ISA: Ingenious Siamese Attention for object detection algorithms towards complex scenes

The interference of complex environments on object detection tasks dramatically limits the application of object detection algorithms. Improving the detection accuracy of the object detection algorithms is able to effectively enhance the stability and reliability of the object detection algorithm-ba...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:ISA transactions Ročník 143; s. 205 - 220
Hlavní autoři: Liu, Lianjun, Hu, Ziyu, Dai, Yan, Ma, Xuemin, Deng, Pengwei
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.12.2023
Témata:
ISSN:0019-0578, 1879-2022, 1879-2022
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The interference of complex environments on object detection tasks dramatically limits the application of object detection algorithms. Improving the detection accuracy of the object detection algorithms is able to effectively enhance the stability and reliability of the object detection algorithm-based tasks in complex environments. In order to ameliorate the detection accuracy of object detection algorithms under various complex environment transformations, this work proposes the Siamese Attention YOLO (SAYOLO) object detection algorithm based on ingenious siamese attention structure. The ingenious siamese attention structure includes three aspects: Attention Neck YOLOv4 (ANYOLOv4), siamese neural network structure and special designed network scoring module. In the Complex Mini VOC dataset, the detection accuracy of SAYOLO algorithm is 12.31%, 48.93%, 17.80%, 10.12%, 18.79% and 1.12% higher than Faster-RCNN (Resnet50), SSD (Mobilenetv2), YOLOv3, YOLOv4, YOLOv5-l and YOLOX-x, respectively. Compared with traditional object detection algorithms based on image preprocessing, the detection accuracy of SAYOLO is 4.88%, 11.51%, 1.73%, 23.27%, 18.12%, and 5.76% higher than Image-Adaptive YOLO, MSBDN-DFF + YOLOv4, Dark Channel Prior + YOLOv4, Zero-DCE + YOLOv4, MSBDN-DFF + Zero-DCE + YOLOv4, and Dark Channel Prior + Zero-DCE + YOLOv4, respectively.
AbstractList The interference of complex environments on object detection tasks dramatically limits the application of object detection algorithms. Improving the detection accuracy of the object detection algorithms is able to effectively enhance the stability and reliability of the object detection algorithm-based tasks in complex environments. In order to ameliorate the detection accuracy of object detection algorithms under various complex environment transformations, this work proposes the Siamese Attention YOLO (SAYOLO) object detection algorithm based on ingenious siamese attention structure. The ingenious siamese attention structure includes three aspects: Attention Neck YOLOv4 (ANYOLOv4), siamese neural network structure and special designed network scoring module. In the Complex Mini VOC dataset, the detection accuracy of SAYOLO algorithm is 12.31%, 48.93%, 17.80%, 10.12%, 18.79% and 1.12% higher than Faster-RCNN (Resnet50), SSD (Mobilenetv2), YOLOv3, YOLOv4, YOLOv5-l and YOLOX-x, respectively. Compared with traditional object detection algorithms based on image preprocessing, the detection accuracy of SAYOLO is 4.88%, 11.51%, 1.73%, 23.27%, 18.12%, and 5.76% higher than Image-Adaptive YOLO, MSBDN-DFF + YOLOv4, Dark Channel Prior + YOLOv4, Zero-DCE + YOLOv4, MSBDN-DFF + Zero-DCE + YOLOv4, and Dark Channel Prior + Zero-DCE + YOLOv4, respectively.
The interference of complex environments on object detection tasks dramatically limits the application of object detection algorithms. Improving the detection accuracy of the object detection algorithms is able to effectively enhance the stability and reliability of the object detection algorithm-based tasks in complex environments. In order to ameliorate the detection accuracy of object detection algorithms under various complex environment transformations, this work proposes the Siamese Attention YOLO (SAYOLO) object detection algorithm based on ingenious siamese attention structure. The ingenious siamese attention structure includes three aspects: Attention Neck YOLOv4 (ANYOLOv4), siamese neural network structure and special designed network scoring module. In the Complex Mini VOC dataset, the detection accuracy of SAYOLO algorithm is 12.31%, 48.93%, 17.80%, 10.12%, 18.79% and 1.12% higher than Faster-RCNN (Resnet50), SSD (Mobilenetv2), YOLOv3, YOLOv4, YOLOv5-l and YOLOX-x, respectively. Compared with traditional object detection algorithms based on image preprocessing, the detection accuracy of SAYOLO is 4.88%, 11.51%, 1.73%, 23.27%, 18.12%, and 5.76% higher than Image-Adaptive YOLO, MSBDN-DFF + YOLOv4, Dark Channel Prior + YOLOv4, Zero-DCE + YOLOv4, MSBDN-DFF + Zero-DCE + YOLOv4, and Dark Channel Prior + Zero-DCE + YOLOv4, respectively.The interference of complex environments on object detection tasks dramatically limits the application of object detection algorithms. Improving the detection accuracy of the object detection algorithms is able to effectively enhance the stability and reliability of the object detection algorithm-based tasks in complex environments. In order to ameliorate the detection accuracy of object detection algorithms under various complex environment transformations, this work proposes the Siamese Attention YOLO (SAYOLO) object detection algorithm based on ingenious siamese attention structure. The ingenious siamese attention structure includes three aspects: Attention Neck YOLOv4 (ANYOLOv4), siamese neural network structure and special designed network scoring module. In the Complex Mini VOC dataset, the detection accuracy of SAYOLO algorithm is 12.31%, 48.93%, 17.80%, 10.12%, 18.79% and 1.12% higher than Faster-RCNN (Resnet50), SSD (Mobilenetv2), YOLOv3, YOLOv4, YOLOv5-l and YOLOX-x, respectively. Compared with traditional object detection algorithms based on image preprocessing, the detection accuracy of SAYOLO is 4.88%, 11.51%, 1.73%, 23.27%, 18.12%, and 5.76% higher than Image-Adaptive YOLO, MSBDN-DFF + YOLOv4, Dark Channel Prior + YOLOv4, Zero-DCE + YOLOv4, MSBDN-DFF + Zero-DCE + YOLOv4, and Dark Channel Prior + Zero-DCE + YOLOv4, respectively.
Author Ma, Xuemin
Liu, Lianjun
Dai, Yan
Hu, Ziyu
Deng, Pengwei
Author_xml – sequence: 1
  givenname: Lianjun
  surname: Liu
  fullname: Liu, Lianjun
– sequence: 2
  givenname: Ziyu
  orcidid: 0000-0001-6982-3265
  surname: Hu
  fullname: Hu, Ziyu
– sequence: 3
  givenname: Yan
  surname: Dai
  fullname: Dai, Yan
– sequence: 4
  givenname: Xuemin
  surname: Ma
  fullname: Ma, Xuemin
– sequence: 5
  givenname: Pengwei
  surname: Deng
  fullname: Deng, Pengwei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37704556$$D View this record in MEDLINE/PubMed
BookMark eNp9kEtLAzEUhYMo9qH_QCRLNzNmMjPJpLtSfBQEFxVchiRzW1NmJjVJUf-9KdWNC1cXDucczv0m6HRwAyB0VZC8IAW73eY2qOhVTgktcyJyQooTNC4aLrIk0VM0TorISM2bEZqEsCWE0Fo052hUck6qumZj9LpczWd4OWxgsG4f8MqqHgLgeYwwROsGvHYeO70FE3ELMZ2DqLqN8za-9QFH96F8G7Bx_a6DTxwMDBAu0NladQEuf-4UvdzfvSwes6fnh-Vi_pSZktGYAde0rdIwZRQo1TLNRNNqwypeQ80JUG502ypRlWZNAKDkZcWo4Vpp3RTlFN0ca3feve8hRNnbNKDr1ADpHUkbVjVCFIQl6_WPda97aOXO2175L_nLIhlmR4PxLgQPa2lsVId3E2XbyYLIA3i5lUfw8gBeEiET5hSu_oR_-_-NfQNmDotk
CitedBy_id crossref_primary_10_32604_cmc_2024_058467
crossref_primary_10_1007_s11760_024_03305_y
crossref_primary_10_1016_j_istruc_2025_108302
Cites_doi 10.1016/j.displa.2022.102322
10.1145/3424341
10.3390/s23031347
10.3390/electronics8080825
10.1016/j.displa.2021.102008
10.1109/CVPR42600.2020.00185
10.1109/ICCV48922.2021.00986
10.1109/CVPR.2017.690
10.1109/CVPR42600.2020.01155
10.1007/978-1-0716-0826-5_3
10.1109/ICCV.2017.322
10.1109/ICCV.2019.00086
10.1109/CVPR.2016.596
10.1109/CVPR42600.2020.00223
10.1007/s11263-014-0733-5
10.1109/CVPR.2014.81
10.1109/CVPR.2016.91
10.1109/ACCESS.2020.3007610
10.1109/CVPR.2018.00745
10.1007/978-3-030-01234-2_1
10.1109/TIM.2022.3216413
10.1109/ICCV.2015.169
10.1016/j.image.2022.116848
10.4304/jmm.6.1.14-21
10.1016/j.displa.2022.102317
10.1155/2021/5278820
10.1609/aaai.v36i2.20072
ContentType Journal Article
Copyright Copyright © 2023 ISA. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: Copyright © 2023 ISA. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.isatra.2023.09.001
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1879-2022
EndPage 220
ExternalDocumentID 37704556
10_1016_j_isatra_2023_09_001
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
6P2
7-5
71M
8P~
9DU
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFO
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CITATION
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
T9H
TAE
TN5
UHS
UNMZH
WUQ
XPP
ZMT
ZY4
~G-
~HD
AACTN
ABTAH
BNPGV
NPM
SSH
7X8
ID FETCH-LOGICAL-c362t-e7b2d4000acaeaad6b698dbc6475e570e27cbdda943cf0eee373462c7babb813
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001138538900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0019-0578
1879-2022
IngestDate Wed Oct 01 13:08:11 EDT 2025
Thu Apr 03 06:54:03 EDT 2025
Tue Nov 18 22:32:14 EST 2025
Sat Nov 29 07:01:48 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Siamese network
YOLO
Complex scenes
Object detection
Language English
License Copyright © 2023 ISA. Published by Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-e7b2d4000acaeaad6b698dbc6475e570e27cbdda943cf0eee373462c7babb813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6982-3265
PMID 37704556
PQID 2864899106
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_2864899106
pubmed_primary_37704556
crossref_citationtrail_10_1016_j_isatra_2023_09_001
crossref_primary_10_1016_j_isatra_2023_09_001
PublicationCentury 2000
PublicationDate 2023-12-00
2023-Dec
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ISA transactions
PublicationTitleAlternate ISA Trans
PublicationYear 2023
References Liu (10.1016/j.isatra.2023.09.001_b5) 2016
10.1016/j.isatra.2023.09.001_b44
10.1016/j.isatra.2023.09.001_b45
10.1016/j.isatra.2023.09.001_b46
Lin (10.1016/j.isatra.2023.09.001_b17) 2014
Dai (10.1016/j.isatra.2023.09.001_b13) 2022
Ren (10.1016/j.isatra.2023.09.001_b26) 2015; Vol. 28
Jocher (10.1016/j.isatra.2023.09.001_b28) 2020
Tarel (10.1016/j.isatra.2023.09.001_b41) 2012; 4
10.1016/j.isatra.2023.09.001_b1
Hnewa (10.1016/j.isatra.2023.09.001_b8) 2021
Tan (10.1016/j.isatra.2023.09.001_b12) 2018
10.1016/j.isatra.2023.09.001_b3
Liu (10.1016/j.isatra.2023.09.001_b7) 2021; 68
Everingham (10.1016/j.isatra.2023.09.001_b16) 2015; 111
Chicco (10.1016/j.isatra.2023.09.001_b21) 2021
10.1016/j.isatra.2023.09.001_b4
Kvyetnyy (10.1016/j.isatra.2023.09.001_b35) 2017; Vol. 10445
Walambe (10.1016/j.isatra.2023.09.001_b31) 2021; 2021
Ge (10.1016/j.isatra.2023.09.001_b29) 2021
Dosovitskiy (10.1016/j.isatra.2023.09.001_b2) 2020
Katyal (10.1016/j.isatra.2023.09.001_b42) 2018
10.1016/j.isatra.2023.09.001_b22
Yang (10.1016/j.isatra.2023.09.001_b14) 2018
10.1016/j.isatra.2023.09.001_b23
10.1016/j.isatra.2023.09.001_b24
Yang (10.1016/j.isatra.2023.09.001_b51) 2021
Wu (10.1016/j.isatra.2023.09.001_b10) 2019
10.1016/j.isatra.2023.09.001_b20
Ronneberger (10.1016/j.isatra.2023.09.001_b34) 2015
Xu (10.1016/j.isatra.2023.09.001_b38) 2021; 17
Al Sobbahi (10.1016/j.isatra.2023.09.001_b36) 2022
Dey (10.1016/j.isatra.2023.09.001_b47) 2017
Redmon (10.1016/j.isatra.2023.09.001_b27) 2018
Huang (10.1016/j.isatra.2023.09.001_b6) 2019; 8
Wu (10.1016/j.isatra.2023.09.001_b37) 2022
Bochkovskiy (10.1016/j.isatra.2023.09.001_b19) 2020
Xiao (10.1016/j.isatra.2023.09.001_b39) 2020; 8
10.1016/j.isatra.2023.09.001_b15
He (10.1016/j.isatra.2023.09.001_b25) 2010; 33
Huang (10.1016/j.isatra.2023.09.001_b30) 2020; 43
Wang (10.1016/j.isatra.2023.09.001_b40) 2022; 71
10.1016/j.isatra.2023.09.001_b50
Dong (10.1016/j.isatra.2023.09.001_b32) 2011; 6
Li (10.1016/j.isatra.2023.09.001_b11) 2022
Shao (10.1016/j.isatra.2023.09.001_b18) 2018
Chowdhary (10.1016/j.isatra.2023.09.001_b33) 2021
Qiu (10.1016/j.isatra.2023.09.001_b43) 2023; 23
Hou (10.1016/j.isatra.2023.09.001_b9) 2022; 75
10.1016/j.isatra.2023.09.001_b48
10.1016/j.isatra.2023.09.001_b49
References_xml – start-page: 154
  year: 2018
  ident: 10.1016/j.isatra.2023.09.001_b42
  article-title: Object detection in foggy conditions by fusion of saliency map and yolo
– volume: 75
  year: 2022
  ident: 10.1016/j.isatra.2023.09.001_b9
  article-title: Deformable pyramid R-CNN for 3D object detection (ChinaMM2022)
  publication-title: Displays
  doi: 10.1016/j.displa.2022.102322
– volume: 17
  start-page: 1
  issue: 1s
  year: 2021
  ident: 10.1016/j.isatra.2023.09.001_b38
  article-title: Exploring image enhancement for salient object detection in low light images
  publication-title: ACM Trans Multimedia Comput Commun Appl (TOMM)
  doi: 10.1145/3424341
– year: 2021
  ident: 10.1016/j.isatra.2023.09.001_b33
– volume: Vol. 10445
  start-page: 250
  year: 2017
  ident: 10.1016/j.isatra.2023.09.001_b35
  article-title: Object detection in images with low light condition
– year: 2022
  ident: 10.1016/j.isatra.2023.09.001_b37
  article-title: Edge computing driven low-light image dynamic enhancement for object detection
  publication-title: IEEE Trans Netw Sci Eng
– volume: 23
  start-page: 1347
  issue: 3
  year: 2023
  ident: 10.1016/j.isatra.2023.09.001_b43
  article-title: IDOD-YOLOV7: Image-dehazing YOLOV7 for object detection in low-light foggy traffic environments
  publication-title: Sensors
  doi: 10.3390/s23031347
– year: 2021
  ident: 10.1016/j.isatra.2023.09.001_b29
– volume: 8
  start-page: 825
  issue: 8
  year: 2019
  ident: 10.1016/j.isatra.2023.09.001_b6
  article-title: A rapid recognition method for electronic components based on the improved YOLO-V3 network
  publication-title: Electronics
  doi: 10.3390/electronics8080825
– year: 2017
  ident: 10.1016/j.isatra.2023.09.001_b47
– volume: 68
  year: 2021
  ident: 10.1016/j.isatra.2023.09.001_b7
  article-title: DLSE-net: A robust weakly supervised network for fabric defect detection
  publication-title: Displays
  doi: 10.1016/j.displa.2021.102008
– ident: 10.1016/j.isatra.2023.09.001_b24
  doi: 10.1109/CVPR42600.2020.00185
– ident: 10.1016/j.isatra.2023.09.001_b1
  doi: 10.1109/ICCV48922.2021.00986
– ident: 10.1016/j.isatra.2023.09.001_b46
  doi: 10.1109/CVPR.2017.690
– ident: 10.1016/j.isatra.2023.09.001_b50
  doi: 10.1109/CVPR42600.2020.01155
– start-page: 73
  year: 2021
  ident: 10.1016/j.isatra.2023.09.001_b21
  article-title: Siamese neural networks: An overview
  publication-title: Artif Neural Netw
  doi: 10.1007/978-1-0716-0826-5_3
– year: 2018
  ident: 10.1016/j.isatra.2023.09.001_b18
– ident: 10.1016/j.isatra.2023.09.001_b45
  doi: 10.1109/ICCV.2017.322
– start-page: 234
  year: 2015
  ident: 10.1016/j.isatra.2023.09.001_b34
  article-title: U-net: Convolutional networks for biomedical image segmentation
– ident: 10.1016/j.isatra.2023.09.001_b48
  doi: 10.1109/ICCV.2019.00086
– ident: 10.1016/j.isatra.2023.09.001_b15
  doi: 10.1109/CVPR.2016.596
– volume: 33
  start-page: 2341
  issue: 12
  year: 2010
  ident: 10.1016/j.isatra.2023.09.001_b25
  article-title: Single image haze removal using dark channel prior
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: 10.1016/j.isatra.2023.09.001_b23
  doi: 10.1109/CVPR42600.2020.00223
– volume: 111
  start-page: 98
  year: 2015
  ident: 10.1016/j.isatra.2023.09.001_b16
  article-title: The pascal visual object classes challenge: A retrospective
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-014-0733-5
– ident: 10.1016/j.isatra.2023.09.001_b3
  doi: 10.1109/CVPR.2014.81
– ident: 10.1016/j.isatra.2023.09.001_b4
  doi: 10.1109/CVPR.2016.91
– volume: 43
  start-page: 2623
  issue: 8
  year: 2020
  ident: 10.1016/j.isatra.2023.09.001_b30
  article-title: DSNet: Joint semantic learning for object detection in inclement weather conditions
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 2022
  ident: 10.1016/j.isatra.2023.09.001_b11
– volume: 4
  start-page: 6
  issue: 2
  year: 2012
  ident: 10.1016/j.isatra.2023.09.001_b41
  article-title: Vision enhancement in homogeneous and heterogeneous fog
  publication-title: IEEE Intell Transp Syst Mag
– start-page: 3323
  year: 2021
  ident: 10.1016/j.isatra.2023.09.001_b8
  article-title: Multiscale domain adaptive yolo for cross-domain object detection
– year: 2020
  ident: 10.1016/j.isatra.2023.09.001_b28
– volume: 8
  start-page: 123075
  year: 2020
  ident: 10.1016/j.isatra.2023.09.001_b39
  article-title: Making of night vision: Object detection under low-illumination
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3007610
– ident: 10.1016/j.isatra.2023.09.001_b49
  doi: 10.1109/CVPR.2018.00745
– year: 2020
  ident: 10.1016/j.isatra.2023.09.001_b19
– start-page: 11863
  year: 2021
  ident: 10.1016/j.isatra.2023.09.001_b51
  article-title: Simam: A simple, parameter-free attention module for convolutional neural networks
– year: 2020
  ident: 10.1016/j.isatra.2023.09.001_b2
– ident: 10.1016/j.isatra.2023.09.001_b20
  doi: 10.1007/978-3-030-01234-2_1
– volume: 71
  start-page: 1
  year: 2022
  ident: 10.1016/j.isatra.2023.09.001_b40
  article-title: YOLOv5-fog: A multiobjective visual detection algorithm for fog driving scenes based on improved YOLOv5
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2022.3216413
– volume: Vol. 28
  year: 2015
  ident: 10.1016/j.isatra.2023.09.001_b26
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
– start-page: 740
  year: 2014
  ident: 10.1016/j.isatra.2023.09.001_b17
  article-title: Microsoft coco: Common objects in context
– start-page: 21
  year: 2016
  ident: 10.1016/j.isatra.2023.09.001_b5
  article-title: Ssd: Single shot multibox detector
– ident: 10.1016/j.isatra.2023.09.001_b44
  doi: 10.1109/ICCV.2015.169
– year: 2022
  ident: 10.1016/j.isatra.2023.09.001_b36
  article-title: Comparing deep learning models for low-light natural scene image enhancement and their impact on object detection and classification: Overview, empirical evaluation, and challenges
  publication-title: Signal Process, Image Commun
  doi: 10.1016/j.image.2022.116848
– volume: 6
  issue: 1
  year: 2011
  ident: 10.1016/j.isatra.2023.09.001_b32
  article-title: Adaptive object detection and visibility improvement in foggy image
  publication-title: J Multimedia
  doi: 10.4304/jmm.6.1.14-21
– year: 2022
  ident: 10.1016/j.isatra.2023.09.001_b13
  article-title: A survey of detection-based video multi-object tracking
  publication-title: Displays
  doi: 10.1016/j.displa.2022.102317
– start-page: 1
  year: 2018
  ident: 10.1016/j.isatra.2023.09.001_b12
  article-title: A multiple object tracking algorithm based on YOLO detection
– year: 2018
  ident: 10.1016/j.isatra.2023.09.001_b27
– start-page: 363
  year: 2019
  ident: 10.1016/j.isatra.2023.09.001_b10
  article-title: Helmet detection based on improved YOLO V3 deep model
– volume: 2021
  year: 2021
  ident: 10.1016/j.isatra.2023.09.001_b31
  article-title: Lightweight object detection ensemble framework for autonomous vehicles in challenging weather conditions
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2021/5278820
– ident: 10.1016/j.isatra.2023.09.001_b22
  doi: 10.1609/aaai.v36i2.20072
– start-page: 221
  year: 2018
  ident: 10.1016/j.isatra.2023.09.001_b14
  article-title: Real-time face detection based on YOLO
SSID ssj0002598
Score 2.3757045
Snippet The interference of complex environments on object detection tasks dramatically limits the application of object detection algorithms. Improving the detection...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 205
Title ISA: Ingenious Siamese Attention for object detection algorithms towards complex scenes
URI https://www.ncbi.nlm.nih.gov/pubmed/37704556
https://www.proquest.com/docview/2864899106
Volume 143
WOSCitedRecordID wos001138538900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2022
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002598
  issn: 0019-0578
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF7RFqH2gGh5hUe1SBxAkZGza3vX3CJURBBUSI1EOFn7CiRqnShxqvDvmX34UaoKOHCxIttZS_t9Gs-Mv5lB6CVPFNFa2vkuNlslBoNIpEJG4D0rSqmWNBNu2AQ7PeWTSf4llCuu3TgBVpZ8u82X_xVqOAdg29LZf4C7WRROwG8AHY4AOxz_CvjRmcuZj2zRlBO4ns2sEtb0h1UVtI1WWriQNgPT16YyYVr4-ffFalb9uLA9H6yWdu315mbbtx2fgtZw3jzETpeoR403jvmn2cZH-qKcb8qWM-4byOznpk2MOxXBt5abn50XO9nYZifdVAShHVmH8eaTsxzAIFfta0K7FtJVWV-33D6JMHcippVtCEXoG99LtHs77N_ywgFHGQNvNP2tjbZ_MYdLO2iPsDQHW7c3HJ1MPjZvaAj5eF1G6bR-1x-6j-7Uy1z1WG4IQ5w7Mr6H7oY4Ag89_ofolimP0EGnu-QROgx2e41fhebir--jr4DcW9yQAwdy4IYcGMiBPTlwQw7ckgMHcuBADuzJ8QCN35-M332IwnCNSIHPUkWGSaLBgMdCCSOEzmSWcy1VlrDUpCw2hCmptcgTqqaxMYYymmREMSmk5AP6EO2Wi9I8RlizqdHGpLGSaUIk41IYZpjWsU6zKSE9ROv9K1RoPG_nn5wXtcJwXngACgtAEedWaNlDUfOvpW-88of7X9TQFGAh7WcvURrYyILwLOEQBsVZDz3ymDUr1hg_ufHKU7TfUv0Z2q1WG_Mc3VaX1Wy9OkY7bMKPA79-AT0jjh0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ISA%3A+Ingenious+Siamese+Attention+for+object+detection+algorithms+towards+complex+scenes&rft.jtitle=ISA+transactions&rft.au=Liu%2C+Lianjun&rft.au=Hu%2C+Ziyu&rft.au=Dai%2C+Yan&rft.au=Ma%2C+Xuemin&rft.date=2023-12-01&rft.eissn=1879-2022&rft.volume=143&rft.spage=205&rft_id=info:doi/10.1016%2Fj.isatra.2023.09.001&rft_id=info%3Apmid%2F37704556&rft.externalDocID=37704556
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-0578&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-0578&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-0578&client=summon