KEMoS: A knowledge-enhanced multi-modal summarizing framework for Chinese online meetings

The demand for “online meetings” and “collaborative office work” keeps surging recently, producing an abundant amount of relevant data. How to provide participants with accurate and fast summarizing service has attracted extensive attention. Existing meeting summarizing models overlook the utilizati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural networks Ročník 178; s. 106417
Hlavní autoři: Qi, Peng, Sun, Yan, Yao, Muyan, Tao, Dan
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Ltd 01.10.2024
Témata:
ISSN:0893-6080, 1879-2782, 1879-2782
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The demand for “online meetings” and “collaborative office work” keeps surging recently, producing an abundant amount of relevant data. How to provide participants with accurate and fast summarizing service has attracted extensive attention. Existing meeting summarizing models overlook the utilization of multi-modal information and the information offsetting during summarizing. In this paper, we develop a knowledge-enhanced multi-modal summarizing framework. Firstly, we construct a three-layer multi-modal meeting knowledge graph, including basic, knowledge, and multi-modal layer, to integrate meeting information thoroughly. Then, we raise a topic-based hierarchical clustering approach, which considers information entropy and difference simultaneously, to capture the semantic evolution of meetings. Next, we devise a multi-modal enhanced encoding strategy, including a sentence-level cross-modal encoder, a joint loss function, and a knowledge graph embedding module, to learn the meeting and topic-level presentations. Finally, when generating summaries, we design a topic-enhanced decoding strategy for the Transformer decoder which mitigates semantic offsetting with the aid of topic information. Extensive experiments show that our proposed work consistently outperforms state-of-the-art solutions on the Chinese meeting dataset, where the ROUGE-1, ROUGE-2, and ROUGE-L are 49.98%, 21.03%, and 32.03% respectively.
AbstractList The demand for “online meetings” and “collaborative office work” keeps surging recently, producing an abundant amount of relevant data. How to provide participants with accurate and fast summarizing service has attracted extensive attention. Existing meeting summarizing models overlook the utilization of multi-modal information and the information offsetting during summarizing. In this paper, we develop a knowledge-enhanced multi-modal summarizing framework. Firstly, we construct a three-layer multi-modal meeting knowledge graph, including basic, knowledge, and multi-modal layer, to integrate meeting information thoroughly. Then, we raise a topic-based hierarchical clustering approach, which considers information entropy and difference simultaneously, to capture the semantic evolution of meetings. Next, we devise a multi-modal enhanced encoding strategy, including a sentence-level cross-modal encoder, a joint loss function, and a knowledge graph embedding module, to learn the meeting and topic-level presentations. Finally, when generating summaries, we design a topic-enhanced decoding strategy for the Transformer decoder which mitigates semantic offsetting with the aid of topic information. Extensive experiments show that our proposed work consistently outperforms state-of-the-art solutions on the Chinese meeting dataset, where the ROUGE-1, ROUGE-2, and ROUGE-L are 49.98%, 21.03%, and 32.03% respectively.
The demand for "online meetings" and "collaborative office work" keeps surging recently, producing an abundant amount of relevant data. How to provide participants with accurate and fast summarizing service has attracted extensive attention. Existing meeting summarizing models overlook the utilization of multi-modal information and the information offsetting during summarizing. In this paper, we develop a knowledge-enhanced multi-modal summarizing framework. Firstly, we construct a three-layer multi-modal meeting knowledge graph, including basic, knowledge, and multi-modal layer, to integrate meeting information thoroughly. Then, we raise a topic-based hierarchical clustering approach, which considers information entropy and difference simultaneously, to capture the semantic evolution of meetings. Next, we devise a multi-modal enhanced encoding strategy, including a sentence-level cross-modal encoder, a joint loss function, and a knowledge graph embedding module, to learn the meeting and topic-level presentations. Finally, when generating summaries, we design a topic-enhanced decoding strategy for the Transformer decoder which mitigates semantic offsetting with the aid of topic information. Extensive experiments show that our proposed work consistently outperforms state-of-the-art solutions on the Chinese meeting dataset, where the ROUGE-1, ROUGE-2, and ROUGE-L are 49.98%, 21.03%, and 32.03% respectively.The demand for "online meetings" and "collaborative office work" keeps surging recently, producing an abundant amount of relevant data. How to provide participants with accurate and fast summarizing service has attracted extensive attention. Existing meeting summarizing models overlook the utilization of multi-modal information and the information offsetting during summarizing. In this paper, we develop a knowledge-enhanced multi-modal summarizing framework. Firstly, we construct a three-layer multi-modal meeting knowledge graph, including basic, knowledge, and multi-modal layer, to integrate meeting information thoroughly. Then, we raise a topic-based hierarchical clustering approach, which considers information entropy and difference simultaneously, to capture the semantic evolution of meetings. Next, we devise a multi-modal enhanced encoding strategy, including a sentence-level cross-modal encoder, a joint loss function, and a knowledge graph embedding module, to learn the meeting and topic-level presentations. Finally, when generating summaries, we design a topic-enhanced decoding strategy for the Transformer decoder which mitigates semantic offsetting with the aid of topic information. Extensive experiments show that our proposed work consistently outperforms state-of-the-art solutions on the Chinese meeting dataset, where the ROUGE-1, ROUGE-2, and ROUGE-L are 49.98%, 21.03%, and 32.03% respectively.
ArticleNumber 106417
Author Qi, Peng
Yao, Muyan
Sun, Yan
Tao, Dan
Author_xml – sequence: 1
  givenname: Peng
  orcidid: 0000-0003-0390-5449
  surname: Qi
  fullname: Qi, Peng
  email: pengqi1@bjtu.edu.cn
  organization: School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
– sequence: 2
  givenname: Yan
  surname: Sun
  fullname: Sun, Yan
  email: sunyan@bupt.edu.cn
  organization: Department of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
– sequence: 3
  givenname: Muyan
  orcidid: 0000-0003-3802-9637
  surname: Yao
  fullname: Yao, Muyan
  email: muyanyao@bjtu.edu.cn
  organization: School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
– sequence: 4
  givenname: Dan
  surname: Tao
  fullname: Tao, Dan
  email: dtao@bjtu.edu.cn
  organization: School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38850635$$D View this record in MEDLINE/PubMed
BookMark eNqFkM1u1DAUhS1URKeFN0DISzYZ_BfH6QKpGpUfUcQCWLCyHPum9TSxi-20gqfHoxQWLGBzfWV950j3O0FHIQZA6DklW0qofLXfBlgClC0jTNQvKWj3CG2o6vqGdYodoQ1RPW8kUeQYneS8J4RIJfgTdMyVaonk7QZ9-3DxMX4-w-f4JsT7CdwVNBCuTbDg8LxMxTdzdGbCeZlnk_xPH67wmMwM9zHd4DEmvLv2ATLgGKa64BmgVCg_RY9HM2V49vCeoq9vLr7s3jWXn96-351fNpZLVhoL4CjlEuoYedf2Spqhd73rGFALw9C2wrCeDYwo14vWkNFZwZyyHRsNM_wUvVx7b1P8vkAuevbZwjSZAHHJmhN5KBVcVPTFA7oMMzh9m3y96Yf-raMCYgVsijknGP8glOiDdb3Xq3V9sK5X6zV29lfM-mKKj6Ek46f_hV-vYaiS7jwkna2Hg3-fwBbtov93wS9ba6Bh
CitedBy_id crossref_primary_10_1016_j_neunet_2025_107909
crossref_primary_10_1145_3763245
Cites_doi 10.1016/j.neucom.2019.10.019
10.1016/j.neunet.2022.08.021
10.1016/j.ipm.2021.102536
10.1016/j.eswa.2020.113679
10.1145/3512467
10.18653/v1/2021.naacl-main.58
10.1109/TETC.2020.2996710
10.1016/j.knosys.2022.108636
10.26615/issn.2603-2821.2021_019
10.1145/3459637.3482442
10.1109/CVPR.2019.00852
10.18653/v1/2021.acl-short.135
10.3390/info9090217
10.1109/TASLP.2020.3006731
10.1109/CVPR.2018.00784
10.1016/j.ipm.2020.102341
10.1109/TASLP.2021.3124365
10.1016/j.ipm.2019.102187
10.1145/3448015
10.1016/j.eij.2019.11.001
10.1016/j.neunet.2019.12.022
10.1016/j.patcog.2019.01.006
10.1016/j.ipm.2020.102474
10.18653/v1/2023.emnlp-demo.49
10.1177/10464964211015286
10.1145/2740908.2742751
10.18653/v1/2021.naacl-main.109
10.1016/j.ipm.2020.102359
10.1016/j.neunet.2024.106173
10.1162/tacl_a_00373
10.1145/3419106
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright © 2024 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neunet.2024.106417
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
ExternalDocumentID 38850635
10_1016_j_neunet_2024_106417
S0893608024003411
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
ID FETCH-LOGICAL-c362t-ceed1136e113f375986ab9d9d72e1cebb554a292b208d945a0fdc42d8c72fa2a3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001257703400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0893-6080
1879-2782
IngestDate Wed Oct 01 14:30:37 EDT 2025
Mon Jul 21 05:41:05 EDT 2025
Tue Nov 18 20:44:40 EST 2025
Sat Nov 29 05:33:08 EST 2025
Sat Aug 10 15:30:49 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Topic-enhanced decoding strategy
Multi-modal enhanced encoding strategy
Multi-modal meeting knowledge graph
Topic-based hierarchical clustering approach
Language English
License Copyright © 2024 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-ceed1136e113f375986ab9d9d72e1cebb554a292b208d945a0fdc42d8c72fa2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3802-9637
0000-0003-0390-5449
PMID 38850635
PQID 3065986434
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3065986434
pubmed_primary_38850635
crossref_primary_10_1016_j_neunet_2024_106417
crossref_citationtrail_10_1016_j_neunet_2024_106417
elsevier_sciencedirect_doi_10_1016_j_neunet_2024_106417
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
2024-Oct
20241001
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wu, Shen, Van Den Hengel (b41) 2019; 90
Zhao, Wang, Wang, Du, Wei, Feng (b49) 2022; 155
(pp. 1380–1391).
(pp. 8327–8336).
Bidoki, Moosavi, Fakhrahmad (b6) 2020; 57
Li, Li, Savarese, Hoi (b21) 2023
Zhu, Zhou, Zhang, Li, Zong, Li (b54) 2020; vol. 34
Zheng, Zhao, Song, Yang, Xiao, Yan (b50) 2020; 378
Fabbri, Kryściński, McCann, Xiong, Socher, Radev (b14) 2021; 9
Moirangthem, Lee (b24) 2020; 124
Liu, Y., & Liu, P. (2021). SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization. In
Zou, Lin, Zhao, Kang, Jiang, Sun (b55) 2021; vol. 35
Zheng, Zhou, Wang, Li (b51) 2022
Su, Wu, Cheng (b33) 2020; 28
.
(b35) 2022
Liu, Li, Wu, Lee (b22) 2024; vol. 36
Qi, Sun, Luo, Guizani (b30) 2022; 10
Mukherjee, Jangra, Saha, Jatowt (b25) 2022
Yu, Zhu, Li, Hu, Wang, Ji (b44) 2022; 54
Hark, Karcı (b16) 2020; 57
(pp. 135–143).
Yang, H., & Liu, J. (2021). Knowledge graph representation learning as groupoid: unifying TransE, RotatE, QuatE, ComplEx. In
Zhu, Xu, Zeng, Huang (b53) 2020
(pp. 2001–2009).
(pp. 1065–1072).
(b28) 2022
Srivastava, Singh, Rana, Kumar (b32) 2022; 246
Zhang, Y., Ni, A., Mao, Z., Wu, C. H., Zhu, C., Deb, B., et al. (2022). SummN: A Multi-Stage Summarization Framework for Long Input Dialogues and Documents. In
(pp. 143–147).
(pp. 1592–1604).
Chu, Xu, Zhou, Yang, Zhang, Yan (b9) 2023
(pp. 7512–7520).
Cui, Che, Liu, Qin, Yang (b10) 2021; 29
(b5) 2022
(pp. 718–733).
Zhang, J., & Peng, Y. (2019). Object-aware aggregation with bidirectional temporal graph for video captioning. In
Zhang, H., Li, X., & Bing, L. (2023). Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding. In
Tang, C., Yu, W., Sun, G., Chen, X., Tan, T., Li, W., et al. (2023). SALMONN: Towards Generic Hearing Abilities for Large Language Models. In
Thakkar, Sahoo, Mohanty (b36) 2021; 58
(pp. 2311–2320).
(pp. 543–553).
Zhu, C., Hinthorn, W., Xu, R., Zeng, Q., Zeng, M., Huang, X., et al. (2021). Enhancing Factual Consistency of Abstractive Summarization. In
Van Assche, Delva, Haesendonck, Heyvaert, De Meester, Dimou (b38) 2022
Qi, Huang, Sun, Luo (b29) 2022
Nair, P., & Singh, A. K. (2021). Improving Abstractive Summarization with Commonsense Knowledge. In
(pp. 5–6).
Atwood, J., & Towsley, D. (2016). Diffusion-convolutional neural networks. In
El-Kassas, Salama, Rafea, Mohamed (b12) 2021; 165
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez (b39) 2017; vol. 30
Jiang, Chen, Ding, Wu, He, Wang (b18) 2021; 15
Azzi, A. A., & Kang, J. (2020). Extractive summarization system for annual reports. In
Shi, Keneshloo, Ramakrishnan, Reddy (b31) 2021; 2
Chen, J., & Yang, D. (2021). Structure-Aware Abstractive Conversation Summarization via Discourse and Action Graphs. In
Jiang, Chen, Xiang, Pan, Wu, Lin (b19) 2024
Banerjee, S., Mitra, P., & Sugiyama, K. (2015). Abstractive meeting summarization using dependency graph fusion. In
Dhar, Saha, Bhattacharjee, Mallick, Islam (b11) 2021
Karl, Peluchette, Aghakhani (b20) 2022; 53
Belwal, Rai, Gupta (b4) 2021; 58
Mutlu, Sezer, Akcayol (b26) 2020; 57
Feng, Feng, Qin, Geng (b15) 2021
(b17) 2022
Wang, J., Wang, W., Huang, Y., Wang, L., & Tan, T. (2018). M3: Multimodal memory modelling for video captioning. In
Xiang, Xu, Fu, Wei, Jin, Wang (b42) 2018; 9
Elbarougy, Behery, El Khatib (b13) 2020; 21
Zhang, Tang, Kao, Sun, Liu, Wang (b48) 2022
(b37) 2022
Chen, Han, Zhao, Zhang, Shi, Xu (b7) 2023
Hark (10.1016/j.neunet.2024.106417_b16) 2020; 57
Zheng (10.1016/j.neunet.2024.106417_b51) 2022
(10.1016/j.neunet.2024.106417_b37) 2022
Xiang (10.1016/j.neunet.2024.106417_b42) 2018; 9
(10.1016/j.neunet.2024.106417_b5) 2022
Belwal (10.1016/j.neunet.2024.106417_b4) 2021; 58
Bidoki (10.1016/j.neunet.2024.106417_b6) 2020; 57
Shi (10.1016/j.neunet.2024.106417_b31) 2021; 2
Zou (10.1016/j.neunet.2024.106417_b55) 2021; vol. 35
10.1016/j.neunet.2024.106417_b23
10.1016/j.neunet.2024.106417_b27
Thakkar (10.1016/j.neunet.2024.106417_b36) 2021; 58
Karl (10.1016/j.neunet.2024.106417_b20) 2022; 53
Zhang (10.1016/j.neunet.2024.106417_b48) 2022
Srivastava (10.1016/j.neunet.2024.106417_b32) 2022; 246
Vaswani (10.1016/j.neunet.2024.106417_b39) 2017; vol. 30
Cui (10.1016/j.neunet.2024.106417_b10) 2021; 29
10.1016/j.neunet.2024.106417_b8
Feng (10.1016/j.neunet.2024.106417_b15) 2021
(10.1016/j.neunet.2024.106417_b28) 2022
Su (10.1016/j.neunet.2024.106417_b33) 2020; 28
10.1016/j.neunet.2024.106417_b34
(10.1016/j.neunet.2024.106417_b17) 2022
10.1016/j.neunet.2024.106417_b1
Moirangthem (10.1016/j.neunet.2024.106417_b24) 2020; 124
10.1016/j.neunet.2024.106417_b2
10.1016/j.neunet.2024.106417_b3
Mutlu (10.1016/j.neunet.2024.106417_b26) 2020; 57
Van Assche (10.1016/j.neunet.2024.106417_b38) 2022
Zhao (10.1016/j.neunet.2024.106417_b49) 2022; 155
Zhu (10.1016/j.neunet.2024.106417_b54) 2020; vol. 34
Dhar (10.1016/j.neunet.2024.106417_b11) 2021
10.1016/j.neunet.2024.106417_b40
Jiang (10.1016/j.neunet.2024.106417_b18) 2021; 15
10.1016/j.neunet.2024.106417_b46
10.1016/j.neunet.2024.106417_b45
10.1016/j.neunet.2024.106417_b43
10.1016/j.neunet.2024.106417_b47
Chen (10.1016/j.neunet.2024.106417_b7) 2023
Qi (10.1016/j.neunet.2024.106417_b29) 2022
Liu (10.1016/j.neunet.2024.106417_b22) 2024; vol. 36
Mukherjee (10.1016/j.neunet.2024.106417_b25) 2022
Elbarougy (10.1016/j.neunet.2024.106417_b13) 2020; 21
Li (10.1016/j.neunet.2024.106417_b21) 2023
Wu (10.1016/j.neunet.2024.106417_b41) 2019; 90
El-Kassas (10.1016/j.neunet.2024.106417_b12) 2021; 165
(10.1016/j.neunet.2024.106417_b35) 2022
Fabbri (10.1016/j.neunet.2024.106417_b14) 2021; 9
10.1016/j.neunet.2024.106417_b52
Qi (10.1016/j.neunet.2024.106417_b30) 2022; 10
Jiang (10.1016/j.neunet.2024.106417_b19) 2024
Chu (10.1016/j.neunet.2024.106417_b9) 2023
Zheng (10.1016/j.neunet.2024.106417_b50) 2020; 378
Yu (10.1016/j.neunet.2024.106417_b44) 2022; 54
Zhu (10.1016/j.neunet.2024.106417_b53) 2020
References_xml – volume: 15
  start-page: 1
  year: 2021
  end-page: 33
  ident: b18
  article-title: Review summary generation in online systems: Frameworks for supervised and unsupervised scenarios
  publication-title: ACM Transactions on the Web (TWEB)
– volume: 58
  year: 2021
  ident: b36
  article-title: DOFM: domain feature miner for robust extractive summarization
  publication-title: Information Processing & Management
– volume: 124
  start-page: 1
  year: 2020
  end-page: 11
  ident: b24
  article-title: Abstractive summarization of long texts by representing multiple compositionalities with temporal hierarchical pointer generator network
  publication-title: Neural Networks
– volume: 58
  year: 2021
  ident: b4
  article-title: Text summarization using topic-based vector space model and semantic measure
  publication-title: Information Processing & Management
– reference: (pp. 1380–1391).
– reference: (pp. 143–147).
– reference: Yang, H., & Liu, J. (2021). Knowledge graph representation learning as groupoid: unifying TransE, RotatE, QuatE, ComplEx. In
– year: 2022
  ident: b5
  article-title: bertsum-chinese-LAI
– year: 2022
  ident: b37
  article-title: The 48th statistical report on China’s internet development
– volume: 54
  year: 2022
  ident: b44
  article-title: A survey of knowledge-enhanced text generation
  publication-title: ACM Computing Surveys
– reference: Zhang, H., Li, X., & Bing, L. (2023). Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding. In
– reference: (pp. 718–733).
– volume: vol. 36
  year: 2024
  ident: b22
  article-title: Visual instruction tuning
  publication-title: Advances in neural information processing systems
– volume: vol. 30
  year: 2017
  ident: b39
  article-title: Attention is all you need
  publication-title: Advances in neural information processing systems
– reference: Tang, C., Yu, W., Sun, G., Chen, X., Tan, T., Li, W., et al. (2023). SALMONN: Towards Generic Hearing Abilities for Large Language Models. In
– volume: 90
  start-page: 119
  year: 2019
  end-page: 133
  ident: b41
  article-title: Wider or deeper: Revisiting the resnet model for visual recognition
  publication-title: Pattern Recognition
– reference: Chen, J., & Yang, D. (2021). Structure-Aware Abstractive Conversation Summarization via Discourse and Action Graphs. In
– reference: (pp. 2001–2009).
– volume: 246
  year: 2022
  ident: b32
  article-title: A topic modeled unsupervised approach to single document extractive text summarization
  publication-title: Knowledge-Based Systems
– volume: vol. 35
  start-page: 14674
  year: 2021
  end-page: 14682
  ident: b55
  article-title: Unsupervised summarization for chat logs with topic-oriented ranking and context-aware auto-encoders
  publication-title: Proceedings of the AAAI conference on artificial intelligence
– reference: (pp. 2311–2320).
– volume: 378
  start-page: 179
  year: 2020
  end-page: 188
  ident: b50
  article-title: Abstractive meeting summarization by hierarchical adaptive segmental network learning with multiple revising steps
  publication-title: Neurocomputing
– start-page: 194
  year: 2020
  end-page: 203
  ident: b53
  article-title: A hierarchical network for abstractive meeting summarization with cross-domain pretraining
  publication-title: Findings of the association for computational linguistics: EMNLP
– reference: Zhang, Y., Ni, A., Mao, Z., Wu, C. H., Zhu, C., Deb, B., et al. (2022). SummN: A Multi-Stage Summarization Framework for Long Input Dialogues and Documents. In
– start-page: 19730
  year: 2023
  end-page: 19742
  ident: b21
  article-title: Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models
  publication-title: International conference on machine learning
– reference: Atwood, J., & Towsley, D. (2016). Diffusion-convolutional neural networks. In
– year: 2024
  ident: b19
  article-title: Confounder balancing in adversarial domain adaptation for pre-trained large models fine-tuning
  publication-title: Neural Networks
– volume: 57
  year: 2020
  ident: b16
  article-title: Karcı summarization: A simple and effective approach for automatic text summarization using Karcı entropy
  publication-title: Information Processing & Management
– volume: 29
  start-page: 3504
  year: 2021
  end-page: 3514
  ident: b10
  article-title: Pre-training with whole word masking for chinese bert
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
– reference: Zhang, J., & Peng, Y. (2019). Object-aware aggregation with bidirectional temporal graph for video captioning. In
– reference: (pp. 1592–1604).
– volume: 2
  start-page: 1
  year: 2021
  end-page: 37
  ident: b31
  article-title: Neural abstractive text summarization with sequence-to-sequence models
  publication-title: ACM Transactions on Data Science
– reference: (pp. 7512–7520).
– reference: Banerjee, S., Mitra, P., & Sugiyama, K. (2015). Abstractive meeting summarization using dependency graph fusion. In
– volume: 155
  start-page: 340
  year: 2022
  end-page: 347
  ident: b49
  article-title: Multi-granularity heterogeneous graph attention networks for extractive document summarization
  publication-title: Neural Networks
– reference: (pp. 5–6).
– reference: (pp. 1065–1072).
– reference: Nair, P., & Singh, A. K. (2021). Improving Abstractive Summarization with Commonsense Knowledge. In
– start-page: 140
  year: 2022
  end-page: 149
  ident: b51
  article-title: An improved TextRank-based method for Chinese text summarization
  publication-title: International conference on artificial intelligence and security
– year: 2022
  ident: b28
  article-title: Paddleocr
– volume: 9
  start-page: 391
  year: 2021
  end-page: 409
  ident: b14
  article-title: Summeval: Re-evaluating summarization evaluation
  publication-title: Transactions of the Association for Computational Linguistics
– year: 2023
  ident: b9
  article-title: Qwen-audio: Advancing universal audio understanding via unified large-scale audio-language models
– volume: 10
  start-page: 170
  year: 2022
  end-page: 185
  ident: b30
  article-title: Scratch-DKG: A framework for constructing scratch domain knowledge graph
  publication-title: IEEE Transactions on Emerging Topics in Computing
– volume: 165
  year: 2021
  ident: b12
  article-title: Automatic text summarization: A comprehensive survey
  publication-title: Expert Systems with Applications
– reference: Azzi, A. A., & Kang, J. (2020). Extractive summarization system for annual reports. In
– volume: vol. 34
  start-page: 9749
  year: 2020
  end-page: 9756
  ident: b54
  article-title: Multimodal summarization with guidance of multimodal reference
  publication-title: Proceedings of the AAAI conference on artificial intelligence
– start-page: 746
  year: 2022
  end-page: 751
  ident: b29
  article-title: A knowledge graph-based abstractive model integrating semantic and structural information for summarizing Chinese meetings
  publication-title: 2022 IEEE 25th international conference on computer supported cooperative work in design
– start-page: 136
  year: 2022
  end-page: 140
  ident: b48
  article-title: Wikitag: Wikipedia-based knowledge embeddings towards improved acoustic event classification
  publication-title: ICASSP 2022-2022 IEEE international conference on acoustics, speech and signal processing
– year: 2023
  ident: b7
  article-title: X-llm: Bootstrapping advanced large language models by treating multi-modalities as foreign languages
– reference: Liu, Y., & Liu, P. (2021). SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization. In
– volume: 28
  start-page: 2061
  year: 2020
  end-page: 2072
  ident: b33
  article-title: A two-stage transformer-based approach for variable-length abstractive summarization
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
– reference: (pp. 543–553).
– volume: 57
  year: 2020
  ident: b26
  article-title: Candidate sentence selection for extractive text summarization
  publication-title: Information Processing & Management
– reference: Zhu, C., Hinthorn, W., Xu, R., Zeng, Q., Zeng, M., Huang, X., et al. (2021). Enhancing Factual Consistency of Abstractive Summarization. In
– year: 2022
  ident: b38
  article-title: Declarative RDF graph generation from heterogeneous (semi-) structured data: A systematic literature review
  publication-title: Journal of Web Semantics
– volume: 53
  start-page: 343
  year: 2022
  end-page: 365
  ident: b20
  article-title: Virtual work meetings during the COVID-19 pandemic: The good, bad, and ugly
  publication-title: Small Group Research
– reference: .
– volume: 57
  year: 2020
  ident: b6
  article-title: A semantic approach to extractive multi-document summarization: Applying sentence expansion for tuning of conceptual densities
  publication-title: Information Processing & Management
– start-page: 1
  year: 2021
  end-page: 5
  ident: b11
  article-title: Pointer over attention: An improved bangla text summarization approach using hybrid pointer generator network
  publication-title: 2021 24th international conference on computer and information technology
– volume: 9
  start-page: 217
  year: 2018
  ident: b42
  article-title: Skeleton to abstraction: an attentive information extraction schema for enhancing the saliency of text summarization
  publication-title: Information
– reference: (pp. 135–143).
– start-page: 387
  year: 2022
  end-page: 398
  ident: b25
  article-title: Topic-aware multimodal summarization
  publication-title: Findings of the association for computational linguistics: AACL-IJCNLP 2022
– year: 2022
  ident: b35
  article-title: Text-summarizer-pytorch
– reference: Wang, J., Wang, W., Huang, Y., Wang, L., & Tan, T. (2018). M3: Multimodal memory modelling for video captioning. In
– reference: (pp. 8327–8336).
– volume: 21
  start-page: 73
  year: 2020
  end-page: 81
  ident: b13
  article-title: Extractive arabic text summarization using modified PageRank algorithm
  publication-title: Egyptian Informatics Journal
– start-page: 3808
  year: 2021
  end-page: 3814
  ident: b15
  article-title: Dialogue discourse-aware graph model and data augmentation for meeting summarization
  publication-title: Proceedings of the thirtieth international joint conference on artificial intelligence
– year: 2022
  ident: b17
  article-title: How to use the 7-38-55 rule to negotiate effectively
– year: 2022
  ident: 10.1016/j.neunet.2024.106417_b28
– start-page: 1
  year: 2021
  ident: 10.1016/j.neunet.2024.106417_b11
  article-title: Pointer over attention: An improved bangla text summarization approach using hybrid pointer generator network
– volume: vol. 36
  year: 2024
  ident: 10.1016/j.neunet.2024.106417_b22
  article-title: Visual instruction tuning
– volume: 378
  start-page: 179
  year: 2020
  ident: 10.1016/j.neunet.2024.106417_b50
  article-title: Abstractive meeting summarization by hierarchical adaptive segmental network learning with multiple revising steps
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.019
– start-page: 19730
  year: 2023
  ident: 10.1016/j.neunet.2024.106417_b21
  article-title: Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models
– volume: 155
  start-page: 340
  year: 2022
  ident: 10.1016/j.neunet.2024.106417_b49
  article-title: Multi-granularity heterogeneous graph attention networks for extractive document summarization
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2022.08.021
– volume: 58
  issue: 3
  year: 2021
  ident: 10.1016/j.neunet.2024.106417_b4
  article-title: Text summarization using topic-based vector space model and semantic measure
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2021.102536
– volume: 165
  year: 2021
  ident: 10.1016/j.neunet.2024.106417_b12
  article-title: Automatic text summarization: A comprehensive survey
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113679
– start-page: 746
  year: 2022
  ident: 10.1016/j.neunet.2024.106417_b29
  article-title: A knowledge graph-based abstractive model integrating semantic and structural information for summarizing Chinese meetings
– year: 2022
  ident: 10.1016/j.neunet.2024.106417_b35
– volume: 54
  issue: 11s
  year: 2022
  ident: 10.1016/j.neunet.2024.106417_b44
  article-title: A survey of knowledge-enhanced text generation
  publication-title: ACM Computing Surveys
  doi: 10.1145/3512467
– year: 2022
  ident: 10.1016/j.neunet.2024.106417_b5
– start-page: 140
  year: 2022
  ident: 10.1016/j.neunet.2024.106417_b51
  article-title: An improved TextRank-based method for Chinese text summarization
– ident: 10.1016/j.neunet.2024.106417_b52
  doi: 10.18653/v1/2021.naacl-main.58
– volume: 10
  start-page: 170
  issue: 1
  year: 2022
  ident: 10.1016/j.neunet.2024.106417_b30
  article-title: Scratch-DKG: A framework for constructing scratch domain knowledge graph
  publication-title: IEEE Transactions on Emerging Topics in Computing
  doi: 10.1109/TETC.2020.2996710
– year: 2022
  ident: 10.1016/j.neunet.2024.106417_b38
  article-title: Declarative RDF graph generation from heterogeneous (semi-) structured data: A systematic literature review
  publication-title: Journal of Web Semantics
– volume: 246
  year: 2022
  ident: 10.1016/j.neunet.2024.106417_b32
  article-title: A topic modeled unsupervised approach to single document extractive text summarization
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2022.108636
– ident: 10.1016/j.neunet.2024.106417_b27
  doi: 10.26615/issn.2603-2821.2021_019
– ident: 10.1016/j.neunet.2024.106417_b43
  doi: 10.1145/3459637.3482442
– ident: 10.1016/j.neunet.2024.106417_b47
  doi: 10.1109/CVPR.2019.00852
– ident: 10.1016/j.neunet.2024.106417_b46
– ident: 10.1016/j.neunet.2024.106417_b23
  doi: 10.18653/v1/2021.acl-short.135
– start-page: 387
  year: 2022
  ident: 10.1016/j.neunet.2024.106417_b25
  article-title: Topic-aware multimodal summarization
– volume: 9
  start-page: 217
  issue: 9
  year: 2018
  ident: 10.1016/j.neunet.2024.106417_b42
  article-title: Skeleton to abstraction: an attentive information extraction schema for enhancing the saliency of text summarization
  publication-title: Information
  doi: 10.3390/info9090217
– volume: 28
  start-page: 2061
  year: 2020
  ident: 10.1016/j.neunet.2024.106417_b33
  article-title: A two-stage transformer-based approach for variable-length abstractive summarization
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2020.3006731
– year: 2022
  ident: 10.1016/j.neunet.2024.106417_b37
– ident: 10.1016/j.neunet.2024.106417_b40
  doi: 10.1109/CVPR.2018.00784
– volume: vol. 34
  start-page: 9749
  year: 2020
  ident: 10.1016/j.neunet.2024.106417_b54
  article-title: Multimodal summarization with guidance of multimodal reference
– year: 2023
  ident: 10.1016/j.neunet.2024.106417_b7
– volume: 57
  issue: 6
  year: 2020
  ident: 10.1016/j.neunet.2024.106417_b6
  article-title: A semantic approach to extractive multi-document summarization: Applying sentence expansion for tuning of conceptual densities
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2020.102341
– ident: 10.1016/j.neunet.2024.106417_b1
– volume: 29
  start-page: 3504
  year: 2021
  ident: 10.1016/j.neunet.2024.106417_b10
  article-title: Pre-training with whole word masking for chinese bert
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2021.3124365
– volume: 57
  issue: 3
  year: 2020
  ident: 10.1016/j.neunet.2024.106417_b16
  article-title: Karcı summarization: A simple and effective approach for automatic text summarization using Karcı entropy
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2019.102187
– volume: 15
  start-page: 1
  issue: 3
  year: 2021
  ident: 10.1016/j.neunet.2024.106417_b18
  article-title: Review summary generation in online systems: Frameworks for supervised and unsupervised scenarios
  publication-title: ACM Transactions on the Web (TWEB)
  doi: 10.1145/3448015
– volume: 21
  start-page: 73
  issue: 2
  year: 2020
  ident: 10.1016/j.neunet.2024.106417_b13
  article-title: Extractive arabic text summarization using modified PageRank algorithm
  publication-title: Egyptian Informatics Journal
  doi: 10.1016/j.eij.2019.11.001
– volume: 124
  start-page: 1
  year: 2020
  ident: 10.1016/j.neunet.2024.106417_b24
  article-title: Abstractive summarization of long texts by representing multiple compositionalities with temporal hierarchical pointer generator network
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2019.12.022
– volume: 90
  start-page: 119
  year: 2019
  ident: 10.1016/j.neunet.2024.106417_b41
  article-title: Wider or deeper: Revisiting the resnet model for visual recognition
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2019.01.006
– volume: 58
  issue: 3
  year: 2021
  ident: 10.1016/j.neunet.2024.106417_b36
  article-title: DOFM: domain feature miner for robust extractive summarization
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2020.102474
– start-page: 194
  year: 2020
  ident: 10.1016/j.neunet.2024.106417_b53
  article-title: A hierarchical network for abstractive meeting summarization with cross-domain pretraining
– ident: 10.1016/j.neunet.2024.106417_b45
  doi: 10.18653/v1/2023.emnlp-demo.49
– ident: 10.1016/j.neunet.2024.106417_b34
– volume: vol. 35
  start-page: 14674
  year: 2021
  ident: 10.1016/j.neunet.2024.106417_b55
  article-title: Unsupervised summarization for chat logs with topic-oriented ranking and context-aware auto-encoders
– volume: 53
  start-page: 343
  issue: 3
  year: 2022
  ident: 10.1016/j.neunet.2024.106417_b20
  article-title: Virtual work meetings during the COVID-19 pandemic: The good, bad, and ugly
  publication-title: Small Group Research
  doi: 10.1177/10464964211015286
– ident: 10.1016/j.neunet.2024.106417_b2
– start-page: 3808
  year: 2021
  ident: 10.1016/j.neunet.2024.106417_b15
  article-title: Dialogue discourse-aware graph model and data augmentation for meeting summarization
– start-page: 136
  year: 2022
  ident: 10.1016/j.neunet.2024.106417_b48
  article-title: Wikitag: Wikipedia-based knowledge embeddings towards improved acoustic event classification
– year: 2022
  ident: 10.1016/j.neunet.2024.106417_b17
– ident: 10.1016/j.neunet.2024.106417_b3
  doi: 10.1145/2740908.2742751
– ident: 10.1016/j.neunet.2024.106417_b8
  doi: 10.18653/v1/2021.naacl-main.109
– volume: 57
  issue: 6
  year: 2020
  ident: 10.1016/j.neunet.2024.106417_b26
  article-title: Candidate sentence selection for extractive text summarization
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2020.102359
– year: 2024
  ident: 10.1016/j.neunet.2024.106417_b19
  article-title: Confounder balancing in adversarial domain adaptation for pre-trained large models fine-tuning
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2024.106173
– volume: vol. 30
  year: 2017
  ident: 10.1016/j.neunet.2024.106417_b39
  article-title: Attention is all you need
– year: 2023
  ident: 10.1016/j.neunet.2024.106417_b9
– volume: 9
  start-page: 391
  year: 2021
  ident: 10.1016/j.neunet.2024.106417_b14
  article-title: Summeval: Re-evaluating summarization evaluation
  publication-title: Transactions of the Association for Computational Linguistics
  doi: 10.1162/tacl_a_00373
– volume: 2
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.neunet.2024.106417_b31
  article-title: Neural abstractive text summarization with sequence-to-sequence models
  publication-title: ACM Transactions on Data Science
  doi: 10.1145/3419106
SSID ssj0006843
Score 2.4449906
Snippet The demand for “online meetings” and “collaborative office work” keeps surging recently, producing an abundant amount of relevant data. How to provide...
The demand for "online meetings" and "collaborative office work" keeps surging recently, producing an abundant amount of relevant data. How to provide...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106417
SubjectTerms Algorithms
China
Cluster Analysis
East Asian People
Humans
Knowledge
Multi-modal enhanced encoding strategy
Multi-modal meeting knowledge graph
Neural Networks, Computer
Semantics
Topic-based hierarchical clustering approach
Topic-enhanced decoding strategy
Videoconferencing
Title KEMoS: A knowledge-enhanced multi-modal summarizing framework for Chinese online meetings
URI https://dx.doi.org/10.1016/j.neunet.2024.106417
https://www.ncbi.nlm.nih.gov/pubmed/38850635
https://www.proquest.com/docview/3065986434
Volume 178
WOSCitedRecordID wos001257703400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZoi1AvlFchLVRG4oYcJV4ntrlFEMSrFYiAkpNl73pFKrKJmgSV_nrGr00gigoHLlY0u-tdzXwZj8fzQOgZY9I1F82JW68JMzkjWhpDeNuKlumyjvUnpl8_8LMzMRzKjzFdce7bCfCqEpeXcvZfRQ00ELZLnf0HcdeTAgF-g9BhBLHD-FeCf98_nX4OCee1w4zY6ls46vcBhGQyLVyeiE9cG1_5YMoUpOXjDl1Xbeu8_L6OxvOJ9YnR83VL1lX1gDmqEEZeW-afxiHqNy6I_rjJK7bRCoYj7f2zp8ufK9og0F5FSvRDUFZHtMEyEnSn4JJQLn5XrqFBT1SPsP9kIVVzQ3MHJ8J5s7JL-PKme0Nz83bg3mziBZcJV2svlDr5o2J2urSD9ijvSNB1e723_eG7eoXuCpalNEof67f50n10K02zzWLZtiPxlsngDrodtxS4F6BwF92w1T10kNp14Ki976ORR8YL3MObuMBruMBruMA1LjDgAkdc4IALnHDxAH153R-8fENiZw2Sg8GyIM4ycs18LAxlxl2Nfm1kIQtObTu3xoCRqamkhrZEIVlHt8oiZ7QQOaelpjo7RLvVtLKPELbAJdAClBteMquN0d0yK9u6cNq93S0aKEvcU3ksO--6n3xXKb7wXAX2K8d-FdjfQKR-ahbKrlxzP0-CUdF0DCahAnxd8-TTJEcFmtUdl-nKTpdzlbmQAwEWO2ugh0HA9bckbBxtvXKM9lf_ksdod3GxtE_QzfzHYjy_OEE7fChOIi5_AVqSnqg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=KEMoS%3A+A+knowledge-enhanced+multi-modal+summarizing+framework+for+Chinese+online+meetings&rft.jtitle=Neural+networks&rft.au=Qi%2C+Peng&rft.au=Sun%2C+Yan&rft.au=Yao%2C+Muyan&rft.au=Tao%2C+Dan&rft.date=2024-10-01&rft.eissn=1879-2782&rft.volume=178&rft.spage=106417&rft_id=info:doi/10.1016%2Fj.neunet.2024.106417&rft_id=info%3Apmid%2F38850635&rft.externalDocID=38850635
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon