An ontology-driven multimedia focused crawler based on linked open data and deep learning techniques
Web-page indexing and classification have been studied extensively starting from the early WWW years. A smart intelligent web agent called focused crawler is a specific software able to seek web pages that are relevant to a particular topic domain. In this article we propose a novel approach to focu...
Uloženo v:
| Vydáno v: | Multimedia tools and applications Ročník 79; číslo 11-12; s. 7577 - 7598 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.03.2020
Springer Nature B.V |
| Témata: | |
| ISSN: | 1380-7501, 1573-7721 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Web-page indexing and classification have been studied extensively starting from the early WWW years. A smart intelligent web agent called focused crawler is a specific software able to seek web pages that are relevant to a particular topic domain. In this article we propose a novel approach to focused crawling based on the use of both textual and multimedia web page content. In our approach we define a novel strategy to choose if a web page should be further explored. We implement our framework in a system which aims to improve the crawling task using semantic based techniques and combining the results with novel technologies like convolutional neural networks and linked open data. Our framework uses ontologies to correlate different topics and understanding their relationships. The correlation among topics is used to improve a textual topic detection step. These results are combined with multimedia analysis and classification based on convolutional neural networks to extract image features. Experimental results are also presented and discussed in order to measure the effectiveness of our framework compared with other approaches using a ground truth composed of web pages about a specific domain. |
|---|---|
| AbstractList | Web-page indexing and classification have been studied extensively starting from the early WWW years. A smart intelligent web agent called focused crawler is a specific software able to seek web pages that are relevant to a particular topic domain. In this article we propose a novel approach to focused crawling based on the use of both textual and multimedia web page content. In our approach we define a novel strategy to choose if a web page should be further explored. We implement our framework in a system which aims to improve the crawling task using semantic based techniques and combining the results with novel technologies like convolutional neural networks and linked open data. Our framework uses ontologies to correlate different topics and understanding their relationships. The correlation among topics is used to improve a textual topic detection step. These results are combined with multimedia analysis and classification based on convolutional neural networks to extract image features. Experimental results are also presented and discussed in order to measure the effectiveness of our framework compared with other approaches using a ground truth composed of web pages about a specific domain. |
| Author | Rinaldi, Antonio M. Russo, Cristiano Capuano, Andrea |
| Author_xml | – sequence: 1 givenname: Andrea surname: Capuano fullname: Capuano, Andrea organization: Department of Electrical Engineering and Information Technologies, University of Naples Federico II – sequence: 2 givenname: Antonio M. orcidid: 0000-0001-7003-4781 surname: Rinaldi fullname: Rinaldi, Antonio M. email: antoniomaria.rinaldi@unina.it organization: Department of Electrical Engineering and Information Technologies, University of Naples Federico II, IKNOS-LAB Intelligent and Knowledge Systems (LUPT) – sequence: 3 givenname: Cristiano surname: Russo fullname: Russo, Cristiano organization: Department of Electrical Engineering and Information Technologies, University of Naples Federico II |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz9FJsh_ZYyl-geBFz0s2ma2p26QmW6X_3l0rCB56ygTeZ97hmZGJDx4JueRwzQHKm8Q5ZIIBrxgokQsmTsiU56VkZSn4ZJilAlbmwM_ILKU1AC9ykU2JXXgafB-6sNozG90nerrZdb3boHWatsHsElpqov7qMNJGj7_gaef8-zhth7zVvabaW2oRt7RDHb3zK9qjefPuY4fpnJy2ukt48fvOyevd7cvygT093z8uF0_MyEL0zJpWlSZDZY3IGzB5lkHRtJiJqtKZUlKaorQFAGKJGUrgTcGtQg4N5FJVck6uDnu3MYy9fb0Ou-iHylpIlVeVqngxpMQhZWJIKWJbb6Pb6LivOdSjzfpgsx5s1j82B3pO1D_IuF73bnAXteuOo_KApqHHrzD-XXWE-gZOk4vo |
| CitedBy_id | crossref_primary_10_1007_s41870_022_01139_w crossref_primary_10_1155_2022_5706601 crossref_primary_10_1007_s11042_023_14398_x crossref_primary_10_1016_j_knosys_2022_108495 crossref_primary_10_1016_j_eswa_2023_119798 crossref_primary_10_1007_s11042_021_10966_1 crossref_primary_10_1007_s40747_023_01121_4 crossref_primary_10_3390_app13074149 crossref_primary_10_1007_s40747_022_00707_8 crossref_primary_10_1007_s11280_024_01277_0 crossref_primary_10_1007_s10489_022_03180_5 crossref_primary_10_1007_s11042_023_16155_6 crossref_primary_10_3390_computers11120172 crossref_primary_10_1007_s13198_022_01808_w crossref_primary_10_1631_FITEE_2100360 crossref_primary_10_1016_j_ipm_2023_103458 crossref_primary_10_3390_sym16111439 |
| Cites_doi | 10.1016/j.datak.2009.04.002 10.1016/S0169-7552(98)00108-1 10.1145/219717.219748 10.1109/CVPR.2014.222 10.1007/978-3-319-56157-8_4 10.5220/0005632201040115 10.1109/ICIP.2016.7532802 10.12783/dtcse/aics2016/8171 10.1016/j.neunet.2014.09.003 10.1109/CVPRW.2014.131 10.1007/978-3-319-10584-0_26 10.1145/371920.371965 10.12928/telkomnika.v9i3.730 10.1109/34.667881 10.1016/S1389-1286(99)00052-3 10.1007/11551898_5 10.1109/TKDE.2003.1209005 10.1006/knac.1993.1008 10.1109/ICIT.2007.20 10.1007/s11042-018-5931-7 10.1145/1459352.1459357 10.1145/952532.952761 10.1145/511446.511520 10.1007/s10489-018-1190-6 10.3169/mta.4.251 10.1145/505282.505283 10.3998/3336451.0007.104 10.1007/s11227-017-2046-2 10.1109/CVPR.2009.5206848 10.1016/j.asoc.2015.07.026 10.1016/j.eswa.2010.01.018 10.1145/3066911.3066912 10.1007/978-3-540-74469-6_71 10.1145/1095872.1095875 10.1145/2063518.2063519 10.1007/978-3-319-52758-1_6 10.1145/360402.360406 10.1016/j.neucom.2016.12.038 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Springer Science+Business Media, LLC, part of Springer Nature 2019. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s11042-019-08252-2 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 7598 |
| ExternalDocumentID | 10_1007_s11042_019_08252_2 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c362t-dcf87c4e8dc25b0c54406bfe4299a48833c67d600ee7e4e301b61d8e10b053893 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000504164400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1380-7501 |
| IngestDate | Wed Nov 05 00:47:16 EST 2025 Tue Nov 18 22:24:17 EST 2025 Sat Nov 29 03:26:14 EST 2025 Fri Feb 21 02:37:39 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11-12 |
| Keywords | Knowledge engineering Multimedia processing Focused crawling Document classification Ontologies Linked open data Convolutional neural networks Document analysis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c362t-dcf87c4e8dc25b0c54406bfe4299a48833c67d600ee7e4e301b61d8e10b053893 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7003-4781 |
| PQID | 2385998916 |
| PQPubID | 54626 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_2385998916 crossref_primary_10_1007_s11042_019_08252_2 crossref_citationtrail_10_1007_s11042_019_08252_2 springer_journals_10_1007_s11042_019_08252_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-01 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Maurice de Kunder (2016) The size of the world wide web (the internet). Hentet 15 Rinaldi AM, Russo C (2018) A matching framework for multimedia data integration using semantics and ontologies. In: 2018 IEEE 12Th international conference on semantic computing (ICSC). IEEE, pp 363–368 AbualigahLMKhaderATUnsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clusteringJ Supercomputing201773114773479510.1007/s11227-017-2046-2 ChakrabartiSVan den BergMDomBFocused crawling: a new approach to topic-specific web resource discoveryComput Netw19993111-161623164010.1016/S1389-1286(99)00052-3 Caldarola EG, Rinaldi AM (2016) An approach to ontology integration for ontology reuse. In: Proceedings - 2016 IEEE 17th International Conference on Information Reuse and Integration, IRI 2016, pp 384–393 Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2014) Decaf: a deep convolutional activation feature for generic visual recognition. In: International conference on machine learning, pp 647–655 Lefteris K (2008) An ontology-based focused crawler. In: International conference on application of natural language to information systems. Springer, pp 376–379 Mendes PN, Jakob M, García-Silva A, Bizer C (2011) Dbpedia spotlight: shedding light on the web of documents. In: Proceedings of the 7th international conference on semantic systems. ACM, pp 1–8 CaldarolaEGRinaldiAMA multi-strategy approach for ontology reuse through matching and integration techniquesAdvan Intell Syst Comput2018561639010.1007/978-3-319-56157-8_4 Razavian AS, Azizpour H, Sullivan J, Carlsson S (2014) Cnn features off-the-shelf: an astounding baseline for recognition. In: 2014 IEEE conference on Computer vision and pattern recognition workshops (CVPRW). IEEE, pp 512–519 Babenko A, Lempitsky V (2015) Aggregating local deep features for image retrieval. In: Proceedings of the IEEE international conference on computer vision, pp 1269–1277 Mukhopadhyay D, Biswas A, Sinha S (2007) A new approach to design domain specific ontology based web crawler. In: 10th International Conference on Information Technology (ICIT 2007). IEEE, pp 289–291 ChoJGarcia-MolinaHPageLEfficient crawling through url orderingComput Netw ISDN Syst1998301-716117210.1016/S0169-7552(98)00108-1 MillerGAWordnet: a lexical database for englishCommun ACM19953811394110.1145/219717.219748 SebastianiFMachine learning in automated text categorizationACM Computing Surveys (CSUR)200234114710.1145/505282.505283 Allahyari M, Pouriyeh S, Assefi M, Safaei S, Trippe ED, Gutierrez JB, Kochut K (2017) A brief survey of text mining: classification, clustering and extraction techniques. arXiv:https://arxiv.org/abs/1707.02919 Caldarola EG, Picariello A, Rinaldi AM (2015) Big graph-based data visualization experiences: the wordnet case study. In: IC3K 2015 - Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, vol 1, pp 104–115 Zhou Zz, Zhang L (2017) Content-based image retrieval using iterative search. Neural Process Lett 1–13 Aggarwal CC, Zhai CX (2012) A survey of text classification algorithms. In: Mining text data. Springer, pp 163–222 AbualigahLMKhaderATHanandehESHybrid clustering analysis using improved krill herd algorithmAppl Intell201848114047407110.1007/s10489-018-1190-6 Hassan T, Cruz C, Bertaux A (2017) Ontology-based approach for unsupervised and adaptive focused crawling. In: Proceedings of The International Workshop on Semantic Big Data. ACM, p 2 Baeza-YatesRRibeiro-NetoBModern information retrieval, vol 4631999New YorkACM Press YajunDLiuWLvXPengGAn improved focused crawler based on semantic similarity vector space modelAppl Soft Comput20153639240710.1016/j.asoc.2015.07.026 Sharma DK, Khan MA (2015) Safsb: a self-adaptive focused crawler. In: 2015 1st International Conference on Next Generation Computing Technologies (NGCT). IEEE, pp 719–724 YohanesBWHandokoHWardanaHKFocused crawler optimization using genetic algorithmTELKOMNIKA (Telecommunication Computing Electronics and Control)20139340341010.12928/telkomnika.v9i3.730 Bergman MK (2001) White paper: the deep web: surfacing hidden value. J Electron Publishing, 7(1) Caldarola EG, Rinaldi AM (2017) Big data visualization tools: a survey: the new paradigms, methodologies and tools for large data sets visualization. In: DATA 2017 - Proceedings of the 6th International Conference on Data Science, Technology and Applications, pp 296–305 Chris Nicholson A, Gibson A (2017) Deeplearning4j: Open-source, distributed deep learning for the jvm. Deeplearning4j org Albanese M, Capasso P, Picariello A, Rinaldi AM (2005) Information retrieval from the web: an interactive paradigm. In: International workshop on multimedia information systems. Springer, pp 17–32 Glover EJ, Tsioutsiouliklis K, Lawrence S, Pennock DM, Flake GW (2002) Using web structure for classifying and describing web pages. In: Proceedings of the 11th international conference on World Wide Web. ACM, pp 562–569 Building an image classification web application using vgg-16 - deeplearning4j: Open-source, distributed deep learning for the jvm. https://deeplearning4j.org/build_vgg_webapp. (Accessed on 03/26/2018) Ji W, Wang D, Hoi SCH, Pengcheng W, Zhu J, Zhang Y, Li J (2014) Deep learning for content-based image retrieval: a comprehensive study. In: Proceedings of the 22nd ACM international conference on Multimedia. ACM, pp 157–166 Joe Y-HN, Fan Y, Davis LS (2015) Exploiting local features from deep networks for image retrieval. arXiv:https://arxiv.org/abs/1504.05133 Zhang F, Zhong B-J (2016) Image retrieval based on fused cnn features DEStech Transactions on Computer Science and Engineering (aics) KittlerJHatefMDuinRPWMatasJOn combining classifiersIEEE Trans Pattern Anal Mach Intell199820322623910.1109/34.667881 LiuWWangZLiuXZengNLiuYAlsaadiFEA survey of deep neural network architectures and their applicationsNeurocomputing2017234112610.1016/j.neucom.2016.12.038 Najork M, Wiener JL (2001) Breadth-first crawling yields high-quality pages. In: Proceedings of the 10th international conference on World Wide Web. ACM, pp 114–118 NovakBA survey of focused web crawling algorithmsProc SIKDD200455585558 Gong Y, Wang L, Guo R, Lazebnik S (2014) Multi-scale orderless pooling of deep convolutional activation features. In: European conference on computer vision. Springer, pp 392–407 BatsakisSPetrakisEGMMiliosEImproving the performance of focused web crawlersData Knowledge Eng200968101001101310.1016/j.datak.2009.04.002 MohammadLAbualigahQFeature selection and enhanced krill herd algorithm for text document clustering2019BerlinSpringer Diligenti M, Coetzee F, Lawrence S, Giles CL, Gori M et al (2000) Focused crawling using context graphs. In: VLDB, pp 527–534 GruberTRA translation approach to portable ontology specificationsKnowledge Acquisition19935219922010.1006/knac.1993.1008 QiXDavisonBDWeb page classification: features and algorithmsACM Computing Surveys (CSUR)20094121210.1145/1459352.1459357 KosalaRBlockeelHWeb mining research: a surveyACM Sigkdd Explorations Newsletter20002111510.1145/360402.360406 PantGSrinivasanPLearning to crawl: comparing classification schemesACM Transactions on Information Systems (TOIS)200523443046210.1145/1095872.1095875 CaldarolaEGPicarielloARinaldiAMExperiences in wordnet visualization with labeled graph databasesCommun Comput Inform Sci2016631809910.1007/978-3-319-52758-1_6 RazavianASSullivanJCarlssonSMakiAVisual instance retrieval with deep convolutional networksITE Trans Media Technol Appl20164325125810.3169/mta.4.251 Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: CVPR09 YangS-YOntocrawler: a focused crawler with ontology-supported website models for information agentsExpert Syst Appl20103775381538910.1016/j.eswa.2010.01.018 Ehrig M, Maedche A (2003) Ontology-focused crawling of web documents. In: Proceedings of the 2003 ACM symposium on Applied computing. ACM, pp 1174–1178 PurificatoERinaldiAMMultimedia and geographic data integration for cultural heritage information retrievalMultimed Tool Appl20187720274472746910.1007/s11042-018-5931-7 LiYBandarZAMcLeanDAn approach for measuring semantic similarity between words using multiple information sourcesIEEE Trans Knowledge data Eng200315487188210.1109/TKDE.2003.1209005 AbualigahLQasimMHanandehESApplying genetic algorithms to information retrieval using vector space modelInt J Computer Sci Eng Appl20155119 SchmidhuberJDeep learning in neural networks: an overviewNeural Netw2015618511710.1016/j.neunet.2014.09.003 Caldarola EG, Rinaldi AM (2015) Big data: a survey: the new paradigms, methodologies and tools. In: DATA 2015 - 4Th international conference on data management technologies and applications, proceedings, pp 362–370 Picariello A, Rinaldi AM (2007) Crawling the web with ontodir. In: International conference on database and expert systems applications. Springer, pp 730–739 Oquab M, Bottou L, Laptev I, Sivic J (2014) Learning and transferring mid-level image representations using convolutional neural networks. In: 2014 IEEE conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp 1717–1724 Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:https://arxiv.org/abs/1409.1556 Zhi T, Duan L-Y, Wang Y, Huang T (2016) Two-stage pooling of deep convolutional features for image retrieval. In: 2016 IEEE International Conference on Image processing (ICIP). IEEE, pp 2465–2469 TR Gruber (8252_CR28) 1993; 5 F Sebastiani (8252_CR52) 2002; 34 S Batsakis (8252_CR10) 2009; 68 S-Y Yang (8252_CR56) 2010; 37 8252_CR48 L Mohammad (8252_CR39) 2019 8252_CR45 L Abualigah (8252_CR2) 2015; 5 8252_CR8 J Kittler (8252_CR32) 1998; 20 8252_CR7 8252_CR40 8252_CR43 8252_CR41 AS Razavian (8252_CR49) 2016; 4 G Pant (8252_CR44) 2005; 23 LM Abualigah (8252_CR4) 2018; 48 8252_CR14 8252_CR58 8252_CR15 8252_CR59 8252_CR12 8252_CR16 BW Yohanes (8252_CR57) 2013; 9 8252_CR50 D Yajun (8252_CR55) 2015; 36 8252_CR54 8252_CR11 8252_CR53 X Qi (8252_CR47) 2009; 41 R Baeza-Yates (8252_CR9) 1999 EG Caldarola (8252_CR17) 2018; 561 W Liu (8252_CR36) 2017; 234 B Novak (8252_CR42) 2004; 5558 J Schmidhuber (8252_CR51) 2015; 61 GA Miller (8252_CR38) 1995; 38 8252_CR25 8252_CR26 8252_CR23 8252_CR24 8252_CR29 8252_CR27 8252_CR60 8252_CR21 8252_CR22 8252_CR20 8252_CR6 LM Abualigah (8252_CR3) 2017; 73 8252_CR5 R Kosala (8252_CR33) 2000; 2 8252_CR1 EG Caldarola (8252_CR13) 2016; 631 S Chakrabarti (8252_CR18) 1999; 31 8252_CR37 8252_CR34 E Purificato (8252_CR46) 2018; 77 Y Li (8252_CR35) 2003; 15 J Cho (8252_CR19) 1998; 30 8252_CR30 8252_CR31 |
| References_xml | – reference: MillerGAWordnet: a lexical database for englishCommun ACM19953811394110.1145/219717.219748 – reference: YohanesBWHandokoHWardanaHKFocused crawler optimization using genetic algorithmTELKOMNIKA (Telecommunication Computing Electronics and Control)20139340341010.12928/telkomnika.v9i3.730 – reference: Caldarola EG, Rinaldi AM (2016) An approach to ontology integration for ontology reuse. In: Proceedings - 2016 IEEE 17th International Conference on Information Reuse and Integration, IRI 2016, pp 384–393 – reference: ChakrabartiSVan den BergMDomBFocused crawling: a new approach to topic-specific web resource discoveryComput Netw19993111-161623164010.1016/S1389-1286(99)00052-3 – reference: Chris Nicholson A, Gibson A (2017) Deeplearning4j: Open-source, distributed deep learning for the jvm. Deeplearning4j org – reference: Oquab M, Bottou L, Laptev I, Sivic J (2014) Learning and transferring mid-level image representations using convolutional neural networks. In: 2014 IEEE conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp 1717–1724 – reference: Zhi T, Duan L-Y, Wang Y, Huang T (2016) Two-stage pooling of deep convolutional features for image retrieval. In: 2016 IEEE International Conference on Image processing (ICIP). IEEE, pp 2465–2469 – reference: Lefteris K (2008) An ontology-based focused crawler. In: International conference on application of natural language to information systems. Springer, pp 376–379 – reference: AbualigahLMKhaderATUnsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clusteringJ Supercomputing201773114773479510.1007/s11227-017-2046-2 – reference: CaldarolaEGRinaldiAMA multi-strategy approach for ontology reuse through matching and integration techniquesAdvan Intell Syst Comput2018561639010.1007/978-3-319-56157-8_4 – reference: Baeza-YatesRRibeiro-NetoBModern information retrieval, vol 4631999New YorkACM Press – reference: Caldarola EG, Picariello A, Rinaldi AM (2015) Big graph-based data visualization experiences: the wordnet case study. In: IC3K 2015 - Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, vol 1, pp 104–115 – reference: Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2014) Decaf: a deep convolutional activation feature for generic visual recognition. In: International conference on machine learning, pp 647–655 – reference: Mukhopadhyay D, Biswas A, Sinha S (2007) A new approach to design domain specific ontology based web crawler. In: 10th International Conference on Information Technology (ICIT 2007). IEEE, pp 289–291 – reference: Bergman MK (2001) White paper: the deep web: surfacing hidden value. J Electron Publishing, 7(1) – reference: Aggarwal CC, Zhai CX (2012) A survey of text classification algorithms. In: Mining text data. Springer, pp 163–222 – reference: BatsakisSPetrakisEGMMiliosEImproving the performance of focused web crawlersData Knowledge Eng200968101001101310.1016/j.datak.2009.04.002 – reference: Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: CVPR09 – reference: SebastianiFMachine learning in automated text categorizationACM Computing Surveys (CSUR)200234114710.1145/505282.505283 – reference: Maurice de Kunder (2016) The size of the world wide web (the internet). Hentet 15 – reference: Zhang F, Zhong B-J (2016) Image retrieval based on fused cnn features DEStech Transactions on Computer Science and Engineering (aics) – reference: Mendes PN, Jakob M, García-Silva A, Bizer C (2011) Dbpedia spotlight: shedding light on the web of documents. In: Proceedings of the 7th international conference on semantic systems. ACM, pp 1–8 – reference: Joe Y-HN, Fan Y, Davis LS (2015) Exploiting local features from deep networks for image retrieval. arXiv:https://arxiv.org/abs/1504.05133 – reference: Ehrig M, Maedche A (2003) Ontology-focused crawling of web documents. In: Proceedings of the 2003 ACM symposium on Applied computing. ACM, pp 1174–1178 – reference: QiXDavisonBDWeb page classification: features and algorithmsACM Computing Surveys (CSUR)20094121210.1145/1459352.1459357 – reference: KosalaRBlockeelHWeb mining research: a surveyACM Sigkdd Explorations Newsletter20002111510.1145/360402.360406 – reference: Picariello A, Rinaldi AM (2007) Crawling the web with ontodir. In: International conference on database and expert systems applications. Springer, pp 730–739 – reference: PurificatoERinaldiAMMultimedia and geographic data integration for cultural heritage information retrievalMultimed Tool Appl20187720274472746910.1007/s11042-018-5931-7 – reference: Diligenti M, Coetzee F, Lawrence S, Giles CL, Gori M et al (2000) Focused crawling using context graphs. In: VLDB, pp 527–534 – reference: Sharma DK, Khan MA (2015) Safsb: a self-adaptive focused crawler. In: 2015 1st International Conference on Next Generation Computing Technologies (NGCT). IEEE, pp 719–724 – reference: AbualigahLQasimMHanandehESApplying genetic algorithms to information retrieval using vector space modelInt J Computer Sci Eng Appl20155119 – reference: YajunDLiuWLvXPengGAn improved focused crawler based on semantic similarity vector space modelAppl Soft Comput20153639240710.1016/j.asoc.2015.07.026 – reference: Caldarola EG, Rinaldi AM (2015) Big data: a survey: the new paradigms, methodologies and tools. In: DATA 2015 - 4Th international conference on data management technologies and applications, proceedings, pp 362–370 – reference: Hassan T, Cruz C, Bertaux A (2017) Ontology-based approach for unsupervised and adaptive focused crawling. In: Proceedings of The International Workshop on Semantic Big Data. ACM, p 2 – reference: KittlerJHatefMDuinRPWMatasJOn combining classifiersIEEE Trans Pattern Anal Mach Intell199820322623910.1109/34.667881 – reference: Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:https://arxiv.org/abs/1409.1556 – reference: Glover EJ, Tsioutsiouliklis K, Lawrence S, Pennock DM, Flake GW (2002) Using web structure for classifying and describing web pages. In: Proceedings of the 11th international conference on World Wide Web. ACM, pp 562–569 – reference: LiYBandarZAMcLeanDAn approach for measuring semantic similarity between words using multiple information sourcesIEEE Trans Knowledge data Eng200315487188210.1109/TKDE.2003.1209005 – reference: AbualigahLMKhaderATHanandehESHybrid clustering analysis using improved krill herd algorithmAppl Intell201848114047407110.1007/s10489-018-1190-6 – reference: Ji W, Wang D, Hoi SCH, Pengcheng W, Zhu J, Zhang Y, Li J (2014) Deep learning for content-based image retrieval: a comprehensive study. In: Proceedings of the 22nd ACM international conference on Multimedia. ACM, pp 157–166 – reference: LiuWWangZLiuXZengNLiuYAlsaadiFEA survey of deep neural network architectures and their applicationsNeurocomputing2017234112610.1016/j.neucom.2016.12.038 – reference: Caldarola EG, Rinaldi AM (2017) Big data visualization tools: a survey: the new paradigms, methodologies and tools for large data sets visualization. In: DATA 2017 - Proceedings of the 6th International Conference on Data Science, Technology and Applications, pp 296–305 – reference: NovakBA survey of focused web crawling algorithmsProc SIKDD200455585558 – reference: PantGSrinivasanPLearning to crawl: comparing classification schemesACM Transactions on Information Systems (TOIS)200523443046210.1145/1095872.1095875 – reference: Building an image classification web application using vgg-16 - deeplearning4j: Open-source, distributed deep learning for the jvm. https://deeplearning4j.org/build_vgg_webapp. (Accessed on 03/26/2018) – reference: Babenko A, Lempitsky V (2015) Aggregating local deep features for image retrieval. In: Proceedings of the IEEE international conference on computer vision, pp 1269–1277 – reference: GruberTRA translation approach to portable ontology specificationsKnowledge Acquisition19935219922010.1006/knac.1993.1008 – reference: MohammadLAbualigahQFeature selection and enhanced krill herd algorithm for text document clustering2019BerlinSpringer – reference: Allahyari M, Pouriyeh S, Assefi M, Safaei S, Trippe ED, Gutierrez JB, Kochut K (2017) A brief survey of text mining: classification, clustering and extraction techniques. arXiv:https://arxiv.org/abs/1707.02919 – reference: YangS-YOntocrawler: a focused crawler with ontology-supported website models for information agentsExpert Syst Appl20103775381538910.1016/j.eswa.2010.01.018 – reference: Zhou Zz, Zhang L (2017) Content-based image retrieval using iterative search. Neural Process Lett 1–13 – reference: CaldarolaEGPicarielloARinaldiAMExperiences in wordnet visualization with labeled graph databasesCommun Comput Inform Sci2016631809910.1007/978-3-319-52758-1_6 – reference: Najork M, Wiener JL (2001) Breadth-first crawling yields high-quality pages. In: Proceedings of the 10th international conference on World Wide Web. ACM, pp 114–118 – reference: Razavian AS, Azizpour H, Sullivan J, Carlsson S (2014) Cnn features off-the-shelf: an astounding baseline for recognition. In: 2014 IEEE conference on Computer vision and pattern recognition workshops (CVPRW). IEEE, pp 512–519 – reference: SchmidhuberJDeep learning in neural networks: an overviewNeural Netw2015618511710.1016/j.neunet.2014.09.003 – reference: Gong Y, Wang L, Guo R, Lazebnik S (2014) Multi-scale orderless pooling of deep convolutional activation features. In: European conference on computer vision. Springer, pp 392–407 – reference: Rinaldi AM, Russo C (2018) A matching framework for multimedia data integration using semantics and ontologies. In: 2018 IEEE 12Th international conference on semantic computing (ICSC). IEEE, pp 363–368 – reference: ChoJGarcia-MolinaHPageLEfficient crawling through url orderingComput Netw ISDN Syst1998301-716117210.1016/S0169-7552(98)00108-1 – reference: Albanese M, Capasso P, Picariello A, Rinaldi AM (2005) Information retrieval from the web: an interactive paradigm. In: International workshop on multimedia information systems. Springer, pp 17–32 – reference: RazavianASSullivanJCarlssonSMakiAVisual instance retrieval with deep convolutional networksITE Trans Media Technol Appl20164325125810.3169/mta.4.251 – ident: 8252_CR30 – ident: 8252_CR24 – volume: 68 start-page: 1001 issue: 10 year: 2009 ident: 8252_CR10 publication-title: Data Knowledge Eng doi: 10.1016/j.datak.2009.04.002 – volume: 30 start-page: 161 issue: 1-7 year: 1998 ident: 8252_CR19 publication-title: Comput Netw ISDN Syst doi: 10.1016/S0169-7552(98)00108-1 – volume: 38 start-page: 39 issue: 11 year: 1995 ident: 8252_CR38 publication-title: Commun ACM doi: 10.1145/219717.219748 – volume-title: Feature selection and enhanced krill herd algorithm for text document clustering year: 2019 ident: 8252_CR39 – ident: 8252_CR43 doi: 10.1109/CVPR.2014.222 – volume: 561 start-page: 63 year: 2018 ident: 8252_CR17 publication-title: Advan Intell Syst Comput doi: 10.1007/978-3-319-56157-8_4 – volume: 5 start-page: 19 issue: 1 year: 2015 ident: 8252_CR2 publication-title: Int J Computer Sci Eng Appl – ident: 8252_CR7 – ident: 8252_CR14 – ident: 8252_CR50 – ident: 8252_CR12 doi: 10.5220/0005632201040115 – ident: 8252_CR60 – ident: 8252_CR59 doi: 10.1109/ICIP.2016.7532802 – ident: 8252_CR21 – ident: 8252_CR58 doi: 10.12783/dtcse/aics2016/8171 – volume: 61 start-page: 85 year: 2015 ident: 8252_CR51 publication-title: Neural Netw doi: 10.1016/j.neunet.2014.09.003 – ident: 8252_CR48 doi: 10.1109/CVPRW.2014.131 – ident: 8252_CR27 doi: 10.1007/978-3-319-10584-0_26 – ident: 8252_CR8 – ident: 8252_CR15 – ident: 8252_CR41 doi: 10.1145/371920.371965 – ident: 8252_CR53 – volume: 9 start-page: 403 issue: 3 year: 2013 ident: 8252_CR57 publication-title: TELKOMNIKA (Telecommunication Computing Electronics and Control) doi: 10.12928/telkomnika.v9i3.730 – volume: 20 start-page: 226 issue: 3 year: 1998 ident: 8252_CR32 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.667881 – volume: 31 start-page: 1623 issue: 11-16 year: 1999 ident: 8252_CR18 publication-title: Comput Netw doi: 10.1016/S1389-1286(99)00052-3 – volume-title: Modern information retrieval, vol 463 year: 1999 ident: 8252_CR9 – ident: 8252_CR6 doi: 10.1007/11551898_5 – volume: 15 start-page: 871 issue: 4 year: 2003 ident: 8252_CR35 publication-title: IEEE Trans Knowledge data Eng doi: 10.1109/TKDE.2003.1209005 – ident: 8252_CR16 – volume: 5 start-page: 199 issue: 2 year: 1993 ident: 8252_CR28 publication-title: Knowledge Acquisition doi: 10.1006/knac.1993.1008 – ident: 8252_CR40 doi: 10.1109/ICIT.2007.20 – ident: 8252_CR1 – volume: 77 start-page: 27447 issue: 20 year: 2018 ident: 8252_CR46 publication-title: Multimed Tool Appl doi: 10.1007/s11042-018-5931-7 – volume: 41 start-page: 12 issue: 2 year: 2009 ident: 8252_CR47 publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/1459352.1459357 – ident: 8252_CR25 doi: 10.1145/952532.952761 – ident: 8252_CR26 doi: 10.1145/511446.511520 – ident: 8252_CR5 – ident: 8252_CR54 – volume: 48 start-page: 4047 issue: 11 year: 2018 ident: 8252_CR4 publication-title: Appl Intell doi: 10.1007/s10489-018-1190-6 – ident: 8252_CR31 – volume: 4 start-page: 251 issue: 3 year: 2016 ident: 8252_CR49 publication-title: ITE Trans Media Technol Appl doi: 10.3169/mta.4.251 – volume: 34 start-page: 1 issue: 1 year: 2002 ident: 8252_CR52 publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/505282.505283 – ident: 8252_CR23 – ident: 8252_CR11 doi: 10.3998/3336451.0007.104 – volume: 5558 start-page: 55 year: 2004 ident: 8252_CR42 publication-title: Proc SIKDD – volume: 73 start-page: 4773 issue: 11 year: 2017 ident: 8252_CR3 publication-title: J Supercomputing doi: 10.1007/s11227-017-2046-2 – ident: 8252_CR20 – ident: 8252_CR22 doi: 10.1109/CVPR.2009.5206848 – volume: 36 start-page: 392 year: 2015 ident: 8252_CR55 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.07.026 – volume: 37 start-page: 5381 issue: 7 year: 2010 ident: 8252_CR56 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.01.018 – ident: 8252_CR29 doi: 10.1145/3066911.3066912 – ident: 8252_CR45 doi: 10.1007/978-3-540-74469-6_71 – volume: 23 start-page: 430 issue: 4 year: 2005 ident: 8252_CR44 publication-title: ACM Transactions on Information Systems (TOIS) doi: 10.1145/1095872.1095875 – ident: 8252_CR37 doi: 10.1145/2063518.2063519 – volume: 631 start-page: 80 year: 2016 ident: 8252_CR13 publication-title: Commun Comput Inform Sci doi: 10.1007/978-3-319-52758-1_6 – ident: 8252_CR34 – volume: 2 start-page: 1 issue: 1 year: 2000 ident: 8252_CR33 publication-title: ACM Sigkdd Explorations Newsletter doi: 10.1145/360402.360406 – volume: 234 start-page: 11 year: 2017 ident: 8252_CR36 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.038 |
| SSID | ssj0016524 |
| Score | 2.355404 |
| Snippet | Web-page indexing and classification have been studied extensively starting from the early WWW years. A smart intelligent web agent called focused crawler is a... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 7577 |
| SubjectTerms | Artificial neural networks Computer Communication Networks Computer Science Data Structures and Information Theory Deep learning Domains Feature extraction Ground truth Image classification Linked Data Multimedia Multimedia Information Systems Neural networks Ontology Open data Special Purpose and Application-Based Systems Websites |
| SummonAdditionalLinks | – databaseName: ABI/INFORM Global dbid: M0C link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58HfTgW6wv9uBNF5Nt0qQnEbF4sXhQ8BaysxMRJK1Nq3_fmXTTqqAXb4FslsC3O9_szuMDOLXtNqNOoS4MpjqKMNfWoNHtAoPCmTbGqa3FJpJ-P3166t77C7fKp1U2NrE21G6Ackd-wdQS89GAvZnL4ZsW1SiJrnoJjUVYFs9GUvrugutZFKETe1HbNNDMjKEvmpmWzoVSmBJICQ8fkow234lp7m3-CJDWvNPb-O8fb8K69zjV1XSJbMEClduw0ag5KL-5t2HtS2vCHXBXpZLWBnLprt1IbKKqkw_rUhNVDHBSkVM4yj9eeRYhQ8cfKAkIy9OQx0v2qcpLpxzRUHl9imc1axtb7cJj7-bh-lZ7RQaNTHRj7bBIE4wodWhiG2AcsT9gCxJSyyPRLcZO4tiHIkooIjYethO6lMLA8mZn12gPlspBSfugOnlOMSNErusiZ6lrctu1PBbzhPkjaEHYwJGhb1cuqhmv2bzRskCYMYRZDWFmWnA2-2Y4bdbx5-ijBrfMb9wqm4PWgvMG-fnr32c7-Hu2Q1g1clKvs9eOYGk8mtAxrOD7-KUandTL9hOg0vNU priority: 102 providerName: ProQuest |
| Title | An ontology-driven multimedia focused crawler based on linked open data and deep learning techniques |
| URI | https://link.springer.com/article/10.1007/s11042-019-08252-2 https://www.proquest.com/docview/2385998916 |
| Volume | 79 |
| WOSCitedRecordID | wos000504164400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAPfovTOfLgmwbarF97nGMiiHP4rS-lSa4iSB3tpv--l5puKiroS2jpJYRccr9Lk7sfwJ5stUjr6PJUqIh7nkq4FErwVqqcVIuW8iNZkk2E_X50e9se2KCworrtXh1JlpZ6GuzmmlASxwTd0LZGcDK8cwR3kSFsOL-4npwdBL6lso0cTnjo2lCZ79v4DEdTH_PLsWiJNkfL_-vnCixZ75J13qfDKsxgtgbLFXMDswt5DRY_pCFcB93JmEljYH6wc50b-8fKi4ZlWAlLn9W4QM1Unrw-USsG-DRVYKZ35mlI8uamKUsyzTTikFkuigc2SRFbbMDVUe-ye8wt-wJXBGojrlUahcrDSCvhS0f5HmG_TNEAWOIZjmIVhJr8JcQQPSRDIQNXR-g6khY2uUGbUMueM9wCFiQJ-qQX1G3taYltkci2JFmVhIQVTh3cSgmxsqnJDUPGUzxNqmwGNaZBjctBjUUd9id1hu-JOX6VblS6je0iLWLyVnzabZKDXIeDSpfTzz-3tv038R1YEGaXXt5ca0BtlI9xF-bVy-ixyJswG97cNWHusNcfnNPbScipPHW6phRnVA78-2Y5xd8AvTPvbQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hWgl6KOVRdVtafIATWCROsvEeqgq1RaCFVQ8gcQvxeIIqoeyyWUD9U_2NnckmuwWp3Dj0Fim2pcTfPOx5fADbLop41ynUhUGr4xhz7QwaHRUYFN5EmFhXk02kg4G9uOj9WIDfbS2MpFW2OrFW1H6Icke-z6Yl4aMBezNfRjdaWKMkutpSaExh0adf93xkqz4ff-P93THm8PvZ1yPdsApoZGU90R4Lm2JM1qNJXIBJzDbNFSSKOY-Fexe7qWc_gCilmFgAXDf0lsLAMWCtNF9ilf8ijmwqctVP9Sxq0U0aEl0baLbEYVOkMy3VC6UQJpCSIT6UGW0eGsK5d_soIFvbucOV_-0PvYHXjUetDqYisAoLVK7BSstWoRrltQav_mq9uA7-oFTSukGCCtqPReerOrmyLqVRxRBvK_IKx_n9Na8ixt7zBCUBb3ka8XjJrlV56ZUnGqmGf-NKzdriVhtw_ixf_hYWy2FJ70B185wSRgT5no-9o57JXc_xWMxTto9BB8J2-zNs2rELK8h1Nm8kLZDJGDJZDZnMdGB3Nmc0bUby5OjNFidZo5iqbA6SDuy1SJu__vdq759ebQuWjs5OT7KT40H_AywbuZWoM_U2YXEyvqWP8BLvJj-r8adaZBRcPjcC_wDzvE9g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB4hWqH2UAq0alpa9gAnusLe2LFzqBCCRiBQlANIqBfjnR2jSpGTxqGof41fx4yzTqBSuXHozZJ3V7L323nsPD6Abdtu865TqAuDqY4izLU1aHS7wKBwpo1xamuyiaTfTy8vu4MluGtqYSStspGJtaB2I5Q78j1WLTG7BmzN7BU-LWJw1Nsf_9LCICWR1oZOYwaRU_pzy-5b9e3kiPd6x5je9_PDY-0ZBjSy4J5qh0WaYESpQxPbAOOI9ZstSIR0HgkPL3YSxzYBUUIR8WGwndClFAaWwZtKIyYW_y8S9jElnXAQ_5hHMDqxJ9RNA81aOfQFO7OyvVCKYgIpH2IHzWjzWCkuLN2_grO1zuut_s9_6y288Za2OpgdjTVYonIdVhsWC-WF2jq8ftCScQPcQamkpYMEG7SbiC5QddJlXWKjihHeVOQUTvLbIa8iRoDjCUoC4fI05vGSdavy0ilHNFael-NazdvlVu_g4lm-_D0sl6OSPoDq5DnFjA5yXRc5S12T267lsZgnrDeDFoQNFDL0bdqFLWSYLRpMC3wyhk9WwyczLdidzxnPmpQ8OXqzwUzmBVaVLQDTgq8N6hav_73ax6dX24IVBl52dtI__QSvjFxW1Al8m7A8ndzQZ3iJv6c_q8mX-vQouHpuAN4DyLhYhA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ontology-driven+multimedia+focused+crawler+based+on+linked+open+data+and+deep+learning+techniques&rft.jtitle=Multimedia+tools+and+applications&rft.au=Capuano%2C+Andrea&rft.au=Rinaldi%2C+Antonio+M.&rft.au=Russo%2C+Cristiano&rft.date=2020-03-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=79&rft.issue=11-12&rft.spage=7577&rft.epage=7598&rft_id=info:doi/10.1007%2Fs11042-019-08252-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_019_08252_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |