Average-case algorithms for testing isomorphism of polynomials, algebras, and multilinear forms

We study the problems of testing isomorphism of polynomials, algebras, and multilinear forms. Our first main results are average-case algorithms for these problems. For example, we develop an algorithm that takes two cubic forms $f, g\in \mathbb{F}_q[x_1,\dots, x_n]$, and decides whether $f$ and $g$...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Groups, complexity, cryptology Jg. 14, Issue 1
Hauptverfasser: Grochow, Joshua A., Qiao, Youming, Tang, Gang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Episciences 01.01.2022
Schlagworte:
ISSN:1869-6104, 1869-6104
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We study the problems of testing isomorphism of polynomials, algebras, and multilinear forms. Our first main results are average-case algorithms for these problems. For example, we develop an algorithm that takes two cubic forms $f, g\in \mathbb{F}_q[x_1,\dots, x_n]$, and decides whether $f$ and $g$ are isomorphic in time $q^{O(n)}$ for most $f$. This average-case setting has direct practical implications, having been studied in multivariate cryptography since the 1990s. Our second result concerns the complexity of testing equivalence of alternating trilinear forms. This problem is of interest in both mathematics and cryptography. We show that this problem is polynomial-time equivalent to testing equivalence of symmetric trilinear forms, by showing that they are both Tensor Isomorphism-complete (Grochow-Qiao, ITCS, 2021), therefore is equivalent to testing isomorphism of cubic forms over most fields.
AbstractList We study the problems of testing isomorphism of polynomials, algebras, and multilinear forms. Our first main results are average-case algorithms for these problems. For example, we develop an algorithm that takes two cubic forms $f, g\in \mathbb{F}_q[x_1,\dots, x_n]$, and decides whether $f$ and $g$ are isomorphic in time $q^{O(n)}$ for most $f$. This average-case setting has direct practical implications, having been studied in multivariate cryptography since the 1990s. Our second result concerns the complexity of testing equivalence of alternating trilinear forms. This problem is of interest in both mathematics and cryptography. We show that this problem is polynomial-time equivalent to testing equivalence of symmetric trilinear forms, by showing that they are both Tensor Isomorphism-complete (Grochow-Qiao, ITCS, 2021), therefore is equivalent to testing isomorphism of cubic forms over most fields.
We study the problems of testing isomorphism of polynomials, algebras, and multilinear forms. Our first main results are average-case algorithms for these problems. For example, we develop an algorithm that takes two cubic forms $f, g\in \mathbb{F}_q[x_1,\dots, x_n]$, and decides whether $f$ and $g$ are isomorphic in time $q^{O(n)}$ for most $f$. This average-case setting has direct practical implications, having been studied in multivariate cryptography since the 1990s. Our second result concerns the complexity of testing equivalence of alternating trilinear forms. This problem is of interest in both mathematics and cryptography. We show that this problem is polynomial-time equivalent to testing equivalence of symmetric trilinear forms, by showing that they are both Tensor Isomorphism-complete (Grochow-Qiao, ITCS, 2021), therefore is equivalent to testing isomorphism of cubic forms over most fields.
Author Grochow, Joshua A.
Qiao, Youming
Tang, Gang
Author_xml – sequence: 1
  givenname: Joshua A.
  surname: Grochow
  fullname: Grochow, Joshua A.
– sequence: 2
  givenname: Youming
  surname: Qiao
  fullname: Qiao, Youming
– sequence: 3
  givenname: Gang
  surname: Tang
  fullname: Tang, Gang
BookMark eNp9kE9r3DAQxUXYQv4036AHf4DakWRJlnILS9MuBHppz2IsjxwttrVIamG_fe0khdBD5zKPYd6Px7smuyUuSMgnRhuhuNF3x9G5hlPOGyYa1hjRsgtyxbQytWJU7N7pS3Kb85Gu01ElKb0i9uE3JhixdpCxgmmMKZTnOVc-pqpgLmEZq5DjHNPpOeS5ir46xem8xDnAlD9vFuwTbGoZqvnXVMIUFoS0Eeb8kXzw6x_evu0b8vPxy4_9t_rp-9fD_uGpdq1qS71mg573puO846LFniF6CdxLaaiQA3hgBlVLte9AoHagDQXHBRrUoIb2hhxeuUOEoz2lMEM62wjBvhxiGi2kEtyEVnMGQjKnvKSi81K3ikqpBe0HI4ehW1n3ryyXYs4JvXWhQAlxKQnCZBm1L83brXm7NW-ZsMxuza9m8Y_5b5j_2v4ApFCLhA
CitedBy_id crossref_primary_10_1007_s10623_024_01375_0
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.46298/jgcc.2022.14.1.9431
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1869-6104
ExternalDocumentID oai_doaj_org_article_821a451c6f5047f5836055840bd95dd7
10_46298_jgcc_2022_14_1_9431
GroupedDBID 0R~
0~D
4.4
8FE
8FG
AAFPC
AAQCX
AASOL
AASQH
AAWFC
AAYXX
ABAOT
ABAQN
ABIQR
ABSOE
ABUVI
ABXMZ
ACGFS
ACZBO
ADGQD
ADGYE
ADJVZ
ADOZN
AEJTT
AEQDQ
AEXIE
AFBAA
AFCXV
AFQUK
AIERV
AJATJ
ALMA_UNASSIGNED_HOLDINGS
BAKPI
BBCWN
BCIFA
BENPR
BLHJL
CFGNV
CITATION
GROUPED_DOAJ
HZ~
IY9
J9A
K6V
O9-
OK1
P2P
P62
QD8
RDG
SA.
ID FETCH-LOGICAL-c363t-104ab2b97227243eb1eef5a2f559045dafa19e6308f7a4e8ca890ac24e9e8a6d3
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000890601200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1869-6104
IngestDate Tue Oct 14 18:38:46 EDT 2025
Sat Nov 29 03:42:00 EST 2025
Tue Nov 18 22:12:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://arxiv.org/licenses/nonexclusive-distrib/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-104ab2b97227243eb1eef5a2f559045dafa19e6308f7a4e8ca890ac24e9e8a6d3
OpenAccessLink https://doaj.org/article/821a451c6f5047f5836055840bd95dd7
ParticipantIDs doaj_primary_oai_doaj_org_article_821a451c6f5047f5836055840bd95dd7
crossref_citationtrail_10_46298_jgcc_2022_14_1_9431
crossref_primary_10_46298_jgcc_2022_14_1_9431
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Groups, complexity, cryptology
PublicationYear 2022
Publisher Episciences
Publisher_xml – name: Episciences
SSID ssj0000706500
Score 2.2551577
Snippet We study the problems of testing isomorphism of polynomials, algebras, and multilinear forms. Our first main results are average-case algorithms for these...
We study the problems of testing isomorphism of polynomials, algebras, and multilinear forms. Our first main results are average-case algorithms for these...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms computer science - computational complexity
computer science - data structures and algorithms
Title Average-case algorithms for testing isomorphism of polynomials, algebras, and multilinear forms
URI https://doaj.org/article/821a451c6f5047f5836055840bd95dd7
Volume 14, Issue 1
WOSCitedRecordID wos000890601200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1869-6104
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0000706500
  issn: 1869-6104
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LTtwwFLUQ6oIuKgqteLTIiy4JOH57SasiFhSxAImd5VeGqWYSNBkq8fe9NxlG0xWb7qLItqzjk_uIfY8J-ebAr2SdbFViIysZXagCSwxLnyDDtTqGOOjMXpubG_vw4G43rvrCM2GjPPAI3LnldZCqTrpRTJpGYdGBAq_JYnYq56GOnBm3kUwNNhh37xgba-Wk5s6e_54klCzkHIzDWX3mpKj_8UUbkv2Db7ncJR9WQSG9GCfzkWyVdo-8_7VWVO33ib8AzsG3XyVwOzTMJh1k9Y_znkLQSZcoldFO6LTv5h0AN-3ntGvoUzd7wapjYNgpdsE9YnxqMx3OEWKEGRY4wrz_RO4vf979uKpWlyNUSWixBPMpQ-TRGc4NlwJMbimNCryBFAHCtByaULuiBbONCbLYFKxjIXFZXLFBZ_GZbLddWw4IFSqZpHOMmQmZgo5GwBoZpVSqQ2HmkIhXmHxaKYfjBRYzDxnEAK5HcD2CC6mErz2Ce0iqda-nUTnjjfbfcQXWbVH3engBbPArNvi32HD0PwY5Jjs4tfFHyxeyvVw8l6_kXfqznPaLk4FofwHF3daS
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Average-case+algorithms+for+testing+isomorphism+of+polynomials%2C+algebras%2C+and+multilinear+forms&rft.jtitle=Groups%2C+complexity%2C+cryptology&rft.au=Joshua+A.+Grochow&rft.au=Youming+Qiao&rft.au=Gang+Tang&rft.date=2022-01-01&rft.pub=Episciences&rft.eissn=1869-6104&rft.volume=14%2C+Issue+1&rft_id=info:doi/10.46298%2Fjgcc.2022.14.1.9431&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_821a451c6f5047f5836055840bd95dd7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1869-6104&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1869-6104&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1869-6104&client=summon