60FH_S2JJukFvpidxV_vsk220VRQa95ESbJzDdMZj6AM46N3lfKpU1iimoT6fKQUZcJJRQimCmf52QTuNcjgwHt26SwtPjtXoQkc01dJrtpT8VkE5v_PxpXu3QV1lqm2ozx0R-el7ED42nlMU6tfzW-ITZV5vs1PpujEmN-CYvm1qZb_d8-t2HLokunvbgOO7AipzWoWqTp2Hec6qaCzKFoq8Hm3bKAa7oLp21nMnrXc-aJJeFxbu8v-51rh42Hs2SUvUz24Kl79di5cS2dghsHKMhcbdkZopxzbZM4QYZIinGB45AKXwMDhjX6oLQllYc4wowH2ulGWLSUCAT1CAn2oTKdTeUBOFwrRaahjGjSOCQiJiqgkoakKX0eeEjWwSukGsW21rihvBhHZZVkI6VISynKpRTROpwv58wXlTZ-Hd0oDiuyry6NfL1NkxJKcB0uisMpu39e7fBvw49gw7DOL361NKCSJa_yGNbjt2yUJif5bfwA_f7Vcg priority: 102 providerName: Springer Nature |
| Title | A mixed precision LOBPCG algorithm |
| URI | https://link.springer.com/article/10.1007/s11075-023-01550-9 https://www.proquest.com/docview/2918628587 |
| Volume | 94 |
| WOSCitedRecordID | wos000986804900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-9265 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010027 issn: 1017-1398 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFH8R8KAHUdSIIlmMN21kH6ztyQABTVQkoIbb0q6bkvAlm8Y_33Z0LJrIxcsu67qtr33v176PH8A5x0rvhyGiNaKKapMAcYdRxEQoQpdgFlo8IZvA3S4ZDmlPH7hFOqwy1YmJohYzX52RX1nUJCrdj-Dr-TtSrFHKu6opNHJQUFUSzCR0b7DyIqg9V-LtlJpYIh2ik2aWqXNy36Nyk1U0kUTpiP40TBna_OUgTexOp_jfL96FHY04jcZyiuzBRjAtQVGjT0Ov7agE2w-rCq7RPpw1jMnoSzaYLzQLj3H_2Oy1bgw2fpVvid8mB_DcaT-1bpHmU0C-7doxkqaduZRzLo0SJ65ikmJcYN-hwpLIgGEJPyitB6Hpchczbstdt4tFPRS2kP9C7EPIT2fT4AgMLrUik1hG1KjvEOGT0KYBdUgtsLhtukEZzHQwPV8XG1ecF2MvK5OsBOBJAXiJADxahovVM_NlqY21rSvpqHt62UVeNuRluEzllt3-u7fj9b2dwJaimV-GsVQgHy8-glPY9D_jUbSoQqHZ7vb6VcjdYVRNpqC89gcv3x2B3O0 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2VggQcKKsoa4TgBBFtkjr2AaGWXZRSIZB6C3bsABJdaMr2U3wj49RpBRLcOHCOYzmZyZuZzPIANoWvcT-KbFageqg2VbbwOLO5jGREqM8jRyRkE36tRhsNVs_AR9oLo8sqU0xMgFq2Q_2PfNdhRarb_ai_33myNWuUzq6mFBp9tThX768YssV7Z4co3y3HOT66Pji1DauAHbrE7dlo4DhhQgiEZkGJ5lPiQvqhx6SD9pH7aIQZK6moSATxuXAx9iS-LEXSlXgG6uK-IzDquR4pZWG0clSrXw3yFjrKS_KriP3oW1HTptNv1sNIS3dD6_oljAts9tUUDv3bbynZxNId5_7bO5qGKeNTW-X-RzADGdWahZzxry2DXvEsTF4MZtTGc7BRtpoPb7ig0zU8Q1b1slI_OLH44x0-Ve--OQ83f3LuBci22i21CJZA3OforckCCz0qQxq5TDGPFpQj3CJReSimwgtCM05ds3o8BsNB0FrgAQo8SAQesDxsD-7p9IeJ_Lp6JZVyYIAlDoYizsNOqifDyz_vtvT7buswfnp9UQ2qZ7XzZZhwtJomRTsrkO11n9UqjIUvvYe4u2ZU3oLbv9agTyOyN3Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEHp1NxOrWIb1q2XpYmj3M6Fecc3vCtJE2jg60bbRV_vkkvq4oK4uvJhXByOV84lw_ggDnq3RdCJw2simpjX2c2JTrlgguEHSpMlpBNOL0efnwk_Q9Z_Em0e-6STHMaVJWmIK5PuKgXiW_y16Iyi1UskMTYOpmFOVvKVFDXze3D1I-gfl2Jv1O-xRLr4Cxt5vs5PpumAm9-cZEmlqdT_v-aV2A5Q51aKz0mqzDjBxUoZwhUy-53JEU5yUMuq8DS1bSwa7QG-y1tNHiTYyZhRs6jda-P--0zjQ6fxuEgfh6tw33n9K59rmc0C7pnISvWpcWniDDGpK1iGCmCKcq449mEmxIwUEeiEkKavjAQQw5llvyMI4c3Bbc4MTC2NqAUjAN_EzQmH0sqIQ5vEM_G3MPCIj6xccM3mWUgvwpGrmHXy2qQKyqMoVtUT1ZacqWW3ERLLqnC4XTMJK3A8WvvWr5xbnYbI9eUy1SpotipwlG-UUXzz7Nt_a37Hiz0Tzpu96J3uQ2Lipg-DXypQSkOX_wdmPde40EU7iaH9B0MQOE6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+mixed+precision+LOBPCG+algorithm&rft.jtitle=Numerical+algorithms&rft.au=Kressner%2C+Daniel&rft.au=Ma%2C+Yuxin&rft.au=Shao%2C+Meiyue&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=94&rft.issue=4&rft.spage=1653&rft.epage=1671&rft_id=info:doi/10.1007%2Fs11075-023-01550-9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon |