Performance and robustness of optimal fractional fuzzy PID controllers for pitch control of a wind turbine using chaotic optimization algorithms

The most studied controller for pitch control of wind turbines is proportional-integral-derivative (PID) controller. However, due to uncertainties in wind turbine modeling and wind speed profiles, the need for more effective controllers is inevitable. On the other hand, the parameters of PID control...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISA transactions Jg. 79; S. 27 - 44
Hauptverfasser: Asgharnia, Amirhossein, Shahnazi, Reza, Jamali, Ali
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Ltd 01.08.2018
Schlagworte:
ISSN:0019-0578, 1879-2022, 1879-2022
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The most studied controller for pitch control of wind turbines is proportional-integral-derivative (PID) controller. However, due to uncertainties in wind turbine modeling and wind speed profiles, the need for more effective controllers is inevitable. On the other hand, the parameters of PID controller usually are unknown and should be selected by the designer which is neither a straightforward task nor optimal. To cope with these drawbacks, in this paper, two advanced controllers called fuzzy PID (FPID) and fractional-order fuzzy PID (FOFPID) are proposed to improve the pitch control performance. Meanwhile, to find the parameters of the controllers the chaotic evolutionary optimization methods are used. Using evolutionary optimization methods not only gives us the unknown parameters of the controllers but also guarantees the optimality based on the chosen objective function. To improve the performance of the evolutionary algorithms chaotic maps are used. All the optimization procedures are applied to the 2-mass model of 5-MW wind turbine model. The proposed optimal controllers are validated using simulator FAST developed by NREL. Simulation results demonstrate that the FOFPID controller can reach to better performance and robustness while guaranteeing fewer fatigue damages in different wind speeds in comparison to FPID, fractional-order PID (FOPID) and gain-scheduling PID (GSPID) controllers. •This paper compares fuzzy PID and fractional-order fuzzy PID on wind turbine pitch control.•The controllers have been optimized by chaotic optimization algorithms.•It is shown that fractional-order controller has superior performance.•The results are validated with FAST wind turbine simulator.
AbstractList The most studied controller for pitch control of wind turbines is proportional-integral-derivative (PID) controller. However, due to uncertainties in wind turbine modeling and wind speed profiles, the need for more effective controllers is inevitable. On the other hand, the parameters of PID controller usually are unknown and should be selected by the designer which is neither a straightforward task nor optimal. To cope with these drawbacks, in this paper, two advanced controllers called fuzzy PID (FPID) and fractional-order fuzzy PID (FOFPID) are proposed to improve the pitch control performance. Meanwhile, to find the parameters of the controllers the chaotic evolutionary optimization methods are used. Using evolutionary optimization methods not only gives us the unknown parameters of the controllers but also guarantees the optimality based on the chosen objective function. To improve the performance of the evolutionary algorithms chaotic maps are used. All the optimization procedures are applied to the 2-mass model of 5-MW wind turbine model. The proposed optimal controllers are validated using simulator FAST developed by NREL. Simulation results demonstrate that the FOFPID controller can reach to better performance and robustness while guaranteeing fewer fatigue damages in different wind speeds in comparison to FPID, fractional-order PID (FOPID) and gain-scheduling PID (GSPID) controllers. •This paper compares fuzzy PID and fractional-order fuzzy PID on wind turbine pitch control.•The controllers have been optimized by chaotic optimization algorithms.•It is shown that fractional-order controller has superior performance.•The results are validated with FAST wind turbine simulator.
The most studied controller for pitch control of wind turbines is proportional-integral-derivative (PID) controller. However, due to uncertainties in wind turbine modeling and wind speed profiles, the need for more effective controllers is inevitable. On the other hand, the parameters of PID controller usually are unknown and should be selected by the designer which is neither a straightforward task nor optimal. To cope with these drawbacks, in this paper, two advanced controllers called fuzzy PID (FPID) and fractional-order fuzzy PID (FOFPID) are proposed to improve the pitch control performance. Meanwhile, to find the parameters of the controllers the chaotic evolutionary optimization methods are used. Using evolutionary optimization methods not only gives us the unknown parameters of the controllers but also guarantees the optimality based on the chosen objective function. To improve the performance of the evolutionary algorithms chaotic maps are used. All the optimization procedures are applied to the 2-mass model of 5-MW wind turbine model. The proposed optimal controllers are validated using simulator FAST developed by NREL. Simulation results demonstrate that the FOFPID controller can reach to better performance and robustness while guaranteeing fewer fatigue damages in different wind speeds in comparison to FPID, fractional-order PID (FOPID) and gain-scheduling PID (GSPID) controllers.The most studied controller for pitch control of wind turbines is proportional-integral-derivative (PID) controller. However, due to uncertainties in wind turbine modeling and wind speed profiles, the need for more effective controllers is inevitable. On the other hand, the parameters of PID controller usually are unknown and should be selected by the designer which is neither a straightforward task nor optimal. To cope with these drawbacks, in this paper, two advanced controllers called fuzzy PID (FPID) and fractional-order fuzzy PID (FOFPID) are proposed to improve the pitch control performance. Meanwhile, to find the parameters of the controllers the chaotic evolutionary optimization methods are used. Using evolutionary optimization methods not only gives us the unknown parameters of the controllers but also guarantees the optimality based on the chosen objective function. To improve the performance of the evolutionary algorithms chaotic maps are used. All the optimization procedures are applied to the 2-mass model of 5-MW wind turbine model. The proposed optimal controllers are validated using simulator FAST developed by NREL. Simulation results demonstrate that the FOFPID controller can reach to better performance and robustness while guaranteeing fewer fatigue damages in different wind speeds in comparison to FPID, fractional-order PID (FOPID) and gain-scheduling PID (GSPID) controllers.
