Learning to Trace: Expressive Line Drawing Generation from Photographs

In this paper, we present a new computational method for automatically tracing high‐resolution photographs to create expressive line drawings. We define expressive lines as those that convey important edges, shape contours, and large‐scale texture lines that are necessary to accurately depict the ov...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum Vol. 38; no. 7; pp. 69 - 80
Main Authors: Inoue, N., Ito, D., Xu, N., Yang, J., Price, B., Yamasaki, T.
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.10.2019
Subjects:
ISSN:0167-7055, 1467-8659
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we present a new computational method for automatically tracing high‐resolution photographs to create expressive line drawings. We define expressive lines as those that convey important edges, shape contours, and large‐scale texture lines that are necessary to accurately depict the overall structure of objects (similar to those found in technical drawings) while still being sparse and artistically pleasing. Given a photograph, our algorithm extracts expressive edges and creates a clean line drawing using a convolutional neural network (CNN). We employ an end‐to‐end trainable fully‐convolutional CNN to learn the model in a data‐driven manner. The model consists of two networks to cope with two sub‐tasks; extracting coarse lines and refining them to be more clean and expressive. To build a model that is optimal for each domain, we construct two new datasets for face/body and manga background. The experimental results qualitatively and quantitatively demonstrate the effectiveness of our model. We further illustrate two practical applications.
AbstractList In this paper, we present a new computational method for automatically tracing high‐resolution photographs to create expressive line drawings. We define expressive lines as those that convey important edges, shape contours, and large‐scale texture lines that are necessary to accurately depict the overall structure of objects (similar to those found in technical drawings) while still being sparse and artistically pleasing. Given a photograph, our algorithm extracts expressive edges and creates a clean line drawing using a convolutional neural network (CNN). We employ an end‐to‐end trainable fully‐convolutional CNN to learn the model in a data‐driven manner. The model consists of two networks to cope with two sub‐tasks; extracting coarse lines and refining them to be more clean and expressive. To build a model that is optimal for each domain, we construct two new datasets for face/body and manga background. The experimental results qualitatively and quantitatively demonstrate the effectiveness of our model. We further illustrate two practical applications.
Author Yang, J.
Price, B.
Ito, D.
Yamasaki, T.
Inoue, N.
Xu, N.
Author_xml – sequence: 1
  givenname: N.
  surname: Inoue
  fullname: Inoue, N.
  organization: The University of Tokyo
– sequence: 2
  givenname: D.
  surname: Ito
  fullname: Ito, D.
  organization: Adobe Research
– sequence: 3
  givenname: N.
  surname: Xu
  fullname: Xu, N.
  organization: Adobe Research
– sequence: 4
  givenname: J.
  surname: Yang
  fullname: Yang, J.
  organization: Adobe Research
– sequence: 5
  givenname: B.
  surname: Price
  fullname: Price, B.
  organization: Adobe Research
– sequence: 6
  givenname: T.
  surname: Yamasaki
  fullname: Yamasaki, T.
  organization: The University of Tokyo
BookMark eNp9kEFPAjEQhRuDiYAe_AebePKw0G637a43g4AmJHrAc1O6UyiBdm0XkX_vAp5MdC4zh--9yXs91HHeAUK3BA9IO0O9NANCCyIuUJfkXKQFZ2UHdTFpb4EZu0K9GNcY41xw1kWTGajgrFsmjU_mQWl4SMZfdYAY7SckM-sgeQpqfySm4CCoxnqXmOC3ydvKN34ZVL2K1-jSqE2Em5_dR--T8Xz0nM5epy-jx1mqKacirRY5E4ZXqqAkU1oXWGNghvEKl4yXi9wIoypR5lnJlaCmEDojCw6YkwKgIrSP7s6-dfAfO4iNXPtdcO1LmVGSk4KVNG-p-zOlg48xgJF1sFsVDpJgeaxJtjXJU00tO_zFatucQjZB2c1_ir3dwOFvazmaTs6Kb1KXekc
CitedBy_id crossref_primary_10_1007_s41095_022_0320_6
crossref_primary_10_1007_s11042_021_11028_2
Cites_doi 10.1109/CVPR.2016.28
10.1145/2897824.2925946
10.1111/cgf.12814
10.1109/CVPR.2018.00917
10.1145/2421636.2421640
10.1109/CVPR.2016.265
10.1145/1409060.1409108
10.1109/TPAMI.1986.4767851
10.1145/882262.882354
10.1109/ICCV.2013.231
10.1109/CVPR.2009.5206848
10.1007/s11263-018-1140-0
10.1145/1360612.1360687
10.1145/2897824.2925972
10.1007/978-3-642-33712-3_49
10.1007/s00371-018-1528-4
10.1145/3132703
10.1007/978-3-030-01231-1_35
10.1109/TPAMI.2004.1273918
10.1109/CVPR.2019.00162
10.1109/CVPR.2017.632
10.1109/CVPR.2005.39
10.1109/34.977560
10.1145/3197517.3201370
10.1109/TPAMI.2010.161
10.1109/WACV.2019.00154
10.1561/9781680835915
10.1109/ICCV.2015.164
ContentType Journal Article
