An evaluation of data stream clustering algorithms
Data stream clustering is a hot research area due to the abundance of data streams collected nowadays and the need for understanding and acting upon such sort of data. Unsupervised learning (clustering) comprises one of the most popular data mining tasks for gaining insights into the data. Clusterin...
Uložené v:
| Vydané v: | Statistical analysis and data mining Ročník 11; číslo 4; s. 167 - 187 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.08.2018
Wiley Subscription Services, Inc |
| Predmet: | |
| ISSN: | 1932-1864, 1932-1872 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Data stream clustering is a hot research area due to the abundance of data streams collected nowadays and the need for understanding and acting upon such sort of data. Unsupervised learning (clustering) comprises one of the most popular data mining tasks for gaining insights into the data. Clustering is a challenging task, while clustering over data streams involves additional challenges such as the single pass constraint over the raw data and the need for fast response. Moreover, dealing with an infinite and fast changing data stream implies that the clustering model extracted upon such sort of data is also subject to evolution over time. Several stream clustering surveys exist already in the literature; however, they focus on a theoretical presentation of the surveyed algorithms. On the contrary, in this paper, we survey the state‐of‐the‐art stream clustering algorithms and we evaluate their performance in different data sets and for different parameter settings. |
|---|---|
| AbstractList | Data stream clustering is a hot research area due to the abundance of data streams collected nowadays and the need for understanding and acting upon such sort of data. Unsupervised learning (clustering) comprises one of the most popular data mining tasks for gaining insights into the data. Clustering is a challenging task, while clustering over data streams involves additional challenges such as the single pass constraint over the raw data and the need for fast response. Moreover, dealing with an infinite and fast changing data stream implies that the clustering model extracted upon such sort of data is also subject to evolution over time. Several stream clustering surveys exist already in the literature; however, they focus on a theoretical presentation of the surveyed algorithms. On the contrary, in this paper, we survey the state‐of‐the‐art stream clustering algorithms and we evaluate their performance in different data sets and for different parameter settings. |
| Author | Pelekis, Nikos Ntoutsi, Eirini Theodoridis, Yannis Mansalis, Stratos |
| Author_xml | – sequence: 1 givenname: Stratos orcidid: 0000-0002-0184-207X surname: Mansalis fullname: Mansalis, Stratos email: efmansalis@gmail.com organization: University of Piraeus – sequence: 2 givenname: Eirini surname: Ntoutsi fullname: Ntoutsi, Eirini organization: Leibniz Universität Hannover – sequence: 3 givenname: Nikos surname: Pelekis fullname: Pelekis, Nikos organization: University of Piraeus – sequence: 4 givenname: Yannis surname: Theodoridis fullname: Theodoridis, Yannis organization: University of Piraeus |
| BookMark | eNp9kEtPwzAQhC1UJNrCgX8QiROHtH6ldo5VxUsq4gCcrXXiFFdJXGwH1H9P2iAOSHDa1eqbWc1M0Kh1rUHokuAZwZjOAzQzQpjEJ2hMckZTIgUd_ewLfoYmIWwxzhaY8DGiyzYxH1B3EK1rE1clJURIQvQGmqSouxCNt-0mgXrjvI1vTThHpxXUwVx8zyl6vb15Wd2n66e7h9VynRZswXDKc2kyLSrKmRFSGuBcZkLjrNQEMMs100Zg2t-BVIyZQkjQOCdClKWmWrApuhp8d969dyZEtXWdb_uXimaESMKxOFDXA1V4F4I3ldp524DfK4LVoRLVV6KOlfTs_Bdb2HgMHj3Y-j_Fp63N_m9r9bx8HBRfnj5zQg |
| CitedBy_id | crossref_primary_10_1016_j_future_2023_07_027 crossref_primary_10_1007_s11063_025_11752_y crossref_primary_10_1109_ACCESS_2024_3355959 crossref_primary_10_1080_02664763_2021_2008882 crossref_primary_10_3390_s21124086 crossref_primary_10_1109_ACCESS_2021_3084057 crossref_primary_10_1016_j_eswa_2025_126889 crossref_primary_10_1007_s10586_023_04121_8 crossref_primary_10_1145_3589307 crossref_primary_10_1109_ACCESS_2025_3596435 crossref_primary_10_1016_j_engappai_2021_104622 crossref_primary_10_1109_JIOT_2025_3579057 crossref_primary_10_1162_evco_a_00242 crossref_primary_10_1007_s10707_021_00442_1 crossref_primary_10_1371_journal_pone_0278146 crossref_primary_10_1016_j_ins_2019_03_022 crossref_primary_10_3233_IDA_194715 crossref_primary_10_1109_ACCESS_2024_3509227 crossref_primary_10_1109_TCYB_2022_3204894 crossref_primary_10_1007_s10618_024_01086_z crossref_primary_10_1007_s10462_020_09874_x crossref_primary_10_1109_TCYB_2023_3289946 crossref_primary_10_26555_ijain_v4i3_271 crossref_primary_10_1007_s41651_020_00070_7 crossref_primary_10_1038_s41598_024_75928_7 crossref_primary_10_3390_app13063529 crossref_primary_10_1016_j_jisa_2024_103751 crossref_primary_10_32604_cmc_2023_035987 crossref_primary_10_3390_math12132049 crossref_primary_10_1080_15567036_2024_2334923 crossref_primary_10_1016_j_ins_2021_08_039 crossref_primary_10_1007_s00521_024_09443_1 crossref_primary_10_1007_s00778_022_00778_6 crossref_primary_10_1016_j_ejcon_2023_100858 crossref_primary_10_1016_j_ins_2025_122690 crossref_primary_10_1016_j_future_2023_08_004 crossref_primary_10_1186_s40537_022_00670_8 crossref_primary_10_1109_ACCESS_2019_2922162 crossref_primary_10_1007_s10732_022_09505_4 crossref_primary_10_1007_s10586_024_05029_7 |
| Cites_doi | 10.1007/978-3-642-33362-0_24 10.1109/CCCM.2009.5267735 10.1007/s00354-017-0018-y 10.1007/978-3-642-04747-3_23 10.1137/1.9781611972825.85 10.1007/978-3-540-72530-5_25 10.1145/3186728.3164136 10.1007/978-3-642-23808-6_41 10.1145/1281192.1281210 10.1145/331499.331504 10.1145/233269.233324 10.1109/ICTAI.2009.60 10.1145/2522968.2522981 10.1145/2020408.2020555 10.1109/WGEC.2008.32 10.1109/FSKD.2009.553 10.1007/978-3-319-18032-8_10 10.1016/S0168-1699(99)00046-0 10.1201/b15410 10.1007/978-3-319-22729-0_21 10.1137/1.9781611972764.29 10.1109/TKDE.2003.1198387 10.18637/jss.v076.i14 10.1007/3-540-73679-4 10.1007/11430919_49 10.1109/ICPPW.2017.27 10.1007/s10115-010-0342-8 10.1145/2695664.2695674 10.1109/ICDM.2004.10087 10.1109/ICDMW.2013.170 10.1007/s11390-014-1416-y |
| ContentType | Journal Article |
| Copyright | 2018 Wiley Periodicals, Inc. |
| Copyright_xml | – notice: 2018 Wiley Periodicals, Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1002/sam.11380 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1932-1872 |
| EndPage | 187 |
| ExternalDocumentID | 10_1002_sam_11380 SAM11380 |
| Genre | reviewArticle |
| GroupedDBID | 05W 0R~ 123 1L6 1OC 31~ 33P 3SF 4.4 52U 5DZ 66C 8-1 8UM AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABIJN ACAHQ ACBWZ ACCZN ACIWK ACPOU ACRPL ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI CS3 DCZOG DR2 DRFUL DRSTM EBS EJD ESX F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ I-F IX1 J9A JPC L8X LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY. NNB O66 O9- OIG P2P P2W Q.N QB0 ROL SUPJJ TUS W99 WBKPD WIH WIK WOHZO WXSBR WYISQ XBAML XV2 ZZTAW AAYXX CITATION |
| ID | FETCH-LOGICAL-c3630-498e5b7f243e788ea44857b05db1a039b3be702ea4a1f33ec78ab09177ddb2b73 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000438371800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-1864 |
| IngestDate | Fri Jul 25 12:15:19 EDT 2025 Sat Nov 29 07:49:42 EST 2025 Tue Nov 18 21:56:41 EST 2025 Tue Sep 09 05:12:31 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3630-498e5b7f243e788ea44857b05db1a039b3be702ea4a1f33ec78ab09177ddb2b73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0184-207X |
| PQID | 2511814077 |
| PQPubID | 1046345 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2511814077 crossref_primary_10_1002_sam_11380 crossref_citationtrail_10_1002_sam_11380 wiley_primary_10_1002_sam_11380_SAM11380 |
| PublicationCentury | 2000 |
| PublicationDate | August 2018 |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: Columbus |
| PublicationTitle | Statistical analysis and data mining |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley Subscription Services, Inc |
| References | 2010; 11 2012 2011 2013; 46 2014b; 29 1999; 24 2009 2008 2008; 15 2007 1996 2006 2005 2012; 17 2004 2003 2002 2011; 6 2014; 45 2014; 42 2001 2000 2017; 76 2017; 35 2017 2016; 62 1999; 31 2015 2013 2014a 2009; 3 2011; 29 2009; 15 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_12_1 e_1_2_9_33_1 Pereira C. M. M. (e_1_2_9_43_1) 2014; 42 Ren Jiadong (e_1_2_9_45_1) 2011; 6 Kennedy James (e_1_2_9_32_1) 2001 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_24_1 Lichman M. (e_1_2_9_36_1) 2013 Nguyen Hai‐Long (e_1_2_9_40_1) 2014; 45 e_1_2_9_8_1 e_1_2_9_6_1 Aggarwal Charu C. (e_1_2_9_3_1) 2006 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Barddal Jean Paul (e_1_2_9_13_1) 2016; 62 e_1_2_9_30_1 e_1_2_9_11_1 e_1_2_9_34_1 Ackermann Marcel R. (e_1_2_9_2_1) 2012; 17 Li Wan (e_1_2_9_35_1) 2009; 3 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_19_1 e_1_2_9_42_1 Bifet Albert (e_1_2_9_14_1) 2010; 11 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 Aggarwal Charu C. (e_1_2_9_4_1) 2013 e_1_2_9_9_1 e_1_2_9_25_1 Zhou Aoying (e_1_2_9_51_1) 2008; 15 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – year: 2011 – volume: 29 issue: 2 year: 2011 article-title: The clustree: Indexing micro‐clusters for anytime stream mining publication-title: Knowl. Inf. Syst. – year: 2009 – volume: 62 issue: C year: 2016 article-title: Sncstream+ publication-title: Inf. Syst. – volume: 76 year: 2017 article-title: Introduction to stream : An extensible framework for data stream clustering research with R publication-title: J. Stat. Softw. – volume: 3 issue: 3 year: 2009 article-title: Density‐based clustering of data streams at multiple resolutions publication-title: ACM Trans. Knowl. Discov. Data – volume: 31 start-page: 264 issue: 3 year: 1999 end-page: 323 article-title: Data clustering: A review publication-title: ACM Comput. Surv. – year: 2005 – year: 2007 – year: 2001 – year: 2014a – year: 2003 – start-page: 706 year: 2006 end-page: 711 – year: 2000 – year: 1996 – volume: 11 issue: 8 year: 2010 article-title: Moa: Massive online analysis publication-title: J. Mach. Learn. Res. – volume: 15 issue: 2 year: 2008 article-title: Tracking clusters in evolving data streams over sliding windows publication-title: Knowl. Inf. Sys. – year: 2012 – volume: 6 issue: 1 year: 2011 article-title: Clustering over data streams based on grid density and index tree publication-title: J. Converg. Inf. Technol. – volume: 42 issue: 3 year: 2014 article-title: Ts‐stream: Clustering time series on data streams publication-title: J. Intell. Inf. Syst. – volume: 35 start-page: 391 issue: 4 year: 2017 end-page: 416 article-title: Wcds: A two‐phase weightless neural system for data stream clustering publication-title: New Gener Comput – year: 2002 – year: 2008 – year: 2006 – year: 2004 – volume: 29 start-page: 116 issue: 1 year: 2014b end-page: 141 article-title: On density‐based data streams clustering algorithms: A survey publication-title: J. Comput. Sci. Technol. – volume: 15 issue: 3 year: 2009 article-title: Clustering data streams: Theory and practice publication-title: IEEE Trans. Knowl. Data Eng. – volume: 46 start-page: 1 issue: 1 year: 2013 end-page: 31 article-title: Data stream clustering: A survey publication-title: ACM Comput. Surv. – year: 2017 – volume: 24 start-page: 131 year: 1999 end-page: 151 article-title: Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables publication-title: Comput. Electron. Agric. – volume: 17 issue: 4 year: 2012 article-title: Streamkm++: A clustering algorithm for data streams publication-title: ACM J. Exp. Algorithmics – volume: 45 year: 2014 article-title: A survey on data stream clustering and classification publication-title: Knowl. Inf. Sys. – year: 2015 – year: 2013 – ident: e_1_2_9_42_1 – ident: e_1_2_9_29_1 doi: 10.1007/978-3-642-33362-0_24 – ident: e_1_2_9_37_1 doi: 10.1109/CCCM.2009.5267735 – volume-title: Data Streams: Models and Algorithms (Advances in Database Systems) year: 2006 ident: e_1_2_9_3_1 – volume: 17 issue: 4 year: 2012 ident: e_1_2_9_2_1 article-title: Streamkm++: A clustering algorithm for data streams publication-title: ACM J. Exp. Algorithmics – ident: e_1_2_9_19_1 doi: 10.1007/s00354-017-0018-y – ident: e_1_2_9_47_1 doi: 10.1007/978-3-642-04747-3_23 – volume: 6 issue: 1 year: 2011 ident: e_1_2_9_45_1 article-title: Clustering over data streams based on grid density and index tree publication-title: J. Converg. Inf. Technol. – volume: 42 issue: 3 year: 2014 ident: e_1_2_9_43_1 article-title: Ts‐stream: Clustering time series on data streams publication-title: J. Intell. Inf. Syst. – ident: e_1_2_9_38_1 – ident: e_1_2_9_41_1 doi: 10.1137/1.9781611972825.85 – ident: e_1_2_9_5_1 – ident: e_1_2_9_46_1 doi: 10.1007/978-3-540-72530-5_25 – ident: e_1_2_9_25_1 doi: 10.1145/3186728.3164136 – ident: e_1_2_9_15_1 doi: 10.1007/978-3-642-23808-6_41 – ident: e_1_2_9_20_1 doi: 10.1145/1281192.1281210 – ident: e_1_2_9_30_1 doi: 10.1145/331499.331504 – volume: 11 issue: 8 year: 2010 ident: e_1_2_9_14_1 article-title: Moa: Massive online analysis publication-title: J. Mach. Learn. Res. – ident: e_1_2_9_49_1 – ident: e_1_2_9_50_1 doi: 10.1145/233269.233324 – volume: 3 issue: 3 year: 2009 ident: e_1_2_9_35_1 article-title: Density‐based clustering of data streams at multiple resolutions publication-title: ACM Trans. Knowl. Discov. Data – ident: e_1_2_9_11_1 – ident: e_1_2_9_22_1 doi: 10.1109/ICTAI.2009.60 – ident: e_1_2_9_48_1 doi: 10.1145/2522968.2522981 – volume: 62 year: 2016 ident: e_1_2_9_13_1 article-title: Sncstream+ publication-title: Inf. Syst. – ident: e_1_2_9_34_1 doi: 10.1145/2020408.2020555 – ident: e_1_2_9_31_1 doi: 10.1109/WGEC.2008.32 – ident: e_1_2_9_44_1 doi: 10.1109/FSKD.2009.553 – volume: 15 issue: 2 year: 2008 ident: e_1_2_9_51_1 article-title: Tracking clusters in evolving data streams over sliding windows publication-title: Knowl. Inf. Sys. – ident: e_1_2_9_39_1 doi: 10.1007/978-3-319-18032-8_10 – ident: e_1_2_9_7_1 – ident: e_1_2_9_16_1 doi: 10.1016/S0168-1699(99)00046-0 – volume-title: Data Clustering: Algorithms and Applications year: 2013 ident: e_1_2_9_4_1 doi: 10.1201/b15410 – volume: 45 year: 2014 ident: e_1_2_9_40_1 article-title: A survey on data stream clustering and classification publication-title: Knowl. Inf. Sys. – ident: e_1_2_9_10_1 doi: 10.1007/978-3-319-22729-0_21 – ident: e_1_2_9_18_1 doi: 10.1137/1.9781611972764.29 – ident: e_1_2_9_27_1 doi: 10.1109/TKDE.2003.1198387 – ident: e_1_2_9_21_1 – volume-title: UCI Machine Learning Repository year: 2013 ident: e_1_2_9_36_1 – ident: e_1_2_9_28_1 doi: 10.18637/jss.v076.i14 – ident: e_1_2_9_23_1 doi: 10.1007/3-540-73679-4 – ident: e_1_2_9_24_1 doi: 10.1007/11430919_49 – ident: e_1_2_9_6_1 doi: 10.1109/ICPPW.2017.27 – ident: e_1_2_9_33_1 doi: 10.1007/s10115-010-0342-8 – ident: e_1_2_9_12_1 doi: 10.1145/2695664.2695674 – ident: e_1_2_9_17_1 doi: 10.1109/ICDM.2004.10087 – ident: e_1_2_9_26_1 – ident: e_1_2_9_8_1 doi: 10.1109/ICDMW.2013.170 – ident: e_1_2_9_9_1 doi: 10.1007/s11390-014-1416-y – volume-title: Swarm Intelligence year: 2001 ident: e_1_2_9_32_1 |
| SSID | ssj0056014 |
| Score | 2.3789399 |
| SecondaryResourceType | review_article |
| Snippet | Data stream clustering is a hot research area due to the abundance of data streams collected nowadays and the need for understanding and acting upon such sort... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 167 |
| SubjectTerms | Algorithms Clustering Data mining data stream clustering data streams Data transmission evaluation experimental Performance evaluation survey |
| Title | An evaluation of data stream clustering algorithms |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsam.11380 https://www.proquest.com/docview/2511814077 |
| Volume | 11 |
| WOSCitedRecordID | wos000438371800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1932-1872 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056014 issn: 1932-1864 databaseCode: DRFUL dateStart: 20080101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6MzQdfnFecTgnigy_FNmmbFJ-GOnyYQ9TJ3kqSpTrYOlk3f78nvWwKCoJvpaQXTs7l-9rkOwDnxqM0wbLjmERrxw8Z5kHtRo7kWHsTj8og1y146fF-XwyH0UMNrqq9MIU-xOqDm42MPF_bAJcqu1yLhmZyahuSCOTrDYp-G9ShcfPYHfSqRGy5RvlTmTqeCP1KWMill6uLv5ejNcb8ilTzUtNt_uslt2GrRJikU7jEDtRMugvNqnsDKYN5D2gnJWutbzJLiF0tSuzmETklerK0EgpY2IicvM7m48XbNNuHQff2-frOKTsoOJqFzHX8SJhA8YT6zCDXNRLJWMCVG4yUJ10WKaYMdymel17CmNFcSIUIgvPRSFHF2QHU01lqDoEgDuCR0IIaz_ga5x1TbKh8iqZPDML0FlxUhox1KS9uu1xM4kIYmcZoizi3RQvOVkPfC02Nnwa1q9mIy7DK4pwPISXkHB-X2_33G8RPnfv84OjvQ49hEwGRKBb4taG-mC_NCWzoj8U4m5-W_vUJHofRVA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5jE_TFecXp1CA--FLWJu2Sgi9DHRO7IbrJ3kqSpTrYOlk3f78nvWwKCoJvpZw25eRcvpMm30HoUjuERJB2LB0pZblNCnFQ2b4lGOTeyCHCS3kLXgLW6_Hh0H8soeviLEzGD7FacDOekcZr4-BmQbqxZg1NxNR0JOFQsFdgEA72Xbl9ag-CIhKbYiP_q0wshzfdglnIJo3Vw9_z0RpkfoWqaa5pV__3lTtoO8eYuJUZxS4q6XgPVYv-DTh3531EWjFes33jWYTNflFsjo-IKVaTpSFRgNSGxeR1Nh8v3qbJARq07_o3HSvvoWAp2qS25fpce5JFxKUaql0toBzzmLS9kXSETX1JpWY2gfvCiSjVinEhAUMwNhpJIhk9ROV4FusjhAEJMJ8rTrSjXQUzD0G2KV1CmB1pAOo1dFVoMlQ5wbjpczEJM2pkEoIuwlQXNXSxEn3PWDV-EqoX0xHmjpWEaUUERSFjMFyq-N9fED63uunF8d9Fz9Fmp98NwuC-93CCtgAe8Wy7Xx2VF_OlPkUb6mMxTuZnubF9ArWn1UQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KK-LF-sRq1UU8eAlNdtNsAl6KtSjWUtRKb2F3s9FCX_Th73c2j1ZBQfAWwuTB7M7M9yW73wBcaofSGMuOpWOlLNdjmAeVHViCY-2NHSrqiW7Ba5t3On6_H3QLcJ3vhUn1IVYf3ExkJPnaBLieRnFtrRo6FyPTkcRHwl5yTROZIpSaT61eO8_Ehmxkf5Wp5fiemysL2bS2uvh7PVqDzK9QNak1rfL_3nIHtjOMSRrppNiFgh7vQTnv30CycN4H2hiTtdo3mcTErBclZvuIGBE1XBoRBSxtRAzfJrPB4n00P4Be6_bl5s7KeihYinnMttzA13XJY-oyjWxXC6RjdS7teiQdYbNAMqm5TfG8cGLGtOK-kIghOI8iSSVnh1AcT8b6CAgiAR74yqfa0a7Ckcck60mXUm7HGoF6Ba5yT4YqExg3fS6GYSqNTEP0RZj4ogIXK9Npqqrxk1E1H44wC6x5mDAiJIWc4-MSx_9-g_C58ZgcHP_d9Bw2u81W2L7vPJzAFqIjP13tV4XiYrbUp7ChPhaD-ewsm2uffr_Uvw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+evaluation+of+data+stream+clustering+algorithms&rft.jtitle=Statistical+analysis+and+data+mining&rft.au=Mansalis%2C+Stratos&rft.au=Ntoutsi%2C+Eirini&rft.au=Pelekis%2C+Nikos&rft.au=Theodoridis%2C+Yannis&rft.date=2018-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1932-1864&rft.eissn=1932-1872&rft.volume=11&rft.issue=4&rft.spage=167&rft.epage=187&rft_id=info:doi/10.1002%2Fsam.11380&rft.externalDBID=10.1002%252Fsam.11380&rft.externalDocID=SAM11380 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-1864&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-1864&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-1864&client=summon |