The most studied controller for pitch control of wind turbines is proportional-integral-derivative (PID) controller. However, due to uncertainties in wind turbine modeling and wind speed profiles, the need for more effective controllers is inevitable. On the other hand, the parameters of PID controller usually are unknown and should be selected by the designer which is neither a straightforward task nor optimal. To cope with these drawbacks, in this paper, two advanced controllers called fuzzy PID (FPID) and fractional-order fuzzy PID (FOFPID) are proposed to improve the pitch control performance. Meanwhile, to find the parameters of the controllers the chaotic evolutionary optimization methods are used. Using evolutionary optimization methods not only gives us the unknown parameters of the controllers but also guarantees the optimality based on the chosen objective function. To improve the performance of the evolutionary algorithms chaotic maps are used. All the optimization procedures are applied to the 2-mass model of 5-MW wind turbine model. The proposed optimal controllers are validated using simulator FAST developed by NREL. Simulation results demonstrate that the FOFPID controller can reach to better performance and robustness while guaranteeing fewer fatigue damages in different wind speeds in comparison to FPID, fractional-order PID (FOPID) and gain-scheduling PID (GSPID) controllers.
Author Shahnazi, Reza
Asgharnia, Amirhossein
Jamali, Ali
Author_xml – sequence: 1
  givenname: Amirhossein
  surname: Asgharnia
  fullname: Asgharnia, Amirhossein
  email: asgharnia4@yahoo.com
  organization: Department of Mechanical Engineering, University of Guilan, Rasht, Iran
– sequence: 2
  givenname: Reza
  surname: Shahnazi
  fullname: Shahnazi, Reza
  email: shahnazi@guilan.ac.ir
  organization: Department of Electrical Engineering, University of Guilan, Rasht, Iran
– sequence: 3
  givenname: Ali
  surname: Jamali
  fullname: Jamali, Ali
  email: ali.jamali@guilan.ac.ir
  organization: Department of Mechanical Engineering, University of Guilan, Rasht, Iran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29759597$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9uFSEYxYlpY2-rb2AMSzczAvMPXJiYWrVJk3aha_INML3czMAVmJrep-gjyzi9Gxe6AXJyzi_hnHN04rwzCL2hpKSEtu93pY2QApSMUF6SusziC7ShvBMFI4ydoA0hVBSk6fgZOo9xRwhhjeAv0RkTXSMa0W3Q050Jgw8TOGUwOI2D7-eYnIkR-wH7fbITjHgIoJL1bnnOh8Mjvrv-jJV3KfhxNCHizMB7m9T2qC5pwL9sRqY59NYZPEfr7rHagk9WrWh7gAWLYbz3wabtFF-h0wHGaF4_3xfox5er75ffipvbr9eXn24KVbUsFUqxRrVdxZmGvh30wAXUnKneCFaxylBFGmgpVLVgHCrRgK41awFYrTugqrpA71buPvifs4lJTjYqM47gjJ-jZKTKSZ7PbH37bJ37yWi5D7mT8CiPLWbDh9Wggo8xmEEqm_58LO9jR0mJXCaTO7lOJpfJJKllFnO4_it85P8n9nGNmVzSgzVBRmVNXlHbYFSS2tt_A34Do-e2Ug
CitedBy_id crossref_primary_10_1177_09544089231172608
crossref_primary_10_1016_j_neucom_2022_05_035
crossref_primary_10_1007_s42835_021_00672_1
crossref_primary_10_1109_TFUZZ_2018_2886169
crossref_primary_10_1002_ep_13110
crossref_primary_10_3390_axioms12010025
crossref_primary_10_1016_j_egyr_2021_08_120
crossref_primary_10_1007_s40313_021_00884_w
crossref_primary_10_1177_01423312251361577
crossref_primary_10_3390_jmse10091197
crossref_primary_10_1007_s11071_023_08534_3
crossref_primary_10_3390_en16227481
crossref_primary_10_3390_math12142246
crossref_primary_10_1016_j_compeleceng_2024_109199
crossref_primary_10_1016_j_renene_2020_05_093
crossref_primary_10_3390_en15186709
crossref_primary_10_1109_TIA_2025_3540987
crossref_primary_10_3390_jmse11122272
crossref_primary_10_3390_pr13072197
crossref_primary_10_1109_ACCESS_2022_3183155
crossref_primary_10_1016_j_egyr_2023_02_012
crossref_primary_10_1016_j_isatra_2024_07_001
crossref_primary_10_1002_asjc_2727
crossref_primary_10_1016_j_energy_2019_06_098
crossref_primary_10_1007_s42405_022_00461_8
crossref_primary_10_1080_15567036_2021_1970860
crossref_primary_10_1080_1448837X_2022_2125974
crossref_primary_10_1080_15435075_2023_2178259
crossref_primary_10_1016_j_isatra_2022_05_014
crossref_primary_10_1002_2050_7038_12785
crossref_primary_10_1016_j_pnucene_2021_103868
crossref_primary_10_1109_TEC_2021_3124941
crossref_primary_10_1016_j_aei_2024_103088
crossref_primary_10_1016_j_ijepes_2020_106505
crossref_primary_10_1177_01445987211041779
crossref_primary_10_1177_00202940241300405
crossref_primary_10_1007_s00500_023_09508_8
crossref_primary_10_1155_2021_9953828
crossref_primary_10_1016_j_isatra_2020_06_014
crossref_primary_10_1016_j_isatra_2019_05_029
crossref_primary_10_1088_1742_6596_1704_1_012012
crossref_primary_10_1016_j_est_2021_103717
crossref_primary_10_1177_16878132221139926
crossref_primary_10_1038_s41598_025_94768_7
crossref_primary_10_3390_en13226086
crossref_primary_10_1016_j_renene_2023_119164
crossref_primary_10_1155_2021_5559242
crossref_primary_10_1016_j_isatra_2019_11_019
crossref_primary_10_1016_j_isatra_2020_11_019
crossref_primary_10_3390_en12081508
crossref_primary_10_1155_2022_4605449
crossref_primary_10_3390_app11177865
crossref_primary_10_1016_j_isatra_2018_09_004
crossref_primary_10_3390_fractalfract6010047
crossref_primary_10_1016_j_egyr_2022_03_083
crossref_primary_10_1016_j_jsv_2020_115170
crossref_primary_10_1109_ACCESS_2022_3219933
crossref_primary_10_1007_s40435_021_00813_4
crossref_primary_10_1007_s12206_021_1137_4
crossref_primary_10_1016_j_compeleceng_2025_110658
crossref_primary_10_1007_s13369_022_07474_1
crossref_primary_10_1140_epjst_e2019_800166_y
crossref_primary_10_1002_2050_7038_12671
crossref_primary_10_1016_j_isatra_2019_07_006
crossref_primary_10_1016_j_asoc_2020_106622
crossref_primary_10_1016_j_isatra_2020_01_018
crossref_primary_10_1177_00368504241243160
crossref_primary_10_1007_s40435_025_01703_9
crossref_primary_10_3390_jmse12081306
crossref_primary_10_1016_j_bspc_2021_103034
crossref_primary_10_1016_j_isatra_2025_08_054
crossref_primary_10_1177_09544062231193825
crossref_primary_10_1016_j_isatra_2021_10_019
crossref_primary_10_1177_01423312241261747
crossref_primary_10_1016_j_isatra_2021_06_016
crossref_primary_10_1016_j_oceaneng_2025_122212
crossref_primary_10_1177_0309524X221102794
crossref_primary_10_1177_01423312221099304
crossref_primary_10_3390_su15020939
crossref_primary_10_1177_09596518211028417
Cites_doi 10.1109/TEC.2010.2090155
10.1109/TII.2011.2166775
10.1016/j.jestch.2017.01.004
10.1016/j.enconman.2014.04.052
10.1016/j.conengprac.2009.07.005
10.1080/002071700417849
10.1016/j.isatra.2015.03.003
10.1016/j.isatra.2013.03.004
10.1016/j.eswa.2013.12.030
10.1049/ip-gtd:20030251
10.1007/s12206-011-1106-4
10.2514/3.21139
10.1016/j.jare.2011.07.003
10.1260/0309-524X.38.6.621
10.1109/TCT.1964.1082270
10.1016/j.rser.2015.07.034
10.1016/j.egypro.2012.01.254
10.1049/iet-rpg.2015.0320
10.1016/j.conengprac.2016.02.004
10.1016/j.isatra.2014.07.006
10.1115/1.2349542
10.1016/j.isatra.2012.06.001
10.1016/j.renene.2006.06.010
10.1109/TEVC.2008.927706
10.1016/j.energy.2015.06.100
10.1016/j.renene.2015.12.005
10.1002/int.10054
10.1016/j.engappai.2011.10.004
10.1016/j.ijepes.2012.12.014
ContentType Journal Article
Copyright 2018 ISA
Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018 ISA
– notice: Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.isatra.2018.04.016
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1879-2022
EndPage 44
ExternalDocumentID 29759597
10_1016_j_isatra_2018_04_016
S0019057818301629
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
6P2
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFDAS
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
T9H
TAE
TN5
UHS
UNMZH
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
NPM
PKN
7X8
ID FETCH-LOGICAL-c362t-cc25c67382dab6fdf89a482cbe92323e1c05a61a34928a395ad4d26aa24d7a1c3
ISICitedReferencesCount 94
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000439676600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0019-0578
1879-2022
IngestDate Thu Oct 02 11:26:48 EDT 2025
Wed Feb 19 02:43:24 EST 2025
Sat Nov 29 02:28:35 EST 2025
Tue Nov 18 21:19:01 EST 2025
Fri Feb 23 02:32:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords FAST simulator
Chaotic PSO
Chaotic DE
Gaussian chaotic map
5-MW wind turbine
Fractional-order fuzzy PID
Pitch control
Language English
License Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-cc25c67382dab6fdf89a482cbe92323e1c05a61a34928a395ad4d26aa24d7a1c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29759597
PQID 2039288039
PQPubID 23479
PageCount 18
ParticipantIDs proquest_miscellaneous_2039288039
pubmed_primary_29759597
crossref_citationtrail_10_1016_j_isatra_2018_04_016
crossref_primary_10_1016_j_isatra_2018_04_016
elsevier_sciencedirect_doi_10_1016_j_isatra_2018_04_016
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
2018-Aug
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ISA transactions
PublicationTitleAlternate ISA Trans
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Tepljakov, Petlenkov, Belikov (bib35) 2011
Efe (bib29) 2011; 7
Jonkman, Buhl (bib42) 2005
Salehpour, Jamali, Bagheri, Nariman-zadeh (bib41) 2017; 20
Stol, Zhao, Wright (bib5) 2006; 128
Qi, Meng (bib10) 2012; 16
Boukhezzar, Siguerdidjane (bib13) 2011; 26
Škrjanc, Blažič, Matko (bib46) 2002; 17
Das, Pan, Das (bib17) 2013; 52
Shahnazi, Akbarzadeh (bib45) 2005
Seixas, Melício, Mendes, Couto (bib14) 2016; 89
Jeong, Park, Jun, Song, Lee (bib50) 2012; 26
Das, Konar, Chakraborty (bib40) 2005
Assareh, Biglari (bib4) 2015; 51
Oustaloup, Melchior, Lanusse, Cois, Dancla (bib34) 2000
Merkle, Blum (bib37) 2008
Abdeddaim, Betka (bib12) 2013; 49
Valério, Da Costa (bib33) 2004
Matsuda, Fujii (bib31) 1993; 16
Zamani, Karimi-Ghartemani, Sadati, Parniani (bib24) 2009; 17
Aboelela, Ahmed, Dorrah (bib19) 2012; 3
Holdsworth, Wu, Ekanayake, Jenkins (bib26) 2003; 150
Akbıyık, Eksin, Güzelkaya, Yeşil (bib16) 2005
Chen, Yuan, Ji, Wang, Tian (bib18) 2014; 84
Jonkman, Butterfield, Musial, Scott (bib11) 2009
International Electrotechnical Commission (bib48) 2005
Energy (bib44) 2012
Leithead, Connor (bib3) 2000; 73
Aho, Buckspan, Laks, Fleming, Jeong, Dunne, Johnson (bib27) 2012
Das, Pan, Das, Gupta (bib23) 2012; 25
Moriarty, Hansen (bib49) 2005
Qin, Huang, Suganthan (bib39) 2009; 13
Ren, Li, Brindley, Jiang (bib6) 2016; 50
Shahnazi (bib47) 2015; 54
Boukhezzar, Lupu, Siguerdidjane, Hand (bib7) 2007; 32
Carlson, Halijak (bib30) 1964; 11
Poultangari, Shahnazi, Sheikhan (bib2) 2012; 51
Dorf, Bishop (bib15) 2011
Han, Yang, Xiang, Zhou (bib8) 2016; 10
Kennedy (bib36) 2010
Viveiros, Melício, Igreja, Mendes (bib22) 2014
Sharma, Rana, Kumar (bib21) 2014; 41
Moradi, Vossoughi (bib1) 2015; 90
Türkşen, Tez (bib25) 2016; 14
Jauch, Nussel (bib43) 2014; 38
Pan, Das (bib20) 2016; 62
Podlubny (bib28) 1998; vol. 198
Caponetto (bib32) 2010; vol. 72
Gao, Xu, Lv (bib9) 2008; 2008
Hilborn (bib38) 2000
Matsuda (10.1016/j.isatra.2018.04.016_bib31) 1993; 16
Assareh (10.1016/j.isatra.2018.04.016_bib4) 2015; 51
Jonkman (10.1016/j.isatra.2018.04.016_bib42) 2005
Das (10.1016/j.isatra.2018.04.016_bib17) 2013; 52
Shahnazi (10.1016/j.isatra.2018.04.016_bib45) 2005
Energy (10.1016/j.isatra.2018.04.016_bib44) 2012
Shahnazi (10.1016/j.isatra.2018.04.016_bib47) 2015; 54
Boukhezzar (10.1016/j.isatra.2018.04.016_bib7) 2007; 32
Kennedy (10.1016/j.isatra.2018.04.016_bib36) 2010
Carlson (10.1016/j.isatra.2018.04.016_bib30) 1964; 11
Das (10.1016/j.isatra.2018.04.016_bib23) 2012; 25
Qin (10.1016/j.isatra.2018.04.016_bib39) 2009; 13
Viveiros (10.1016/j.isatra.2018.04.016_bib22) 2014
Merkle (10.1016/j.isatra.2018.04.016_bib37) 2008
Das (10.1016/j.isatra.2018.04.016_bib40) 2005
Gao (10.1016/j.isatra.2018.04.016_bib9) 2008; 2008
Chen (10.1016/j.isatra.2018.04.016_bib18) 2014; 84
Seixas (10.1016/j.isatra.2018.04.016_bib14) 2016; 89
Stol (10.1016/j.isatra.2018.04.016_bib5) 2006; 128
Boukhezzar (10.1016/j.isatra.2018.04.016_bib13) 2011; 26
Han (10.1016/j.isatra.2018.04.016_bib8) 2016; 10
Škrjanc (10.1016/j.isatra.2018.04.016_bib46) 2002; 17
Jeong (10.1016/j.isatra.2018.04.016_bib50) 2012; 26
Qi (10.1016/j.isatra.2018.04.016_bib10) 2012; 16
Holdsworth (10.1016/j.isatra.2018.04.016_bib26) 2003; 150
International Electrotechnical Commission (10.1016/j.isatra.2018.04.016_bib48) 2005
Dorf (10.1016/j.isatra.2018.04.016_bib15) 2011
Zamani (10.1016/j.isatra.2018.04.016_bib24) 2009; 17
Pan (10.1016/j.isatra.2018.04.016_bib20) 2016; 62
Oustaloup (10.1016/j.isatra.2018.04.016_bib34) 2000
Jauch (10.1016/j.isatra.2018.04.016_bib43) 2014; 38
Podlubny (10.1016/j.isatra.2018.04.016_bib28) 1998; vol. 198
Moriarty (10.1016/j.isatra.2018.04.016_bib49) 2005
Akbıyık (10.1016/j.isatra.2018.04.016_bib16) 2005
Abdeddaim (10.1016/j.isatra.2018.04.016_bib12) 2013; 49
Türkşen (10.1016/j.isatra.2018.04.016_bib25) 2016; 14
Valério (10.1016/j.isatra.2018.04.016_bib33) 2004
Sharma (10.1016/j.isatra.2018.04.016_bib21) 2014; 41
Hilborn (10.1016/j.isatra.2018.04.016_bib38) 2000
Moradi (10.1016/j.isatra.2018.04.016_bib1) 2015; 90
Jonkman (10.1016/j.isatra.2018.04.016_bib11) 2009
Caponetto (10.1016/j.isatra.2018.04.016_bib32) 2010; vol. 72
Salehpour (10.1016/j.isatra.2018.04.016_bib41) 2017; 20
Poultangari (10.1016/j.isatra.2018.04.016_bib2) 2012; 51
Leithead (10.1016/j.isatra.2018.04.016_bib3) 2000; 73
Tepljakov (10.1016/j.isatra.2018.04.016_bib35) 2011
Aboelela (10.1016/j.isatra.2018.04.016_bib19) 2012; 3
Efe (10.1016/j.isatra.2018.04.016_bib29) 2011; 7
Aho (10.1016/j.isatra.2018.04.016_bib27) 2012
Ren (10.1016/j.isatra.2018.04.016_bib6) 2016; 50
References_xml – volume: 62
  start-page: 19
  year: 2016
  end-page: 29
  ident: bib20
  article-title: Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO
  publication-title: ISA Trans
– volume: 50
  start-page: 84
  year: 2016
  end-page: 94
  ident: bib6
  article-title: Nonlinear PI control for variable pitch wind turbine
  publication-title: Contr Eng Pract
– year: 2012
  ident: bib27
  article-title: Tutorial of wind turbine control for supporting grid frequency through active power control: preprint
– volume: 10
  start-page: 687
  year: 2016
  end-page: 693
  ident: bib8
  article-title: Individual pitch controller based on fuzzy logic control for wind turbine load mitigation
  publication-title: IET Renew Power Gener
– year: 2005
  ident: bib40
  article-title: Two improved differential evolution schemes for faster global search
  publication-title: Paper presented at the Proceedings of the 7th annual conference on Genetic and evolutionary computation
– volume: 14
  start-page: 112
  year: 2016
  end-page: 129
  ident: bib25
  article-title: An application of Nelder-Mead heuristic-based hybrid algorithms: estimation of compartment model parameters
  publication-title: Int J Artif Intell
– year: 2009
  ident: bib11
  article-title: Definition of a 5-MW reference wind turbine for offshore system development
– year: 2008
  ident: bib37
  article-title: Swarm intelligence: introduction and application
– volume: 90
  start-page: 1508
  year: 2015
  end-page: 1521
  ident: bib1
  article-title: Robust control of the variable speed wind turbines in the presence of uncertainties: a comparison between H∞ and PID controllers
  publication-title: Energy
– volume: 16
  start-page: 1635
  year: 2012
  end-page: 1641
  ident: bib10
  article-title: The application of fuzzy PID control in pitch wind turbine
  publication-title: Energy Procedia
– volume: 49
  start-page: 234
  year: 2013
  end-page: 242
  ident: bib12
  article-title: Optimal tracking and robust power control of the DFIG wind turbine
  publication-title: Int J Electr Power Energy Syst
– volume: 51
  start-page: 641
  year: 2012
  end-page: 648
  ident: bib2
  article-title: RBF neural network based PI pitch controller for a class of 5-MW wind turbines using particle swarm optimization algorithm
  publication-title: ISA Trans
– start-page: 760
  year: 2010
  end-page: 766
  ident: bib36
  article-title: Particle swarm optimization
  publication-title: Encyclopedia of machine learning
– volume: 41
  start-page: 4274
  year: 2014
  end-page: 4289
  ident: bib21
  article-title: Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator
  publication-title: Expert Syst Appl
– year: 2011
  ident: bib15
  article-title: Modern control systems
– volume: vol. 72
  year: 2010
  ident: bib32
  publication-title: Fractional order systems: modeling and control applications
– volume: 73
  start-page: 1189
  year: 2000
  end-page: 1212
  ident: bib3
  article-title: Control of variable speed wind turbines: design task
  publication-title: Int J Contr
– volume: 84
  start-page: 390
  year: 2014
  end-page: 404
  ident: bib18
  article-title: Design of a fractional order PID controller for hydraulic turbine regulating system using chaotic non-dominated sorting genetic algorithm II
  publication-title: Energy Convers Manag
– volume: 26
  start-page: 827
  year: 2012
  end-page: 838
  ident: bib50
  article-title: Design optimization of a wind turbine blade to reduce the fluctuating unsteady aerodynamic load in turbulent wind
  publication-title: J Mech Sci Technol
– volume: 32
  start-page: 1273
  year: 2007
  end-page: 1287
  ident: bib7
  article-title: Multivariable control strategy for variable speed, variable pitch wind turbines
  publication-title: Renew Energy
– year: 2005
  ident: bib49
  article-title: AeroDyn theory manual
– volume: 17
  start-page: 1380
  year: 2009
  end-page: 1387
  ident: bib24
  article-title: Design of a fractional order PID controller for an AVR using particle swarm optimization
  publication-title: Contr Eng Pract
– volume: 16
  start-page: 1146
  year: 1993
  end-page: 1153
  ident: bib31
  article-title: H (infinity) optimized wave-absorbing control-Analytical and experimental results
  publication-title: J Guid Contr Dynam
– volume: 11
  start-page: 210
  year: 1964
  end-page: 213
  ident: bib30
  article-title: Approximation of fractional capacitors (1/s)ˆ(1/n) by a regular Newton process
  publication-title: IEEE Trans Circ Theor
– year: 2000
  ident: bib38
  article-title: Chaos and nonlinear dynamics: an introduction for scientists and engineers
– year: 2005
  ident: bib16
  article-title: Evaluation of the performance of various fuzzy PID controller structures on benchmark systems
  publication-title: Paper presented at the ELECO ‘2005, 4rd international conf. On electrical and electronics engineering
– year: 2005
  ident: bib45
  article-title: Robust PI adaptive fuzzy control for a class of uncertain nonlinear systems
  publication-title: Paper presented at the systems, man and cybernetics, 2005 IEEE international conference on
– volume: 20
  start-page: 587
  year: 2017
  end-page: 597
  ident: bib41
  article-title: A new adaptive differential evolution optimization algorithm based on fuzzy inference system
  publication-title: Eng Sci Technol Int J
– volume: 13
  start-page: 398
  year: 2009
  end-page: 417
  ident: bib39
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Trans Evol Comput
– year: 2014
  ident: bib22
  article-title: Fuzzy, integer and fractional-order control: application on a wind turbine benchmark model
  publication-title: Paper presented at the methods and models in automation and robotics (MMAR), 2014 19th international conference on
– year: 2000
  ident: bib34
  article-title: The CRONE toolbox for Matlab
  publication-title: Paper presented at the computer-aided control system design, 2000. CACSD 2000. IEEE international symposium on
– volume: 38
  start-page: 621
  year: 2014
  end-page: 632
  ident: bib43
  article-title: Development of a contactless pitch angle measurement system
  publication-title: Wind Eng
– volume: 51
  start-page: 1023
  year: 2015
  end-page: 1037
  ident: bib4
  article-title: A novel approach to capture the maximum power from variable speed wind turbines using PI controller, RBF neural network and GSA evolutionary algorithm
  publication-title: Renew Sustain Energy Rev
– volume: 2008
  year: 2008
  ident: bib9
  article-title: Pitch-control for large-scale wind turbines based on feed forward fuzzy-PI
  publication-title: Paper presented at the Intelligent Control and Automation, 2008
– year: 2005
  ident: bib42
  article-title: FAST User's guide-updated august 2005
– volume: 3
  start-page: 225
  year: 2012
  end-page: 232
  ident: bib19
  article-title: Design of aerospace control systems using fractional PID controller
  publication-title: J Adv Res
– volume: 26
  start-page: 149
  year: 2011
  end-page: 162
  ident: bib13
  article-title: Nonlinear control of a variable-speed wind turbine using a two-mass model
  publication-title: IEEE Trans Energy Convers
– volume: 89
  start-page: 339
  year: 2016
  end-page: 350
  ident: bib14
  article-title: Blade pitch control malfunction simulation in a wind energy conversion system with MPC five-level converter
  publication-title: Renew Energy
– volume: 52
  start-page: 550
  year: 2013
  end-page: 566
  ident: bib17
  article-title: Performance comparison of optimal fractional order hybrid fuzzy PID controllers for handling oscillatory fractional order processes with dead time
  publication-title: ISA Trans
– year: 2004
  ident: bib33
  article-title: NINTEGER: a non-integer control toolbox for MATLAB
  publication-title: Proceedings of the fractional differentiation and its applications, Bordeaux
– volume: 54
  start-page: 39
  year: 2015
  end-page: 51
  ident: bib47
  article-title: Output feedback adaptive fuzzy control of uncertain MIMO nonlinear systems with unknown input nonlinearities
  publication-title: ISA Trans
– volume: vol. 198
  year: 1998
  ident: bib28
  publication-title: Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications
– volume: 128
  start-page: 498
  year: 2006
  end-page: 505
  ident: bib5
  article-title: Individual blade pitch control for the controls advanced research turbine (CART)
  publication-title: J Sol Energy Eng
– volume: 7
  start-page: 582
  year: 2011
  end-page: 591
  ident: bib29
  article-title: Fractional order systems in industrial automation—a survey
  publication-title: IEEE Trans Ind Inf
– year: 2005
  ident: bib48
  article-title: IEC 61400–61401: wind turbines part 1: design requirements international electrotechnical commission
– volume: 25
  start-page: 430
  year: 2012
  end-page: 442
  ident: bib23
  article-title: A novel fractional order fuzzy PID controller and its optimal time domain tuning based on integral performance indices
  publication-title: Eng Appl Artif Intell
– volume: 17
  start-page: 943
  year: 2002
  end-page: 963
  ident: bib46
  article-title: Direct fuzzy model-reference adaptive control
  publication-title: Int J Intell Syst
– year: 2012
  ident: bib44
  article-title: Wind turbine generator systems. 1.6-100-50 Hz/60 Hz. 1.7-100-50 Hz/60 Hz
– volume: 150
  start-page: 343
  year: 2003
  end-page: 352
  ident: bib26
  article-title: Comparison of fixed speed and doubly-fed induction wind turbines during power system disturbances
  publication-title: IEE Proc Generat Transm Distrib
– year: 2011
  ident: bib35
  article-title: FOMCON: fractional-order modeling and control toolbox for MATLAB
  publication-title: Paper presented at the mixed design of integrated circuits and systems (MIXDES), 2011 proceedings of the 18th international conference
– volume: 26
  start-page: 149
  issue: 1
  year: 2011
  ident: 10.1016/j.isatra.2018.04.016_bib13
  article-title: Nonlinear control of a variable-speed wind turbine using a two-mass model
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2010.2090155
– volume: vol. 72
  year: 2010
  ident: 10.1016/j.isatra.2018.04.016_bib32
– year: 2011
  ident: 10.1016/j.isatra.2018.04.016_bib15
– year: 2005
  ident: 10.1016/j.isatra.2018.04.016_bib45
  article-title: Robust PI adaptive fuzzy control for a class of uncertain nonlinear systems
– volume: 7
  start-page: 582
  issue: 4
  year: 2011
  ident: 10.1016/j.isatra.2018.04.016_bib29
  article-title: Fractional order systems in industrial automation—a survey
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2011.2166775
– year: 2005
  ident: 10.1016/j.isatra.2018.04.016_bib42
– volume: 20
  start-page: 587
  issue: 2
  year: 2017
  ident: 10.1016/j.isatra.2018.04.016_bib41
  article-title: A new adaptive differential evolution optimization algorithm based on fuzzy inference system
  publication-title: Eng Sci Technol Int J
  doi: 10.1016/j.jestch.2017.01.004
– year: 2005
  ident: 10.1016/j.isatra.2018.04.016_bib40
  article-title: Two improved differential evolution schemes for faster global search
– volume: 84
  start-page: 390
  year: 2014
  ident: 10.1016/j.isatra.2018.04.016_bib18
  article-title: Design of a fractional order PID controller for hydraulic turbine regulating system using chaotic non-dominated sorting genetic algorithm II
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2014.04.052
– volume: 17
  start-page: 1380
  issue: 12
  year: 2009
  ident: 10.1016/j.isatra.2018.04.016_bib24
  article-title: Design of a fractional order PID controller for an AVR using particle swarm optimization
  publication-title: Contr Eng Pract
  doi: 10.1016/j.conengprac.2009.07.005
– volume: 73
  start-page: 1189
  issue: 13
  year: 2000
  ident: 10.1016/j.isatra.2018.04.016_bib3
  article-title: Control of variable speed wind turbines: design task
  publication-title: Int J Contr
  doi: 10.1080/002071700417849
– year: 2014
  ident: 10.1016/j.isatra.2018.04.016_bib22
  article-title: Fuzzy, integer and fractional-order control: application on a wind turbine benchmark model
– volume: 62
  start-page: 19
  year: 2016
  ident: 10.1016/j.isatra.2018.04.016_bib20
  article-title: Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2015.03.003
– volume: 52
  start-page: 550
  issue: 4
  year: 2013
  ident: 10.1016/j.isatra.2018.04.016_bib17
  article-title: Performance comparison of optimal fractional order hybrid fuzzy PID controllers for handling oscillatory fractional order processes with dead time
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2013.03.004
– volume: 41
  start-page: 4274
  issue: 9
  year: 2014
  ident: 10.1016/j.isatra.2018.04.016_bib21
  article-title: Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.12.030
– volume: 150
  start-page: 343
  issue: 3
  year: 2003
  ident: 10.1016/j.isatra.2018.04.016_bib26
  article-title: Comparison of fixed speed and doubly-fed induction wind turbines during power system disturbances
  publication-title: IEE Proc Generat Transm Distrib
  doi: 10.1049/ip-gtd:20030251
– volume: 26
  start-page: 827
  issue: 3
  year: 2012
  ident: 10.1016/j.isatra.2018.04.016_bib50
  article-title: Design optimization of a wind turbine blade to reduce the fluctuating unsteady aerodynamic load in turbulent wind
  publication-title: J Mech Sci Technol
  doi: 10.1007/s12206-011-1106-4
– volume: 16
  start-page: 1146
  issue: 6
  year: 1993
  ident: 10.1016/j.isatra.2018.04.016_bib31
  article-title: H (infinity) optimized wave-absorbing control-Analytical and experimental results
  publication-title: J Guid Contr Dynam
  doi: 10.2514/3.21139
– year: 2005
  ident: 10.1016/j.isatra.2018.04.016_bib48
– year: 2009
  ident: 10.1016/j.isatra.2018.04.016_bib11
– volume: 3
  start-page: 225
  issue: 3
  year: 2012
  ident: 10.1016/j.isatra.2018.04.016_bib19
  article-title: Design of aerospace control systems using fractional PID controller
  publication-title: J Adv Res
  doi: 10.1016/j.jare.2011.07.003
– year: 2004
  ident: 10.1016/j.isatra.2018.04.016_bib33
  article-title: NINTEGER: a non-integer control toolbox for MATLAB
– volume: 38
  start-page: 621
  issue: 6
  year: 2014
  ident: 10.1016/j.isatra.2018.04.016_bib43
  article-title: Development of a contactless pitch angle measurement system
  publication-title: Wind Eng
  doi: 10.1260/0309-524X.38.6.621
– volume: 11
  start-page: 210
  issue: 2
  year: 1964
  ident: 10.1016/j.isatra.2018.04.016_bib30
  article-title: Approximation of fractional capacitors (1/s)ˆ(1/n) by a regular Newton process
  publication-title: IEEE Trans Circ Theor
  doi: 10.1109/TCT.1964.1082270
– volume: 51
  start-page: 1023
  year: 2015
  ident: 10.1016/j.isatra.2018.04.016_bib4
  article-title: A novel approach to capture the maximum power from variable speed wind turbines using PI controller, RBF neural network and GSA evolutionary algorithm
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.07.034
– volume: 16
  start-page: 1635
  year: 2012
  ident: 10.1016/j.isatra.2018.04.016_bib10
  article-title: The application of fuzzy PID control in pitch wind turbine
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2012.01.254
– year: 2012
  ident: 10.1016/j.isatra.2018.04.016_bib44
– volume: 10
  start-page: 687
  issue: 5
  year: 2016
  ident: 10.1016/j.isatra.2018.04.016_bib8
  article-title: Individual pitch controller based on fuzzy logic control for wind turbine load mitigation
  publication-title: IET Renew Power Gener
  doi: 10.1049/iet-rpg.2015.0320
– volume: 50
  start-page: 84
  year: 2016
  ident: 10.1016/j.isatra.2018.04.016_bib6
  article-title: Nonlinear PI control for variable pitch wind turbine
  publication-title: Contr Eng Pract
  doi: 10.1016/j.conengprac.2016.02.004
– volume: 54
  start-page: 39
  year: 2015
  ident: 10.1016/j.isatra.2018.04.016_bib47
  article-title: Output feedback adaptive fuzzy control of uncertain MIMO nonlinear systems with unknown input nonlinearities
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2014.07.006
– start-page: 760
  year: 2010
  ident: 10.1016/j.isatra.2018.04.016_bib36
  article-title: Particle swarm optimization
– volume: 128
  start-page: 498
  issue: 4
  year: 2006
  ident: 10.1016/j.isatra.2018.04.016_bib5
  article-title: Individual blade pitch control for the controls advanced research turbine (CART)
  publication-title: J Sol Energy Eng
  doi: 10.1115/1.2349542
– volume: vol. 198
  year: 1998
  ident: 10.1016/j.isatra.2018.04.016_bib28
– year: 2012
  ident: 10.1016/j.isatra.2018.04.016_bib27
– volume: 51
  start-page: 641
  issue: 5
  year: 2012
  ident: 10.1016/j.isatra.2018.04.016_bib2
  article-title: RBF neural network based PI pitch controller for a class of 5-MW wind turbines using particle swarm optimization algorithm
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2012.06.001
– volume: 2008
  year: 2008
  ident: 10.1016/j.isatra.2018.04.016_bib9
  article-title: Pitch-control for large-scale wind turbines based on feed forward fuzzy-PI
– volume: 32
  start-page: 1273
  issue: 8
  year: 2007
  ident: 10.1016/j.isatra.2018.04.016_bib7
  article-title: Multivariable control strategy for variable speed, variable pitch wind turbines
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2006.06.010
– year: 2005
  ident: 10.1016/j.isatra.2018.04.016_bib16
  article-title: Evaluation of the performance of various fuzzy PID controller structures on benchmark systems
– volume: 13
  start-page: 398
  issue: 2
  year: 2009
  ident: 10.1016/j.isatra.2018.04.016_bib39
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2008.927706
– year: 2008
  ident: 10.1016/j.isatra.2018.04.016_bib37
– volume: 90
  start-page: 1508
  year: 2015
  ident: 10.1016/j.isatra.2018.04.016_bib1
  article-title: Robust control of the variable speed wind turbines in the presence of uncertainties: a comparison between H∞ and PID controllers
  publication-title: Energy
  doi: 10.1016/j.energy.2015.06.100
– volume: 89
  start-page: 339
  year: 2016
  ident: 10.1016/j.isatra.2018.04.016_bib14
  article-title: Blade pitch control malfunction simulation in a wind energy conversion system with MPC five-level converter
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.12.005
– year: 2000
  ident: 10.1016/j.isatra.2018.04.016_bib34
  article-title: The CRONE toolbox for Matlab
– year: 2000
  ident: 10.1016/j.isatra.2018.04.016_bib38
– volume: 17
  start-page: 943
  issue: 10
  year: 2002
  ident: 10.1016/j.isatra.2018.04.016_bib46
  article-title: Direct fuzzy model-reference adaptive control
  publication-title: Int J Intell Syst
  doi: 10.1002/int.10054
– volume: 14
  start-page: 112
  issue: 1
  year: 2016
  ident: 10.1016/j.isatra.2018.04.016_bib25
  article-title: An application of Nelder-Mead heuristic-based hybrid algorithms: estimation of compartment model parameters
  publication-title: Int J Artif Intell
– year: 2011
  ident: 10.1016/j.isatra.2018.04.016_bib35
  article-title: FOMCON: fractional-order modeling and control toolbox for MATLAB
– volume: 25
  start-page: 430
  issue: 2
  year: 2012
  ident: 10.1016/j.isatra.2018.04.016_bib23
  article-title: A novel fractional order fuzzy PID controller and its optimal time domain tuning based on integral performance indices
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2011.10.004
– year: 2005
  ident: 10.1016/j.isatra.2018.04.016_bib49
– volume: 49
  start-page: 234
  year: 2013
  ident: 10.1016/j.isatra.2018.04.016_bib12
  article-title: Optimal tracking and robust power control of the DFIG wind turbine
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2012.12.014
SSID ssj0002598
Score 2.4785547
Snippet The most studied controller for pitch control of wind turbines is proportional-integral-derivative (PID) controller. However, due to uncertainties in wind...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 27
SubjectTerms 5-MW wind turbine
Chaotic DE
Chaotic PSO
FAST simulator
Fractional-order fuzzy PID
Gaussian chaotic map
Pitch control
Title Performance and robustness of optimal fractional fuzzy PID controllers for pitch control of a wind turbine using chaotic optimization algorithms
URI https://dx.doi.org/10.1016/j.isatra.2018.04.016
https://www.ncbi.nlm.nih.gov/pubmed/29759597
https://www.proquest.com/docview/2039288039
Volume 79
WOSCitedRecordID wos000439676600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2022
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002598
  issn: 0019-0578
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6jgd4QGzAKJfJSDyApkh1LrXzWMEQndBUaUPqW-Q4yZKpS6q0GaO_gr_AP-U4vjTaGGMPvESRFVtOz9dzcc53DkLvCMsI5Ql3Ak6p4_sZdWIWxxCqxAlJIOZyk7ZryVd6fMxms3Da6_0yXJjLOS1LdnUVLv6rqGEMhC2ps_cQt10UBuAehA5XEDtc_0nw02tUgLqKm-Wq1WjgGFagIi4kabFWjAZ526zXPw6mk08mb30uSb0y_XBRgExtNnvLpPxeyIzLpo6ld9ooym7OK1n2tV1a0zoP-PysqotVrouha_d3cjKWTSlMh3Lrz4-XZ7k8olGHvBdFnYPtTgsL3JOc5yVfFwoQa2tKjji8S6GIOkX3AIMwmz5nlbLkUQWqk49RyqrDjNGqtGOfVbnIG5pfHUKct0lQtSwoRVhbw5b8odD2NQNo0xJNxtt5pFaJ5CrR0I9gcAttuzQIWR9tjyeHsyNr7iF-1OZevYXhZ7ZJhDd3c5v_c1t80_o5p0_QYx2g4LEC1g7qpeUuetQpW7mLdrRBWOL3umr5h6foZwd3GHCHN7jDVYY17vAGd7jFHQbc4Q7uMKyBW9yZUTmbY4k7rHGHW9xhjTvcxR3e4O4Z-vb58PTjF0e3-3AEeFErRwg3ELIJrZvweJQlGQu5z1wRpxCEuF5KxDDgI8JlPU3GvTDgiZ-4I85dP6GcCO856pdVmb5A2B8lQgxTDj976JOYhbBKFoLrxYgkZqcD5BkhRELXwpctWebR3yAwQI6dtVC1YO54nhr5RtqfVX5qBKC9Y-ZbA4cI1L38hsfLtGqW8BAENGBzvXCA9hRO7F4kST4MQvrynvt8hR5u_pevUX9VN-kb9EBcroplvY-26Izta9T_Bpj04W0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+and+robustness+of+optimal+fractional+fuzzy+PID+controllers+for+pitch+control+of+a+wind+turbine+using+chaotic+optimization+algorithms&rft.jtitle=ISA+transactions&rft.au=Asgharnia%2C+Amirhossein&rft.au=Shahnazi%2C+Reza&rft.au=Jamali%2C+Ali&rft.date=2018-08-01&rft.issn=0019-0578&rft.volume=79&rft.spage=27&rft.epage=44&rft_id=info:doi/10.1016%2Fj.isatra.2018.04.016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isatra_2018_04_016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-0578&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-0578&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-0578&client=summon