Copyright 2019 The Author(s) Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2019 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2019 The Author(s) Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2019 The Eurographics Association and John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/cgf.13817
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 80
ExternalDocumentID 10_1111_cgf_13817
CGF13817
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3637-db457f6da8312acc80c0e5f56d09569b4f7fad794296a73f87c21b6e0618eed13
IEDL.DBID DRFUL
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000496351100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Sun Jul 13 05:18:27 EDT 2025
Sat Nov 29 03:41:17 EST 2025
Tue Nov 18 22:20:27 EST 2025
Wed Jan 22 16:38:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3637-db457f6da8312acc80c0e5f56d09569b4f7fad794296a73f87c21b6e0618eed13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2314185934
PQPubID 30877
PageCount 12
ParticipantIDs proquest_journals_2314185934
crossref_primary_10_1111_cgf_13817
crossref_citationtrail_10_1111_cgf_13817
wiley_primary_10_1111_cgf_13817_CGF13817
PublicationCentury 2000
PublicationDate October 2019
2019-10-00
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2019
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2012
2013; 32
2004; 26
2008; 27
1986; 6
2009
2019
2019; 127
2011; 33
2018
2017
2016
2005
2015
2013
2018; 34
2001; 23
2016; 35
2018; 37
2003; 22
e_1_2_11_31_2
e_1_2_11_30_2
e_1_2_11_13_2
e_1_2_11_35_2
e_1_2_11_12_2
e_1_2_11_34_2
e_1_2_11_11_2
e_1_2_11_33_2
e_1_2_11_10_2
e_1_2_11_32_2
e_1_2_11_6_2
e_1_2_11_28_2
e_1_2_11_5_2
e_1_2_11_27_2
e_1_2_11_4_2
e_1_2_11_26_2
e_1_2_11_3_2
e_1_2_11_25_2
e_1_2_11_2_2
e_1_2_11_29_2
e_1_2_11_20_2
e_1_2_11_24_2
e_1_2_11_9_2
e_1_2_11_23_2
e_1_2_11_8_2
e_1_2_11_22_2
e_1_2_11_7_2
e_1_2_11_21_2
e_1_2_11_17_2
e_1_2_11_16_2
e_1_2_11_15_2
e_1_2_11_14_2
e_1_2_11_36_2
e_1_2_11_19_2
e_1_2_11_18_2
References_xml – start-page: 73
  year: 2015
  end-page: 76
– volume: 27
  start-page: 155
  year: 2008
  article-title: Richness‐preserving manga screening
  publication-title: ACM TOG
– volume: 37
  start-page: 11
  issue: 1
  year: 2018
  article-title: Mastering sketching: adversarial augmentation for structured prediction
  publication-title: ACM TOG
– volume: 26
  start-page: 530
  issue: 5
  year: 2004
  end-page: 549
  article-title: Learning to detect natural image boundaries using local brightness, color, and texture cues
  publication-title: IEEE TPAMI
– volume: 37
  start-page: 98
  issue: 4
  year: 2018
  article-title: Real‐time data‐driven interactive rough sketch inking
  publication-title: ACM TOG
– start-page: 562
  year: 2018
  end-page: 578
– volume: 23
  start-page: 1351
  issue: 12
  year: 2001
  end-page: 1365
  article-title: Edge detection with embedded confidence
  publication-title: IEEE TPAMI
– volume: 32
  start-page: 4
  issue: 1
  year: 2013
  article-title: Topology‐driven vectorization of clean line drawings
  publication-title: ACM TOG
– start-page: 248
  year: 2009
  end-page: 255
– year: 2018
– start-page: 65
  year: 2012
  end-page: 73
– volume: 127
  start-page: 302
  issue: 3
  year: 2019
  end-page: 321
  article-title: Semantic understanding of scenes through the ade20k dataset
  publication-title: Springer IJCV
– volume: 33
  start-page: 898
  issue: 5
  year: 2011
  end-page: 916
  article-title: Contour detection and hierarchical image segmentation
  publication-title: IEEE TPAMI
– volume: 22
  start-page: 848
  year: 2003
  end-page: 855
  article-title: Suggestive contours for conveying shape
  publication-title: ACM Transactions on Graphics (TOG)
– volume: 35
  start-page: 120
  issue: 4
  year: 2016
  article-title: Fidelity vs. simplicity: a global approach to line drawing vectorization
  publication-title: ACM TOG
– start-page: 1005
  year: 2005
  end-page: 1010
– start-page: 2414
  year: 2016
  end-page: 2423
– volume: 6
  start-page: 679
  year: 1986
  end-page: 698
  article-title: A computational approach to edge detection
  publication-title: IEEE TPAMI
– volume: 34
  start-page: 1077
  issue: 6–8
  year: 2018
  end-page: 1085
  article-title: Learning to Restore Deteriorated Line Drawing
  publication-title: The Visual Computer
– start-page: 193
  year: 2016
  end-page: 202
– start-page: 679
  year: 2012
  end-page: 692
– start-page: 1395
  year: 2015
  end-page: 1403
– start-page: 1525
  year: 2019
  end-page: 1534
– volume: 35
  start-page: 121
  issue: 4
  year: 2016
  article-title: Learning to simplify: fully convolutional networks for rough sketch cleanup
  publication-title: ACM TOG
– start-page: 1841
  year: 2013
  end-page: 1848
– year: 2017
– volume: 27
  start-page: 88
  year: 2008
  article-title: Where do people draw lines?
