Learning to Trace: Expressive Line Drawing Generation from Photographs
In this paper, we present a new computational method for automatically tracing high‐resolution photographs to create expressive line drawings. We define expressive lines as those that convey important edges, shape contours, and large‐scale texture lines that are necessary to accurately depict the ov...
Uloženo v:
| Vydáno v: | Computer graphics forum Ročník 38; číslo 7; s. 69 - 80 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Blackwell Publishing Ltd
01.10.2019
|
| Témata: | |
| ISSN: | 0167-7055, 1467-8659 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we present a new computational method for automatically tracing high‐resolution photographs to create expressive line drawings. We define expressive lines as those that convey important edges, shape contours, and large‐scale texture lines that are necessary to accurately depict the overall structure of objects (similar to those found in technical drawings) while still being sparse and artistically pleasing. Given a photograph, our algorithm extracts expressive edges and creates a clean line drawing using a convolutional neural network (CNN). We employ an end‐to‐end trainable fully‐convolutional CNN to learn the model in a data‐driven manner. The model consists of two networks to cope with two sub‐tasks; extracting coarse lines and refining them to be more clean and expressive. To build a model that is optimal for each domain, we construct two new datasets for face/body and manga background. The experimental results qualitatively and quantitatively demonstrate the effectiveness of our model. We further illustrate two practical applications. |
|---|---|
| AbstractList | In this paper, we present a new computational method for automatically tracing high‐resolution photographs to create expressive line drawings. We define expressive lines as those that convey important edges, shape contours, and large‐scale texture lines that are necessary to accurately depict the overall structure of objects (similar to those found in technical drawings) while still being sparse and artistically pleasing. Given a photograph, our algorithm extracts expressive edges and creates a clean line drawing using a convolutional neural network (CNN). We employ an end‐to‐end trainable fully‐convolutional CNN to learn the model in a data‐driven manner. The model consists of two networks to cope with two sub‐tasks; extracting coarse lines and refining them to be more clean and expressive. To build a model that is optimal for each domain, we construct two new datasets for face/body and manga background. The experimental results qualitatively and quantitatively demonstrate the effectiveness of our model. We further illustrate two practical applications. |
| Author | Yang, J. Price, B. Ito, D. Yamasaki, T. Inoue, N. Xu, N. |
| Author_xml | – sequence: 1 givenname: N. surname: Inoue fullname: Inoue, N. organization: The University of Tokyo – sequence: 2 givenname: D. surname: Ito fullname: Ito, D. organization: Adobe Research – sequence: 3 givenname: N. surname: Xu fullname: Xu, N. organization: Adobe Research – sequence: 4 givenname: J. surname: Yang fullname: Yang, J. organization: Adobe Research – sequence: 5 givenname: B. surname: Price fullname: Price, B. organization: Adobe Research – sequence: 6 givenname: T. surname: Yamasaki fullname: Yamasaki, T. organization: The University of Tokyo |
| BookMark | eNp9kEFPAjEQhRuDiYAe_AebePKw0G637a43g4AmJHrAc1O6UyiBdm0XkX_vAp5MdC4zh--9yXs91HHeAUK3BA9IO0O9NANCCyIuUJfkXKQFZ2UHdTFpb4EZu0K9GNcY41xw1kWTGajgrFsmjU_mQWl4SMZfdYAY7SckM-sgeQpqfySm4CCoxnqXmOC3ydvKN34ZVL2K1-jSqE2Em5_dR--T8Xz0nM5epy-jx1mqKacirRY5E4ZXqqAkU1oXWGNghvEKl4yXi9wIoypR5lnJlaCmEDojCw6YkwKgIrSP7s6-dfAfO4iNXPtdcO1LmVGSk4KVNG-p-zOlg48xgJF1sFsVDpJgeaxJtjXJU00tO_zFatucQjZB2c1_ir3dwOFvazmaTs6Kb1KXekc |
| CitedBy_id | crossref_primary_10_1007_s41095_022_0320_6 crossref_primary_10_1007_s11042_021_11028_2 |
| Cites_doi | 10.1109/CVPR.2016.28 10.1145/2897824.2925946 10.1111/cgf.12814 10.1109/CVPR.2018.00917 10.1145/2421636.2421640 10.1109/CVPR.2016.265 10.1145/1409060.1409108 10.1109/TPAMI.1986.4767851 10.1145/882262.882354 10.1109/ICCV.2013.231 10.1109/CVPR.2009.5206848 10.1007/s11263-018-1140-0 10.1145/1360612.1360687 10.1145/2897824.2925972 10.1007/978-3-642-33712-3_49 10.1007/s00371-018-1528-4 10.1145/3132703 10.1007/978-3-030-01231-1_35 10.1109/TPAMI.2004.1273918 10.1109/CVPR.2019.00162 10.1109/CVPR.2017.632 10.1109/CVPR.2005.39 10.1109/34.977560 10.1145/3197517.3201370 10.1109/TPAMI.2010.161 10.1109/WACV.2019.00154 10.1561/9781680835915 10.1109/ICCV.2015.164 |
| ContentType | Journal Article |
| Copyright | 2019 The Author(s) Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. 2019 The Eurographics Association and John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2019 The Author(s) Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. – notice: 2019 The Eurographics Association and John Wiley & Sons Ltd. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1111/cgf.13817 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1467-8659 |
| EndPage | 80 |
| ExternalDocumentID | 10_1111_cgf_13817 CGF13817 |
| Genre | article |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AHQJS AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3637-db457f6da8312acc80c0e5f56d09569b4f7fad794296a73f87c21b6e0618eed13 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000496351100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-7055 |
| IngestDate | Sun Jul 13 05:18:27 EDT 2025 Sat Nov 29 03:41:17 EST 2025 Tue Nov 18 22:20:27 EST 2025 Wed Jan 22 16:38:54 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3637-db457f6da8312acc80c0e5f56d09569b4f7fad794296a73f87c21b6e0618eed13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2314185934 |
| PQPubID | 30877 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2314185934 crossref_primary_10_1111_cgf_13817 crossref_citationtrail_10_1111_cgf_13817 wiley_primary_10_1111_cgf_13817_CGF13817 |
| PublicationCentury | 2000 |
| PublicationDate | October 2019 2019-10-00 20191001 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Computer graphics forum |
| PublicationYear | 2019 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2012 2013; 32 2004; 26 2008; 27 1986; 6 2009 2019 2019; 127 2011; 33 2018 2017 2016 2005 2015 2013 2018; 34 2001; 23 2016; 35 2018; 37 2003; 22 e_1_2_11_31_2 e_1_2_11_30_2 e_1_2_11_13_2 e_1_2_11_35_2 e_1_2_11_12_2 e_1_2_11_34_2 e_1_2_11_11_2 e_1_2_11_33_2 e_1_2_11_10_2 e_1_2_11_32_2 e_1_2_11_6_2 e_1_2_11_28_2 e_1_2_11_5_2 e_1_2_11_27_2 e_1_2_11_4_2 e_1_2_11_26_2 e_1_2_11_3_2 e_1_2_11_25_2 e_1_2_11_2_2 e_1_2_11_29_2 e_1_2_11_20_2 e_1_2_11_24_2 e_1_2_11_9_2 e_1_2_11_23_2 e_1_2_11_8_2 e_1_2_11_22_2 e_1_2_11_7_2 e_1_2_11_21_2 e_1_2_11_17_2 e_1_2_11_16_2 e_1_2_11_15_2 e_1_2_11_14_2 e_1_2_11_36_2 e_1_2_11_19_2 e_1_2_11_18_2 |
| References_xml | – start-page: 73 year: 2015 end-page: 76 – volume: 27 start-page: 155 year: 2008 article-title: Richness‐preserving manga screening publication-title: ACM TOG – volume: 37 start-page: 11 issue: 1 year: 2018 article-title: Mastering sketching: adversarial augmentation for structured prediction publication-title: ACM TOG – volume: 26 start-page: 530 issue: 5 year: 2004 end-page: 549 article-title: Learning to detect natural image boundaries using local brightness, color, and texture cues publication-title: IEEE TPAMI – volume: 37 start-page: 98 issue: 4 year: 2018 article-title: Real‐time data‐driven interactive rough sketch inking publication-title: ACM TOG – start-page: 562 year: 2018 end-page: 578 – volume: 23 start-page: 1351 issue: 12 year: 2001 end-page: 1365 article-title: Edge detection with embedded confidence publication-title: IEEE TPAMI – volume: 32 start-page: 4 issue: 1 year: 2013 article-title: Topology‐driven vectorization of clean line drawings publication-title: ACM TOG – start-page: 248 year: 2009 end-page: 255 – year: 2018 – start-page: 65 year: 2012 end-page: 73 – volume: 127 start-page: 302 issue: 3 year: 2019 end-page: 321 article-title: Semantic understanding of scenes through the ade20k dataset publication-title: Springer IJCV – volume: 33 start-page: 898 issue: 5 year: 2011 end-page: 916 article-title: Contour detection and hierarchical image segmentation publication-title: IEEE TPAMI – volume: 22 start-page: 848 year: 2003 end-page: 855 article-title: Suggestive contours for conveying shape publication-title: ACM Transactions on Graphics (TOG) – volume: 35 start-page: 120 issue: 4 year: 2016 article-title: Fidelity vs. simplicity: a global approach to line drawing vectorization publication-title: ACM TOG – start-page: 1005 year: 2005 end-page: 1010 – start-page: 2414 year: 2016 end-page: 2423 – volume: 6 start-page: 679 year: 1986 end-page: 698 article-title: A computational approach to edge detection publication-title: IEEE TPAMI – volume: 34 start-page: 1077 issue: 6–8 year: 2018 end-page: 1085 article-title: Learning to Restore Deteriorated Line Drawing publication-title: The Visual Computer – start-page: 193 year: 2016 end-page: 202 – start-page: 679 year: 2012 end-page: 692 – start-page: 1395 year: 2015 end-page: 1403 – start-page: 1525 year: 2019 end-page: 1534 – volume: 35 start-page: 121 issue: 4 year: 2016 article-title: Learning to simplify: fully convolutional networks for rough sketch cleanup publication-title: ACM TOG – start-page: 1841 year: 2013 end-page: 1848 – year: 2017 – volume: 27 start-page: 88 year: 2008 article-title: Where do people draw lines? publication-title: ACM TOG – start-page: 386 year: 2017 end-page: 396 – year: 2019 – start-page: 8798 year: 2018 end-page: 8807 – volume: 35 start-page: 93 year: 2016 end-page: 102 article-title: Automatic portrait segmentation for image stylization publication-title: Computer Graphics Forum – ident: e_1_2_11_34_2 doi: 10.1109/CVPR.2016.28 – ident: e_1_2_11_10_2 doi: 10.1145/2897824.2925946 – ident: e_1_2_11_27_2 doi: 10.1111/cgf.12814 – ident: e_1_2_11_32_2 doi: 10.1109/CVPR.2018.00917 – ident: e_1_2_11_24_2 doi: 10.1145/2421636.2421640 – ident: e_1_2_11_11_2 doi: 10.1109/CVPR.2016.265 – ident: e_1_2_11_15_2 – ident: e_1_2_11_26_2 doi: 10.1145/1409060.1409108 – ident: e_1_2_11_4_2 doi: 10.1109/TPAMI.1986.4767851 – ident: e_1_2_11_18_2 – ident: e_1_2_11_7_2 doi: 10.1145/882262.882354 – ident: e_1_2_11_9_2 doi: 10.1109/ICCV.2013.231 – ident: e_1_2_11_25_2 – ident: e_1_2_11_6_2 doi: 10.1109/CVPR.2009.5206848 – ident: e_1_2_11_36_2 doi: 10.1007/s11263-018-1140-0 – ident: e_1_2_11_5_2 doi: 10.1145/1360612.1360687 – ident: e_1_2_11_31_2 doi: 10.1145/2897824.2925972 – ident: e_1_2_11_16_2 doi: 10.1007/978-3-642-33712-3_49 – ident: e_1_2_11_28_2 doi: 10.1007/s00371-018-1528-4 – ident: e_1_2_11_29_2 doi: 10.1145/3132703 – ident: e_1_2_11_13_2 – ident: e_1_2_11_8_2 doi: 10.1007/978-3-030-01231-1_35 – ident: e_1_2_11_22_2 doi: 10.1109/TPAMI.2004.1273918 – ident: e_1_2_11_17_2 doi: 10.1109/CVPR.2019.00162 – ident: e_1_2_11_14_2 doi: 10.1109/CVPR.2017.632 – ident: e_1_2_11_20_2 doi: 10.1109/CVPR.2005.39 – ident: e_1_2_11_21_2 – ident: e_1_2_11_23_2 doi: 10.1109/34.977560 – ident: e_1_2_11_30_2 doi: 10.1145/3197517.3201370 – ident: e_1_2_11_2_2 doi: 10.1109/TPAMI.2010.161 – ident: e_1_2_11_19_2 doi: 10.1109/WACV.2019.00154 – ident: e_1_2_11_3_2 doi: 10.1561/9781680835915 – ident: e_1_2_11_33_2 doi: 10.1109/ICCV.2015.164 – ident: e_1_2_11_12_2 – ident: e_1_2_11_35_2 |
| SSID | ssj0004765 |
| Score | 2.3136692 |
| Snippet | In this paper, we present a new computational method for automatically tracing high‐resolution photographs to create expressive line drawings. We define... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 69 |
| SubjectTerms | Algorithms Applied computing → Fine arts Artificial neural networks CCS Concepts Computing methodologies → Image manipulation Engineering drawings |
| Title | Learning to Trace: Expressive Line Drawing Generation from Photographs |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.13817 https://www.proquest.com/docview/2314185934 |
| Volume | 38 |
| WOSCitedRecordID | wos000496351100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-8659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JS8NAFIAftfWgB3exWmUQD14izTJL9CRto4dSiljoLUxmUUFaaWL15zuTpa2gIHjL4WXhLfPehPe-AbjQwiM4odIJBOFOwKR0Qml82Sx9SaBVYlwmR-b36WDAxuNwWIObaham4EMsfrjZyMjXaxvgPElXglw86SvX8uXWoOEZv8V1aHQfolF_ORZJCa7Q3hYaU4KFbCPP4ubv6WhZY65Wqnmqibb_9ZE7sFVWmOi2cIldqKnJHmyucAf3ISqpqk8omyKTrYS6Rr3PoiV2rpDZnyrUnfEPK1Fwqa35kB1FQcPnaVZgrtMDGEW9x869Ux6o4Aif-NSRSYCpJpIz3_W4EKwt2gprTKTFEVrjUM2liVAvJJz6mlHhuQlRJuczk0td_xDqk-lEHQHibU9IjLn2AhKYIoP7TNBESUlCJhUhTbis9BqLkjZuD714jatdh1FNnKumCecL0bcCsfGTUKsyTlxGWRqb2tSyd0I_MK_LzfD7A-LOXZRfHP9d9AQ2TH0UFr17Lahns3d1Cutinr2ks7PS3b4AQg7Xng |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dS8MwEMCPuQnqg9_idGoQH3yprG2atOKLbKsT6xiywd5KmqRTkE22Ov3zTfqxTVAQfOvDNS25u9wl3P0CcBFzizgRFQbmhBnYFcLwhLJltfRFOJaRMpkUmR_QTscdDLxuCW6KXpiMDzE_cNOeka7X2sH1gfSSl_NhfGVqwNwKVLAyI2XfleaT3w8WfZGUOAXbW1NjcrKQruSZv_w9Hi2SzOVUNY01_tb__nIbNvMcE91mRrEDJTnahY0l8uAe-DlXdYiSMVLxistr1PrMimJnEqkdqkTNCfvQEhmZWisQ6WYU1H0eJxnoeroPfb_Va7SN_EoFg9vEpoaIsENjIphrmxbj3K3zunRihwgNJNTqoTETykctjzBqxy7llhkRqaK-q6KpaR9AeTQeyUNArG5x4TgstjDBKs1gtstpJIUgniskIVW4LCY25DlvXF978RoW-w41NWE6NVU4n4u-ZZCNn4RqhXbC3M-mocpONX3Hs7H6XKqH3wcIG3d--nD0d9EzWGv3HoMwuO88HMO6ypa8rJKvBuVk8i5PYJXPkpfp5DS3vS81oNuO |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEICH2orowbdYrbqIBy-RJtnsJuJF2kbFUopY6C1s9lEFaUsbqz_f3TzaCgqCtxwmD3ZmdmbDzDcAF4o7xIupsDAnzMK-EFYgtC3rrS_GSsbaZFJkfpt2On6_H3RLcFP0wmR8iPkPN-MZ6X5tHFyOhVrycj5QV7YBzK1ABZshMmWoNJ_CXnvRF0mJV7C9DTUmJwuZSp75zd_j0SLJXE5V01gTbv3vK7dhM88x0W1mFDtQksNd2FgiD-5BmHNVBygZIR2vuLxGrc-sKHYmkT6hStScsA8jkZGpjQKRaUZB3ZdRkoGup_vQC1vPjXsrH6lgcZe41BIx9qgigvmu7TDO_TqvS095RBggoVEPVUxoH3UCwqirfModOyZSR31fR1PbPYDycDSUh4BY3eHC85hyMME6zWCuz2kshSCBLyQhVbgsFjbiOW_cjL14i4pzh16aKF2aKpzPRccZZOMnoVqhnSj3s2mks1ND3wlcrF-X6uH3B0SNuzC9OPq76BmsdZth1H7oPB7Duk6WgqyQrwblZPIuT2CVz5LX6eQ0N70v9fLbCQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+Trace%3A+Expressive+Line+Drawing+Generation+from+Photographs&rft.jtitle=Computer+graphics+forum&rft.au=Inoue%2C+N.&rft.au=Ito%2C+D.&rft.au=Xu%2C+N.&rft.au=Yang%2C+J.&rft.date=2019-10-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=38&rft.issue=7&rft.spage=69&rft.epage=80&rft_id=info:doi/10.1111%2Fcgf.13817&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cgf_13817 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |