Performance and robustness of optimal fractional fuzzy PID controllers for pitch control of a wind turbine using chaotic optimization algorithms
The most studied controller for pitch control of wind turbines is proportional-integral-derivative (PID) controller. However, due to uncertainties in wind turbine modeling and wind speed profiles, the need for more effective controllers is inevitable. On the other hand, the parameters of PID control...
Gespeichert in:
| Veröffentlicht in: | ISA transactions Jg. 79; S. 27 - 44 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Ltd
01.08.2018
|
| Schlagworte: | |
| ISSN: | 0019-0578, 1879-2022, 1879-2022 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The most studied controller for pitch control of wind turbines is proportional-integral-derivative (PID) controller. However, due to uncertainties in wind turbine modeling and wind speed profiles, the need for more effective controllers is inevitable. On the other hand, the parameters of PID controller usually are unknown and should be selected by the designer which is neither a straightforward task nor optimal. To cope with these drawbacks, in this paper, two advanced controllers called fuzzy PID (FPID) and fractional-order fuzzy PID (FOFPID) are proposed to improve the pitch control performance. Meanwhile, to find the parameters of the controllers the chaotic evolutionary optimization methods are used. Using evolutionary optimization methods not only gives us the unknown parameters of the controllers but also guarantees the optimality based on the chosen objective function. To improve the performance of the evolutionary algorithms chaotic maps are used. All the optimization procedures are applied to the 2-mass model of 5-MW wind turbine model. The proposed optimal controllers are validated using simulator FAST developed by NREL. Simulation results demonstrate that the FOFPID controller can reach to better performance and robustness while guaranteeing fewer fatigue damages in different wind speeds in comparison to FPID, fractional-order PID (FOPID) and gain-scheduling PID (GSPID) controllers.
•This paper compares fuzzy PID and fractional-order fuzzy PID on wind turbine pitch control.•The controllers have been optimized by chaotic optimization algorithms.•It is shown that fractional-order controller has superior performance.•The results are validated with FAST wind turbine simulator. |
|---|---|
| AbstractList | The most studied controller for pitch control of wind turbines is proportional-integral-derivative (PID) controller. However, due to uncertainties in wind turbine modeling and wind speed profiles, the need for more effective controllers is inevitable. On the other hand, the parameters of PID controller usually are unknown and should be selected by the designer which is neither a straightforward task nor optimal. To cope with these drawbacks, in this paper, two advanced controllers called fuzzy PID (FPID) and fractional-order fuzzy PID (FOFPID) are proposed to improve the pitch control performance. Meanwhile, to find the parameters of the controllers the chaotic evolutionary optimization methods are used. Using evolutionary optimization methods not only gives us the unknown parameters of the controllers but also guarantees the optimality based on the chosen objective function. To improve the performance of the evolutionary algorithms chaotic maps are used. All the optimization procedures are applied to the 2-mass model of 5-MW wind turbine model. The proposed optimal controllers are validated using simulator FAST developed by NREL. Simulation results demonstrate that the FOFPID controller can reach to better performance and robustness while guaranteeing fewer fatigue damages in different wind speeds in comparison to FPID, fractional-order PID (FOPID) and gain-scheduling PID (GSPID) controllers.
•This paper compares fuzzy PID and fractional-order fuzzy PID on wind turbine pitch control.•The controllers have been optimized by chaotic optimization algorithms.•It is shown that fractional-order controller has superior performance.•The results are validated with FAST wind turbine simulator. The most studied controller for pitch control of wind turbines is proportional-integral-derivative (PID) controller. However, due to uncertainties in wind turbine modeling and wind speed profiles, the need for more effective controllers is inevitable. On the other hand, the parameters of PID controller usually are unknown and should be selected by the designer which is neither a straightforward task nor optimal. To cope with these drawbacks, in this paper, two advanced controllers called fuzzy PID (FPID) and fractional-order fuzzy PID (FOFPID) are proposed to improve the pitch control performance. Meanwhile, to find the parameters of the controllers the chaotic evolutionary optimization methods are used. Using evolutionary optimization methods not only gives us the unknown parameters of the controllers but also guarantees the optimality based on the chosen objective function. To improve the performance of the evolutionary algorithms chaotic maps are used. All the optimization procedures are applied to the 2-mass model of 5-MW wind turbine model. The proposed optimal controllers are validated using simulator FAST developed by NREL. Simulation results demonstrate that the FOFPID controller can reach to better performance and robustness while guaranteeing fewer fatigue damages in different wind speeds in comparison to FPID, fractional-order PID (FOPID) and gain-scheduling PID (GSPID) controllers.The most studied controller for pitch control of wind turbines is proportional-integral-derivative (PID) controller. However, due to uncertainties in wind turbine modeling and wind speed profiles, the need for more effective controllers is inevitable. On the other hand, the parameters of PID controller usually are unknown and should be selected by the designer which is neither a straightforward task nor optimal. To cope with these drawbacks, in this paper, two advanced controllers called fuzzy PID (FPID) and fractional-order fuzzy PID (FOFPID) are proposed to improve the pitch control performance. Meanwhile, to find the parameters of the controllers the chaotic evolutionary optimization methods are used. Using evolutionary optimization methods not only gives us the unknown parameters of the controllers but also guarantees the optimality based on the chosen objective function. To improve the performance of the evolutionary algorithms chaotic maps are used. All the optimization procedures are applied to the 2-mass model of 5-MW wind turbine model. The proposed optimal controllers are validated using simulator FAST developed by NREL. Simulation results demonstrate that the FOFPID controller can reach to better performance and robustness while guaranteeing fewer fatigue damages in different wind speeds in comparison to FPID, fractional-order PID (FOPID) and gain-scheduling PID (GSPID) controllers. The most studied controller for pitch control of wind turbines is proportional-integral-derivative (PID) controller. However, due to uncertainties in wind turbine modeling and wind speed profiles, the need for more effective controllers is inevitable. On the other hand, the parameters of PID controller usually are unknown and should be selected by the designer which is neither a straightforward task nor optimal. To cope with these drawbacks, in this paper, two advanced controllers called fuzzy PID (FPID) and fractional-order fuzzy PID (FOFPID) are proposed to improve the pitch control performance. Meanwhile, to find the parameters of the controllers the chaotic evolutionary optimization methods are used. Using evolutionary optimization methods not only gives us the unknown parameters of the controllers but also guarantees the optimality based on the chosen objective function. To improve the performance of the evolutionary algorithms chaotic maps are used. All the optimization procedures are applied to the 2-mass model of 5-MW wind turbine model. The proposed optimal controllers are validated using simulator FAST developed by NREL. Simulation results demonstrate that the FOFPID controller can reach to better performance and robustness while guaranteeing fewer fatigue damages in different wind speeds in comparison to FPID, fractional-order PID (FOPID) and gain-scheduling PID (GSPID) controllers. |
| Author | Shahnazi, Reza Asgharnia, Amirhossein Jamali, Ali |
| Author_xml | – sequence: 1 givenname: Amirhossein surname: Asgharnia fullname: Asgharnia, Amirhossein email: asgharnia4@yahoo.com organization: Department of Mechanical Engineering, University of Guilan, Rasht, Iran – sequence: 2 givenname: Reza surname: Shahnazi fullname: Shahnazi, Reza email: shahnazi@guilan.ac.ir organization: Department of Electrical Engineering, University of Guilan, Rasht, Iran – sequence: 3 givenname: Ali surname: Jamali fullname: Jamali, Ali email: ali.jamali@guilan.ac.ir organization: Department of Mechanical Engineering, University of Guilan, Rasht, Iran |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29759597$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc9uFSEYxYlpY2-rb2AMSzczAvMPXJiYWrVJk3aha_INML3czMAVmJrep-gjyzi9Gxe6AXJyzi_hnHN04rwzCL2hpKSEtu93pY2QApSMUF6SusziC7ShvBMFI4ydoA0hVBSk6fgZOo9xRwhhjeAv0RkTXSMa0W3Q050Jgw8TOGUwOI2D7-eYnIkR-wH7fbITjHgIoJL1bnnOh8Mjvrv-jJV3KfhxNCHizMB7m9T2qC5pwL9sRqY59NYZPEfr7rHagk9WrWh7gAWLYbz3wabtFF-h0wHGaF4_3xfox5er75ffipvbr9eXn24KVbUsFUqxRrVdxZmGvh30wAXUnKneCFaxylBFGmgpVLVgHCrRgK41awFYrTugqrpA71buPvifs4lJTjYqM47gjJ-jZKTKSZ7PbH37bJ37yWi5D7mT8CiPLWbDh9Wggo8xmEEqm_58LO9jR0mJXCaTO7lOJpfJJKllFnO4_it85P8n9nGNmVzSgzVBRmVNXlHbYFSS2tt_A34Do-e2Ug |
| CitedBy_id | crossref_primary_10_1177_09544089231172608 crossref_primary_10_1016_j_neucom_2022_05_035 crossref_primary_10_1007_s42835_021_00672_1 crossref_primary_10_1109_TFUZZ_2018_2886169 crossref_primary_10_1002_ep_13110 crossref_primary_10_3390_axioms12010025 crossref_primary_10_1016_j_egyr_2021_08_120 crossref_primary_10_1007_s40313_021_00884_w crossref_primary_10_1177_01423312251361577 crossref_primary_10_3390_jmse10091197 crossref_primary_10_1007_s11071_023_08534_3 crossref_primary_10_3390_en16227481 crossref_primary_10_3390_math12142246 crossref_primary_10_1016_j_compeleceng_2024_109199 crossref_primary_10_1016_j_renene_2020_05_093 crossref_primary_10_3390_en15186709 crossref_primary_10_1109_TIA_2025_3540987 crossref_primary_10_3390_jmse11122272 crossref_primary_10_3390_pr13072197 crossref_primary_10_1109_ACCESS_2022_3183155 crossref_primary_10_1016_j_egyr_2023_02_012 crossref_primary_10_1016_j_isatra_2024_07_001 crossref_primary_10_1002_asjc_2727 crossref_primary_10_1016_j_energy_2019_06_098 crossref_primary_10_1007_s42405_022_00461_8 crossref_primary_10_1080_15567036_2021_1970860 crossref_primary_10_1080_1448837X_2022_2125974 crossref_primary_10_1080_15435075_2023_2178259 crossref_primary_10_1016_j_isatra_2022_05_014 crossref_primary_10_1002_2050_7038_12785 crossref_primary_10_1016_j_pnucene_2021_103868 crossref_primary_10_1109_TEC_2021_3124941 crossref_primary_10_1016_j_aei_2024_103088 crossref_primary_10_1016_j_ijepes_2020_106505 crossref_primary_10_1177_01445987211041779 crossref_primary_10_1177_00202940241300405 crossref_primary_10_1007_s00500_023_09508_8 crossref_primary_10_1155_2021_9953828 crossref_primary_10_1016_j_isatra_2020_06_014 crossref_primary_10_1016_j_isatra_2019_05_029 crossref_primary_10_1088_1742_6596_1704_1_012012 crossref_primary_10_1016_j_est_2021_103717 crossref_primary_10_1177_16878132221139926 crossref_primary_10_1038_s41598_025_94768_7 crossref_primary_10_3390_en13226086 crossref_primary_10_1016_j_renene_2023_119164 crossref_primary_10_1155_2021_5559242 crossref_primary_10_1016_j_isatra_2019_11_019 crossref_primary_10_1016_j_isatra_2020_11_019 crossref_primary_10_3390_en12081508 crossref_primary_10_1155_2022_4605449 crossref_primary_10_3390_app11177865 crossref_primary_10_1016_j_isatra_2018_09_004 crossref_primary_10_3390_fractalfract6010047 crossref_primary_10_1016_j_egyr_2022_03_083 crossref_primary_10_1016_j_jsv_2020_115170 crossref_primary_10_1109_ACCESS_2022_3219933 crossref_primary_10_1007_s40435_021_00813_4 crossref_primary_10_1007_s12206_021_1137_4 crossref_primary_10_1016_j_compeleceng_2025_110658 crossref_primary_10_1007_s13369_022_07474_1 crossref_primary_10_1140_epjst_e2019_800166_y crossref_primary_10_1002_2050_7038_12671 crossref_primary_10_1016_j_isatra_2019_07_006 crossref_primary_10_1016_j_asoc_2020_106622 crossref_primary_10_1016_j_isatra_2020_01_018 crossref_primary_10_1177_00368504241243160 crossref_primary_10_1007_s40435_025_01703_9 crossref_primary_10_3390_jmse12081306 crossref_primary_10_1016_j_bspc_2021_103034 crossref_primary_10_1016_j_isatra_2025_08_054 crossref_primary_10_1177_09544062231193825 crossref_primary_10_1016_j_isatra_2021_10_019 crossref_primary_10_1177_01423312241261747 crossref_primary_10_1016_j_isatra_2021_06_016 crossref_primary_10_1016_j_oceaneng_2025_122212 crossref_primary_10_1177_0309524X221102794 crossref_primary_10_1177_01423312221099304 crossref_primary_10_3390_su15020939 crossref_primary_10_1177_09596518211028417 |
| Cites_doi | 10.1109/TEC.2010.2090155 10.1109/TII.2011.2166775 10.1016/j.jestch.2017.01.004 10.1016/j.enconman.2014.04.052 10.1016/j.conengprac.2009.07.005 10.1080/002071700417849 10.1016/j.isatra.2015.03.003 10.1016/j.isatra.2013.03.004 10.1016/j.eswa.2013.12.030 10.1049/ip-gtd:20030251 10.1007/s12206-011-1106-4 10.2514/3.21139 10.1016/j.jare.2011.07.003 10.1260/0309-524X.38.6.621 10.1109/TCT.1964.1082270 10.1016/j.rser.2015.07.034 10.1016/j.egypro.2012.01.254 10.1049/iet-rpg.2015.0320 10.1016/j.conengprac.2016.02.004 10.1016/j.isatra.2014.07.006 10.1115/1.2349542 10.1016/j.isatra.2012.06.001 10.1016/j.renene.2006.06.010 10.1109/TEVC.2008.927706 10.1016/j.energy.2015.06.100 10.1016/j.renene.2015.12.005 10.1002/int.10054 10.1016/j.engappai.2011.10.004 10.1016/j.ijepes.2012.12.014 |
| ContentType | Journal Article |
| Copyright | 2018 ISA Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2018 ISA – notice: Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1016/j.isatra.2018.04.016 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 1879-2022 |
| EndPage | 44 |
| ExternalDocumentID | 29759597 10_1016_j_isatra_2018_04_016 S0019057818301629 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 6P2 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFO ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFDAS AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K T9H TAE TN5 UHS UNMZH WUQ XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD NPM PKN 7X8 |
| ID | FETCH-LOGICAL-c362t-cc25c67382dab6fdf89a482cbe92323e1c05a61a34928a395ad4d26aa24d7a1c3 |
| ISICitedReferencesCount | 94 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000439676600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0019-0578 1879-2022 |
| IngestDate | Thu Oct 02 11:26:48 EDT 2025 Wed Feb 19 02:43:24 EST 2025 Sat Nov 29 02:28:35 EST 2025 Tue Nov 18 21:19:01 EST 2025 Fri Feb 23 02:32:12 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | FAST simulator Chaotic PSO Chaotic DE Gaussian chaotic map 5-MW wind turbine Fractional-order fuzzy PID Pitch control |
| Language | English |
| License | Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c362t-cc25c67382dab6fdf89a482cbe92323e1c05a61a34928a395ad4d26aa24d7a1c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 29759597 |
| PQID | 2039288039 |
| PQPubID | 23479 |
| PageCount | 18 |
| ParticipantIDs | proquest_miscellaneous_2039288039 pubmed_primary_29759597 crossref_citationtrail_10_1016_j_isatra_2018_04_016 crossref_primary_10_1016_j_isatra_2018_04_016 elsevier_sciencedirect_doi_10_1016_j_isatra_2018_04_016 |
| PublicationCentury | 2000 |
| PublicationDate | August 2018 2018-08-00 2018-Aug 20180801 |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | ISA transactions |
| PublicationTitleAlternate | ISA Trans |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Tepljakov, Petlenkov, Belikov (bib35) 2011 Efe (bib29) 2011; 7 Jonkman, Buhl (bib42) 2005 Salehpour, Jamali, Bagheri, Nariman-zadeh (bib41) 2017; 20 Stol, Zhao, Wright (bib5) 2006; 128 Qi, Meng (bib10) 2012; 16 Boukhezzar, Siguerdidjane (bib13) 2011; 26 Škrjanc, Blažič, Matko (bib46) 2002; 17 Das, Pan, Das (bib17) 2013; 52 Shahnazi, Akbarzadeh (bib45) 2005 Seixas, Melício, Mendes, Couto (bib14) 2016; 89 Jeong, Park, Jun, Song, Lee (bib50) 2012; 26 Das, Konar, Chakraborty (bib40) 2005 Assareh, Biglari (bib4) 2015; 51 Oustaloup, Melchior, Lanusse, Cois, Dancla (bib34) 2000 Merkle, Blum (bib37) 2008 Abdeddaim, Betka (bib12) 2013; 49 Valério, Da Costa (bib33) 2004 Matsuda, Fujii (bib31) 1993; 16 Zamani, Karimi-Ghartemani, Sadati, Parniani (bib24) 2009; 17 Aboelela, Ahmed, Dorrah (bib19) 2012; 3 Holdsworth, Wu, Ekanayake, Jenkins (bib26) 2003; 150 Akbıyık, Eksin, Güzelkaya, Yeşil (bib16) 2005 Chen, Yuan, Ji, Wang, Tian (bib18) 2014; 84 Jonkman, Butterfield, Musial, Scott (bib11) 2009 International Electrotechnical Commission (bib48) 2005 Energy (bib44) 2012 Leithead, Connor (bib3) 2000; 73 Aho, Buckspan, Laks, Fleming, Jeong, Dunne, Johnson (bib27) 2012 Das, Pan, Das, Gupta (bib23) 2012; 25 Moriarty, Hansen (bib49) 2005 Qin, Huang, Suganthan (bib39) 2009; 13 Ren, Li, Brindley, Jiang (bib6) 2016; 50 Shahnazi (bib47) 2015; 54 Boukhezzar, Lupu, Siguerdidjane, Hand (bib7) 2007; 32 Carlson, Halijak (bib30) 1964; 11 Poultangari, Shahnazi, Sheikhan (bib2) 2012; 51 Dorf, Bishop (bib15) 2011 Han, Yang, Xiang, Zhou (bib8) 2016; 10 Kennedy (bib36) 2010 Viveiros, Melício, Igreja, Mendes (bib22) 2014 Sharma, Rana, Kumar (bib21) 2014; 41 Moradi, Vossoughi (bib1) 2015; 90 Türkşen, Tez (bib25) 2016; 14 Jauch, Nussel (bib43) 2014; 38 Pan, Das (bib20) 2016; 62 Podlubny (bib28) 1998; vol. 198 Caponetto (bib32) 2010; vol. 72 Gao, Xu, Lv (bib9) 2008; 2008 Hilborn (bib38) 2000 Matsuda (10.1016/j.isatra.2018.04.016_bib31) 1993; 16 Assareh (10.1016/j.isatra.2018.04.016_bib4) 2015; 51 Jonkman (10.1016/j.isatra.2018.04.016_bib42) 2005 Das (10.1016/j.isatra.2018.04.016_bib17) 2013; 52 Shahnazi (10.1016/j.isatra.2018.04.016_bib45) 2005 Energy (10.1016/j.isatra.2018.04.016_bib44) 2012 Shahnazi (10.1016/j.isatra.2018.04.016_bib47) 2015; 54 Boukhezzar (10.1016/j.isatra.2018.04.016_bib7) 2007; 32 Kennedy (10.1016/j.isatra.2018.04.016_bib36) 2010 Carlson (10.1016/j.isatra.2018.04.016_bib30) 1964; 11 Das (10.1016/j.isatra.2018.04.016_bib23) 2012; 25 Qin (10.1016/j.isatra.2018.04.016_bib39) 2009; 13 Viveiros (10.1016/j.isatra.2018.04.016_bib22) 2014 Merkle (10.1016/j.isatra.2018.04.016_bib37) 2008 Das (10.1016/j.isatra.2018.04.016_bib40) 2005 Gao (10.1016/j.isatra.2018.04.016_bib9) 2008; 2008 Chen (10.1016/j.isatra.2018.04.016_bib18) 2014; 84 Seixas (10.1016/j.isatra.2018.04.016_bib14) 2016; 89 Stol (10.1016/j.isatra.2018.04.016_bib5) 2006; 128 Boukhezzar (10.1016/j.isatra.2018.04.016_bib13) 2011; 26 Han (10.1016/j.isatra.2018.04.016_bib8) 2016; 10 Škrjanc (10.1016/j.isatra.2018.04.016_bib46) 2002; 17 Jeong (10.1016/j.isatra.2018.04.016_bib50) 2012; 26 Qi (10.1016/j.isatra.2018.04.016_bib10) 2012; 16 Holdsworth (10.1016/j.isatra.2018.04.016_bib26) 2003; 150 International Electrotechnical Commission (10.1016/j.isatra.2018.04.016_bib48) 2005 Dorf (10.1016/j.isatra.2018.04.016_bib15) 2011 Zamani (10.1016/j.isatra.2018.04.016_bib24) 2009; 17 Pan (10.1016/j.isatra.2018.04.016_bib20) 2016; 62 Oustaloup (10.1016/j.isatra.2018.04.016_bib34) 2000 Jauch (10.1016/j.isatra.2018.04.016_bib43) 2014; 38 Podlubny (10.1016/j.isatra.2018.04.016_bib28) 1998; vol. 198 Moriarty (10.1016/j.isatra.2018.04.016_bib49) 2005 Akbıyık (10.1016/j.isatra.2018.04.016_bib16) 2005 Abdeddaim (10.1016/j.isatra.2018.04.016_bib12) 2013; 49 Türkşen (10.1016/j.isatra.2018.04.016_bib25) 2016; 14 Valério (10.1016/j.isatra.2018.04.016_bib33) 2004 Sharma (10.1016/j.isatra.2018.04.016_bib21) 2014; 41 Hilborn (10.1016/j.isatra.2018.04.016_bib38) 2000 Moradi (10.1016/j.isatra.2018.04.016_bib1) 2015; 90 Jonkman (10.1016/j.isatra.2018.04.016_bib11) 2009 Caponetto (10.1016/j.isatra.2018.04.016_bib32) 2010; vol. 72 Salehpour (10.1016/j.isatra.2018.04.016_bib41) 2017; 20 Poultangari (10.1016/j.isatra.2018.04.016_bib2) 2012; 51 Leithead (10.1016/j.isatra.2018.04.016_bib3) 2000; 73 Tepljakov (10.1016/j.isatra.2018.04.016_bib35) 2011 Aboelela (10.1016/j.isatra.2018.04.016_bib19) 2012; 3 Efe (10.1016/j.isatra.2018.04.016_bib29) 2011; 7 Aho (10.1016/j.isatra.2018.04.016_bib27) 2012 Ren (10.1016/j.isatra.2018.04.016_bib6) 2016; 50 |
| References_xml | – volume: 62 start-page: 19 year: 2016 end-page: 29 ident: bib20 article-title: Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO publication-title: ISA Trans – volume: 50 start-page: 84 year: 2016 end-page: 94 ident: bib6 article-title: Nonlinear PI control for variable pitch wind turbine publication-title: Contr Eng Pract – year: 2012 ident: bib27 article-title: Tutorial of wind turbine control for supporting grid frequency through active power control: preprint – volume: 10 start-page: 687 year: 2016 end-page: 693 ident: bib8 article-title: Individual pitch controller based on fuzzy logic control for wind turbine load mitigation publication-title: IET Renew Power Gener – year: 2005 ident: bib40 article-title: Two improved differential evolution schemes for faster global search publication-title: Paper presented at the Proceedings of the 7th annual conference on Genetic and evolutionary computation – volume: 14 start-page: 112 year: 2016 end-page: 129 ident: bib25 article-title: An application of Nelder-Mead heuristic-based hybrid algorithms: estimation of compartment model parameters publication-title: Int J Artif Intell – year: 2009 ident: bib11 article-title: Definition of a 5-MW reference wind turbine for offshore system development – year: 2008 ident: bib37 article-title: Swarm intelligence: introduction and application – volume: 90 start-page: 1508 year: 2015 end-page: 1521 ident: bib1 article-title: Robust control of the variable speed wind turbines in the presence of uncertainties: a comparison between H∞ and PID controllers publication-title: Energy – volume: 16 start-page: 1635 year: 2012 end-page: 1641 ident: bib10 article-title: The application of fuzzy PID control in pitch wind turbine publication-title: Energy Procedia – volume: 49 start-page: 234 year: 2013 end-page: 242 ident: bib12 article-title: Optimal tracking and robust power control of the DFIG wind turbine publication-title: Int J Electr Power Energy Syst – volume: 51 start-page: 641 year: 2012 end-page: 648 ident: bib2 article-title: RBF neural network based PI pitch controller for a class of 5-MW wind turbines using particle swarm optimization algorithm publication-title: ISA Trans – start-page: 760 year: 2010 end-page: 766 ident: bib36 article-title: Particle swarm optimization publication-title: Encyclopedia of machine learning – volume: 41 start-page: 4274 year: 2014 end-page: 4289 ident: bib21 article-title: Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator publication-title: Expert Syst Appl – year: 2011 ident: bib15 article-title: Modern control systems – volume: vol. 72 year: 2010 ident: bib32 publication-title: Fractional order systems: modeling and control applications – volume: 73 start-page: 1189 year: 2000 end-page: 1212 ident: bib3 article-title: Control of variable speed wind turbines: design task publication-title: Int J Contr – volume: 84 start-page: 390 year: 2014 end-page: 404 ident: bib18 article-title: Design of a fractional order PID controller for hydraulic turbine regulating system using chaotic non-dominated sorting genetic algorithm II publication-title: Energy Convers Manag – volume: 26 start-page: 827 year: 2012 end-page: 838 ident: bib50 article-title: Design optimization of a wind turbine blade to reduce the fluctuating unsteady aerodynamic load in turbulent wind publication-title: J Mech Sci Technol – volume: 32 start-page: 1273 year: 2007 end-page: 1287 ident: bib7 article-title: Multivariable control strategy for variable speed, variable pitch wind turbines publication-title: Renew Energy – year: 2005 ident: bib49 article-title: AeroDyn theory manual – volume: 17 start-page: 1380 year: 2009 end-page: 1387 ident: bib24 article-title: Design of a fractional order PID controller for an AVR using particle swarm optimization publication-title: Contr Eng Pract – volume: 16 start-page: 1146 year: 1993 end-page: 1153 ident: bib31 article-title: H (infinity) optimized wave-absorbing control-Analytical and experimental results publication-title: J Guid Contr Dynam – volume: 11 start-page: 210 year: 1964 end-page: 213 ident: bib30 article-title: Approximation of fractional capacitors (1/s)ˆ(1/n) by a regular Newton process publication-title: IEEE Trans Circ Theor – year: 2000 ident: bib38 article-title: Chaos and nonlinear dynamics: an introduction for scientists and engineers – year: 2005 ident: bib16 article-title: Evaluation of the performance of various fuzzy PID controller structures on benchmark systems publication-title: Paper presented at the ELECO ‘2005, 4rd international conf. On electrical and electronics engineering – year: 2005 ident: bib45 article-title: Robust PI adaptive fuzzy control for a class of uncertain nonlinear systems publication-title: Paper presented at the systems, man and cybernetics, 2005 IEEE international conference on – volume: 20 start-page: 587 year: 2017 end-page: 597 ident: bib41 article-title: A new adaptive differential evolution optimization algorithm based on fuzzy inference system publication-title: Eng Sci Technol Int J – volume: 13 start-page: 398 year: 2009 end-page: 417 ident: bib39 article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization publication-title: IEEE Trans Evol Comput – year: 2014 ident: bib22 article-title: Fuzzy, integer and fractional-order control: application on a wind turbine benchmark model publication-title: Paper presented at the methods and models in automation and robotics (MMAR), 2014 19th international conference on – year: 2000 ident: bib34 article-title: The CRONE toolbox for Matlab publication-title: Paper presented at the computer-aided control system design, 2000. CACSD 2000. IEEE international symposium on – volume: 38 start-page: 621 year: 2014 end-page: 632 ident: bib43 article-title: Development of a contactless pitch angle measurement system publication-title: Wind Eng – volume: 51 start-page: 1023 year: 2015 end-page: 1037 ident: bib4 article-title: A novel approach to capture the maximum power from variable speed wind turbines using PI controller, RBF neural network and GSA evolutionary algorithm publication-title: Renew Sustain Energy Rev – volume: 2008 year: 2008 ident: bib9 article-title: Pitch-control for large-scale wind turbines based on feed forward fuzzy-PI publication-title: Paper presented at the Intelligent Control and Automation, 2008 – year: 2005 ident: bib42 article-title: FAST User's guide-updated august 2005 – volume: 3 start-page: 225 year: 2012 end-page: 232 ident: bib19 article-title: Design of aerospace control systems using fractional PID controller publication-title: J Adv Res – volume: 26 start-page: 149 year: 2011 end-page: 162 ident: bib13 article-title: Nonlinear control of a variable-speed wind turbine using a two-mass model publication-title: IEEE Trans Energy Convers – volume: 89 start-page: 339 year: 2016 end-page: 350 ident: bib14 article-title: Blade pitch control malfunction simulation in a wind energy conversion system with MPC five-level converter publication-title: Renew Energy – volume: 52 start-page: 550 year: 2013 end-page: 566 ident: bib17 article-title: Performance comparison of optimal fractional order hybrid fuzzy PID controllers for handling oscillatory fractional order processes with dead time publication-title: ISA Trans – year: 2004 ident: bib33 article-title: NINTEGER: a non-integer control toolbox for MATLAB publication-title: Proceedings of the fractional differentiation and its applications, Bordeaux – volume: 54 start-page: 39 year: 2015 end-page: 51 ident: bib47 article-title: Output feedback adaptive fuzzy control of uncertain MIMO nonlinear systems with unknown input nonlinearities publication-title: ISA Trans – volume: vol. 198 year: 1998 ident: bib28 publication-title: Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications – volume: 128 start-page: 498 year: 2006 end-page: 505 ident: bib5 article-title: Individual blade pitch control for the controls advanced research turbine (CART) publication-title: J Sol Energy Eng – volume: 7 start-page: 582 year: 2011 end-page: 591 ident: bib29 article-title: Fractional order systems in industrial automation—a survey publication-title: IEEE Trans Ind Inf – year: 2005 ident: bib48 article-title: IEC 61400–61401: wind turbines part 1: design requirements international electrotechnical commission – volume: 25 start-page: 430 year: 2012 end-page: 442 ident: bib23 article-title: A novel fractional order fuzzy PID controller and its optimal time domain tuning based on integral performance indices publication-title: Eng Appl Artif Intell – volume: 17 start-page: 943 year: 2002 end-page: 963 ident: bib46 article-title: Direct fuzzy model-reference adaptive control publication-title: Int J Intell Syst – year: 2012 ident: bib44 article-title: Wind turbine generator systems. 1.6-100-50 Hz/60 Hz. 1.7-100-50 Hz/60 Hz – volume: 150 start-page: 343 year: 2003 end-page: 352 ident: bib26 article-title: Comparison of fixed speed and doubly-fed induction wind turbines during power system disturbances publication-title: IEE Proc Generat Transm Distrib – year: 2011 ident: bib35 article-title: FOMCON: fractional-order modeling and control toolbox for MATLAB publication-title: Paper presented at the mixed design of integrated circuits and systems (MIXDES), 2011 proceedings of the 18th international conference – volume: 26 start-page: 149 issue: 1 year: 2011 ident: 10.1016/j.isatra.2018.04.016_bib13 article-title: Nonlinear control of a variable-speed wind turbine using a two-mass model publication-title: IEEE Trans Energy Convers doi: 10.1109/TEC.2010.2090155 – volume: vol. 72 year: 2010 ident: 10.1016/j.isatra.2018.04.016_bib32 – year: 2011 ident: 10.1016/j.isatra.2018.04.016_bib15 – year: 2005 ident: 10.1016/j.isatra.2018.04.016_bib45 article-title: Robust PI adaptive fuzzy control for a class of uncertain nonlinear systems – volume: 7 start-page: 582 issue: 4 year: 2011 ident: 10.1016/j.isatra.2018.04.016_bib29 article-title: Fractional order systems in industrial automation—a survey publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2011.2166775 – year: 2005 ident: 10.1016/j.isatra.2018.04.016_bib42 – volume: 20 start-page: 587 issue: 2 year: 2017 ident: 10.1016/j.isatra.2018.04.016_bib41 article-title: A new adaptive differential evolution optimization algorithm based on fuzzy inference system publication-title: Eng Sci Technol Int J doi: 10.1016/j.jestch.2017.01.004 – year: 2005 ident: 10.1016/j.isatra.2018.04.016_bib40 article-title: Two improved differential evolution schemes for faster global search – volume: 84 start-page: 390 year: 2014 ident: 10.1016/j.isatra.2018.04.016_bib18 article-title: Design of a fractional order PID controller for hydraulic turbine regulating system using chaotic non-dominated sorting genetic algorithm II publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2014.04.052 – volume: 17 start-page: 1380 issue: 12 year: 2009 ident: 10.1016/j.isatra.2018.04.016_bib24 article-title: Design of a fractional order PID controller for an AVR using particle swarm optimization publication-title: Contr Eng Pract doi: 10.1016/j.conengprac.2009.07.005 – volume: 73 start-page: 1189 issue: 13 year: 2000 ident: 10.1016/j.isatra.2018.04.016_bib3 article-title: Control of variable speed wind turbines: design task publication-title: Int J Contr doi: 10.1080/002071700417849 – year: 2014 ident: 10.1016/j.isatra.2018.04.016_bib22 article-title: Fuzzy, integer and fractional-order control: application on a wind turbine benchmark model – volume: 62 start-page: 19 year: 2016 ident: 10.1016/j.isatra.2018.04.016_bib20 article-title: Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO publication-title: ISA Trans doi: 10.1016/j.isatra.2015.03.003 – volume: 52 start-page: 550 issue: 4 year: 2013 ident: 10.1016/j.isatra.2018.04.016_bib17 article-title: Performance comparison of optimal fractional order hybrid fuzzy PID controllers for handling oscillatory fractional order processes with dead time publication-title: ISA Trans doi: 10.1016/j.isatra.2013.03.004 – volume: 41 start-page: 4274 issue: 9 year: 2014 ident: 10.1016/j.isatra.2018.04.016_bib21 article-title: Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.12.030 – volume: 150 start-page: 343 issue: 3 year: 2003 ident: 10.1016/j.isatra.2018.04.016_bib26 article-title: Comparison of fixed speed and doubly-fed induction wind turbines during power system disturbances publication-title: IEE Proc Generat Transm Distrib doi: 10.1049/ip-gtd:20030251 – volume: 26 start-page: 827 issue: 3 year: 2012 ident: 10.1016/j.isatra.2018.04.016_bib50 article-title: Design optimization of a wind turbine blade to reduce the fluctuating unsteady aerodynamic load in turbulent wind publication-title: J Mech Sci Technol doi: 10.1007/s12206-011-1106-4 – volume: 16 start-page: 1146 issue: 6 year: 1993 ident: 10.1016/j.isatra.2018.04.016_bib31 article-title: H (infinity) optimized wave-absorbing control-Analytical and experimental results publication-title: J Guid Contr Dynam doi: 10.2514/3.21139 – year: 2005 ident: 10.1016/j.isatra.2018.04.016_bib48 – year: 2009 ident: 10.1016/j.isatra.2018.04.016_bib11 – volume: 3 start-page: 225 issue: 3 year: 2012 ident: 10.1016/j.isatra.2018.04.016_bib19 article-title: Design of aerospace control systems using fractional PID controller publication-title: J Adv Res doi: 10.1016/j.jare.2011.07.003 – year: 2004 ident: 10.1016/j.isatra.2018.04.016_bib33 article-title: NINTEGER: a non-integer control toolbox for MATLAB – volume: 38 start-page: 621 issue: 6 year: 2014 ident: 10.1016/j.isatra.2018.04.016_bib43 article-title: Development of a contactless pitch angle measurement system publication-title: Wind Eng doi: 10.1260/0309-524X.38.6.621 – volume: 11 start-page: 210 issue: 2 year: 1964 ident: 10.1016/j.isatra.2018.04.016_bib30 article-title: Approximation of fractional capacitors (1/s)ˆ(1/n) by a regular Newton process publication-title: IEEE Trans Circ Theor doi: 10.1109/TCT.1964.1082270 – volume: 51 start-page: 1023 year: 2015 ident: 10.1016/j.isatra.2018.04.016_bib4 article-title: A novel approach to capture the maximum power from variable speed wind turbines using PI controller, RBF neural network and GSA evolutionary algorithm publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.07.034 – volume: 16 start-page: 1635 year: 2012 ident: 10.1016/j.isatra.2018.04.016_bib10 article-title: The application of fuzzy PID control in pitch wind turbine publication-title: Energy Procedia doi: 10.1016/j.egypro.2012.01.254 – year: 2012 ident: 10.1016/j.isatra.2018.04.016_bib44 – volume: 10 start-page: 687 issue: 5 year: 2016 ident: 10.1016/j.isatra.2018.04.016_bib8 article-title: Individual pitch controller based on fuzzy logic control for wind turbine load mitigation publication-title: IET Renew Power Gener doi: 10.1049/iet-rpg.2015.0320 – volume: 50 start-page: 84 year: 2016 ident: 10.1016/j.isatra.2018.04.016_bib6 article-title: Nonlinear PI control for variable pitch wind turbine publication-title: Contr Eng Pract doi: 10.1016/j.conengprac.2016.02.004 – volume: 54 start-page: 39 year: 2015 ident: 10.1016/j.isatra.2018.04.016_bib47 article-title: Output feedback adaptive fuzzy control of uncertain MIMO nonlinear systems with unknown input nonlinearities publication-title: ISA Trans doi: 10.1016/j.isatra.2014.07.006 – start-page: 760 year: 2010 ident: 10.1016/j.isatra.2018.04.016_bib36 article-title: Particle swarm optimization – volume: 128 start-page: 498 issue: 4 year: 2006 ident: 10.1016/j.isatra.2018.04.016_bib5 article-title: Individual blade pitch control for the controls advanced research turbine (CART) publication-title: J Sol Energy Eng doi: 10.1115/1.2349542 – volume: vol. 198 year: 1998 ident: 10.1016/j.isatra.2018.04.016_bib28 – year: 2012 ident: 10.1016/j.isatra.2018.04.016_bib27 – volume: 51 start-page: 641 issue: 5 year: 2012 ident: 10.1016/j.isatra.2018.04.016_bib2 article-title: RBF neural network based PI pitch controller for a class of 5-MW wind turbines using particle swarm optimization algorithm publication-title: ISA Trans doi: 10.1016/j.isatra.2012.06.001 – volume: 2008 year: 2008 ident: 10.1016/j.isatra.2018.04.016_bib9 article-title: Pitch-control for large-scale wind turbines based on feed forward fuzzy-PI – volume: 32 start-page: 1273 issue: 8 year: 2007 ident: 10.1016/j.isatra.2018.04.016_bib7 article-title: Multivariable control strategy for variable speed, variable pitch wind turbines publication-title: Renew Energy doi: 10.1016/j.renene.2006.06.010 – year: 2005 ident: 10.1016/j.isatra.2018.04.016_bib16 article-title: Evaluation of the performance of various fuzzy PID controller structures on benchmark systems – volume: 13 start-page: 398 issue: 2 year: 2009 ident: 10.1016/j.isatra.2018.04.016_bib39 article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2008.927706 – year: 2008 ident: 10.1016/j.isatra.2018.04.016_bib37 – volume: 90 start-page: 1508 year: 2015 ident: 10.1016/j.isatra.2018.04.016_bib1 article-title: Robust control of the variable speed wind turbines in the presence of uncertainties: a comparison between H∞ and PID controllers publication-title: Energy doi: 10.1016/j.energy.2015.06.100 – volume: 89 start-page: 339 year: 2016 ident: 10.1016/j.isatra.2018.04.016_bib14 article-title: Blade pitch control malfunction simulation in a wind energy conversion system with MPC five-level converter publication-title: Renew Energy doi: 10.1016/j.renene.2015.12.005 – year: 2000 ident: 10.1016/j.isatra.2018.04.016_bib34 article-title: The CRONE toolbox for Matlab – year: 2000 ident: 10.1016/j.isatra.2018.04.016_bib38 – volume: 17 start-page: 943 issue: 10 year: 2002 ident: 10.1016/j.isatra.2018.04.016_bib46 article-title: Direct fuzzy model-reference adaptive control publication-title: Int J Intell Syst doi: 10.1002/int.10054 – volume: 14 start-page: 112 issue: 1 year: 2016 ident: 10.1016/j.isatra.2018.04.016_bib25 article-title: An application of Nelder-Mead heuristic-based hybrid algorithms: estimation of compartment model parameters publication-title: Int J Artif Intell – year: 2011 ident: 10.1016/j.isatra.2018.04.016_bib35 article-title: FOMCON: fractional-order modeling and control toolbox for MATLAB – volume: 25 start-page: 430 issue: 2 year: 2012 ident: 10.1016/j.isatra.2018.04.016_bib23 article-title: A novel fractional order fuzzy PID controller and its optimal time domain tuning based on integral performance indices publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2011.10.004 – year: 2005 ident: 10.1016/j.isatra.2018.04.016_bib49 – volume: 49 start-page: 234 year: 2013 ident: 10.1016/j.isatra.2018.04.016_bib12 article-title: Optimal tracking and robust power control of the DFIG wind turbine publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2012.12.014 |
| SSID | ssj0002598 |
| Score | 2.4785547 |
| Snippet | The most studied controller for pitch control of wind turbines is proportional-integral-derivative (PID) controller. However, due to uncertainties in wind... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 27 |
| SubjectTerms | 5-MW wind turbine Chaotic DE Chaotic PSO FAST simulator Fractional-order fuzzy PID Gaussian chaotic map Pitch control |
| Title | Performance and robustness of optimal fractional fuzzy PID controllers for pitch control of a wind turbine using chaotic optimization algorithms |
| URI | https://dx.doi.org/10.1016/j.isatra.2018.04.016 https://www.ncbi.nlm.nih.gov/pubmed/29759597 https://www.proquest.com/docview/2039288039 |
| Volume | 79 |
| WOSCitedRecordID | wos000439676600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6jgd4QGzAKJfJSDyApkh1LrXzWMEQndBUaUPqW-Q4yZKpS6q0GaO_gr_AP-U4vjTaGGMPvESRFVtOz9dzcc53DkLvCMsI5Ql3Ak6p4_sZdWIWxxCqxAlJIOZyk7ZryVd6fMxms3Da6_0yXJjLOS1LdnUVLv6rqGEMhC2ps_cQt10UBuAehA5XEDtc_0nw02tUgLqKm-Wq1WjgGFagIi4kabFWjAZ526zXPw6mk08mb30uSb0y_XBRgExtNnvLpPxeyIzLpo6ld9ooym7OK1n2tV1a0zoP-PysqotVrouha_d3cjKWTSlMh3Lrz4-XZ7k8olGHvBdFnYPtTgsL3JOc5yVfFwoQa2tKjji8S6GIOkX3AIMwmz5nlbLkUQWqk49RyqrDjNGqtGOfVbnIG5pfHUKct0lQtSwoRVhbw5b8odD2NQNo0xJNxtt5pFaJ5CrR0I9gcAttuzQIWR9tjyeHsyNr7iF-1OZevYXhZ7ZJhDd3c5v_c1t80_o5p0_QYx2g4LEC1g7qpeUuetQpW7mLdrRBWOL3umr5h6foZwd3GHCHN7jDVYY17vAGd7jFHQbc4Q7uMKyBW9yZUTmbY4k7rHGHW9xhjTvcxR3e4O4Z-vb58PTjF0e3-3AEeFErRwg3ELIJrZvweJQlGQu5z1wRpxCEuF5KxDDgI8JlPU3GvTDgiZ-4I85dP6GcCO856pdVmb5A2B8lQgxTDj976JOYhbBKFoLrxYgkZqcD5BkhRELXwpctWebR3yAwQI6dtVC1YO54nhr5RtqfVX5qBKC9Y-ZbA4cI1L38hsfLtGqW8BAENGBzvXCA9hRO7F4kST4MQvrynvt8hR5u_pevUX9VN-kb9EBcroplvY-26Izta9T_Bpj04W0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+and+robustness+of+optimal+fractional+fuzzy+PID+controllers+for+pitch+control+of+a+wind+turbine+using+chaotic+optimization+algorithms&rft.jtitle=ISA+transactions&rft.au=Asgharnia%2C+Amirhossein&rft.au=Shahnazi%2C+Reza&rft.au=Jamali%2C+Ali&rft.date=2018-08-01&rft.issn=0019-0578&rft.volume=79&rft.spage=27&rft.epage=44&rft_id=info:doi/10.1016%2Fj.isatra.2018.04.016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isatra_2018_04_016 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-0578&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-0578&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-0578&client=summon |