An evaluation of data stream clustering algorithms

Data stream clustering is a hot research area due to the abundance of data streams collected nowadays and the need for understanding and acting upon such sort of data. Unsupervised learning (clustering) comprises one of the most popular data mining tasks for gaining insights into the data. Clusterin...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Statistical analysis and data mining Ročník 11; číslo 4; s. 167 - 187
Hlavní autori: Mansalis, Stratos, Ntoutsi, Eirini, Pelekis, Nikos, Theodoridis, Yannis
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.08.2018
Wiley Subscription Services, Inc
Predmet:
ISSN:1932-1864, 1932-1872
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Data stream clustering is a hot research area due to the abundance of data streams collected nowadays and the need for understanding and acting upon such sort of data. Unsupervised learning (clustering) comprises one of the most popular data mining tasks for gaining insights into the data. Clustering is a challenging task, while clustering over data streams involves additional challenges such as the single pass constraint over the raw data and the need for fast response. Moreover, dealing with an infinite and fast changing data stream implies that the clustering model extracted upon such sort of data is also subject to evolution over time. Several stream clustering surveys exist already in the literature; however, they focus on a theoretical presentation of the surveyed algorithms. On the contrary, in this paper, we survey the state‐of‐the‐art stream clustering algorithms and we evaluate their performance in different data sets and for different parameter settings.
AbstractList Data stream clustering is a hot research area due to the abundance of data streams collected nowadays and the need for understanding and acting upon such sort of data. Unsupervised learning (clustering) comprises one of the most popular data mining tasks for gaining insights into the data. Clustering is a challenging task, while clustering over data streams involves additional challenges such as the single pass constraint over the raw data and the need for fast response. Moreover, dealing with an infinite and fast changing data stream implies that the clustering model extracted upon such sort of data is also subject to evolution over time. Several stream clustering surveys exist already in the literature; however, they focus on a theoretical presentation of the surveyed algorithms. On the contrary, in this paper, we survey the state‐of‐the‐art stream clustering algorithms and we evaluate their performance in different data sets and for different parameter settings.
Author Pelekis, Nikos
Ntoutsi, Eirini
Theodoridis, Yannis
Mansalis, Stratos
Author_xml – sequence: 1
  givenname: Stratos
  orcidid: 0000-0002-0184-207X
  surname: Mansalis
  fullname: Mansalis, Stratos
  email: efmansalis@gmail.com
  organization: University of Piraeus
– sequence: 2
  givenname: Eirini
  surname: Ntoutsi
  fullname: Ntoutsi, Eirini
  organization: Leibniz Universität Hannover
– sequence: 3
  givenname: Nikos
  surname: Pelekis
  fullname: Pelekis, Nikos
  organization: University of Piraeus
– sequence: 4
  givenname: Yannis
  surname: Theodoridis
  fullname: Theodoridis, Yannis
  organization: University of Piraeus
BookMark eNp9kEtPwzAQhC1UJNrCgX8QiROHtH6ldo5VxUsq4gCcrXXiFFdJXGwH1H9P2iAOSHDa1eqbWc1M0Kh1rUHokuAZwZjOAzQzQpjEJ2hMckZTIgUd_ewLfoYmIWwxzhaY8DGiyzYxH1B3EK1rE1clJURIQvQGmqSouxCNt-0mgXrjvI1vTThHpxXUwVx8zyl6vb15Wd2n66e7h9VynRZswXDKc2kyLSrKmRFSGuBcZkLjrNQEMMs100Zg2t-BVIyZQkjQOCdClKWmWrApuhp8d969dyZEtXWdb_uXimaESMKxOFDXA1V4F4I3ldp524DfK4LVoRLVV6KOlfTs_Bdb2HgMHj3Y-j_Fp63N_m9r9bx8HBRfnj5zQg
CitedBy_id crossref_primary_10_1016_j_future_2023_07_027
crossref_primary_10_1007_s11063_025_11752_y
crossref_primary_10_1109_ACCESS_2024_3355959
crossref_primary_10_1080_02664763_2021_2008882
crossref_primary_10_3390_s21124086
crossref_primary_10_1109_ACCESS_2021_3084057
crossref_primary_10_1016_j_eswa_2025_126889
crossref_primary_10_1007_s10586_023_04121_8
crossref_primary_10_1145_3589307
crossref_primary_10_1109_ACCESS_2025_3596435
crossref_primary_10_1016_j_engappai_2021_104622
crossref_primary_10_1109_JIOT_2025_3579057
crossref_primary_10_1162_evco_a_00242
crossref_primary_10_1007_s10707_021_00442_1
crossref_primary_10_1371_journal_pone_0278146
crossref_primary_10_1016_j_ins_2019_03_022
crossref_primary_10_3233_IDA_194715
crossref_primary_10_1109_ACCESS_2024_3509227
crossref_primary_10_1109_TCYB_2022_3204894
crossref_primary_10_1007_s10618_024_01086_z
crossref_primary_10_1007_s10462_020_09874_x
crossref_primary_10_1109_TCYB_2023_3289946
crossref_primary_10_26555_ijain_v4i3_271
crossref_primary_10_1007_s41651_020_00070_7
crossref_primary_10_1038_s41598_024_75928_7
crossref_primary_10_3390_app13063529
crossref_primary_10_1016_j_jisa_2024_103751
crossref_primary_10_32604_cmc_2023_035987
crossref_primary_10_3390_math12132049
crossref_primary_10_1080_15567036_2024_2334923
crossref_primary_10_1016_j_ins_2021_08_039
crossref_primary_10_1007_s00521_024_09443_1
crossref_primary_10_1007_s00778_022_00778_6
crossref_primary_10_1016_j_ejcon_2023_100858
crossref_primary_10_1016_j_ins_2025_122690
crossref_primary_10_1016_j_future_2023_08_004
crossref_primary_10_1186_s40537_022_00670_8
crossref_primary_10_1109_ACCESS_2019_2922162
crossref_primary_10_1007_s10732_022_09505_4
crossref_primary_10_1007_s10586_024_05029_7
Cites_doi 10.1007/978-3-642-33362-0_24
10.1109/CCCM.2009.5267735
10.1007/s00354-017-0018-y
10.1007/978-3-642-04747-3_23
10.1137/1.9781611972825.85
10.1007/978-3-540-72530-5_25
10.1145/3186728.3164136
10.1007/978-3-642-23808-6_41
10.1145/1281192.1281210
10.1145/331499.331504
10.1145/233269.233324
10.1109/ICTAI.2009.60
10.1145/2522968.2522981
10.1145/2020408.2020555
10.1109/WGEC.2008.32
10.1109/FSKD.2009.553
10.1007/978-3-319-18032-8_10
10.1016/S0168-1699(99)00046-0
10.1201/b15410
10.1007/978-3-319-22729-0_21
10.1137/1.9781611972764.29
10.1109/TKDE.2003.1198387
10.18637/jss.v076.i14
10.1007/3-540-73679-4
10.1007/11430919_49
10.1109/ICPPW.2017.27
10.1007/s10115-010-0342-8
10.1145/2695664.2695674
10.1109/ICDM.2004.10087
10.1109/ICDMW.2013.170
10.1007/s11390-014-1416-y
ContentType Journal Article
Copyright 2018 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
DOI 10.1002/sam.11380
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1932-1872
EndPage 187
ExternalDocumentID 10_1002_sam_11380
SAM11380
Genre reviewArticle
GroupedDBID 05W
0R~
123
1L6
1OC
31~
33P
3SF
4.4
52U
5DZ
66C
8-1
8UM
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABIJN
ACAHQ
ACBWZ
ACCZN
ACIWK
ACPOU
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
EBS
EJD
ESX
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
I-F
IX1
J9A
JPC
L8X
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
NNB
O66
O9-
OIG
P2P
P2W
Q.N
QB0
ROL
SUPJJ
TUS
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYISQ
XBAML
XV2
ZZTAW
AAYXX
CITATION
ID FETCH-LOGICAL-c3630-498e5b7f243e788ea44857b05db1a039b3be702ea4a1f33ec78ab09177ddb2b73
IEDL.DBID DRFUL
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000438371800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-1864
IngestDate Fri Jul 25 12:15:19 EDT 2025
Sat Nov 29 07:49:42 EST 2025
Tue Nov 18 21:56:41 EST 2025
Tue Sep 09 05:12:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3630-498e5b7f243e788ea44857b05db1a039b3be702ea4a1f33ec78ab09177ddb2b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0184-207X
PQID 2511814077
PQPubID 1046345
PageCount 21
ParticipantIDs proquest_journals_2511814077
crossref_primary_10_1002_sam_11380
crossref_citationtrail_10_1002_sam_11380
wiley_primary_10_1002_sam_11380_SAM11380
PublicationCentury 2000
PublicationDate August 2018
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Columbus
PublicationTitle Statistical analysis and data mining
PublicationYear 2018
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley Subscription Services, Inc
References 2010; 11
2012
2011
2013; 46
2014b; 29
1999; 24
2009
2008
2008; 15
2007
1996
2006
2005
2012; 17
2004
2003
2002
2011; 6
2014; 45
2014; 42
2001
2000
2017; 76
2017; 35
2017
2016; 62
1999; 31
2015
2013
2014a
2009; 3
2011; 29
2009; 15
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_12_1
e_1_2_9_33_1
Pereira C. M. M. (e_1_2_9_43_1) 2014; 42
Ren Jiadong (e_1_2_9_45_1) 2011; 6
Kennedy James (e_1_2_9_32_1) 2001
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_24_1
Lichman M. (e_1_2_9_36_1) 2013
Nguyen Hai‐Long (e_1_2_9_40_1) 2014; 45
e_1_2_9_8_1
e_1_2_9_6_1
Aggarwal Charu C. (e_1_2_9_3_1) 2006
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Barddal Jean Paul (e_1_2_9_13_1) 2016; 62
e_1_2_9_30_1
e_1_2_9_11_1
e_1_2_9_34_1
Ackermann Marcel R. (e_1_2_9_2_1) 2012; 17
Li Wan (e_1_2_9_35_1) 2009; 3
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_19_1
e_1_2_9_42_1
Bifet Albert (e_1_2_9_14_1) 2010; 11
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
Aggarwal Charu C. (e_1_2_9_4_1) 2013
e_1_2_9_9_1
e_1_2_9_25_1
Zhou Aoying (e_1_2_9_51_1) 2008; 15
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – year: 2011
– volume: 29
  issue: 2
  year: 2011
  article-title: The clustree: Indexing micro‐clusters for anytime stream mining
  publication-title: Knowl. Inf. Syst.
– year: 2009
– volume: 62
  issue: C
  year: 2016
  article-title: Sncstream+
  publication-title: Inf. Syst.
– volume: 76
  year: 2017
  article-title: Introduction to stream : An extensible framework for data stream clustering research with R
  publication-title: J. Stat. Softw.
– volume: 3
  issue: 3
  year: 2009
  article-title: Density‐based clustering of data streams at multiple resolutions
  publication-title: ACM Trans. Knowl. Discov. Data
– volume: 31
  start-page: 264
  issue: 3
  year: 1999
  end-page: 323
  article-title: Data clustering: A review
  publication-title: ACM Comput. Surv.
– year: 2005
– year: 2007
– year: 2001
– year: 2014a
– year: 2003
– start-page: 706
  year: 2006
  end-page: 711
– year: 2000
– year: 1996
– volume: 11
  issue: 8
  year: 2010
  article-title: Moa: Massive online analysis
  publication-title: J. Mach. Learn. Res.
– volume: 15
  issue: 2
  year: 2008
  article-title: Tracking clusters in evolving data streams over sliding windows
  publication-title: Knowl. Inf. Sys.
– year: 2012
– volume: 6
  issue: 1
  year: 2011
  article-title: Clustering over data streams based on grid density and index tree
  publication-title: J. Converg. Inf. Technol.
– volume: 42
  issue: 3
  year: 2014
  article-title: Ts‐stream: Clustering time series on data streams
  publication-title: J. Intell. Inf. Syst.
– volume: 35
  start-page: 391
  issue: 4
  year: 2017
  end-page: 416
  article-title: Wcds: A two‐phase weightless neural system for data stream clustering
  publication-title: New Gener Comput
– year: 2002
– year: 2008
– year: 2006
– year: 2004
– volume: 29
  start-page: 116
  issue: 1
  year: 2014b
  end-page: 141
  article-title: On density‐based data streams clustering algorithms: A survey
  publication-title: J. Comput. Sci. Technol.
– volume: 15
  issue: 3
  year: 2009
  article-title: Clustering data streams: Theory and practice
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 46
  start-page: 1
  issue: 1
  year: 2013
  end-page: 31
  article-title: Data stream clustering: A survey
  publication-title: ACM Comput. Surv.
– year: 2017
– volume: 24
  start-page: 131
  year: 1999
  end-page: 151
  article-title: Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables
  publication-title: Comput. Electron. Agric.
– volume: 17
  issue: 4
  year: 2012
  article-title: Streamkm++: A clustering algorithm for data streams
  publication-title: ACM J. Exp. Algorithmics
– volume: 45
  year: 2014
  article-title: A survey on data stream clustering and classification
  publication-title: Knowl. Inf. Sys.
– year: 2015
– year: 2013
– ident: e_1_2_9_42_1
– ident: e_1_2_9_29_1
  doi: 10.1007/978-3-642-33362-0_24
– ident: e_1_2_9_37_1
  doi: 10.1109/CCCM.2009.5267735
– volume-title: Data Streams: Models and Algorithms (Advances in Database Systems)
  year: 2006
  ident: e_1_2_9_3_1
– volume: 17
  issue: 4
  year: 2012
  ident: e_1_2_9_2_1
  article-title: Streamkm++: A clustering algorithm for data streams
  publication-title: ACM J. Exp. Algorithmics
– ident: e_1_2_9_19_1
  doi: 10.1007/s00354-017-0018-y
– ident: e_1_2_9_47_1
  doi: 10.1007/978-3-642-04747-3_23
– volume: 6
  issue: 1
  year: 2011
  ident: e_1_2_9_45_1
  article-title: Clustering over data streams based on grid density and index tree
  publication-title: J. Converg. Inf. Technol.
– volume: 42
  issue: 3
  year: 2014
  ident: e_1_2_9_43_1
  article-title: Ts‐stream: Clustering time series on data streams
  publication-title: J. Intell. Inf. Syst.
– ident: e_1_2_9_38_1
– ident: e_1_2_9_41_1
  doi: 10.1137/1.9781611972825.85
– ident: e_1_2_9_5_1
– ident: e_1_2_9_46_1
  doi: 10.1007/978-3-540-72530-5_25
– ident: e_1_2_9_25_1
  doi: 10.1145/3186728.3164136
– ident: e_1_2_9_15_1
  doi: 10.1007/978-3-642-23808-6_41
– ident: e_1_2_9_20_1
  doi: 10.1145/1281192.1281210
– ident: e_1_2_9_30_1
  doi: 10.1145/331499.331504
– volume: 11
  issue: 8
  year: 2010
  ident: e_1_2_9_14_1
  article-title: Moa: Massive online analysis
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_9_49_1
– ident: e_1_2_9_50_1
  doi: 10.1145/233269.233324
– volume: 3
  issue: 3
  year: 2009
  ident: e_1_2_9_35_1
  article-title: Density‐based clustering of data streams at multiple resolutions
  publication-title: ACM Trans. Knowl. Discov. Data
– ident: e_1_2_9_11_1
– ident: e_1_2_9_22_1
  doi: 10.1109/ICTAI.2009.60
– ident: e_1_2_9_48_1
  doi: 10.1145/2522968.2522981
– volume: 62
  year: 2016
  ident: e_1_2_9_13_1
  article-title: Sncstream+
  publication-title: Inf. Syst.
– ident: e_1_2_9_34_1
  doi: 10.1145/2020408.2020555
– ident: e_1_2_9_31_1
  doi: 10.1109/WGEC.2008.32
– ident: e_1_2_9_44_1
  doi: 10.1109/FSKD.2009.553
– volume: 15
  issue: 2
  year: 2008
  ident: e_1_2_9_51_1
  article-title: Tracking clusters in evolving data streams over sliding windows
  publication-title: Knowl. Inf. Sys.
– ident: e_1_2_9_39_1
  doi: 10.1007/978-3-319-18032-8_10
– ident: e_1_2_9_7_1
– ident: e_1_2_9_16_1
  doi: 10.1016/S0168-1699(99)00046-0
– volume-title: Data Clustering: Algorithms and Applications
  year: 2013
  ident: e_1_2_9_4_1
  doi: 10.1201/b15410
– volume: 45
  year: 2014
  ident: e_1_2_9_40_1
  article-title: A survey on data stream clustering and classification
  publication-title: Knowl. Inf. Sys.
– ident: e_1_2_9_10_1
  doi: 10.1007/978-3-319-22729-0_21
– ident: e_1_2_9_18_1
  doi: 10.1137/1.9781611972764.29
– ident: e_1_2_9_27_1
  doi: 10.1109/TKDE.2003.1198387
– ident: e_1_2_9_21_1
– volume-title: UCI Machine Learning Repository
  year: 2013
  ident: e_1_2_9_36_1
– ident: e_1_2_9_28_1
  doi: 10.18637/jss.v076.i14
– ident: e_1_2_9_23_1
  doi: 10.1007/3-540-73679-4
– ident: e_1_2_9_24_1
  doi: 10.1007/11430919_49
– ident: e_1_2_9_6_1
  doi: 10.1109/ICPPW.2017.27
– ident: e_1_2_9_33_1
  doi: 10.1007/s10115-010-0342-8
– ident: e_1_2_9_12_1
  doi: 10.1145/2695664.2695674
– ident: e_1_2_9_17_1
  doi: 10.1109/ICDM.2004.10087
– ident: e_1_2_9_26_1
– ident: e_1_2_9_8_1
  doi: 10.1109/ICDMW.2013.170
– ident: e_1_2_9_9_1
  doi: 10.1007/s11390-014-1416-y
– volume-title: Swarm Intelligence
  year: 2001
  ident: e_1_2_9_32_1
SSID ssj0056014
Score 2.3789399
SecondaryResourceType review_article
Snippet Data stream clustering is a hot research area due to the abundance of data streams collected nowadays and the need for understanding and acting upon such sort...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 167
SubjectTerms Algorithms
Clustering
Data mining
data stream clustering
data streams
Data transmission
evaluation
experimental
Performance evaluation
survey
Title An evaluation of data stream clustering algorithms
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsam.11380
https://www.proquest.com/docview/2511814077
Volume 11
WOSCitedRecordID wos000438371800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1932-1872
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056014
  issn: 1932-1864
  databaseCode: DRFUL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6MzQdfnFecTgnigy_FNmmbFJ-GOnyYQ9TJ3kqSpTrYOlk3f78nvWwKCoJvpaQXTs7l-9rkOwDnxqM0wbLjmERrxw8Z5kHtRo7kWHsTj8og1y146fF-XwyH0UMNrqq9MIU-xOqDm42MPF_bAJcqu1yLhmZyahuSCOTrDYp-G9ShcfPYHfSqRGy5RvlTmTqeCP1KWMill6uLv5ejNcb8ilTzUtNt_uslt2GrRJikU7jEDtRMugvNqnsDKYN5D2gnJWutbzJLiF0tSuzmETklerK0EgpY2IicvM7m48XbNNuHQff2-frOKTsoOJqFzHX8SJhA8YT6zCDXNRLJWMCVG4yUJ10WKaYMdymel17CmNFcSIUIgvPRSFHF2QHU01lqDoEgDuCR0IIaz_ga5x1TbKh8iqZPDML0FlxUhox1KS9uu1xM4kIYmcZoizi3RQvOVkPfC02Nnwa1q9mIy7DK4pwPISXkHB-X2_33G8RPnfv84OjvQ49hEwGRKBb4taG-mC_NCWzoj8U4m5-W_vUJHofRVA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5jE_TFecXp1CA--FLWJu2Sgi9DHRO7IbrJ3kqSpTrYOlk3f78nvWwKCoJvpZw25eRcvpMm30HoUjuERJB2LB0pZblNCnFQ2b4lGOTeyCHCS3kLXgLW6_Hh0H8soeviLEzGD7FacDOekcZr4-BmQbqxZg1NxNR0JOFQsFdgEA72Xbl9ag-CIhKbYiP_q0wshzfdglnIJo3Vw9_z0RpkfoWqaa5pV__3lTtoO8eYuJUZxS4q6XgPVYv-DTh3531EWjFes33jWYTNflFsjo-IKVaTpSFRgNSGxeR1Nh8v3qbJARq07_o3HSvvoWAp2qS25fpce5JFxKUaql0toBzzmLS9kXSETX1JpWY2gfvCiSjVinEhAUMwNhpJIhk9ROV4FusjhAEJMJ8rTrSjXQUzD0G2KV1CmB1pAOo1dFVoMlQ5wbjpczEJM2pkEoIuwlQXNXSxEn3PWDV-EqoX0xHmjpWEaUUERSFjMFyq-N9fED63uunF8d9Fz9Fmp98NwuC-93CCtgAe8Wy7Xx2VF_OlPkUb6mMxTuZnubF9ArWn1UQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KK-LF-sRq1UU8eAlNdtNsAl6KtSjWUtRKb2F3s9FCX_Th73c2j1ZBQfAWwuTB7M7M9yW73wBcaofSGMuOpWOlLNdjmAeVHViCY-2NHSrqiW7Ba5t3On6_H3QLcJ3vhUn1IVYf3ExkJPnaBLieRnFtrRo6FyPTkcRHwl5yTROZIpSaT61eO8_Ehmxkf5Wp5fiemysL2bS2uvh7PVqDzK9QNak1rfL_3nIHtjOMSRrppNiFgh7vQTnv30CycN4H2hiTtdo3mcTErBclZvuIGBE1XBoRBSxtRAzfJrPB4n00P4Be6_bl5s7KeihYinnMttzA13XJY-oyjWxXC6RjdS7teiQdYbNAMqm5TfG8cGLGtOK-kIghOI8iSSVnh1AcT8b6CAgiAR74yqfa0a7Ckcck60mXUm7HGoF6Ba5yT4YqExg3fS6GYSqNTEP0RZj4ogIXK9Npqqrxk1E1H44wC6x5mDAiJIWc4-MSx_9-g_C58ZgcHP_d9Bw2u81W2L7vPJzAFqIjP13tV4XiYrbUp7ChPhaD-ewsm2uffr_Uvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+evaluation+of+data+stream+clustering+algorithms&rft.jtitle=Statistical+analysis+and+data+mining&rft.au=Mansalis%2C+Stratos&rft.au=Ntoutsi%2C+Eirini&rft.au=Pelekis%2C+Nikos&rft.au=Theodoridis%2C+Yannis&rft.date=2018-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1932-1864&rft.eissn=1932-1872&rft.volume=11&rft.issue=4&rft.spage=167&rft.epage=187&rft_id=info:doi/10.1002%2Fsam.11380&rft.externalDBID=10.1002%252Fsam.11380&rft.externalDocID=SAM11380
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-1864&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-1864&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-1864&client=summon