  publication-title: ACM TOG
– start-page: 386
  year: 2017
  end-page: 396
– year: 2019
– start-page: 8798
  year: 2018
  end-page: 8807
– volume: 35
  start-page: 93
  year: 2016
  end-page: 102
  article-title: Automatic portrait segmentation for image stylization
  publication-title: Computer Graphics Forum
– ident: e_1_2_11_34_2
  doi: 10.1109/CVPR.2016.28
– ident: e_1_2_11_10_2
  doi: 10.1145/2897824.2925946
– ident: e_1_2_11_27_2
  doi: 10.1111/cgf.12814
– ident: e_1_2_11_32_2
  doi: 10.1109/CVPR.2018.00917
– ident: e_1_2_11_24_2
  doi: 10.1145/2421636.2421640
– ident: e_1_2_11_11_2
  doi: 10.1109/CVPR.2016.265
– ident: e_1_2_11_15_2
– ident: e_1_2_11_26_2
  doi: 10.1145/1409060.1409108
– ident: e_1_2_11_4_2
  doi: 10.1109/TPAMI.1986.4767851
– ident: e_1_2_11_18_2
– ident: e_1_2_11_7_2
  doi: 10.1145/882262.882354
– ident: e_1_2_11_9_2
  doi: 10.1109/ICCV.2013.231
– ident: e_1_2_11_25_2
– ident: e_1_2_11_6_2
  doi: 10.1109/CVPR.2009.5206848
– ident: e_1_2_11_36_2
  doi: 10.1007/s11263-018-1140-0
– ident: e_1_2_11_5_2
  doi: 10.1145/1360612.1360687
– ident: e_1_2_11_31_2
  doi: 10.1145/2897824.2925972
– ident: e_1_2_11_16_2
  doi: 10.1007/978-3-642-33712-3_49
– ident: e_1_2_11_28_2
  doi: 10.1007/s00371-018-1528-4
– ident: e_1_2_11_29_2
  doi: 10.1145/3132703
– ident: e_1_2_11_13_2
– ident: e_1_2_11_8_2
  doi: 10.1007/978-3-030-01231-1_35
– ident: e_1_2_11_22_2
  doi: 10.1109/TPAMI.2004.1273918
– ident: e_1_2_11_17_2
  doi: 10.1109/CVPR.2019.00162
– ident: e_1_2_11_14_2
  doi: 10.1109/CVPR.2017.632
– ident: e_1_2_11_20_2
  doi: 10.1109/CVPR.2005.39
– ident: e_1_2_11_21_2
– ident: e_1_2_11_23_2
  doi: 10.1109/34.977560
– ident: e_1_2_11_30_2
  doi: 10.1145/3197517.3201370
– ident: e_1_2_11_2_2
  doi: 10.1109/TPAMI.2010.161
– ident: e_1_2_11_19_2
  doi: 10.1109/WACV.2019.00154
– ident: e_1_2_11_3_2
  doi: 10.1561/9781680835915
– ident: e_1_2_11_33_2
  doi: 10.1109/ICCV.2015.164
– ident: e_1_2_11_12_2
– ident: e_1_2_11_35_2
SSID ssj0004765
Score 2.3136692
Snippet In this paper, we present a new computational method for automatically tracing high‐resolution photographs to create expressive line drawings. We define...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 69
SubjectTerms Algorithms
Applied computing → Fine arts
Artificial neural networks
CCS Concepts
Computing methodologies → Image manipulation
Engineering drawings
Title Learning to Trace: Expressive Line Drawing Generation from Photographs
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.13817
https://www.proquest.com/docview/2314185934
Volume 38
WOSCitedRecordID wos000496351100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NS8MwFMAfc_OgB7_F6ZQgHrxU2qZNGz3JtuphjCFOditJmkxBNlnr9M836cc2QUHwlsNrWpL38t4r7_0CcOEpZiudOVier3NVz3ETiys94lphGPN9luQdck-9oN8PRyM6qMFN1QtT8CEWP9yMZeTntTFwxtMVIxdjdeUYvtwaNFytt34dGp2HaNhbtkUGxK_Q3gYaU4KFTCHP4uHv7mgZY65Gqrmribb_9ZE7sFVGmOi2UIldqMnJHmyucAf3ISqpqmOUTZH2VkJeo-5nURI7l0jnpxJ1ZuzDSBRcarN9yLSioMHzNCsw1-kBDKPuY_veKi9UsAQmOLAS7vmBIgkLseMyIUJb2NJXPkkMjpByTwWKJdpCXUpYgFUYCNfhRGqfH2pf6uBDqE-mE3kEyKGhpFhQjpXUMQFhNuECO0pKrk8FIptwWa1rLErauLn04jWusg69NHG-NE04X4i-FYiNn4Ra1ebEpZWlsY5NDXuHYk-_Lt-G3yeI23dRPjj-u-gJbOj4iBa1ey2oZ7N3eQrrYp69pLOzUt2-AJLD1wU
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dS8MwEMCPuQnqg9_idGoQH3yptEubtuKLbKsT5xiyiW8lTZMpyCbbnP75XvqxTVAQfMvD9YPcXe4u5H4BOLMVNxVWDobtYK1qW9XYiBSOIjQYzh2Hx0mH3GPLbbe9pye_U4CrvBcm5UPMNty0ZyTrtXZwvSG94OWiry4sDZhbgpKNZoT2Xao_BL3WvC_SZU7O9tbUmIwspE_yzB7-Ho_mSeZiqprEmmDjf3-5CetZjkmuU6PYgoIcbMPaAnlwB4KMq9onkyHBeCXkJWl8podip5JghSpJfcQ_tERKptYKJLoZhXSeh5MUdD3ehV7Q6NaaRnalgiEoo64RR7bjKhZzj1pVLoRnClM6ymGxBhL6ka1cxWP00arPuEuV54qqFTGJUd_DaGrRPSgOhgO5D8TyPelT4UdUScwKGDdZJKilpIxwXWCyDOf5xIYi443ray9ew7zuwKkJk6kpw-lM9C2FbPwkVMm1E2Z-Ng4xO9X0HZ_a-LlED7-_IKzdBMng4O-iJ7DS7N63wtZt--4QVjFb8tOTfBUoTkbv8giWxXTyMh4dZ7b3BX4H2vU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dS8MwEMCPuYnog9_idGoQH3yptE2bNuKLbKuKYwxx4ltJ0mQKso1tTv98k35sExQE3_JwTcsll7srud8BnHmK2UpnDpbn61zVc9zE4kqPuN4wjPk-S9IKuadW0G6Hz8-0U4KrohYm40PMfrgZy0jPa2PgcpioBSsXPXXhGMDcElQ800SmDJXGQ9RtzesiA-IXbG9DjcnJQuYmz-zh7_5oHmQuhqqpr4k2_veVm7Cex5joOtsUW1CS_W1YWyAP7kCUc1V7aDJA2l8JeYman9ml2KlEOkOVqDFiH0YiI1ObBUSmGAV1XgaTDHQ93oVu1Hys31p5SwVLYIIDK-GeHyiSsBA7LhMitIUtfeWTxAAJKfdUoFiibdSlhAVYhYFwHU6k9vqh9qYO3oNyf9CX-4AcGkqKBeVYSR0VEGYTLrCjpOT6XCCyCueFYmOR88ZN24u3uMg7tGriVDVVOJ2JDjPIxk9CtWJ14tzOxrGOTg19h2JPvy5dh98niOs3UTo4-LvoCax0GlHcumvfH8KqDpZodpGvBuXJ6F0ewbKYTl7Ho-N8630BPwHacA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+Trace%3A+Expressive+Line+Drawing+Generation+from+Photographs&rft.jtitle=Computer+graphics+forum&rft.au=Inoue%2C+N.&rft.au=Ito%2C+D.&rft.au=Xu%2C+N.&rft.au=Yang%2C+J.&rft.date=2019-10-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=38&rft.issue=7&rft.spage=69&rft.epage=80&rft_id=info:doi/10.1111%2Fcgf.13817&rft.externalDBID=10.1111%252Fcgf.13817&rft.externalDocID=CGF13817
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon