ASSAF: Advanced and Slim StegAnalysis Detection Framework for JPEG images based on deep convolutional denoising autoencoder and Siamese networks

Steganography is the art of embedding a confidential message within a host message. Modern steganography is focused on widely used multimedia file formats, such as images, video files, and Internet protocols. Recently, cyber attackers have begun to include steganography (for communication purposes)...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural networks Ročník 131; s. 64 - 77
Hlavní autoři: Cohen, Assaf, Cohen, Aviad, Nissim, Nir
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Ltd 01.11.2020
Témata:
ISSN:0893-6080, 1879-2782, 1879-2782
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Steganography is the art of embedding a confidential message within a host message. Modern steganography is focused on widely used multimedia file formats, such as images, video files, and Internet protocols. Recently, cyber attackers have begun to include steganography (for communication purposes) in their arsenal of tools for evading detection. Steganalysis is the counter-steganography domain which aims at detecting the existence of steganography within a host file. The presence of steganography in files raises suspicion regarding the file itself, as well as its origin and receiver, and might be an indication of a sophisticated attack. The JPEG file format is one of the most popular image file formats and thus is an attractive and commonly used carrier for steganography embedding. State-of-the-art JPEG steganalysis methods, which are mainly based on neural networks, are limited in their ability to detect sophisticated steganography use cases. In this paper, we propose ASSAF, a novel deep neural network architecture composed of a convolutional denoising autoencoder and a Siamese neural network, specially designed to detect steganography in JPEG images. We focus on detecting the J-UNIWARD method, which is one of the most sophisticated adaptive steganography methods used today. We evaluated our novel architecture using the BOSSBase dataset, which contains 10,000 JPEG images, in eight different use cases which combine different JPEG’s quality factors and embedding rates (bpnzAC). Our results show that ASSAF can detect stenography with high accuracy rates, outperforming, in all eight use cases, the state-of-the-art steganalysis methods by 6% to 40%.
AbstractList Steganography is the art of embedding a confidential message within a host message. Modern steganography is focused on widely used multimedia file formats, such as images, video files, and Internet protocols. Recently, cyber attackers have begun to include steganography (for communication purposes) in their arsenal of tools for evading detection. Steganalysis is the counter-steganography domain which aims at detecting the existence of steganography within a host file. The presence of steganography in files raises suspicion regarding the file itself, as well as its origin and receiver, and might be an indication of a sophisticated attack. The JPEG file format is one of the most popular image file formats and thus is an attractive and commonly used carrier for steganography embedding. State-of-the-art JPEG steganalysis methods, which are mainly based on neural networks, are limited in their ability to detect sophisticated steganography use cases. In this paper, we propose ASSAF, a novel deep neural network architecture composed of a convolutional denoising autoencoder and a Siamese neural network, specially designed to detect steganography in JPEG images. We focus on detecting the J-UNIWARD method, which is one of the most sophisticated adaptive steganography methods used today. We evaluated our novel architecture using the BOSSBase dataset, which contains 10,000 JPEG images, in eight different use cases which combine different JPEG's quality factors and embedding rates (bpnzAC). Our results show that ASSAF can detect stenography with high accuracy rates, outperforming, in all eight use cases, the state-of-the-art steganalysis methods by 6% to 40%.
Steganography is the art of embedding a confidential message within a host message. Modern steganography is focused on widely used multimedia file formats, such as images, video files, and Internet protocols. Recently, cyber attackers have begun to include steganography (for communication purposes) in their arsenal of tools for evading detection. Steganalysis is the counter-steganography domain which aims at detecting the existence of steganography within a host file. The presence of steganography in files raises suspicion regarding the file itself, as well as its origin and receiver, and might be an indication of a sophisticated attack. The JPEG file format is one of the most popular image file formats and thus is an attractive and commonly used carrier for steganography embedding. State-of-the-art JPEG steganalysis methods, which are mainly based on neural networks, are limited in their ability to detect sophisticated steganography use cases. In this paper, we propose ASSAF, a novel deep neural network architecture composed of a convolutional denoising autoencoder and a Siamese neural network, specially designed to detect steganography in JPEG images. We focus on detecting the J-UNIWARD method, which is one of the most sophisticated adaptive steganography methods used today. We evaluated our novel architecture using the BOSSBase dataset, which contains 10,000 JPEG images, in eight different use cases which combine different JPEG's quality factors and embedding rates (bpnzAC). Our results show that ASSAF can detect stenography with high accuracy rates, outperforming, in all eight use cases, the state-of-the-art steganalysis methods by 6% to 40%.Steganography is the art of embedding a confidential message within a host message. Modern steganography is focused on widely used multimedia file formats, such as images, video files, and Internet protocols. Recently, cyber attackers have begun to include steganography (for communication purposes) in their arsenal of tools for evading detection. Steganalysis is the counter-steganography domain which aims at detecting the existence of steganography within a host file. The presence of steganography in files raises suspicion regarding the file itself, as well as its origin and receiver, and might be an indication of a sophisticated attack. The JPEG file format is one of the most popular image file formats and thus is an attractive and commonly used carrier for steganography embedding. State-of-the-art JPEG steganalysis methods, which are mainly based on neural networks, are limited in their ability to detect sophisticated steganography use cases. In this paper, we propose ASSAF, a novel deep neural network architecture composed of a convolutional denoising autoencoder and a Siamese neural network, specially designed to detect steganography in JPEG images. We focus on detecting the J-UNIWARD method, which is one of the most sophisticated adaptive steganography methods used today. We evaluated our novel architecture using the BOSSBase dataset, which contains 10,000 JPEG images, in eight different use cases which combine different JPEG's quality factors and embedding rates (bpnzAC). Our results show that ASSAF can detect stenography with high accuracy rates, outperforming, in all eight use cases, the state-of-the-art steganalysis methods by 6% to 40%.
Author Cohen, Aviad
Nissim, Nir
Cohen, Assaf
Author_xml – sequence: 1
  givenname: Assaf
  orcidid: 0000-0003-3107-9885
  surname: Cohen
  fullname: Cohen, Assaf
  organization: Malware Lab, Cyber Security Research Center, Ben-Gurion University of the Negev, Israel
– sequence: 2
  givenname: Aviad
  orcidid: 0000-0001-9976-0525
  surname: Cohen
  fullname: Cohen, Aviad
  organization: Malware Lab, Cyber Security Research Center, Ben-Gurion University of the Negev, Israel
– sequence: 3
  givenname: Nir
  orcidid: 0000-0003-0652-8861
  surname: Nissim
  fullname: Nissim, Nir
  email: nirni@bgu.ac.il
  organization: Malware Lab, Cyber Security Research Center, Ben-Gurion University of the Negev, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32759032$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFN0DISzZJ_ZM_d4EUlU4LqgTSwNpy7JuRh8Qe7GRQ34JHxlHaDQtYXen6nGOd-12gM-cdIPSWkpwSWl0dcgezgylnhJGc1Dlh7AXa0KYWGasbdoY2pBE8q0hDztFFjAdCSNUU_BU656wuBeFsg363u127vcatOSmnwWDlDN4NdsS7CfatU8NjtBF_hAn0ZL3D26BG-OXDD9z7gD9_vb3DdlR7iLhTMfmTxAAcsfbu5Id58aghrZy30bo9VvPkwWlvIKx_2ZQXAacmS2p8jV72aojw5mleou_b228399nDl7tPN-1DpnnFpkx3tCtMyZuGVhWjpOpYCXWaoudFbZjRTHBDu7436aVQVVmasqhZ1RGhBSP8Er1fc4_B_5whTnK0UcMwKAd-jpIVnDZEUEGT9N2TdO5GMPIYUuPwKJ-vmATXq0AHH2OAXmo7qaX6FJQdJCVyQSYPckUmF2SS1DIhS-biL_Nz_n9sH1YbpCOdLAQZtYUFoQ0JlTTe_jvgD09vswA
CitedBy_id crossref_primary_10_1155_2021_9923389
crossref_primary_10_1016_j_knosys_2025_114271
crossref_primary_10_1016_j_neucom_2024_127528
crossref_primary_10_1016_j_sigpro_2022_108711
crossref_primary_10_1155_2022_3247781
Cites_doi 10.1109/LSP.2006.870357
10.1109/TCSVT.2012.2224052
10.1016/j.sigpro.2009.08.010
10.1016/j.sigpro.2008.12.017
10.1109/TIFS.2014.2364918
10.1186/1687-417X-2014-1
10.1117/1.1469618
10.1109/TIFS.2018.2871749
10.1109/TIFS.2017.2779446
10.1109/TIFS.2012.2224108
10.1109/T-C.1974.223784
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neunet.2020.07.022
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 77
ExternalDocumentID 32759032
10_1016_j_neunet_2020_07_022
S089360802030263X
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABDPE
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADNMO
ADRHT
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSH
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
AFKWA
AJOXV
AMFUW
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
ID FETCH-LOGICAL-c362t-cb1b4d53881662106b25e71069f347d2dc293d1bffdb254a655d54726b09c9203
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000581746300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0893-6080
1879-2782
IngestDate Sun Sep 28 08:18:32 EDT 2025
Wed Feb 19 02:30:02 EST 2025
Sat Nov 29 07:14:45 EST 2025
Tue Nov 18 22:00:30 EST 2025
Sun Apr 06 06:54:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Steganography
Steganalysis
Siamese neural network
Autoencoder
Convolution neural network
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-cb1b4d53881662106b25e71069f347d2dc293d1bffdb254a655d54726b09c9203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9976-0525
0000-0003-0652-8861
0000-0003-3107-9885
PMID 32759032
PQID 2431809191
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2431809191
pubmed_primary_32759032
crossref_citationtrail_10_1016_j_neunet_2020_07_022
crossref_primary_10_1016_j_neunet_2020_07_022
elsevier_sciencedirect_doi_10_1016_j_neunet_2020_07_022
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
2020-Nov
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Akhtar, Johri, Khan (b2) 2013
Tsai, Hu, Yeh (b23) 2009; 89
Tan, Li (b21) 2014
van der Spoel, Rozing, Houwing-Duistermaat, Eline Slagboom, Beekman, de Craen (b24) 2015
Vincent (b25) 2008
Zeng, Tan, Li, Huang (b29) 2018; 13
Zurada (b30) 1992
Taubman (b22) 2002; 11
Bas, Filler, Pevný (b3) 2011
Chen, Sedighi, Boroumand, Fridrich (b7) 2017
Holub, Fridrich (b11) 2012
Holub, Fridrich, Denemark (b13) 2014
Solanki, Sarkar, Manjunath (b20) 2007; vol. 4567
Singh, Shree (b19) 2016
Bas, P., & Furon, T. (0000). BOWS-2. Retrieved from
Ahmed, Natarajan, Rao (b1) 1974; C–23
Sharp (b18) 2001
Cheddad, Condell, Curran, Mc Kevitt (b6) 2010; 90
Vincent, Larochelle, Lajoie, Bengio, Manzagol (b26) 2010; 11
Harmsen, J. J. (2003). Steganalysis of additive noise modelable information hiding. In
Huang, Zhong, Huang (b14) 2014; vol. 8389
Mielikainen (b15) 2006; 13
Qin, Chang, Huang, Liao (b17) 2013; 23
Boroumand, Chen, Fridrich (b5) 2019; 14
.
Coatrieux, Pan, Cuppens-Boulahia, Cuppens, Roux (b9) 2013; 8
Chopra, Hadsell, LeCun (b8) 2005
Holub, Fridrich (b12) 2015; 10
Wei (b27) 2018
Pevný, Filler, Bas (b16) 2010; vol. 6387
Xu (b28) 2017
Coatrieux (10.1016/j.neunet.2020.07.022_b9) 2013; 8
10.1016/j.neunet.2020.07.022_b10
Solanki (10.1016/j.neunet.2020.07.022_b20) 2007; vol. 4567
Holub (10.1016/j.neunet.2020.07.022_b12) 2015; 10
10.1016/j.neunet.2020.07.022_b4
Vincent (10.1016/j.neunet.2020.07.022_b25) 2008
Wei (10.1016/j.neunet.2020.07.022_b27) 2018
Akhtar (10.1016/j.neunet.2020.07.022_b2) 2013
Zurada (10.1016/j.neunet.2020.07.022_b30) 1992
Qin (10.1016/j.neunet.2020.07.022_b17) 2013; 23
Bas (10.1016/j.neunet.2020.07.022_b3) 2011
Sharp (10.1016/j.neunet.2020.07.022_b18) 2001
Chen (10.1016/j.neunet.2020.07.022_b7) 2017
Holub (10.1016/j.neunet.2020.07.022_b11) 2012
Singh (10.1016/j.neunet.2020.07.022_b19) 2016
Ahmed (10.1016/j.neunet.2020.07.022_b1) 1974; C–23
Zeng (10.1016/j.neunet.2020.07.022_b29) 2018; 13
Cheddad (10.1016/j.neunet.2020.07.022_b6) 2010; 90
Pevný (10.1016/j.neunet.2020.07.022_b16) 2010; vol. 6387
Vincent (10.1016/j.neunet.2020.07.022_b26) 2010; 11
Holub (10.1016/j.neunet.2020.07.022_b13) 2014
Tan (10.1016/j.neunet.2020.07.022_b21) 2014
Taubman (10.1016/j.neunet.2020.07.022_b22) 2002; 11
Mielikainen (10.1016/j.neunet.2020.07.022_b15) 2006; 13
Chopra (10.1016/j.neunet.2020.07.022_b8) 2005
Huang (10.1016/j.neunet.2020.07.022_b14) 2014; vol. 8389
van der Spoel (10.1016/j.neunet.2020.07.022_b24) 2015
Xu (10.1016/j.neunet.2020.07.022_b28) 2017
Boroumand (10.1016/j.neunet.2020.07.022_b5) 2019; 14
Tsai (10.1016/j.neunet.2020.07.022_b23) 2009; 89
References_xml – year: 2005
  ident: b8
  article-title: Learning a similarity metric discriminatively, with application to face verification
  publication-title: Proceedings - 2005 IEEE computer society conference on computer vision and pattern recognition
– start-page: 67
  year: 2017
  end-page: 73
  ident: b28
  article-title: Deep convolutional neural network to detect j-UNIWARD
  publication-title: IH and MMSec 2017 - Proceedings of the 2017 ACM workshop on information hiding and multimedia security
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: b26
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: Journal of Machine Learning Research (JMLR)
– volume: 8
  start-page: 111
  year: 2013
  end-page: 120
  ident: b9
  article-title: Reversible watermarking based on invariant image classification and dynamic histogram shifting
  publication-title: IEEE Transactions on Information Forensics and Security
– volume: 11
  start-page: 286
  year: 2002
  ident: b22
  article-title: JPEG2000: Image compression fundamentals, standards and practice
  publication-title: Journal of Electronic Imaging
– volume: 89
  start-page: 1129
  year: 2009
  end-page: 1143
  ident: b23
  article-title: Reversible image hiding scheme using predictive coding and histogram shifting
  publication-title: Signal Processing
– year: 2014
  ident: b13
  article-title: Universal distortion function for steganography in an arbitrary domain
  publication-title: Eurasip Journal on Information Security
– volume: 23
  start-page: 1109
  year: 2013
  end-page: 1118
  ident: b17
  article-title: An inpainting-assisted reversible steganographic scheme using a histogram shifting mechanism
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
– year: 2014
  ident: b21
  article-title: Stacked convolutional auto-encoders for steganalysis of digital images
  publication-title: 2014 Asia-pacific signal and information processing association annual summit and conference
– volume: 13
  start-page: 1200
  year: 2018
  end-page: 1214
  ident: b29
  article-title: Large-scale JPEG image steganalysis using hybrid deep-learning framework
  publication-title: IEEE Transactions on Information Forensics and Security
– start-page: 59
  year: 2011
  end-page: 70
  ident: b3
  article-title: Break our steganographic system: the ins and outs of organizing BOSS
– start-page: 234
  year: 2012
  end-page: 239
  ident: b11
  article-title: Designing steganographic distortion using directional filters
  publication-title: WIFS 2012 - Proceedings of the 2012 IEEE international workshop on information forensics and security
– volume: 90
  start-page: 727
  year: 2010
  end-page: 752
  ident: b6
  article-title: Digital image steganography: Survey and analysis of current methods
  publication-title: Signal Processing
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: b25
  article-title: Extracting features with autoencoders
  publication-title: Proceedings of the 25th international conference on machine learning
– start-page: 13
  year: 2001
  end-page: 26
  ident: b18
  article-title: An implementation of key-based digital signal steganography
  publication-title: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), (vol. 2137)
– volume: 14
  start-page: 1181
  year: 2019
  end-page: 1193
  ident: b5
  article-title: Deep residual network for steganalysis of digital images
  publication-title: IEEE Transactions on Information Forensics and Security
– start-page: 385
  year: 2013
  end-page: 390
  ident: b2
  article-title: Enhancing the security and quality of lsb based image steganography
  publication-title: Proceedings - 5th International conference on computational intelligence and communication networks
– reference: Bas, P., & Furon, T. (0000). BOWS-2. Retrieved from
– volume: C–23
  start-page: 90
  year: 1974
  end-page: 93
  ident: b1
  article-title: Discrete cosine transform
  publication-title: IEEE Transactions on Computers
– volume: vol. 8389
  start-page: 19
  year: 2014
  end-page: 31
  ident: b14
  article-title: Improved algorithm of edge adaptive image steganography based on LSB matching revisited algorithm
  publication-title: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics)
– reference: .
– year: 2015
  ident: b24
  article-title: Siamese neural networks for one-shot image recognition
  publication-title: ICML - Deep learning workshop
– year: 2018
  ident: b27
  article-title: New malware takes commands from memes posted on twitter
– volume: vol. 6387
  start-page: 161
  year: 2010
  end-page: 177
  ident: b16
  article-title: Using high-dimensional image models to perform highly undetectable steganography
  publication-title: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics)
– start-page: 75
  year: 2017
  end-page: 84
  ident: b7
  article-title: JPEG-Phase-aware convolutional neural network for steganalysis of JPEG images
  publication-title: Proceedings of the 5th ACM workshop on information hiding and multimedia security
– volume: 10
  start-page: 219
  year: 2015
  end-page: 228
  ident: b12
  article-title: Low-complexity features for JPEG steganalysis using undecimated DCT
  publication-title: IEEE Transactions on Information Forensics and Security
– year: 2016
  ident: b19
  article-title: A comparative study to noise models and image restoration techniques
  publication-title: International Journal of Computer Applications
– year: 1992
  ident: b30
  article-title: Introduction to artificial neural systems
– reference: Harmsen, J. J. (2003). Steganalysis of additive noise modelable information hiding. In
– volume: vol. 4567
  start-page: 16
  year: 2007
  end-page: 31
  ident: b20
  article-title: YASS: Yet another steganographic scheme that resists blind steganalysis
  publication-title: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics)
– volume: 13
  start-page: 285
  year: 2006
  end-page: 287
  ident: b15
  article-title: LSB Matching revisited
  publication-title: IEEE Signal Processing Letters
– volume: 11
  start-page: 3371
  year: 2010
  ident: 10.1016/j.neunet.2020.07.022_b26
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: Journal of Machine Learning Research (JMLR)
– year: 2014
  ident: 10.1016/j.neunet.2020.07.022_b21
  article-title: Stacked convolutional auto-encoders for steganalysis of digital images
– volume: 13
  start-page: 285
  issue: 5
  year: 2006
  ident: 10.1016/j.neunet.2020.07.022_b15
  article-title: LSB Matching revisited
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2006.870357
– start-page: 385
  year: 2013
  ident: 10.1016/j.neunet.2020.07.022_b2
  article-title: Enhancing the security and quality of lsb based image steganography
– year: 2005
  ident: 10.1016/j.neunet.2020.07.022_b8
  article-title: Learning a similarity metric discriminatively, with application to face verification
– year: 2016
  ident: 10.1016/j.neunet.2020.07.022_b19
  article-title: A comparative study to noise models and image restoration techniques
  publication-title: International Journal of Computer Applications
– volume: 23
  start-page: 1109
  issue: 7
  year: 2013
  ident: 10.1016/j.neunet.2020.07.022_b17
  article-title: An inpainting-assisted reversible steganographic scheme using a histogram shifting mechanism
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2012.2224052
– volume: 90
  start-page: 727
  issue: 3
  year: 2010
  ident: 10.1016/j.neunet.2020.07.022_b6
  article-title: Digital image steganography: Survey and analysis of current methods
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2009.08.010
– start-page: 1096
  year: 2008
  ident: 10.1016/j.neunet.2020.07.022_b25
  article-title: Extracting features with autoencoders
– volume: 89
  start-page: 1129
  issue: 6
  year: 2009
  ident: 10.1016/j.neunet.2020.07.022_b23
  article-title: Reversible image hiding scheme using predictive coding and histogram shifting
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2008.12.017
– year: 2015
  ident: 10.1016/j.neunet.2020.07.022_b24
  article-title: Siamese neural networks for one-shot image recognition
– start-page: 59
  year: 2011
  ident: 10.1016/j.neunet.2020.07.022_b3
– start-page: 67
  year: 2017
  ident: 10.1016/j.neunet.2020.07.022_b28
  article-title: Deep convolutional neural network to detect j-UNIWARD
– ident: 10.1016/j.neunet.2020.07.022_b4
– volume: 10
  start-page: 219
  issue: 2
  year: 2015
  ident: 10.1016/j.neunet.2020.07.022_b12
  article-title: Low-complexity features for JPEG steganalysis using undecimated DCT
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2014.2364918
– volume: vol. 8389
  start-page: 19
  year: 2014
  ident: 10.1016/j.neunet.2020.07.022_b14
  article-title: Improved algorithm of edge adaptive image steganography based on LSB matching revisited algorithm
– year: 1992
  ident: 10.1016/j.neunet.2020.07.022_b30
– year: 2014
  ident: 10.1016/j.neunet.2020.07.022_b13
  article-title: Universal distortion function for steganography in an arbitrary domain
  publication-title: Eurasip Journal on Information Security
  doi: 10.1186/1687-417X-2014-1
– volume: 11
  start-page: 286
  issue: 2
  year: 2002
  ident: 10.1016/j.neunet.2020.07.022_b22
  article-title: JPEG2000: Image compression fundamentals, standards and practice
  publication-title: Journal of Electronic Imaging
  doi: 10.1117/1.1469618
– volume: 14
  start-page: 1181
  issue: 5
  year: 2019
  ident: 10.1016/j.neunet.2020.07.022_b5
  article-title: Deep residual network for steganalysis of digital images
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2018.2871749
– start-page: 13
  year: 2001
  ident: 10.1016/j.neunet.2020.07.022_b18
  article-title: An implementation of key-based digital signal steganography
– start-page: 75
  year: 2017
  ident: 10.1016/j.neunet.2020.07.022_b7
  article-title: JPEG-Phase-aware convolutional neural network for steganalysis of JPEG images
– volume: 13
  start-page: 1200
  issue: 5
  year: 2018
  ident: 10.1016/j.neunet.2020.07.022_b29
  article-title: Large-scale JPEG image steganalysis using hybrid deep-learning framework
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2017.2779446
– start-page: 234
  year: 2012
  ident: 10.1016/j.neunet.2020.07.022_b11
  article-title: Designing steganographic distortion using directional filters
– volume: 8
  start-page: 111
  issue: 1
  year: 2013
  ident: 10.1016/j.neunet.2020.07.022_b9
  article-title: Reversible watermarking based on invariant image classification and dynamic histogram shifting
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2012.2224108
– volume: vol. 4567
  start-page: 16
  year: 2007
  ident: 10.1016/j.neunet.2020.07.022_b20
  article-title: YASS: Yet another steganographic scheme that resists blind steganalysis
– year: 2018
  ident: 10.1016/j.neunet.2020.07.022_b27
– volume: C–23
  start-page: 90
  issue: 1
  year: 1974
  ident: 10.1016/j.neunet.2020.07.022_b1
  article-title: Discrete cosine transform
  publication-title: IEEE Transactions on Computers
  doi: 10.1109/T-C.1974.223784
– ident: 10.1016/j.neunet.2020.07.022_b10
– volume: vol. 6387
  start-page: 161
  year: 2010
  ident: 10.1016/j.neunet.2020.07.022_b16
  article-title: Using high-dimensional image models to perform highly undetectable steganography
SSID ssj0006843
Score 2.3843596
Snippet Steganography is the art of embedding a confidential message within a host message. Modern steganography is focused on widely used multimedia file formats,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 64
SubjectTerms Autoencoder
Convolution neural network
Deep learning
Image Processing, Computer-Assisted - methods
Image Processing, Computer-Assisted - standards
Neural Networks, Computer
Siamese neural network
Signal-To-Noise Ratio
Software
Steganalysis
Steganography
Title ASSAF: Advanced and Slim StegAnalysis Detection Framework for JPEG images based on deep convolutional denoising autoencoder and Siamese networks
URI https://dx.doi.org/10.1016/j.neunet.2020.07.022
https://www.ncbi.nlm.nih.gov/pubmed/32759032
https://www.proquest.com/docview/2431809191
Volume 131
WOSCitedRecordID wos000581746300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lLQcuvB8tUC0St8qV7fVruUWQABWqKqUg3yzbu0auUidKnKi_oSd-MjP7cB2iqoDExYpsb2bt7_Ps7OzsDCHvIviIorxKnFCg6ybk3EmKMnLAtMX8VjzJVd6C71_j09MkTfnZYHBt98Ksp3HTJFdXfP5foYZzADZunf0LuLs_hRPwG0CHI8AOxz8CfjiZDMfK32eX91V05rS-xJCuH10Wko-ylbpO-NgGaKmYw5Oz0aej-jLH5A84xglcTxBSzlWEuuk6Lu3IZlYrT0O-ameYDxPTUihZNYbeyqNGh5gv-wYwJgOBxhuX-rtEgC55tX12Xeeit4SyrA2NF32vBUxRvQ2vRbed5iZ2SWk8zpzI1aWdOvVsRgmtYHXKczNU6wIwW4OA9kdcHDdyBU9zjOJVgla9Afq39NoTFIoyfVB3fsTSHbLnxyEHJb83_DJKT7pxPUp0DKbtpN2IqaIFt2XdZujcNpFRBs35I_LAzEToUDPoMRnI5gl5aKt8UKP0n5KfilDvqaUTBYgp0on26UQ7OtGOThToRJFOVNOJKjpRuAXpRDfoRDs60R6dtCxNJ2o584x8G4_OP3x2TB0PpwTzqHXKwisCAUoB16h9z40KP5Rg2Ua8YkEsfFGCzSm8oqoEXAly0BIiDGI_KlxecsDlOdltZo18SSjzk7zCWvQ8FEHlhYkEG68CFcOYW0jm7RNmX3pWmiT3WGtlmtloxotMQ5UhVJkbZwDVPnG6VnOd5OWO-2OLZ2YMVW2AZkDBO1q-tfBnoMdxcS5v5Gy1zHyw5BMw3jk8wwvNi64vDAnpMv_gn-W-IvdvvsLXZLddrOQbcq9ct_VycUh24jQ5NHz_BccD0Q4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ASSAF%3A+Advanced+and+Slim+StegAnalysis+Detection+Framework+for+JPEG+images+based+on+deep+convolutional+denoising+autoencoder+and+Siamese+networks&rft.jtitle=Neural+networks&rft.au=Cohen%2C+Assaf&rft.au=Cohen%2C+Aviad&rft.au=Nissim%2C+Nir&rft.date=2020-11-01&rft.pub=Elsevier+Ltd&rft.issn=0893-6080&rft.volume=131&rft.spage=64&rft.epage=77&rft_id=info:doi/10.1016%2Fj.neunet.2020.07.022&rft.externalDocID=S089360802030263X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon