Fast control parameterization optimal control with improved Polak–Ribière–Polyak conjugate gradient implementation for industrial dynamic processes

This paper proposes a fast control parameterization optimal control algorithm for industrial dynamic process with constraints. Derived from the frame of control variable parameterization (CVP) technique, the proposed method combines an efficient gradient computation strategy with an improved nonline...

Full description

Saved in:
Bibliographic Details
Published in:ISA transactions Vol. 123; pp. 188 - 199
Main Authors: Liu, Ping, Hu, Qingquan, Li, Lei, Liu, Mingjie, Chen, Xiaolei, Piao, Changhao, Liu, Xinggao
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 01.04.2022
Subjects:
ISSN:0019-0578, 1879-2022, 1879-2022
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes a fast control parameterization optimal control algorithm for industrial dynamic process with constraints. Derived from the frame of control variable parameterization (CVP) technique, the proposed method combines an efficient gradient computation strategy with an improved nonlinear optimization computation approach to overcome the challenge of computation efficiency caused by gradients and bounds in optimal control problems. Firstly, a fast gradient computation method based on the costate system of Hamiltonian function is developed to decrease the computational expense of gradients by employing approximate treatments and numerical integration strategy. Then, a trigonometric function transformation scheme is presented to tackle the boundary constraints so that the original optimal control problem is further converted into an unconstrained one. On this basis, an improved restricted Polak–Ribière–Polyak (PRP) conjugate gradient approach is introduced to solve the nonlinear optimization problem by using conjugate gradient iterations and strong Wolfe line search. Meanwhile, to enhance the convergence, a restricting condition is imposed in strong Wolfe line search to create iteration step-length. Finally, the proposed algorithm is implemented on three dynamic processes. The detailed comparison among the classical CVP method, literature results and the proposed method are carried out. Simulation studies show that the proposed fast approach averagely saves more than 90% computation time in contrast to the classical CVP method, demonstrating the effectiveness of the proposed fast optimal control approach. •A fast CVP method for industrial dynamic process with constraints is proposed.•An improved restricted PRP approach is proposed for unconstrained NLP problem.•Test results reveal that the proposed method saves more than 90% CPU time.
AbstractList This paper proposes a fast control parameterization optimal control algorithm for industrial dynamic process with constraints. Derived from the frame of control variable parameterization (CVP) technique, the proposed method combines an efficient gradient computation strategy with an improved nonlinear optimization computation approach to overcome the challenge of computation efficiency caused by gradients and bounds in optimal control problems. Firstly, a fast gradient computation method based on the costate system of Hamiltonian function is developed to decrease the computational expense of gradients by employing approximate treatments and numerical integration strategy. Then, a trigonometric function transformation scheme is presented to tackle the boundary constraints so that the original optimal control problem is further converted into an unconstrained one. On this basis, an improved restricted Polak-Ribière-Polyak (PRP) conjugate gradient approach is introduced to solve the nonlinear optimization problem by using conjugate gradient iterations and strong Wolfe line search. Meanwhile, to enhance the convergence, a restricting condition is imposed in strong Wolfe line search to create iteration step-length. Finally, the proposed algorithm is implemented on three dynamic processes. The detailed comparison among the classical CVP method, literature results and the proposed method are carried out. Simulation studies show that the proposed fast approach averagely saves more than 90% computation time in contrast to the classical CVP method, demonstrating the effectiveness of the proposed fast optimal control approach.This paper proposes a fast control parameterization optimal control algorithm for industrial dynamic process with constraints. Derived from the frame of control variable parameterization (CVP) technique, the proposed method combines an efficient gradient computation strategy with an improved nonlinear optimization computation approach to overcome the challenge of computation efficiency caused by gradients and bounds in optimal control problems. Firstly, a fast gradient computation method based on the costate system of Hamiltonian function is developed to decrease the computational expense of gradients by employing approximate treatments and numerical integration strategy. Then, a trigonometric function transformation scheme is presented to tackle the boundary constraints so that the original optimal control problem is further converted into an unconstrained one. On this basis, an improved restricted Polak-Ribière-Polyak (PRP) conjugate gradient approach is introduced to solve the nonlinear optimization problem by using conjugate gradient iterations and strong Wolfe line search. Meanwhile, to enhance the convergence, a restricting condition is imposed in strong Wolfe line search to create iteration step-length. Finally, the proposed algorithm is implemented on three dynamic processes. The detailed comparison among the classical CVP method, literature results and the proposed method are carried out. Simulation studies show that the proposed fast approach averagely saves more than 90% computation time in contrast to the classical CVP method, demonstrating the effectiveness of the proposed fast optimal control approach.
This paper proposes a fast control parameterization optimal control algorithm for industrial dynamic process with constraints. Derived from the frame of control variable parameterization (CVP) technique, the proposed method combines an efficient gradient computation strategy with an improved nonlinear optimization computation approach to overcome the challenge of computation efficiency caused by gradients and bounds in optimal control problems. Firstly, a fast gradient computation method based on the costate system of Hamiltonian function is developed to decrease the computational expense of gradients by employing approximate treatments and numerical integration strategy. Then, a trigonometric function transformation scheme is presented to tackle the boundary constraints so that the original optimal control problem is further converted into an unconstrained one. On this basis, an improved restricted Polak–Ribière–Polyak (PRP) conjugate gradient approach is introduced to solve the nonlinear optimization problem by using conjugate gradient iterations and strong Wolfe line search. Meanwhile, to enhance the convergence, a restricting condition is imposed in strong Wolfe line search to create iteration step-length. Finally, the proposed algorithm is implemented on three dynamic processes. The detailed comparison among the classical CVP method, literature results and the proposed method are carried out. Simulation studies show that the proposed fast approach averagely saves more than 90% computation time in contrast to the classical CVP method, demonstrating the effectiveness of the proposed fast optimal control approach. •A fast CVP method for industrial dynamic process with constraints is proposed.•An improved restricted PRP approach is proposed for unconstrained NLP problem.•Test results reveal that the proposed method saves more than 90% CPU time.
This paper proposes a fast control parameterization optimal control algorithm for industrial dynamic process with constraints. Derived from the frame of control variable parameterization (CVP) technique, the proposed method combines an efficient gradient computation strategy with an improved nonlinear optimization computation approach to overcome the challenge of computation efficiency caused by gradients and bounds in optimal control problems. Firstly, a fast gradient computation method based on the costate system of Hamiltonian function is developed to decrease the computational expense of gradients by employing approximate treatments and numerical integration strategy. Then, a trigonometric function transformation scheme is presented to tackle the boundary constraints so that the original optimal control problem is further converted into an unconstrained one. On this basis, an improved restricted Polak-Ribière-Polyak (PRP) conjugate gradient approach is introduced to solve the nonlinear optimization problem by using conjugate gradient iterations and strong Wolfe line search. Meanwhile, to enhance the convergence, a restricting condition is imposed in strong Wolfe line search to create iteration step-length. Finally, the proposed algorithm is implemented on three dynamic processes. The detailed comparison among the classical CVP method, literature results and the proposed method are carried out. Simulation studies show that the proposed fast approach averagely saves more than 90% computation time in contrast to the classical CVP method, demonstrating the effectiveness of the proposed fast optimal control approach.
Author Piao, Changhao
Liu, Mingjie
Chen, Xiaolei
Liu, Xinggao
Liu, Ping
Li, Lei
Hu, Qingquan
Author_xml – sequence: 1
  givenname: Ping
  surname: Liu
  fullname: Liu, Ping
  email: liuping_cqupt@cqupt.edu.cn
  organization: College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
– sequence: 2
  givenname: Qingquan
  surname: Hu
  fullname: Hu, Qingquan
  organization: College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
– sequence: 3
  givenname: Lei
  surname: Li
  fullname: Li, Lei
  organization: College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
– sequence: 4
  givenname: Mingjie
  surname: Liu
  fullname: Liu, Mingjie
  organization: College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
– sequence: 5
  givenname: Xiaolei
  surname: Chen
  fullname: Chen, Xiaolei
  organization: College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
– sequence: 6
  givenname: Changhao
  surname: Piao
  fullname: Piao, Changhao
  email: piaoch@cqupt.edu.cn
  organization: College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
– sequence: 7
  givenname: Xinggao
  surname: Liu
  fullname: Liu, Xinggao
  organization: State Key Laboratory of Industry Control Technology, College of Control Science & Engineering, Zhejiang University, Hangzhou 310027, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34020789$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFu1TAURS1URH8LO0AoQyYJtpM4MQMkVFFAqgRCMLYc-7m83yT-2E7RZ8QemLAE9sFOWAn-SsuAAYz89HTuffK9J-Ro9jMQ8pDRilEmnmwrjDoFXXHKWUXbinJ6h2xY38kyr_gR2VDKZEnbrj8mJzFuKaW8lf09clw3Ge56uSHfz3VMhfFzCn4sdjroCRIE_KIT-rnwu4STHv8AnzF9LHDaBX8NtnjrR3316-u3dzjgzx8B8phXe3114LfLpU5QXAZtEeZ0UI0w5Wl1dj4UONslpoD5gN3PekJTZGcDMUK8T-46PUZ4cPOekg_nL96fvSov3rx8ffb8ojS14Km0tYTOaT0YaQdrqTCaCQ2NEUa4TkhuRO_k0DhowHXWSipb0bHG2Za3jkN9Sh6vvvnypwViUhNGA-OoZ_BLVLytGeeCcZHRRzfoMkxg1S7kbMJe3aaZgacrYIKPMYBTBtfv5p5wVIyqQ3Vqq9bq1KE6RVuV9Vnc_CW-9f-P7NkqgxzSNUJQ0eS8DVgMYJKyHv9t8BuRor3K
CitedBy_id crossref_primary_10_1177_00202940231201889
crossref_primary_10_1016_j_camwa_2023_12_020
crossref_primary_10_1177_01423312241288314
crossref_primary_10_3390_drones6110360
Cites_doi 10.1016/j.ejor.2016.06.019
10.1016/j.fbp.2008.03.007
10.1016/0098-1354(84)87012-X
10.3934/naco.2012.2.571
10.1016/0098-1354(94)00086-4
10.1007/s11071-014-1633-5
10.1016/j.bej.2016.03.006
10.1016/j.isatra.2019.08.069
10.1016/0009-2509(65)85002-3
10.1109/TNNLS.2018.2818127
10.1109/TAC.2018.2867507
10.1016/j.automatica.2008.06.011
10.1007/s10957-011-9918-z
10.2514/6.2013-4555
10.3934/jimo.2014.10.275
10.1021/ie00095a010
10.1016/j.compchemeng.2005.02.036
10.1016/S0098-1354(02)00234-X
10.1016/j.na.2006.02.001
10.1002/cjce.22633
10.1109/TNNLS.2019.2900510
10.1016/j.isatra.2018.10.029
10.1109/TIE.2019.2941136
10.1016/S0098-1354(97)00014-8
10.1016/S0098-1354(97)00226-3
10.1002/ceat.201800109
10.1016/j.isatra.2015.06.006
10.1002/oca.2273
10.1137/0802003
10.1016/j.neucom.2017.05.051
10.1007/s10957-014-0641-4
10.1007/s12532-018-0139-4
10.1016/j.automatica.2017.03.022
10.1016/j.ces.2005.05.028
10.1016/j.isatra.2017.12.008
10.1016/j.ins.2017.12.047
10.1016/j.jfranklin.2019.12.013
10.1093/bioinformatics/bty139
10.1016/S0098-1354(00)00566-4
10.1109/TASE.2013.2292582
10.1080/00207179.2017.1286534
10.1021/ie00043a029
10.1109/LCSYS.2018.2853648
10.1080/00207179.2018.1426882
10.1016/S0959-1524(01)00008-7
ContentType Journal Article
Copyright 2021 ISA
Copyright © 2021 ISA. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 ISA
– notice: Copyright © 2021 ISA. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.isatra.2021.05.020
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1879-2022
EndPage 199
ExternalDocumentID 34020789
10_1016_j_isatra_2021_05_020
S0019057821002755
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
6P2
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFDAS
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
T9H
TAE
TN5
UHS
UNMZH
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
NPM
SSH
7X8
ID FETCH-LOGICAL-c362t-d39e7faabc9dbdd06ca16ae4c6c6f7692c68f9b4fe4ef7dd90956714fd525f2e3
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000796023400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0019-0578
1879-2022
IngestDate Wed Oct 01 10:26:56 EDT 2025
Thu Apr 03 07:09:15 EDT 2025
Sat Nov 29 07:28:45 EST 2025
Tue Nov 18 22:12:04 EST 2025
Fri Feb 23 02:40:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fast computation
PRP conjugate gradient method
Dynamic processes
Control parameterization
Optimal control
Language English
License Copyright © 2021 ISA. Published by Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-d39e7faabc9dbdd06ca16ae4c6c6f7692c68f9b4fe4ef7dd90956714fd525f2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 34020789
PQID 2531226126
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2531226126
pubmed_primary_34020789
crossref_citationtrail_10_1016_j_isatra_2021_05_020
crossref_primary_10_1016_j_isatra_2021_05_020
elsevier_sciencedirect_doi_10_1016_j_isatra_2021_05_020
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
2022-Apr
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ISA transactions
PublicationTitleAlternate ISA Trans
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Loxton, Teo, Rehbock (b32) 2011; 217
Li, Yuan, Chen, Ke, Chu, Chen (b1) 2018; 29
Zavala, Biegler (b8) 2009; 45
Li, Liu (b31) 2014; 78
Chen, Vassiliadis (b39) 2003; 27
Liu, Li, Liu, Zhang (b30) 2016; 94
Shi, Xu, Tan, Kirschen, Zhang (b6) 2018; 64
Gunn, Thomas (b41) 1965; 20
Liu, Liu, Wang, Li, Ren (b13) 2018; 92
Lin, Loxton, Teo (b18) 2017; 10
Loxton, Lin, Rehbock, Teo (b29) 2012; 2
Gilbert, Nocedal (b34) 1992; 2
Maity, Mamduhi, Hirche, Johansson, Baras (b5) 2018; 3
Canto, Banga, Alonso, Vassiliadis (b7) 2002; 12
Liu, He, Gu, Xu, Zhang, Wang (b14) 2020; 99
Bell, Sargent (b45) 2000; 24
Liu, Li, Liu, Zhang (b47) 2016; 111
Liu, Li, Liu, Xiao, Wang, Yang (b26) 2018; 73
Chen, Ren, Lin, Wu, Ye (b4) 2020; 357
Lin, Loxton, Teo (b28) 2014; 10
Ren, Zhou, Xu, Wu, Chen (b3) 2019; 85
Mu, Wang, He (b21) 2017; 81
Tanartkit, Biegler (b38) 1997; 21
Li, Liu (b48) 2014; 165
Woinaroschy (b15) 2019; 42
Liu, Li, Liu (b40) 2015; 58
Conway (b11) 2012; 152
Logsdon, Biegler (b36) 1989; 28
Dadebo, Mcauley (b43) 1995; 19
Andersson, Gillis, Horn, Rawlings, Diehl (b10) 2019; 11
Xiao, Liu, Ma, Zhang (b17) 2018; 91
Biegler (b35) 1984; 8
Tsiantis, Balsa-Canto, Banga (b2) 2018; 34
Mu, Zhang (b22) 2019; 31
Schlegel, Stockmann, Binder, Marquardt (b23) 2005; 29
Hadiyanto, Esveld, Boom, Van Straten, Van Boxtel (b24) 2008; 86
Shi, Shen (b33) 2007; 66
Banga, Irizarry-Rivera, Seider (b44) 1998; 22
Wang, Mu (b20) 2017; 266
Bittner M, Bruhs P, Richter M, Holzapfel F. An automatic mesh refinement method for aircraft trajectory optimization problems. In: Proceedings of the AIAA guidance, navigation, and control conference. Boston, MA, USA; 2013.
Irizarry (b46) 2005; 60
Vassiliadis, Canto, Banga (b37) 1999; 54
Chen, Du, Tianfield, Qi, He, Qian (b12) 2013; 11
Sun, Aw, Loxton, Teo (b27) 2017; 256
Hirmajer, Balsa-Canto, Banga (b42) 2010
Tanartkit, Biegler (b49) 1995; 34
Ning, Zhang, Zhang, Zhang (b16) 2018; 433
Chen, Lou, Yang, Ren, Xu (b19) 2019; 67
Liu, Li, Liu, Hu (b9) 2017; 38
Woinaroschy (10.1016/j.isatra.2021.05.020_b15) 2019; 42
Shi (10.1016/j.isatra.2021.05.020_b33) 2007; 66
Hadiyanto (10.1016/j.isatra.2021.05.020_b24) 2008; 86
Irizarry (10.1016/j.isatra.2021.05.020_b46) 2005; 60
Conway (10.1016/j.isatra.2021.05.020_b11) 2012; 152
Tsiantis (10.1016/j.isatra.2021.05.020_b2) 2018; 34
Xiao (10.1016/j.isatra.2021.05.020_b17) 2018; 91
Canto (10.1016/j.isatra.2021.05.020_b7) 2002; 12
Liu (10.1016/j.isatra.2021.05.020_b47) 2016; 111
Liu (10.1016/j.isatra.2021.05.020_b30) 2016; 94
Mu (10.1016/j.isatra.2021.05.020_b21) 2017; 81
Li (10.1016/j.isatra.2021.05.020_b48) 2014; 165
Chen (10.1016/j.isatra.2021.05.020_b4) 2020; 357
Liu (10.1016/j.isatra.2021.05.020_b13) 2018; 92
Ning (10.1016/j.isatra.2021.05.020_b16) 2018; 433
Sun (10.1016/j.isatra.2021.05.020_b27) 2017; 256
Gilbert (10.1016/j.isatra.2021.05.020_b34) 1992; 2
Loxton (10.1016/j.isatra.2021.05.020_b29) 2012; 2
Vassiliadis (10.1016/j.isatra.2021.05.020_b37) 1999; 54
Biegler (10.1016/j.isatra.2021.05.020_b35) 1984; 8
Shi (10.1016/j.isatra.2021.05.020_b6) 2018; 64
Bell (10.1016/j.isatra.2021.05.020_b45) 2000; 24
Tanartkit (10.1016/j.isatra.2021.05.020_b49) 1995; 34
Logsdon (10.1016/j.isatra.2021.05.020_b36) 1989; 28
Banga (10.1016/j.isatra.2021.05.020_b44) 1998; 22
Mu (10.1016/j.isatra.2021.05.020_b22) 2019; 31
Zavala (10.1016/j.isatra.2021.05.020_b8) 2009; 45
Liu (10.1016/j.isatra.2021.05.020_b9) 2017; 38
Maity (10.1016/j.isatra.2021.05.020_b5) 2018; 3
Liu (10.1016/j.isatra.2021.05.020_b40) 2015; 58
Dadebo (10.1016/j.isatra.2021.05.020_b43) 1995; 19
Lin (10.1016/j.isatra.2021.05.020_b18) 2017; 10
Liu (10.1016/j.isatra.2021.05.020_b14) 2020; 99
10.1016/j.isatra.2021.05.020_b25
Ren (10.1016/j.isatra.2021.05.020_b3) 2019; 85
Schlegel (10.1016/j.isatra.2021.05.020_b23) 2005; 29
Wang (10.1016/j.isatra.2021.05.020_b20) 2017; 266
Liu (10.1016/j.isatra.2021.05.020_b26) 2018; 73
Andersson (10.1016/j.isatra.2021.05.020_b10) 2019; 11
Li (10.1016/j.isatra.2021.05.020_b1) 2018; 29
Chen (10.1016/j.isatra.2021.05.020_b19) 2019; 67
Hirmajer (10.1016/j.isatra.2021.05.020_b42) 2010
Chen (10.1016/j.isatra.2021.05.020_b39) 2003; 27
Tanartkit (10.1016/j.isatra.2021.05.020_b38) 1997; 21
Chen (10.1016/j.isatra.2021.05.020_b12) 2013; 11
Loxton (10.1016/j.isatra.2021.05.020_b32) 2011; 217
Lin (10.1016/j.isatra.2021.05.020_b28) 2014; 10
Gunn (10.1016/j.isatra.2021.05.020_b41) 1965; 20
Li (10.1016/j.isatra.2021.05.020_b31) 2014; 78
References_xml – volume: 21
  start-page: 735
  year: 1997
  end-page: 741
  ident: b38
  article-title: A nested, simultaneous approach for dynamic optimization problems—II: the outer problem
  publication-title: Comput Chem Eng
– volume: 2
  start-page: 21
  year: 1992
  end-page: 42
  ident: b34
  article-title: Global convergence properties of conjugate gradient methods for optimization
  publication-title: SIAM J Optim
– volume: 27
  start-page: 501
  year: 2003
  end-page: 525
  ident: b39
  article-title: Solution of general nonlinear optimization problems using the penalty/modified barrier method with the use of exact Hessians
  publication-title: Comput Chem Eng
– volume: 92
  start-page: 2015
  year: 2018
  end-page: 2024
  ident: b13
  article-title: Control variable parameterisation with penalty approach for hypersonic vehicle reentry optimisation
  publication-title: Internat J Control
– volume: 11
  start-page: 1
  year: 2019
  end-page: 36
  ident: b10
  article-title: CasADi: a software framework for nonlinear optimization and optimal control
  publication-title: Math Program Comput
– volume: 73
  start-page: 66
  year: 2018
  end-page: 78
  ident: b26
  article-title: A novel non-uniform control vector parameterization approach with time grid refinement for flight level tracking optimal control problems
  publication-title: ISA Trans
– volume: 29
  start-page: 1731
  year: 2005
  end-page: 1751
  ident: b23
  article-title: Dynamic optimization using adaptive control vector parameterization
  publication-title: Comput Chem Eng
– volume: 22
  start-page: 603
  year: 1998
  end-page: 612
  ident: b44
  article-title: Stochastic optimization for optimal and model-predictive control
  publication-title: Comput Chem Eng
– volume: 42
  start-page: 2393
  year: 2019
  end-page: 2400
  ident: b15
  article-title: Optimal control for chemical reactors with distributed parameters using genetic algorithms
  publication-title: Chem Eng Technol
– volume: 91
  start-page: 571
  year: 2018
  end-page: 581
  ident: b17
  article-title: An effective pseudospectral method for constraint dynamic optimisation problems with characteristic times
  publication-title: Internat J Control
– volume: 217
  start-page: 6566
  year: 2011
  end-page: 6576
  ident: b32
  article-title: Robust suboptimal control of nonlinear systems
  publication-title: Appl Math Comput
– volume: 29
  start-page: 6113
  year: 2018
  end-page: 6122
  ident: b1
  article-title: Neural-dynamic optimization-based model predictive control for tracking and formation of nonholonomic multirobot systems
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 81
  start-page: 240
  year: 2017
  end-page: 252
  ident: b21
  article-title: Novel iterative neural dynamic programming for data-based approximate optimal control design
  publication-title: Automatica
– volume: 19
  start-page: 513
  year: 1995
  end-page: 525
  ident: b43
  article-title: Dynamic optimization of constrained chemical engineering problems using dynamic programming
  publication-title: Comput Chem Eng
– volume: 45
  start-page: 86
  year: 2009
  end-page: 93
  ident: b8
  article-title: The advanced-step NMPC controller: Optimality, stability and robustness
  publication-title: Automatica
– volume: 64
  start-page: 2324
  year: 2018
  end-page: 2339
  ident: b6
  article-title: Optimal battery control under cycle aging mechanisms in pay for performance settings
  publication-title: IEEE Trans Automat Control
– year: 2010
  ident: b42
  article-title: DOTcvp: Dynamic Optimization Toolbox with Control Vector Parameterization Approach for Handling Continuous and Mixed-Integer Dynamic Optimization Problems
– volume: 86
  start-page: 130
  year: 2008
  end-page: 141
  ident: b24
  article-title: Control vector parameterization with sensitivity based refinement applied to baking optimization
  publication-title: Food Bioprod Proce
– volume: 66
  start-page: 1428
  year: 2007
  end-page: 1441
  ident: b33
  article-title: Convergence of the Polak–Ribiére–Polyak conjugate gradient method
  publication-title: Nonlinear Anal Theory Methods Appl
– volume: 11
  start-page: 1289
  year: 2013
  end-page: 1299
  ident: b12
  article-title: Dynamic optimization of industrial processes with nonuniform discretization-based control vector parameterization
  publication-title: IEEE Trans Automat Sci Eng Optim
– volume: 256
  start-page: 205
  year: 2017
  end-page: 214
  ident: b27
  article-title: Chance-constrained optimization for pension fund portfolios in the presence of default risk
  publication-title: Eur J Oper Res
– volume: 38
  start-page: 586
  year: 2017
  end-page: 600
  ident: b9
  article-title: An improved smoothing technique-based control vector parameterization method for optimal control problems with inequality path constraints
  publication-title: Optim Control Appl Methods
– volume: 67
  start-page: 7841
  year: 2019
  end-page: 7850
  ident: b19
  article-title: Vibration suppression of a high-speed macro–micro integrated system using computational optimal control
  publication-title: IEEE Trans Ind Electron
– volume: 2
  start-page: 571
  year: 2012
  end-page: 599
  ident: b29
  article-title: Control parameterization for optimal control problems with continuous inequality constraints: New convergence results
  publication-title: Numer Algebra Control Optim
– volume: 24
  start-page: 2385
  year: 2000
  end-page: 2404
  ident: b45
  article-title: Optimal control of inequality constrained DAE systems
  publication-title: Comput Chem Eng
– reference: Bittner M, Bruhs P, Richter M, Holzapfel F. An automatic mesh refinement method for aircraft trajectory optimization problems. In: Proceedings of the AIAA guidance, navigation, and control conference. Boston, MA, USA; 2013.
– volume: 12
  start-page: 243
  year: 2002
  end-page: 255
  ident: b7
  article-title: Restricted second order information for the solution of optimal control problems using control vector parameterization
  publication-title: J Process Control
– volume: 60
  start-page: 5663
  year: 2005
  end-page: 5681
  ident: b46
  article-title: A generalized framework for solving dynamic optimization problems using the artificial chemical process paradigm: Applications to particulate processes and discrete dynamic systems
  publication-title: Chem Eng Sci
– volume: 99
  start-page: 199
  year: 2020
  end-page: 209
  ident: b14
  article-title: A robust cutting pattern recognition method for shearer based on least square support vector machine equipped with chaos modified particle swarm optimization and online correcting strategy
  publication-title: ISA Trans
– volume: 85
  start-page: 129
  year: 2019
  end-page: 140
  ident: b3
  article-title: Computational bilinear optimal control for a class of one-dimensional MHD flow systems
  publication-title: ISA Trans
– volume: 3
  start-page: 102
  year: 2018
  end-page: 107
  ident: b5
  article-title: Optimal LQG control under delay-dependent costly information
  publication-title: IEEE Control Syst Lett
– volume: 8
  start-page: 243
  year: 1984
  end-page: 247
  ident: b35
  article-title: Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation
  publication-title: Comput Chem Eng
– volume: 10
  start-page: 275
  year: 2014
  end-page: 309
  ident: b28
  article-title: The control parameterization method for nonlinear optimal control: A survey
  publication-title: J Ind Manag Optim
– volume: 10
  start-page: 275
  year: 2017
  end-page: 309
  ident: b18
  article-title: The control parameterization method for nonlinear optimal control: A survey
  publication-title: J Ind Manag Optim
– volume: 94
  start-page: 2355
  year: 2016
  end-page: 2363
  ident: b30
  article-title: A novel fast dynamic optimization approach for complex multivariable chemical process systems
  publication-title: Can J Chem Eng
– volume: 111
  start-page: 63
  year: 2016
  end-page: 74
  ident: b47
  article-title: Novel non-uniform adaptive grid refinement control parameterization approach for biochemical processes optimization
  publication-title: Biochem Eng J
– volume: 58
  start-page: 248
  year: 2015
  end-page: 254
  ident: b40
  article-title: Fast engineering optimization: A novel highly effective control parameterization approach for industrial dynamic processes
  publication-title: ISA Trans
– volume: 266
  start-page: 353
  year: 2017
  end-page: 360
  ident: b20
  article-title: A novel neural optimal control framework with nonlinear dynamics: Closed-loop stability and simulation verification
  publication-title: Neurocomputing
– volume: 34
  start-page: 2433
  year: 2018
  end-page: 2440
  ident: b2
  article-title: Optimality and identification of dynamic models in systems biology: an inverse optimal control framework
  publication-title: Bioinformatics
– volume: 152
  start-page: 271
  year: 2012
  end-page: 306
  ident: b11
  article-title: A survey of methods available for the numerical optimization of continuous dynamic systems
  publication-title: J Optim Theory Appl
– volume: 28
  start-page: 1628
  year: 1989
  end-page: 1639
  ident: b36
  article-title: Accurate solution of differential–algebraic optimization problems
  publication-title: Ind Eng Chem Res
– volume: 31
  start-page: 259
  year: 2019
  end-page: 273
  ident: b22
  article-title: Learning-based robust tracking control of quadrotor with time-varying and coupling uncertainties
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 34
  start-page: 1253
  year: 1995
  end-page: 1266
  ident: b49
  article-title: Stable decomposition for dynamic optimization
  publication-title: Ind Eng Chem Res
– volume: 357
  start-page: 2830
  year: 2020
  end-page: 2850
  ident: b4
  article-title: Real-time computational optimal control of an MHD flow system with parameter uncertainty quantification
  publication-title: J Franklin Inst
– volume: 78
  start-page: 2883
  year: 2014
  end-page: 2895
  ident: b31
  article-title: Optimal control problems with incomplete and different integral time domains in the objective and constraints
  publication-title: Nonlinear Dyn
– volume: 20
  start-page: 89
  year: 1965
  end-page: 100
  ident: b41
  article-title: Mass transport and chemical reaction in multifunctional catalyst systems
  publication-title: Chem Eng Sci
– volume: 433
  start-page: 142
  year: 2018
  end-page: 162
  ident: b16
  article-title: A best-path-updating information-guided ant colony optimization algorithm
  publication-title: Inform Sci
– volume: 54
  start-page: 3851
  year: 1999
  end-page: 3860
  ident: b37
  article-title: Second-order sensitivities of general dynamic systems with application to optimal control problems
  publication-title: Chem Eng J
– volume: 165
  start-page: 678
  year: 2014
  end-page: 692
  ident: b48
  article-title: Comments on “optimal use of mixed catalysts for two successive chemical reactions”
  publication-title: J Optim Theory Appl
– volume: 256
  start-page: 205
  issue: 1
  year: 2017
  ident: 10.1016/j.isatra.2021.05.020_b27
  article-title: Chance-constrained optimization for pension fund portfolios in the presence of default risk
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2016.06.019
– volume: 86
  start-page: 130
  issue: 2
  year: 2008
  ident: 10.1016/j.isatra.2021.05.020_b24
  article-title: Control vector parameterization with sensitivity based refinement applied to baking optimization
  publication-title: Food Bioprod Proce
  doi: 10.1016/j.fbp.2008.03.007
– volume: 217
  start-page: 6566
  issue: 2
  year: 2011
  ident: 10.1016/j.isatra.2021.05.020_b32
  article-title: Robust suboptimal control of nonlinear systems
  publication-title: Appl Math Comput
– volume: 8
  start-page: 243
  issue: 3–4
  year: 1984
  ident: 10.1016/j.isatra.2021.05.020_b35
  article-title: Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation
  publication-title: Comput Chem Eng
  doi: 10.1016/0098-1354(84)87012-X
– volume: 2
  start-page: 571
  issue: 3
  year: 2012
  ident: 10.1016/j.isatra.2021.05.020_b29
  article-title: Control parameterization for optimal control problems with continuous inequality constraints: New convergence results
  publication-title: Numer Algebra Control Optim
  doi: 10.3934/naco.2012.2.571
– volume: 19
  start-page: 513
  issue: 5
  year: 1995
  ident: 10.1016/j.isatra.2021.05.020_b43
  article-title: Dynamic optimization of constrained chemical engineering problems using dynamic programming
  publication-title: Comput Chem Eng
  doi: 10.1016/0098-1354(94)00086-4
– volume: 78
  start-page: 2883
  issue: 4
  year: 2014
  ident: 10.1016/j.isatra.2021.05.020_b31
  article-title: Optimal control problems with incomplete and different integral time domains in the objective and constraints
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-014-1633-5
– volume: 111
  start-page: 63
  year: 2016
  ident: 10.1016/j.isatra.2021.05.020_b47
  article-title: Novel non-uniform adaptive grid refinement control parameterization approach for biochemical processes optimization
  publication-title: Biochem Eng J
  doi: 10.1016/j.bej.2016.03.006
– volume: 99
  start-page: 199
  year: 2020
  ident: 10.1016/j.isatra.2021.05.020_b14
  article-title: A robust cutting pattern recognition method for shearer based on least square support vector machine equipped with chaos modified particle swarm optimization and online correcting strategy
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2019.08.069
– volume: 20
  start-page: 89
  issue: 2
  year: 1965
  ident: 10.1016/j.isatra.2021.05.020_b41
  article-title: Mass transport and chemical reaction in multifunctional catalyst systems
  publication-title: Chem Eng Sci
  doi: 10.1016/0009-2509(65)85002-3
– volume: 29
  start-page: 6113
  issue: 12
  year: 2018
  ident: 10.1016/j.isatra.2021.05.020_b1
  article-title: Neural-dynamic optimization-based model predictive control for tracking and formation of nonholonomic multirobot systems
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2818127
– volume: 64
  start-page: 2324
  issue: 6
  year: 2018
  ident: 10.1016/j.isatra.2021.05.020_b6
  article-title: Optimal battery control under cycle aging mechanisms in pay for performance settings
  publication-title: IEEE Trans Automat Control
  doi: 10.1109/TAC.2018.2867507
– volume: 45
  start-page: 86
  issue: 1
  year: 2009
  ident: 10.1016/j.isatra.2021.05.020_b8
  article-title: The advanced-step NMPC controller: Optimality, stability and robustness
  publication-title: Automatica
  doi: 10.1016/j.automatica.2008.06.011
– volume: 152
  start-page: 271
  issue: 2
  year: 2012
  ident: 10.1016/j.isatra.2021.05.020_b11
  article-title: A survey of methods available for the numerical optimization of continuous dynamic systems
  publication-title: J Optim Theory Appl
  doi: 10.1007/s10957-011-9918-z
– ident: 10.1016/j.isatra.2021.05.020_b25
  doi: 10.2514/6.2013-4555
– year: 2010
  ident: 10.1016/j.isatra.2021.05.020_b42
– volume: 10
  start-page: 275
  issue: 1
  year: 2017
  ident: 10.1016/j.isatra.2021.05.020_b18
  article-title: The control parameterization method for nonlinear optimal control: A survey
  publication-title: J Ind Manag Optim
  doi: 10.3934/jimo.2014.10.275
– volume: 28
  start-page: 1628
  issue: 11
  year: 1989
  ident: 10.1016/j.isatra.2021.05.020_b36
  article-title: Accurate solution of differential–algebraic optimization problems
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie00095a010
– volume: 29
  start-page: 1731
  issue: 8
  year: 2005
  ident: 10.1016/j.isatra.2021.05.020_b23
  article-title: Dynamic optimization using adaptive control vector parameterization
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2005.02.036
– volume: 27
  start-page: 501
  issue: 4
  year: 2003
  ident: 10.1016/j.isatra.2021.05.020_b39
  article-title: Solution of general nonlinear optimization problems using the penalty/modified barrier method with the use of exact Hessians
  publication-title: Comput Chem Eng
  doi: 10.1016/S0098-1354(02)00234-X
– volume: 66
  start-page: 1428
  issue: 6
  year: 2007
  ident: 10.1016/j.isatra.2021.05.020_b33
  article-title: Convergence of the Polak–Ribiére–Polyak conjugate gradient method
  publication-title: Nonlinear Anal Theory Methods Appl
  doi: 10.1016/j.na.2006.02.001
– volume: 10
  start-page: 275
  issue: 1
  year: 2014
  ident: 10.1016/j.isatra.2021.05.020_b28
  article-title: The control parameterization method for nonlinear optimal control: A survey
  publication-title: J Ind Manag Optim
  doi: 10.3934/jimo.2014.10.275
– volume: 94
  start-page: 2355
  issue: 12
  year: 2016
  ident: 10.1016/j.isatra.2021.05.020_b30
  article-title: A novel fast dynamic optimization approach for complex multivariable chemical process systems
  publication-title: Can J Chem Eng
  doi: 10.1002/cjce.22633
– volume: 31
  start-page: 259
  issue: 1
  year: 2019
  ident: 10.1016/j.isatra.2021.05.020_b22
  article-title: Learning-based robust tracking control of quadrotor with time-varying and coupling uncertainties
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2019.2900510
– volume: 85
  start-page: 129
  year: 2019
  ident: 10.1016/j.isatra.2021.05.020_b3
  article-title: Computational bilinear optimal control for a class of one-dimensional MHD flow systems
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2018.10.029
– volume: 67
  start-page: 7841
  issue: 9
  year: 2019
  ident: 10.1016/j.isatra.2021.05.020_b19
  article-title: Vibration suppression of a high-speed macro–micro integrated system using computational optimal control
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2019.2941136
– volume: 21
  start-page: 735
  issue: 12
  year: 1997
  ident: 10.1016/j.isatra.2021.05.020_b38
  article-title: A nested, simultaneous approach for dynamic optimization problems—II: the outer problem
  publication-title: Comput Chem Eng
  doi: 10.1016/S0098-1354(97)00014-8
– volume: 22
  start-page: 603
  issue: 4
  year: 1998
  ident: 10.1016/j.isatra.2021.05.020_b44
  article-title: Stochastic optimization for optimal and model-predictive control
  publication-title: Comput Chem Eng
  doi: 10.1016/S0098-1354(97)00226-3
– volume: 42
  start-page: 2393
  issue: 11
  year: 2019
  ident: 10.1016/j.isatra.2021.05.020_b15
  article-title: Optimal control for chemical reactors with distributed parameters using genetic algorithms
  publication-title: Chem Eng Technol
  doi: 10.1002/ceat.201800109
– volume: 58
  start-page: 248
  year: 2015
  ident: 10.1016/j.isatra.2021.05.020_b40
  article-title: Fast engineering optimization: A novel highly effective control parameterization approach for industrial dynamic processes
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2015.06.006
– volume: 38
  start-page: 586
  issue: 4
  year: 2017
  ident: 10.1016/j.isatra.2021.05.020_b9
  article-title: An improved smoothing technique-based control vector parameterization method for optimal control problems with inequality path constraints
  publication-title: Optim Control Appl Methods
  doi: 10.1002/oca.2273
– volume: 2
  start-page: 21
  issue: 1
  year: 1992
  ident: 10.1016/j.isatra.2021.05.020_b34
  article-title: Global convergence properties of conjugate gradient methods for optimization
  publication-title: SIAM J Optim
  doi: 10.1137/0802003
– volume: 266
  start-page: 353
  issue: 29
  year: 2017
  ident: 10.1016/j.isatra.2021.05.020_b20
  article-title: A novel neural optimal control framework with nonlinear dynamics: Closed-loop stability and simulation verification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.051
– volume: 165
  start-page: 678
  issue: 2
  year: 2014
  ident: 10.1016/j.isatra.2021.05.020_b48
  article-title: Comments on “optimal use of mixed catalysts for two successive chemical reactions”
  publication-title: J Optim Theory Appl
  doi: 10.1007/s10957-014-0641-4
– volume: 11
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.isatra.2021.05.020_b10
  article-title: CasADi: a software framework for nonlinear optimization and optimal control
  publication-title: Math Program Comput
  doi: 10.1007/s12532-018-0139-4
– volume: 81
  start-page: 240
  year: 2017
  ident: 10.1016/j.isatra.2021.05.020_b21
  article-title: Novel iterative neural dynamic programming for data-based approximate optimal control design
  publication-title: Automatica
  doi: 10.1016/j.automatica.2017.03.022
– volume: 60
  start-page: 5663
  issue: 21
  year: 2005
  ident: 10.1016/j.isatra.2021.05.020_b46
  article-title: A generalized framework for solving dynamic optimization problems using the artificial chemical process paradigm: Applications to particulate processes and discrete dynamic systems
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2005.05.028
– volume: 73
  start-page: 66
  year: 2018
  ident: 10.1016/j.isatra.2021.05.020_b26
  article-title: A novel non-uniform control vector parameterization approach with time grid refinement for flight level tracking optimal control problems
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2017.12.008
– volume: 433
  start-page: 142
  year: 2018
  ident: 10.1016/j.isatra.2021.05.020_b16
  article-title: A best-path-updating information-guided ant colony optimization algorithm
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2017.12.047
– volume: 357
  start-page: 2830
  issue: 5
  year: 2020
  ident: 10.1016/j.isatra.2021.05.020_b4
  article-title: Real-time computational optimal control of an MHD flow system with parameter uncertainty quantification
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2019.12.013
– volume: 34
  start-page: 2433
  issue: 14
  year: 2018
  ident: 10.1016/j.isatra.2021.05.020_b2
  article-title: Optimality and identification of dynamic models in systems biology: an inverse optimal control framework
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty139
– volume: 24
  start-page: 2385
  issue: 11
  year: 2000
  ident: 10.1016/j.isatra.2021.05.020_b45
  article-title: Optimal control of inequality constrained DAE systems
  publication-title: Comput Chem Eng
  doi: 10.1016/S0098-1354(00)00566-4
– volume: 11
  start-page: 1289
  issue: 4
  year: 2013
  ident: 10.1016/j.isatra.2021.05.020_b12
  article-title: Dynamic optimization of industrial processes with nonuniform discretization-based control vector parameterization
  publication-title: IEEE Trans Automat Sci Eng Optim
  doi: 10.1109/TASE.2013.2292582
– volume: 91
  start-page: 571
  issue: 3
  year: 2018
  ident: 10.1016/j.isatra.2021.05.020_b17
  article-title: An effective pseudospectral method for constraint dynamic optimisation problems with characteristic times
  publication-title: Internat J Control
  doi: 10.1080/00207179.2017.1286534
– volume: 54
  start-page: 3851
  issue: 17
  year: 1999
  ident: 10.1016/j.isatra.2021.05.020_b37
  article-title: Second-order sensitivities of general dynamic systems with application to optimal control problems
  publication-title: Chem Eng J
– volume: 34
  start-page: 1253
  issue: 4
  year: 1995
  ident: 10.1016/j.isatra.2021.05.020_b49
  article-title: Stable decomposition for dynamic optimization
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie00043a029
– volume: 3
  start-page: 102
  issue: 1
  year: 2018
  ident: 10.1016/j.isatra.2021.05.020_b5
  article-title: Optimal LQG control under delay-dependent costly information
  publication-title: IEEE Control Syst Lett
  doi: 10.1109/LCSYS.2018.2853648
– volume: 92
  start-page: 2015
  issue: 9
  year: 2018
  ident: 10.1016/j.isatra.2021.05.020_b13
  article-title: Control variable parameterisation with penalty approach for hypersonic vehicle reentry optimisation
  publication-title: Internat J Control
  doi: 10.1080/00207179.2018.1426882
– volume: 12
  start-page: 243
  issue: 2
  year: 2002
  ident: 10.1016/j.isatra.2021.05.020_b7
  article-title: Restricted second order information for the solution of optimal control problems using control vector parameterization
  publication-title: J Process Control
  doi: 10.1016/S0959-1524(01)00008-7
SSID ssj0002598
Score 2.3203213
Snippet This paper proposes a fast control parameterization optimal control algorithm for industrial dynamic process with constraints. Derived from the frame of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 188
SubjectTerms Control parameterization
Dynamic processes
Fast computation
Optimal control
PRP conjugate gradient method
Title Fast control parameterization optimal control with improved Polak–Ribière–Polyak conjugate gradient implementation for industrial dynamic processes
URI https://dx.doi.org/10.1016/j.isatra.2021.05.020
https://www.ncbi.nlm.nih.gov/pubmed/34020789
https://www.proquest.com/docview/2531226126
Volume 123
WOSCitedRecordID wos000796023400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2022
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002598
  issn: 0019-0578
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhNBEG05Dgc4IBI2s0SNhBDIGmn2njlayBZBxgRwJN9aM909aJxk7HiJwn_wARz5D36M6m3GJEQJBy6WVe62R6rnWrpfVSH0UrUMd0Pm8MIrIEGJXScFN-nkgfB4wrkbRXrYBBmNkskkPWi1fthamLNjUlXJ-Xk6_6-qBhkoW5bO_oO66y8FAbwHpcMrqB1eb6T4QbZc1Qx02dn7RDJeTLlldwYm4kT1BNmgqJfqZAFCzwNIdI-cz2Veqgv0ZCEcEH3LjuT66VoeuXW_LhRLbCV3Ge55zVcsm0EgXI-67851JYKhKpoweP9LTw6nsJPK67h-WK5VWGv9qcKblHwCyel6gz-ki7pFeWHnB1g3LcXmWQakwQ0FRpvfhKSO_EB7p7_IrM32gw2r6-nJgJe8gT6YmCpi1EI2mfI91abVdxvvZ2_8Rx_p4HA4pOP-ZPxqfurIuWTy_t4MadlC2wDrNGmj7d5-f_K-9vaQPqpyS_uUtjxTcQgv__BV4c9V6Y0Kc8b30F2Tn-CextUOaolqF93Z6Fq5i3aMP1ji16Zp-Zv76LuEHTaowhdhhw3s6gUSdtjCDjew-_WzhhyuIYct5PCfkMMAOdxADhvI4RpyD9DhoD9--84xEz8cBoHUyuFBKkiRZTlLeQ6GImaZF2ciZDGLCxKnPouTIs3DQoSiIJynso0m8cKCR35U-CJ4iNrVrBKPEc5dInySZRmPgrAgIk9yTljBk0iwjImigwKrCMpMO3w5leWYWt7jlGr1Uak-6kYU1NdBTr1rrtvBXLOeWB1TE9LqUJUCRq_Z-cJCgoLFl9d4WSVm6yX1wW36svNf3EGPNFbqZwnkcRBJ0ic32P0U3W7-g89Qe7VYi-foFjtblcvFHtoik2TPoP032wjh4A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+control+parameterization+optimal+control+with+improved+Polak-Ribi%C3%A8re-Polyak+conjugate+gradient+implementation+for+industrial+dynamic+processes&rft.jtitle=ISA+transactions&rft.au=Liu%2C+Ping&rft.au=Hu%2C+Qingquan&rft.au=Li%2C+Lei&rft.au=Liu%2C+Mingjie&rft.date=2022-04-01&rft.issn=1879-2022&rft.eissn=1879-2022&rft.volume=123&rft.spage=188&rft_id=info:doi/10.1016%2Fj.isatra.2021.05.020&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-0578&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-0578&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-0578&client=summon