An ontology-driven multimedia focused crawler based on linked open data and deep learning techniques

Web-page indexing and classification have been studied extensively starting from the early WWW years. A smart intelligent web agent called focused crawler is a specific software able to seek web pages that are relevant to a particular topic domain. In this article we propose a novel approach to focu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Multimedia tools and applications Ročník 79; číslo 11-12; s. 7577 - 7598
Hlavní autoři: Capuano, Andrea, Rinaldi, Antonio M., Russo, Cristiano
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.03.2020
Springer Nature B.V
Témata:
ISSN:1380-7501, 1573-7721
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Web-page indexing and classification have been studied extensively starting from the early WWW years. A smart intelligent web agent called focused crawler is a specific software able to seek web pages that are relevant to a particular topic domain. In this article we propose a novel approach to focused crawling based on the use of both textual and multimedia web page content. In our approach we define a novel strategy to choose if a web page should be further explored. We implement our framework in a system which aims to improve the crawling task using semantic based techniques and combining the results with novel technologies like convolutional neural networks and linked open data. Our framework uses ontologies to correlate different topics and understanding their relationships. The correlation among topics is used to improve a textual topic detection step. These results are combined with multimedia analysis and classification based on convolutional neural networks to extract image features. Experimental results are also presented and discussed in order to measure the effectiveness of our framework compared with other approaches using a ground truth composed of web pages about a specific domain.
AbstractList Web-page indexing and classification have been studied extensively starting from the early WWW years. A smart intelligent web agent called focused crawler is a specific software able to seek web pages that are relevant to a particular topic domain. In this article we propose a novel approach to focused crawling based on the use of both textual and multimedia web page content. In our approach we define a novel strategy to choose if a web page should be further explored. We implement our framework in a system which aims to improve the crawling task using semantic based techniques and combining the results with novel technologies like convolutional neural networks and linked open data. Our framework uses ontologies to correlate different topics and understanding their relationships. The correlation among topics is used to improve a textual topic detection step. These results are combined with multimedia analysis and classification based on convolutional neural networks to extract image features. Experimental results are also presented and discussed in order to measure the effectiveness of our framework compared with other approaches using a ground truth composed of web pages about a specific domain.
Author Rinaldi, Antonio M.
Russo, Cristiano
Capuano, Andrea
Author_xml – sequence: 1
  givenname: Andrea
  surname: Capuano
  fullname: Capuano, Andrea
  organization: Department of Electrical Engineering and Information Technologies, University of Naples Federico II
– sequence: 2
  givenname: Antonio M.
  orcidid: 0000-0001-7003-4781
  surname: Rinaldi
  fullname: Rinaldi, Antonio M.
  email: antoniomaria.rinaldi@unina.it
  organization: Department of Electrical Engineering and Information Technologies, University of Naples Federico II, IKNOS-LAB Intelligent and Knowledge Systems (LUPT)
– sequence: 3
  givenname: Cristiano
  surname: Russo
  fullname: Russo, Cristiano
  organization: Department of Electrical Engineering and Information Technologies, University of Naples Federico II
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz9FJsh_ZYyl-geBFz0s2ma2p26QmW6X_3l0rCB56ygTeZ97hmZGJDx4JueRwzQHKm8Q5ZIIBrxgokQsmTsiU56VkZSn4ZJilAlbmwM_ILKU1AC9ykU2JXXgafB-6sNozG90nerrZdb3boHWatsHsElpqov7qMNJGj7_gaef8-zhth7zVvabaW2oRt7RDHb3zK9qjefPuY4fpnJy2ukt48fvOyevd7cvygT093z8uF0_MyEL0zJpWlSZDZY3IGzB5lkHRtJiJqtKZUlKaorQFAGKJGUrgTcGtQg4N5FJVck6uDnu3MYy9fb0Ou-iHylpIlVeVqngxpMQhZWJIKWJbb6Pb6LivOdSjzfpgsx5s1j82B3pO1D_IuF73bnAXteuOo_KApqHHrzD-XXWE-gZOk4vo
CitedBy_id crossref_primary_10_1007_s41870_022_01139_w
crossref_primary_10_1155_2022_5706601
crossref_primary_10_1007_s11042_023_14398_x
crossref_primary_10_1016_j_knosys_2022_108495
crossref_primary_10_1016_j_eswa_2023_119798
crossref_primary_10_1007_s11042_021_10966_1
crossref_primary_10_1007_s40747_023_01121_4
crossref_primary_10_3390_app13074149
crossref_primary_10_1007_s40747_022_00707_8
crossref_primary_10_1007_s11280_024_01277_0
crossref_primary_10_1007_s10489_022_03180_5
crossref_primary_10_1007_s11042_023_16155_6
crossref_primary_10_3390_computers11120172
crossref_primary_10_1007_s13198_022_01808_w
crossref_primary_10_1631_FITEE_2100360
crossref_primary_10_1016_j_ipm_2023_103458
crossref_primary_10_3390_sym16111439
Cites_doi 10.1016/j.datak.2009.04.002
10.1016/S0169-7552(98)00108-1
10.1145/219717.219748
10.1109/CVPR.2014.222
10.1007/978-3-319-56157-8_4
10.5220/0005632201040115
10.1109/ICIP.2016.7532802
10.12783/dtcse/aics2016/8171
10.1016/j.neunet.2014.09.003
10.1109/CVPRW.2014.131
10.1007/978-3-319-10584-0_26
10.1145/371920.371965
10.12928/telkomnika.v9i3.730
10.1109/34.667881
10.1016/S1389-1286(99)00052-3
10.1007/11551898_5
10.1109/TKDE.2003.1209005
10.1006/knac.1993.1008
10.1109/ICIT.2007.20
10.1007/s11042-018-5931-7
10.1145/1459352.1459357
10.1145/952532.952761
10.1145/511446.511520
10.1007/s10489-018-1190-6
10.3169/mta.4.251
10.1145/505282.505283
10.3998/3336451.0007.104
10.1007/s11227-017-2046-2
10.1109/CVPR.2009.5206848
10.1016/j.asoc.2015.07.026
10.1016/j.eswa.2010.01.018
10.1145/3066911.3066912
10.1007/978-3-540-74469-6_71
10.1145/1095872.1095875
10.1145/2063518.2063519
10.1007/978-3-319-52758-1_6
10.1145/360402.360406
10.1016/j.neucom.2016.12.038
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Springer Science+Business Media, LLC, part of Springer Nature 2019.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2019.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-019-08252-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 7598
ExternalDocumentID 10_1007_s11042_019_08252_2
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c362t-dcf87c4e8dc25b0c54406bfe4299a48833c67d600ee7e4e301b61d8e10b053893
IEDL.DBID RSV
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000504164400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1380-7501
IngestDate Wed Nov 05 00:47:16 EST 2025
Tue Nov 18 22:24:17 EST 2025
Sat Nov 29 03:26:14 EST 2025
Fri Feb 21 02:37:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11-12
Keywords Knowledge engineering
Multimedia processing
Focused crawling
Document classification
Ontologies
Linked open data
Convolutional neural networks
Document analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-dcf87c4e8dc25b0c54406bfe4299a48833c67d600ee7e4e301b61d8e10b053893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7003-4781
PQID 2385998916
PQPubID 54626
PageCount 22
ParticipantIDs proquest_journals_2385998916
crossref_primary_10_1007_s11042_019_08252_2
crossref_citationtrail_10_1007_s11042_019_08252_2
springer_journals_10_1007_s11042_019_08252_2
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Maurice de Kunder (2016) The size of the world wide web (the internet). Hentet 15
Rinaldi AM, Russo C (2018) A matching framework for multimedia data integration using semantics and ontologies. In: 2018 IEEE 12Th international conference on semantic computing (ICSC). IEEE, pp 363–368
AbualigahLMKhaderATUnsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clusteringJ Supercomputing201773114773479510.1007/s11227-017-2046-2
ChakrabartiSVan den BergMDomBFocused crawling: a new approach to topic-specific web resource discoveryComput Netw19993111-161623164010.1016/S1389-1286(99)00052-3
Caldarola EG, Rinaldi AM (2016) An approach to ontology integration for ontology reuse. In: Proceedings - 2016 IEEE 17th International Conference on Information Reuse and Integration, IRI 2016, pp 384–393
Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2014) Decaf: a deep convolutional activation feature for generic visual recognition. In: International conference on machine learning, pp 647–655
Lefteris K (2008) An ontology-based focused crawler. In: International conference on application of natural language to information systems. Springer, pp 376–379
Mendes PN, Jakob M, García-Silva A, Bizer C (2011) Dbpedia spotlight: shedding light on the web of documents. In: Proceedings of the 7th international conference on semantic systems. ACM, pp 1–8
CaldarolaEGRinaldiAMA multi-strategy approach for ontology reuse through matching and integration techniquesAdvan Intell Syst Comput2018561639010.1007/978-3-319-56157-8_4
Razavian AS, Azizpour H, Sullivan J, Carlsson S (2014) Cnn features off-the-shelf: an astounding baseline for recognition. In: 2014 IEEE conference on Computer vision and pattern recognition workshops (CVPRW). IEEE, pp 512–519
Babenko A, Lempitsky V (2015) Aggregating local deep features for image retrieval. In: Proceedings of the IEEE international conference on computer vision, pp 1269–1277
Mukhopadhyay D, Biswas A, Sinha S (2007) A new approach to design domain specific ontology based web crawler. In: 10th International Conference on Information Technology (ICIT 2007). IEEE, pp 289–291
ChoJGarcia-MolinaHPageLEfficient crawling through url orderingComput Netw ISDN Syst1998301-716117210.1016/S0169-7552(98)00108-1
MillerGAWordnet: a lexical database for englishCommun ACM19953811394110.1145/219717.219748
SebastianiFMachine learning in automated text categorizationACM Computing Surveys (CSUR)200234114710.1145/505282.505283
Allahyari M, Pouriyeh S, Assefi M, Safaei S, Trippe ED, Gutierrez JB, Kochut K (2017) A brief survey of text mining: classification, clustering and extraction techniques. arXiv:https://arxiv.org/abs/1707.02919
Caldarola EG, Picariello A, Rinaldi AM (2015) Big graph-based data visualization experiences: the wordnet case study. In: IC3K 2015 - Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, vol 1, pp 104–115
Zhou Zz, Zhang L (2017) Content-based image retrieval using iterative search. Neural Process Lett 1–13
Aggarwal CC, Zhai CX (2012) A survey of text classification algorithms. In: Mining text data. Springer, pp 163–222
AbualigahLMKhaderATHanandehESHybrid clustering analysis using improved krill herd algorithmAppl Intell201848114047407110.1007/s10489-018-1190-6
Hassan T, Cruz C, Bertaux A (2017) Ontology-based approach for unsupervised and adaptive focused crawling. In: Proceedings of The International Workshop on Semantic Big Data. ACM, p 2
Baeza-YatesRRibeiro-NetoBModern information retrieval, vol 4631999New YorkACM Press
YajunDLiuWLvXPengGAn improved focused crawler based on semantic similarity vector space modelAppl Soft Comput20153639240710.1016/j.asoc.2015.07.026
Sharma DK, Khan MA (2015) Safsb: a self-adaptive focused crawler. In: 2015 1st International Conference on Next Generation Computing Technologies (NGCT). IEEE, pp 719–724
YohanesBWHandokoHWardanaHKFocused crawler optimization using genetic algorithmTELKOMNIKA (Telecommunication Computing Electronics and Control)20139340341010.12928/telkomnika.v9i3.730
Bergman MK (2001) White paper: the deep web: surfacing hidden value. J Electron Publishing, 7(1)
Caldarola EG, Rinaldi AM (2017) Big data visualization tools: a survey: the new paradigms, methodologies and tools for large data sets visualization. In: DATA 2017 - Proceedings of the 6th International Conference on Data Science, Technology and Applications, pp 296–305
Chris Nicholson A, Gibson A (2017) Deeplearning4j: Open-source, distributed deep learning for the jvm. Deeplearning4j org
Albanese M, Capasso P, Picariello A, Rinaldi AM (2005) Information retrieval from the web: an interactive paradigm. In: International workshop on multimedia information systems. Springer, pp 17–32
Glover EJ, Tsioutsiouliklis K, Lawrence S, Pennock DM, Flake GW (2002) Using web structure for classifying and describing web pages. In: Proceedings of the 11th international conference on World Wide Web. ACM, pp 562–569
Building an image classification web application using vgg-16 - deeplearning4j: Open-source, distributed deep learning for the jvm. https://deeplearning4j.org/build_vgg_webapp. (Accessed on 03/26/2018)
Ji W, Wang D, Hoi SCH, Pengcheng W, Zhu J, Zhang Y, Li J (2014) Deep learning for content-based image retrieval: a comprehensive study. In: Proceedings of the 22nd ACM international conference on Multimedia. ACM, pp 157–166
Joe Y-HN, Fan Y, Davis LS (2015) Exploiting local features from deep networks for image retrieval. arXiv:https://arxiv.org/abs/1504.05133
Zhang F, Zhong B-J (2016) Image retrieval based on fused cnn features DEStech Transactions on Computer Science and Engineering (aics)
KittlerJHatefMDuinRPWMatasJOn combining classifiersIEEE Trans Pattern Anal Mach Intell199820322623910.1109/34.667881
LiuWWangZLiuXZengNLiuYAlsaadiFEA survey of deep neural network architectures and their applicationsNeurocomputing2017234112610.1016/j.neucom.2016.12.038
Najork M, Wiener JL (2001) Breadth-first crawling yields high-quality pages. In: Proceedings of the 10th international conference on World Wide Web. ACM, pp 114–118
NovakBA survey of focused web crawling algorithmsProc SIKDD200455585558
Gong Y, Wang L, Guo R, Lazebnik S (2014) Multi-scale orderless pooling of deep convolutional activation features. In: European conference on computer vision. Springer, pp 392–407
BatsakisSPetrakisEGMMiliosEImproving the performance of focused web crawlersData Knowledge Eng200968101001101310.1016/j.datak.2009.04.002
MohammadLAbualigahQFeature selection and enhanced krill herd algorithm for text document clustering2019BerlinSpringer
Diligenti M, Coetzee F, Lawrence S, Giles CL, Gori M et al (2000) Focused crawling using context graphs. In: VLDB, pp 527–534
GruberTRA translation approach to portable ontology specificationsKnowledge Acquisition19935219922010.1006/knac.1993.1008
QiXDavisonBDWeb page classification: features and algorithmsACM Computing Surveys (CSUR)20094121210.1145/1459352.1459357
KosalaRBlockeelHWeb mining research: a surveyACM Sigkdd Explorations Newsletter20002111510.1145/360402.360406
PantGSrinivasanPLearning to crawl: comparing classification schemesACM Transactions on Information Systems (TOIS)200523443046210.1145/1095872.1095875
CaldarolaEGPicarielloARinaldiAMExperiences in wordnet visualization with labeled graph databasesCommun Comput Inform Sci2016631809910.1007/978-3-319-52758-1_6
RazavianASSullivanJCarlssonSMakiAVisual instance retrieval with deep convolutional networksITE Trans Media Technol Appl20164325125810.3169/mta.4.251
Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: CVPR09
YangS-YOntocrawler: a focused crawler with ontology-supported website models for information agentsExpert Syst Appl20103775381538910.1016/j.eswa.2010.01.018
Ehrig M, Maedche A (2003) Ontology-focused crawling of web documents. In: Proceedings of the 2003 ACM symposium on Applied computing. ACM, pp 1174–1178
PurificatoERinaldiAMMultimedia and geographic data integration for cultural heritage information retrievalMultimed Tool Appl20187720274472746910.1007/s11042-018-5931-7
LiYBandarZAMcLeanDAn approach for measuring semantic similarity between words using multiple information sourcesIEEE Trans Knowledge data Eng200315487188210.1109/TKDE.2003.1209005
AbualigahLQasimMHanandehESApplying genetic algorithms to information retrieval using vector space modelInt J Computer Sci Eng Appl20155119
SchmidhuberJDeep learning in neural networks: an overviewNeural Netw2015618511710.1016/j.neunet.2014.09.003
Caldarola EG, Rinaldi AM (2015) Big data: a survey: the new paradigms, methodologies and tools. In: DATA 2015 - 4Th international conference on data management technologies and applications, proceedings, pp 362–370
Picariello A, Rinaldi AM (2007) Crawling the web with ontodir. In: International conference on database and expert systems applications. Springer, pp 730–739
Oquab M, Bottou L, Laptev I, Sivic J (2014) Learning and transferring mid-level image representations using convolutional neural networks. In: 2014 IEEE conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp 1717–1724
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:https://arxiv.org/abs/1409.1556
Zhi T, Duan L-Y, Wang Y, Huang T (2016) Two-stage pooling of deep convolutional features for image retrieval. In: 2016 IEEE International Conference on Image processing (ICIP). IEEE, pp 2465–2469
TR Gruber (8252_CR28) 1993; 5
F Sebastiani (8252_CR52) 2002; 34
S Batsakis (8252_CR10) 2009; 68
S-Y Yang (8252_CR56) 2010; 37
8252_CR48
L Mohammad (8252_CR39) 2019
8252_CR45
L Abualigah (8252_CR2) 2015; 5
8252_CR8
J Kittler (8252_CR32) 1998; 20
8252_CR7
8252_CR40
8252_CR43
8252_CR41
AS Razavian (8252_CR49) 2016; 4
G Pant (8252_CR44) 2005; 23
LM Abualigah (8252_CR4) 2018; 48
8252_CR14
8252_CR58
8252_CR15
8252_CR59
8252_CR12
8252_CR16
BW Yohanes (8252_CR57) 2013; 9
8252_CR50
D Yajun (8252_CR55) 2015; 36
8252_CR54
8252_CR11
8252_CR53
X Qi (8252_CR47) 2009; 41
R Baeza-Yates (8252_CR9) 1999
EG Caldarola (8252_CR17) 2018; 561
W Liu (8252_CR36) 2017; 234
B Novak (8252_CR42) 2004; 5558
J Schmidhuber (8252_CR51) 2015; 61
GA Miller (8252_CR38) 1995; 38
8252_CR25
8252_CR26
8252_CR23
8252_CR24
8252_CR29
8252_CR27
8252_CR60
8252_CR21
8252_CR22
8252_CR20
8252_CR6
LM Abualigah (8252_CR3) 2017; 73
8252_CR5
R Kosala (8252_CR33) 2000; 2
8252_CR1
EG Caldarola (8252_CR13) 2016; 631
S Chakrabarti (8252_CR18) 1999; 31
8252_CR37
8252_CR34
E Purificato (8252_CR46) 2018; 77
Y Li (8252_CR35) 2003; 15
J Cho (8252_CR19) 1998; 30
8252_CR30
8252_CR31
References_xml – reference: MillerGAWordnet: a lexical database for englishCommun ACM19953811394110.1145/219717.219748
– reference: YohanesBWHandokoHWardanaHKFocused crawler optimization using genetic algorithmTELKOMNIKA (Telecommunication Computing Electronics and Control)20139340341010.12928/telkomnika.v9i3.730
– reference: Caldarola EG, Rinaldi AM (2016) An approach to ontology integration for ontology reuse. In: Proceedings - 2016 IEEE 17th International Conference on Information Reuse and Integration, IRI 2016, pp 384–393
– reference: ChakrabartiSVan den BergMDomBFocused crawling: a new approach to topic-specific web resource discoveryComput Netw19993111-161623164010.1016/S1389-1286(99)00052-3
– reference: Chris Nicholson A, Gibson A (2017) Deeplearning4j: Open-source, distributed deep learning for the jvm. Deeplearning4j org
– reference: Oquab M, Bottou L, Laptev I, Sivic J (2014) Learning and transferring mid-level image representations using convolutional neural networks. In: 2014 IEEE conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp 1717–1724
– reference: Zhi T, Duan L-Y, Wang Y, Huang T (2016) Two-stage pooling of deep convolutional features for image retrieval. In: 2016 IEEE International Conference on Image processing (ICIP). IEEE, pp 2465–2469
– reference: Lefteris K (2008) An ontology-based focused crawler. In: International conference on application of natural language to information systems. Springer, pp 376–379
– reference: AbualigahLMKhaderATUnsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clusteringJ Supercomputing201773114773479510.1007/s11227-017-2046-2
– reference: CaldarolaEGRinaldiAMA multi-strategy approach for ontology reuse through matching and integration techniquesAdvan Intell Syst Comput2018561639010.1007/978-3-319-56157-8_4
– reference: Baeza-YatesRRibeiro-NetoBModern information retrieval, vol 4631999New YorkACM Press
– reference: Caldarola EG, Picariello A, Rinaldi AM (2015) Big graph-based data visualization experiences: the wordnet case study. In: IC3K 2015 - Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, vol 1, pp 104–115
– reference: Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2014) Decaf: a deep convolutional activation feature for generic visual recognition. In: International conference on machine learning, pp 647–655
– reference: Mukhopadhyay D, Biswas A, Sinha S (2007) A new approach to design domain specific ontology based web crawler. In: 10th International Conference on Information Technology (ICIT 2007). IEEE, pp 289–291
– reference: Bergman MK (2001) White paper: the deep web: surfacing hidden value. J Electron Publishing, 7(1)
– reference: Aggarwal CC, Zhai CX (2012) A survey of text classification algorithms. In: Mining text data. Springer, pp 163–222
– reference: BatsakisSPetrakisEGMMiliosEImproving the performance of focused web crawlersData Knowledge Eng200968101001101310.1016/j.datak.2009.04.002
– reference: Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: CVPR09
– reference: SebastianiFMachine learning in automated text categorizationACM Computing Surveys (CSUR)200234114710.1145/505282.505283
– reference: Maurice de Kunder (2016) The size of the world wide web (the internet). Hentet 15
– reference: Zhang F, Zhong B-J (2016) Image retrieval based on fused cnn features DEStech Transactions on Computer Science and Engineering (aics)
– reference: Mendes PN, Jakob M, García-Silva A, Bizer C (2011) Dbpedia spotlight: shedding light on the web of documents. In: Proceedings of the 7th international conference on semantic systems. ACM, pp 1–8
– reference: Joe Y-HN, Fan Y, Davis LS (2015) Exploiting local features from deep networks for image retrieval. arXiv:https://arxiv.org/abs/1504.05133
– reference: Ehrig M, Maedche A (2003) Ontology-focused crawling of web documents. In: Proceedings of the 2003 ACM symposium on Applied computing. ACM, pp 1174–1178
– reference: QiXDavisonBDWeb page classification: features and algorithmsACM Computing Surveys (CSUR)20094121210.1145/1459352.1459357
– reference: KosalaRBlockeelHWeb mining research: a surveyACM Sigkdd Explorations Newsletter20002111510.1145/360402.360406
– reference: Picariello A, Rinaldi AM (2007) Crawling the web with ontodir. In: International conference on database and expert systems applications. Springer, pp 730–739
– reference: PurificatoERinaldiAMMultimedia and geographic data integration for cultural heritage information retrievalMultimed Tool Appl20187720274472746910.1007/s11042-018-5931-7
– reference: Diligenti M, Coetzee F, Lawrence S, Giles CL, Gori M et al (2000) Focused crawling using context graphs. In: VLDB, pp 527–534
– reference: Sharma DK, Khan MA (2015) Safsb: a self-adaptive focused crawler. In: 2015 1st International Conference on Next Generation Computing Technologies (NGCT). IEEE, pp 719–724
– reference: AbualigahLQasimMHanandehESApplying genetic algorithms to information retrieval using vector space modelInt J Computer Sci Eng Appl20155119
– reference: YajunDLiuWLvXPengGAn improved focused crawler based on semantic similarity vector space modelAppl Soft Comput20153639240710.1016/j.asoc.2015.07.026
– reference: Caldarola EG, Rinaldi AM (2015) Big data: a survey: the new paradigms, methodologies and tools. In: DATA 2015 - 4Th international conference on data management technologies and applications, proceedings, pp 362–370
– reference: Hassan T, Cruz C, Bertaux A (2017) Ontology-based approach for unsupervised and adaptive focused crawling. In: Proceedings of The International Workshop on Semantic Big Data. ACM, p 2
– reference: KittlerJHatefMDuinRPWMatasJOn combining classifiersIEEE Trans Pattern Anal Mach Intell199820322623910.1109/34.667881
– reference: Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:https://arxiv.org/abs/1409.1556
– reference: Glover EJ, Tsioutsiouliklis K, Lawrence S, Pennock DM, Flake GW (2002) Using web structure for classifying and describing web pages. In: Proceedings of the 11th international conference on World Wide Web. ACM, pp 562–569
– reference: LiYBandarZAMcLeanDAn approach for measuring semantic similarity between words using multiple information sourcesIEEE Trans Knowledge data Eng200315487188210.1109/TKDE.2003.1209005
– reference: AbualigahLMKhaderATHanandehESHybrid clustering analysis using improved krill herd algorithmAppl Intell201848114047407110.1007/s10489-018-1190-6
– reference: Ji W, Wang D, Hoi SCH, Pengcheng W, Zhu J, Zhang Y, Li J (2014) Deep learning for content-based image retrieval: a comprehensive study. In: Proceedings of the 22nd ACM international conference on Multimedia. ACM, pp 157–166
– reference: LiuWWangZLiuXZengNLiuYAlsaadiFEA survey of deep neural network architectures and their applicationsNeurocomputing2017234112610.1016/j.neucom.2016.12.038
– reference: Caldarola EG, Rinaldi AM (2017) Big data visualization tools: a survey: the new paradigms, methodologies and tools for large data sets visualization. In: DATA 2017 - Proceedings of the 6th International Conference on Data Science, Technology and Applications, pp 296–305
– reference: NovakBA survey of focused web crawling algorithmsProc SIKDD200455585558
– reference: PantGSrinivasanPLearning to crawl: comparing classification schemesACM Transactions on Information Systems (TOIS)200523443046210.1145/1095872.1095875
– reference: Building an image classification web application using vgg-16 - deeplearning4j: Open-source, distributed deep learning for the jvm. https://deeplearning4j.org/build_vgg_webapp. (Accessed on 03/26/2018)
– reference: Babenko A, Lempitsky V (2015) Aggregating local deep features for image retrieval. In: Proceedings of the IEEE international conference on computer vision, pp 1269–1277
– reference: GruberTRA translation approach to portable ontology specificationsKnowledge Acquisition19935219922010.1006/knac.1993.1008
– reference: MohammadLAbualigahQFeature selection and enhanced krill herd algorithm for text document clustering2019BerlinSpringer
– reference: Allahyari M, Pouriyeh S, Assefi M, Safaei S, Trippe ED, Gutierrez JB, Kochut K (2017) A brief survey of text mining: classification, clustering and extraction techniques. arXiv:https://arxiv.org/abs/1707.02919
– reference: YangS-YOntocrawler: a focused crawler with ontology-supported website models for information agentsExpert Syst Appl20103775381538910.1016/j.eswa.2010.01.018
– reference: Zhou Zz, Zhang L (2017) Content-based image retrieval using iterative search. Neural Process Lett 1–13
– reference: CaldarolaEGPicarielloARinaldiAMExperiences in wordnet visualization with labeled graph databasesCommun Comput Inform Sci2016631809910.1007/978-3-319-52758-1_6
– reference: Najork M, Wiener JL (2001) Breadth-first crawling yields high-quality pages. In: Proceedings of the 10th international conference on World Wide Web. ACM, pp 114–118
– reference: Razavian AS, Azizpour H, Sullivan J, Carlsson S (2014) Cnn features off-the-shelf: an astounding baseline for recognition. In: 2014 IEEE conference on Computer vision and pattern recognition workshops (CVPRW). IEEE, pp 512–519
– reference: SchmidhuberJDeep learning in neural networks: an overviewNeural Netw2015618511710.1016/j.neunet.2014.09.003
– reference: Gong Y, Wang L, Guo R, Lazebnik S (2014) Multi-scale orderless pooling of deep convolutional activation features. In: European conference on computer vision. Springer, pp 392–407
– reference: Rinaldi AM, Russo C (2018) A matching framework for multimedia data integration using semantics and ontologies. In: 2018 IEEE 12Th international conference on semantic computing (ICSC). IEEE, pp 363–368
– reference: ChoJGarcia-MolinaHPageLEfficient crawling through url orderingComput Netw ISDN Syst1998301-716117210.1016/S0169-7552(98)00108-1
– reference: Albanese M, Capasso P, Picariello A, Rinaldi AM (2005) Information retrieval from the web: an interactive paradigm. In: International workshop on multimedia information systems. Springer, pp 17–32
– reference: RazavianASSullivanJCarlssonSMakiAVisual instance retrieval with deep convolutional networksITE Trans Media Technol Appl20164325125810.3169/mta.4.251
– ident: 8252_CR30
– ident: 8252_CR24
– volume: 68
  start-page: 1001
  issue: 10
  year: 2009
  ident: 8252_CR10
  publication-title: Data Knowledge Eng
  doi: 10.1016/j.datak.2009.04.002
– volume: 30
  start-page: 161
  issue: 1-7
  year: 1998
  ident: 8252_CR19
  publication-title: Comput Netw ISDN Syst
  doi: 10.1016/S0169-7552(98)00108-1
– volume: 38
  start-page: 39
  issue: 11
  year: 1995
  ident: 8252_CR38
  publication-title: Commun ACM
  doi: 10.1145/219717.219748
– volume-title: Feature selection and enhanced krill herd algorithm for text document clustering
  year: 2019
  ident: 8252_CR39
– ident: 8252_CR43
  doi: 10.1109/CVPR.2014.222
– volume: 561
  start-page: 63
  year: 2018
  ident: 8252_CR17
  publication-title: Advan Intell Syst Comput
  doi: 10.1007/978-3-319-56157-8_4
– volume: 5
  start-page: 19
  issue: 1
  year: 2015
  ident: 8252_CR2
  publication-title: Int J Computer Sci Eng Appl
– ident: 8252_CR7
– ident: 8252_CR14
– ident: 8252_CR50
– ident: 8252_CR12
  doi: 10.5220/0005632201040115
– ident: 8252_CR60
– ident: 8252_CR59
  doi: 10.1109/ICIP.2016.7532802
– ident: 8252_CR21
– ident: 8252_CR58
  doi: 10.12783/dtcse/aics2016/8171
– volume: 61
  start-page: 85
  year: 2015
  ident: 8252_CR51
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2014.09.003
– ident: 8252_CR48
  doi: 10.1109/CVPRW.2014.131
– ident: 8252_CR27
  doi: 10.1007/978-3-319-10584-0_26
– ident: 8252_CR8
– ident: 8252_CR15
– ident: 8252_CR41
  doi: 10.1145/371920.371965
– ident: 8252_CR53
– volume: 9
  start-page: 403
  issue: 3
  year: 2013
  ident: 8252_CR57
  publication-title: TELKOMNIKA (Telecommunication Computing Electronics and Control)
  doi: 10.12928/telkomnika.v9i3.730
– volume: 20
  start-page: 226
  issue: 3
  year: 1998
  ident: 8252_CR32
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.667881
– volume: 31
  start-page: 1623
  issue: 11-16
  year: 1999
  ident: 8252_CR18
  publication-title: Comput Netw
  doi: 10.1016/S1389-1286(99)00052-3
– volume-title: Modern information retrieval, vol 463
  year: 1999
  ident: 8252_CR9
– ident: 8252_CR6
  doi: 10.1007/11551898_5
– volume: 15
  start-page: 871
  issue: 4
  year: 2003
  ident: 8252_CR35
  publication-title: IEEE Trans Knowledge data Eng
  doi: 10.1109/TKDE.2003.1209005
– ident: 8252_CR16
– volume: 5
  start-page: 199
  issue: 2
  year: 1993
  ident: 8252_CR28
  publication-title: Knowledge Acquisition
  doi: 10.1006/knac.1993.1008
– ident: 8252_CR40
  doi: 10.1109/ICIT.2007.20
– ident: 8252_CR1
– volume: 77
  start-page: 27447
  issue: 20
  year: 2018
  ident: 8252_CR46
  publication-title: Multimed Tool Appl
  doi: 10.1007/s11042-018-5931-7
– volume: 41
  start-page: 12
  issue: 2
  year: 2009
  ident: 8252_CR47
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/1459352.1459357
– ident: 8252_CR25
  doi: 10.1145/952532.952761
– ident: 8252_CR26
  doi: 10.1145/511446.511520
– ident: 8252_CR5
– ident: 8252_CR54
– volume: 48
  start-page: 4047
  issue: 11
  year: 2018
  ident: 8252_CR4
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-1190-6
– ident: 8252_CR31
– volume: 4
  start-page: 251
  issue: 3
  year: 2016
  ident: 8252_CR49
  publication-title: ITE Trans Media Technol Appl
  doi: 10.3169/mta.4.251
– volume: 34
  start-page: 1
  issue: 1
  year: 2002
  ident: 8252_CR52
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/505282.505283
– ident: 8252_CR23
– ident: 8252_CR11
  doi: 10.3998/3336451.0007.104
– volume: 5558
  start-page: 55
  year: 2004
  ident: 8252_CR42
  publication-title: Proc SIKDD
– volume: 73
  start-page: 4773
  issue: 11
  year: 2017
  ident: 8252_CR3
  publication-title: J Supercomputing
  doi: 10.1007/s11227-017-2046-2
– ident: 8252_CR20
– ident: 8252_CR22
  doi: 10.1109/CVPR.2009.5206848
– volume: 36
  start-page: 392
  year: 2015
  ident: 8252_CR55
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.07.026
– volume: 37
  start-page: 5381
  issue: 7
  year: 2010
  ident: 8252_CR56
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.01.018
– ident: 8252_CR29
  doi: 10.1145/3066911.3066912
– ident: 8252_CR45
  doi: 10.1007/978-3-540-74469-6_71
– volume: 23
  start-page: 430
  issue: 4
  year: 2005
  ident: 8252_CR44
  publication-title: ACM Transactions on Information Systems (TOIS)
  doi: 10.1145/1095872.1095875
– ident: 8252_CR37
  doi: 10.1145/2063518.2063519
– volume: 631
  start-page: 80
  year: 2016
  ident: 8252_CR13
  publication-title: Commun Comput Inform Sci
  doi: 10.1007/978-3-319-52758-1_6
– ident: 8252_CR34
– volume: 2
  start-page: 1
  issue: 1
  year: 2000
  ident: 8252_CR33
  publication-title: ACM Sigkdd Explorations Newsletter
  doi: 10.1145/360402.360406
– volume: 234
  start-page: 11
  year: 2017
  ident: 8252_CR36
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.038
SSID ssj0016524
Score 2.355404
Snippet Web-page indexing and classification have been studied extensively starting from the early WWW years. A smart intelligent web agent called focused crawler is a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7577
SubjectTerms Artificial neural networks
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Deep learning
Domains
Feature extraction
Ground truth
Image classification
Linked Data
Multimedia
Multimedia Information Systems
Neural networks
Ontology
Open data
Special Purpose and Application-Based Systems
Websites
SummonAdditionalLinks – databaseName: ABI/INFORM Global
  dbid: M0C
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58HfTgW6wv9uBNF5Nt0qQnEbF4sXhQ8BaysxMRJK1Nq3_fmXTTqqAXb4FslsC3O9_szuMDOLXtNqNOoS4MpjqKMNfWoNHtAoPCmTbGqa3FJpJ-P3166t77C7fKp1U2NrE21G6Ackd-wdQS89GAvZnL4ZsW1SiJrnoJjUVYFs9GUvrugutZFKETe1HbNNDMjKEvmpmWzoVSmBJICQ8fkow234lp7m3-CJDWvNPb-O8fb8K69zjV1XSJbMEClduw0ag5KL-5t2HtS2vCHXBXpZLWBnLprt1IbKKqkw_rUhNVDHBSkVM4yj9eeRYhQ8cfKAkIy9OQx0v2qcpLpxzRUHl9imc1axtb7cJj7-bh-lZ7RQaNTHRj7bBIE4wodWhiG2AcsT9gCxJSyyPRLcZO4tiHIkooIjYethO6lMLA8mZn12gPlspBSfugOnlOMSNErusiZ6lrctu1PBbzhPkjaEHYwJGhb1cuqhmv2bzRskCYMYRZDWFmWnA2-2Y4bdbx5-ijBrfMb9wqm4PWgvMG-fnr32c7-Hu2Q1g1clKvs9eOYGk8mtAxrOD7-KUandTL9hOg0vNU
  priority: 102
  providerName: ProQuest
Title An ontology-driven multimedia focused crawler based on linked open data and deep learning techniques
URI https://link.springer.com/article/10.1007/s11042-019-08252-2
https://www.proquest.com/docview/2385998916
Volume 79
WOSCitedRecordID wos000504164400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAPfovTOfLgmwbarF97nGMiiHP4rS-lSa4iSB3tpv--l5puKiroS2jpJYRccr9Lk7sfwJ5stUjr6PJUqIh7nkq4FErwVqqcVIuW8iNZkk2E_X50e9se2KCworrtXh1JlpZ6GuzmmlASxwTd0LZGcDK8cwR3kSFsOL-4npwdBL6lso0cTnjo2lCZ79v4DEdTH_PLsWiJNkfL_-vnCixZ75J13qfDKsxgtgbLFXMDswt5DRY_pCFcB93JmEljYH6wc50b-8fKi4ZlWAlLn9W4QM1Unrw-USsG-DRVYKZ35mlI8uamKUsyzTTikFkuigc2SRFbbMDVUe-ye8wt-wJXBGojrlUahcrDSCvhS0f5HmG_TNEAWOIZjmIVhJr8JcQQPSRDIQNXR-g6khY2uUGbUMueM9wCFiQJ-qQX1G3taYltkci2JFmVhIQVTh3cSgmxsqnJDUPGUzxNqmwGNaZBjctBjUUd9id1hu-JOX6VblS6je0iLWLyVnzabZKDXIeDSpfTzz-3tv038R1YEGaXXt5ca0BtlI9xF-bVy-ixyJswG97cNWHusNcfnNPbScipPHW6phRnVA78-2Y5xd8AvTPvbQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hWgl6KOVRdVtafIATWCROsvEeqgq1RaCFVQ8gcQvxeIIqoeyyWUD9U_2NnckmuwWp3Dj0Fim2pcTfPOx5fADbLop41ynUhUGr4xhz7QwaHRUYFN5EmFhXk02kg4G9uOj9WIDfbS2MpFW2OrFW1H6Icke-z6Yl4aMBezNfRjdaWKMkutpSaExh0adf93xkqz4ff-P93THm8PvZ1yPdsApoZGU90R4Lm2JM1qNJXIBJzDbNFSSKOY-Fexe7qWc_gCilmFgAXDf0lsLAMWCtNF9ilf8ijmwqctVP9Sxq0U0aEl0baLbEYVOkMy3VC6UQJpCSIT6UGW0eGsK5d_soIFvbucOV_-0PvYHXjUetDqYisAoLVK7BSstWoRrltQav_mq9uA7-oFTSukGCCtqPReerOrmyLqVRxRBvK_IKx_n9Na8ixt7zBCUBb3ka8XjJrlV56ZUnGqmGf-NKzdriVhtw_ixf_hYWy2FJ70B185wSRgT5no-9o57JXc_xWMxTto9BB8J2-zNs2rELK8h1Nm8kLZDJGDJZDZnMdGB3Nmc0bUby5OjNFidZo5iqbA6SDuy1SJu__vdq759ebQuWjs5OT7KT40H_AywbuZWoM_U2YXEyvqWP8BLvJj-r8adaZBRcPjcC_wDzvE9g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB4hWqH2UAq0alpa9gAnusLe2LFzqBCCRiBQlANIqBfjnR2jSpGTxqGof41fx4yzTqBSuXHozZJ3V7L323nsPD6Abdtu865TqAuDqY4izLU1aHS7wKBwpo1xamuyiaTfTy8vu4MluGtqYSStspGJtaB2I5Q78j1WLTG7BmzN7BU-LWJw1Nsf_9LCICWR1oZOYwaRU_pzy-5b9e3kiPd6x5je9_PDY-0ZBjSy4J5qh0WaYESpQxPbAOOI9ZstSIR0HgkPL3YSxzYBUUIR8WGwndClFAaWwZtKIyYW_y8S9jElnXAQ_5hHMDqxJ9RNA81aOfQFO7OyvVCKYgIpH2IHzWjzWCkuLN2_grO1zuut_s9_6y288Za2OpgdjTVYonIdVhsWC-WF2jq8ftCScQPcQamkpYMEG7SbiC5QddJlXWKjihHeVOQUTvLbIa8iRoDjCUoC4fI05vGSdavy0ilHNFael-NazdvlVu_g4lm-_D0sl6OSPoDq5DnFjA5yXRc5S12T267lsZgnrDeDFoQNFDL0bdqFLWSYLRpMC3wyhk9WwyczLdidzxnPmpQ8OXqzwUzmBVaVLQDTgq8N6hav_73ax6dX24IVBl52dtI__QSvjFxW1Al8m7A8ndzQZ3iJv6c_q8mX-vQouHpuAN4DyLhYhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ontology-driven+multimedia+focused+crawler+based+on+linked+open+data+and+deep+learning+techniques&rft.jtitle=Multimedia+tools+and+applications&rft.au=Capuano%2C+Andrea&rft.au=Rinaldi%2C+Antonio+M.&rft.au=Russo%2C+Cristiano&rft.date=2020-03-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=79&rft.issue=11-12&rft.spage=7577&rft.epage=7598&rft_id=info:doi/10.1007%2Fs11042-019-08252-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_019_08252_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon