ASSAF: Advanced and Slim StegAnalysis Detection Framework for JPEG images based on deep convolutional denoising autoencoder and Siamese networks
Steganography is the art of embedding a confidential message within a host message. Modern steganography is focused on widely used multimedia file formats, such as images, video files, and Internet protocols. Recently, cyber attackers have begun to include steganography (for communication purposes)...
Uloženo v:
| Vydáno v: | Neural networks Ročník 131; s. 64 - 77 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Ltd
01.11.2020
|
| Témata: | |
| ISSN: | 0893-6080, 1879-2782, 1879-2782 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Steganography is the art of embedding a confidential message within a host message. Modern steganography is focused on widely used multimedia file formats, such as images, video files, and Internet protocols. Recently, cyber attackers have begun to include steganography (for communication purposes) in their arsenal of tools for evading detection. Steganalysis is the counter-steganography domain which aims at detecting the existence of steganography within a host file. The presence of steganography in files raises suspicion regarding the file itself, as well as its origin and receiver, and might be an indication of a sophisticated attack. The JPEG file format is one of the most popular image file formats and thus is an attractive and commonly used carrier for steganography embedding. State-of-the-art JPEG steganalysis methods, which are mainly based on neural networks, are limited in their ability to detect sophisticated steganography use cases. In this paper, we propose ASSAF, a novel deep neural network architecture composed of a convolutional denoising autoencoder and a Siamese neural network, specially designed to detect steganography in JPEG images. We focus on detecting the J-UNIWARD method, which is one of the most sophisticated adaptive steganography methods used today. We evaluated our novel architecture using the BOSSBase dataset, which contains 10,000 JPEG images, in eight different use cases which combine different JPEG’s quality factors and embedding rates (bpnzAC). Our results show that ASSAF can detect stenography with high accuracy rates, outperforming, in all eight use cases, the state-of-the-art steganalysis methods by 6% to 40%. |
|---|---|
| AbstractList | Steganography is the art of embedding a confidential message within a host message. Modern steganography is focused on widely used multimedia file formats, such as images, video files, and Internet protocols. Recently, cyber attackers have begun to include steganography (for communication purposes) in their arsenal of tools for evading detection. Steganalysis is the counter-steganography domain which aims at detecting the existence of steganography within a host file. The presence of steganography in files raises suspicion regarding the file itself, as well as its origin and receiver, and might be an indication of a sophisticated attack. The JPEG file format is one of the most popular image file formats and thus is an attractive and commonly used carrier for steganography embedding. State-of-the-art JPEG steganalysis methods, which are mainly based on neural networks, are limited in their ability to detect sophisticated steganography use cases. In this paper, we propose ASSAF, a novel deep neural network architecture composed of a convolutional denoising autoencoder and a Siamese neural network, specially designed to detect steganography in JPEG images. We focus on detecting the J-UNIWARD method, which is one of the most sophisticated adaptive steganography methods used today. We evaluated our novel architecture using the BOSSBase dataset, which contains 10,000 JPEG images, in eight different use cases which combine different JPEG's quality factors and embedding rates (bpnzAC). Our results show that ASSAF can detect stenography with high accuracy rates, outperforming, in all eight use cases, the state-of-the-art steganalysis methods by 6% to 40%. Steganography is the art of embedding a confidential message within a host message. Modern steganography is focused on widely used multimedia file formats, such as images, video files, and Internet protocols. Recently, cyber attackers have begun to include steganography (for communication purposes) in their arsenal of tools for evading detection. Steganalysis is the counter-steganography domain which aims at detecting the existence of steganography within a host file. The presence of steganography in files raises suspicion regarding the file itself, as well as its origin and receiver, and might be an indication of a sophisticated attack. The JPEG file format is one of the most popular image file formats and thus is an attractive and commonly used carrier for steganography embedding. State-of-the-art JPEG steganalysis methods, which are mainly based on neural networks, are limited in their ability to detect sophisticated steganography use cases. In this paper, we propose ASSAF, a novel deep neural network architecture composed of a convolutional denoising autoencoder and a Siamese neural network, specially designed to detect steganography in JPEG images. We focus on detecting the J-UNIWARD method, which is one of the most sophisticated adaptive steganography methods used today. We evaluated our novel architecture using the BOSSBase dataset, which contains 10,000 JPEG images, in eight different use cases which combine different JPEG's quality factors and embedding rates (bpnzAC). Our results show that ASSAF can detect stenography with high accuracy rates, outperforming, in all eight use cases, the state-of-the-art steganalysis methods by 6% to 40%.Steganography is the art of embedding a confidential message within a host message. Modern steganography is focused on widely used multimedia file formats, such as images, video files, and Internet protocols. Recently, cyber attackers have begun to include steganography (for communication purposes) in their arsenal of tools for evading detection. Steganalysis is the counter-steganography domain which aims at detecting the existence of steganography within a host file. The presence of steganography in files raises suspicion regarding the file itself, as well as its origin and receiver, and might be an indication of a sophisticated attack. The JPEG file format is one of the most popular image file formats and thus is an attractive and commonly used carrier for steganography embedding. State-of-the-art JPEG steganalysis methods, which are mainly based on neural networks, are limited in their ability to detect sophisticated steganography use cases. In this paper, we propose ASSAF, a novel deep neural network architecture composed of a convolutional denoising autoencoder and a Siamese neural network, specially designed to detect steganography in JPEG images. We focus on detecting the J-UNIWARD method, which is one of the most sophisticated adaptive steganography methods used today. We evaluated our novel architecture using the BOSSBase dataset, which contains 10,000 JPEG images, in eight different use cases which combine different JPEG's quality factors and embedding rates (bpnzAC). Our results show that ASSAF can detect stenography with high accuracy rates, outperforming, in all eight use cases, the state-of-the-art steganalysis methods by 6% to 40%. |
| Author | Cohen, Aviad Nissim, Nir Cohen, Assaf |
| Author_xml | – sequence: 1 givenname: Assaf orcidid: 0000-0003-3107-9885 surname: Cohen fullname: Cohen, Assaf organization: Malware Lab, Cyber Security Research Center, Ben-Gurion University of the Negev, Israel – sequence: 2 givenname: Aviad orcidid: 0000-0001-9976-0525 surname: Cohen fullname: Cohen, Aviad organization: Malware Lab, Cyber Security Research Center, Ben-Gurion University of the Negev, Israel – sequence: 3 givenname: Nir orcidid: 0000-0003-0652-8861 surname: Nissim fullname: Nissim, Nir email: nirni@bgu.ac.il organization: Malware Lab, Cyber Security Research Center, Ben-Gurion University of the Negev, Israel |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32759032$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1u1DAUhS1URKeFN0DISzZJ_ZM_d4EUlU4LqgTSwNpy7JuRh8Qe7GRQ34JHxlHaDQtYXen6nGOd-12gM-cdIPSWkpwSWl0dcgezgylnhJGc1Dlh7AXa0KYWGasbdoY2pBE8q0hDztFFjAdCSNUU_BU656wuBeFsg363u127vcatOSmnwWDlDN4NdsS7CfatU8NjtBF_hAn0ZL3D26BG-OXDD9z7gD9_vb3DdlR7iLhTMfmTxAAcsfbu5Id58aghrZy30bo9VvPkwWlvIKx_2ZQXAacmS2p8jV72aojw5mleou_b228399nDl7tPN-1DpnnFpkx3tCtMyZuGVhWjpOpYCXWaoudFbZjRTHBDu7436aVQVVmasqhZ1RGhBSP8Er1fc4_B_5whTnK0UcMwKAd-jpIVnDZEUEGT9N2TdO5GMPIYUuPwKJ-vmATXq0AHH2OAXmo7qaX6FJQdJCVyQSYPckUmF2SS1DIhS-biL_Nz_n9sH1YbpCOdLAQZtYUFoQ0JlTTe_jvgD09vswA |
| CitedBy_id | crossref_primary_10_1155_2021_9923389 crossref_primary_10_1016_j_knosys_2025_114271 crossref_primary_10_1016_j_neucom_2024_127528 crossref_primary_10_1016_j_sigpro_2022_108711 crossref_primary_10_1155_2022_3247781 |
| Cites_doi | 10.1109/LSP.2006.870357 10.1109/TCSVT.2012.2224052 10.1016/j.sigpro.2009.08.010 10.1016/j.sigpro.2008.12.017 10.1109/TIFS.2014.2364918 10.1186/1687-417X-2014-1 10.1117/1.1469618 10.1109/TIFS.2018.2871749 10.1109/TIFS.2017.2779446 10.1109/TIFS.2012.2224108 10.1109/T-C.1974.223784 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.neunet.2020.07.022 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1879-2782 |
| EndPage | 77 |
| ExternalDocumentID | 32759032 10_1016_j_neunet_2020_07_022 S089360802030263X |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABDPE ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADNMO ADRHT AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSH SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD AFKWA AJOXV AMFUW CGR CUY CVF ECM EIF NPM PKN 7X8 |
| ID | FETCH-LOGICAL-c362t-cb1b4d53881662106b25e71069f347d2dc293d1bffdb254a655d54726b09c9203 |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000581746300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0893-6080 1879-2782 |
| IngestDate | Sun Sep 28 08:18:32 EDT 2025 Wed Feb 19 02:30:02 EST 2025 Sat Nov 29 07:14:45 EST 2025 Tue Nov 18 22:00:30 EST 2025 Sun Apr 06 06:54:41 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Steganography Steganalysis Siamese neural network Autoencoder Convolution neural network |
| Language | English |
| License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c362t-cb1b4d53881662106b25e71069f347d2dc293d1bffdb254a655d54726b09c9203 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-9976-0525 0000-0003-0652-8861 0000-0003-3107-9885 |
| PMID | 32759032 |
| PQID | 2431809191 |
| PQPubID | 23479 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2431809191 pubmed_primary_32759032 crossref_citationtrail_10_1016_j_neunet_2020_07_022 crossref_primary_10_1016_j_neunet_2020_07_022 elsevier_sciencedirect_doi_10_1016_j_neunet_2020_07_022 |
| PublicationCentury | 2000 |
| PublicationDate | November 2020 2020-11-00 2020-Nov 20201101 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neural networks |
| PublicationTitleAlternate | Neural Netw |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Akhtar, Johri, Khan (b2) 2013 Tsai, Hu, Yeh (b23) 2009; 89 Tan, Li (b21) 2014 van der Spoel, Rozing, Houwing-Duistermaat, Eline Slagboom, Beekman, de Craen (b24) 2015 Vincent (b25) 2008 Zeng, Tan, Li, Huang (b29) 2018; 13 Zurada (b30) 1992 Taubman (b22) 2002; 11 Bas, Filler, Pevný (b3) 2011 Chen, Sedighi, Boroumand, Fridrich (b7) 2017 Holub, Fridrich (b11) 2012 Holub, Fridrich, Denemark (b13) 2014 Solanki, Sarkar, Manjunath (b20) 2007; vol. 4567 Singh, Shree (b19) 2016 Bas, P., & Furon, T. (0000). BOWS-2. Retrieved from Ahmed, Natarajan, Rao (b1) 1974; C–23 Sharp (b18) 2001 Cheddad, Condell, Curran, Mc Kevitt (b6) 2010; 90 Vincent, Larochelle, Lajoie, Bengio, Manzagol (b26) 2010; 11 Harmsen, J. J. (2003). Steganalysis of additive noise modelable information hiding. In Huang, Zhong, Huang (b14) 2014; vol. 8389 Mielikainen (b15) 2006; 13 Qin, Chang, Huang, Liao (b17) 2013; 23 Boroumand, Chen, Fridrich (b5) 2019; 14 . Coatrieux, Pan, Cuppens-Boulahia, Cuppens, Roux (b9) 2013; 8 Chopra, Hadsell, LeCun (b8) 2005 Holub, Fridrich (b12) 2015; 10 Wei (b27) 2018 Pevný, Filler, Bas (b16) 2010; vol. 6387 Xu (b28) 2017 Coatrieux (10.1016/j.neunet.2020.07.022_b9) 2013; 8 10.1016/j.neunet.2020.07.022_b10 Solanki (10.1016/j.neunet.2020.07.022_b20) 2007; vol. 4567 Holub (10.1016/j.neunet.2020.07.022_b12) 2015; 10 10.1016/j.neunet.2020.07.022_b4 Vincent (10.1016/j.neunet.2020.07.022_b25) 2008 Wei (10.1016/j.neunet.2020.07.022_b27) 2018 Akhtar (10.1016/j.neunet.2020.07.022_b2) 2013 Zurada (10.1016/j.neunet.2020.07.022_b30) 1992 Qin (10.1016/j.neunet.2020.07.022_b17) 2013; 23 Bas (10.1016/j.neunet.2020.07.022_b3) 2011 Sharp (10.1016/j.neunet.2020.07.022_b18) 2001 Chen (10.1016/j.neunet.2020.07.022_b7) 2017 Holub (10.1016/j.neunet.2020.07.022_b11) 2012 Singh (10.1016/j.neunet.2020.07.022_b19) 2016 Ahmed (10.1016/j.neunet.2020.07.022_b1) 1974; C–23 Zeng (10.1016/j.neunet.2020.07.022_b29) 2018; 13 Cheddad (10.1016/j.neunet.2020.07.022_b6) 2010; 90 Pevný (10.1016/j.neunet.2020.07.022_b16) 2010; vol. 6387 Vincent (10.1016/j.neunet.2020.07.022_b26) 2010; 11 Holub (10.1016/j.neunet.2020.07.022_b13) 2014 Tan (10.1016/j.neunet.2020.07.022_b21) 2014 Taubman (10.1016/j.neunet.2020.07.022_b22) 2002; 11 Mielikainen (10.1016/j.neunet.2020.07.022_b15) 2006; 13 Chopra (10.1016/j.neunet.2020.07.022_b8) 2005 Huang (10.1016/j.neunet.2020.07.022_b14) 2014; vol. 8389 van der Spoel (10.1016/j.neunet.2020.07.022_b24) 2015 Xu (10.1016/j.neunet.2020.07.022_b28) 2017 Boroumand (10.1016/j.neunet.2020.07.022_b5) 2019; 14 Tsai (10.1016/j.neunet.2020.07.022_b23) 2009; 89 |
| References_xml | – year: 2005 ident: b8 article-title: Learning a similarity metric discriminatively, with application to face verification publication-title: Proceedings - 2005 IEEE computer society conference on computer vision and pattern recognition – start-page: 67 year: 2017 end-page: 73 ident: b28 article-title: Deep convolutional neural network to detect j-UNIWARD publication-title: IH and MMSec 2017 - Proceedings of the 2017 ACM workshop on information hiding and multimedia security – volume: 11 start-page: 3371 year: 2010 end-page: 3408 ident: b26 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: Journal of Machine Learning Research (JMLR) – volume: 8 start-page: 111 year: 2013 end-page: 120 ident: b9 article-title: Reversible watermarking based on invariant image classification and dynamic histogram shifting publication-title: IEEE Transactions on Information Forensics and Security – volume: 11 start-page: 286 year: 2002 ident: b22 article-title: JPEG2000: Image compression fundamentals, standards and practice publication-title: Journal of Electronic Imaging – volume: 89 start-page: 1129 year: 2009 end-page: 1143 ident: b23 article-title: Reversible image hiding scheme using predictive coding and histogram shifting publication-title: Signal Processing – year: 2014 ident: b13 article-title: Universal distortion function for steganography in an arbitrary domain publication-title: Eurasip Journal on Information Security – volume: 23 start-page: 1109 year: 2013 end-page: 1118 ident: b17 article-title: An inpainting-assisted reversible steganographic scheme using a histogram shifting mechanism publication-title: IEEE Transactions on Circuits and Systems for Video Technology – year: 2014 ident: b21 article-title: Stacked convolutional auto-encoders for steganalysis of digital images publication-title: 2014 Asia-pacific signal and information processing association annual summit and conference – volume: 13 start-page: 1200 year: 2018 end-page: 1214 ident: b29 article-title: Large-scale JPEG image steganalysis using hybrid deep-learning framework publication-title: IEEE Transactions on Information Forensics and Security – start-page: 59 year: 2011 end-page: 70 ident: b3 article-title: Break our steganographic system: the ins and outs of organizing BOSS – start-page: 234 year: 2012 end-page: 239 ident: b11 article-title: Designing steganographic distortion using directional filters publication-title: WIFS 2012 - Proceedings of the 2012 IEEE international workshop on information forensics and security – volume: 90 start-page: 727 year: 2010 end-page: 752 ident: b6 article-title: Digital image steganography: Survey and analysis of current methods publication-title: Signal Processing – start-page: 1096 year: 2008 end-page: 1103 ident: b25 article-title: Extracting features with autoencoders publication-title: Proceedings of the 25th international conference on machine learning – start-page: 13 year: 2001 end-page: 26 ident: b18 article-title: An implementation of key-based digital signal steganography publication-title: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), (vol. 2137) – volume: 14 start-page: 1181 year: 2019 end-page: 1193 ident: b5 article-title: Deep residual network for steganalysis of digital images publication-title: IEEE Transactions on Information Forensics and Security – start-page: 385 year: 2013 end-page: 390 ident: b2 article-title: Enhancing the security and quality of lsb based image steganography publication-title: Proceedings - 5th International conference on computational intelligence and communication networks – reference: Bas, P., & Furon, T. (0000). BOWS-2. Retrieved from – volume: C–23 start-page: 90 year: 1974 end-page: 93 ident: b1 article-title: Discrete cosine transform publication-title: IEEE Transactions on Computers – volume: vol. 8389 start-page: 19 year: 2014 end-page: 31 ident: b14 article-title: Improved algorithm of edge adaptive image steganography based on LSB matching revisited algorithm publication-title: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) – reference: . – year: 2015 ident: b24 article-title: Siamese neural networks for one-shot image recognition publication-title: ICML - Deep learning workshop – year: 2018 ident: b27 article-title: New malware takes commands from memes posted on twitter – volume: vol. 6387 start-page: 161 year: 2010 end-page: 177 ident: b16 article-title: Using high-dimensional image models to perform highly undetectable steganography publication-title: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) – start-page: 75 year: 2017 end-page: 84 ident: b7 article-title: JPEG-Phase-aware convolutional neural network for steganalysis of JPEG images publication-title: Proceedings of the 5th ACM workshop on information hiding and multimedia security – volume: 10 start-page: 219 year: 2015 end-page: 228 ident: b12 article-title: Low-complexity features for JPEG steganalysis using undecimated DCT publication-title: IEEE Transactions on Information Forensics and Security – year: 2016 ident: b19 article-title: A comparative study to noise models and image restoration techniques publication-title: International Journal of Computer Applications – year: 1992 ident: b30 article-title: Introduction to artificial neural systems – reference: Harmsen, J. J. (2003). Steganalysis of additive noise modelable information hiding. In – volume: vol. 4567 start-page: 16 year: 2007 end-page: 31 ident: b20 article-title: YASS: Yet another steganographic scheme that resists blind steganalysis publication-title: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) – volume: 13 start-page: 285 year: 2006 end-page: 287 ident: b15 article-title: LSB Matching revisited publication-title: IEEE Signal Processing Letters – volume: 11 start-page: 3371 year: 2010 ident: 10.1016/j.neunet.2020.07.022_b26 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: Journal of Machine Learning Research (JMLR) – year: 2014 ident: 10.1016/j.neunet.2020.07.022_b21 article-title: Stacked convolutional auto-encoders for steganalysis of digital images – volume: 13 start-page: 285 issue: 5 year: 2006 ident: 10.1016/j.neunet.2020.07.022_b15 article-title: LSB Matching revisited publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2006.870357 – start-page: 385 year: 2013 ident: 10.1016/j.neunet.2020.07.022_b2 article-title: Enhancing the security and quality of lsb based image steganography – year: 2005 ident: 10.1016/j.neunet.2020.07.022_b8 article-title: Learning a similarity metric discriminatively, with application to face verification – year: 2016 ident: 10.1016/j.neunet.2020.07.022_b19 article-title: A comparative study to noise models and image restoration techniques publication-title: International Journal of Computer Applications – volume: 23 start-page: 1109 issue: 7 year: 2013 ident: 10.1016/j.neunet.2020.07.022_b17 article-title: An inpainting-assisted reversible steganographic scheme using a histogram shifting mechanism publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2012.2224052 – volume: 90 start-page: 727 issue: 3 year: 2010 ident: 10.1016/j.neunet.2020.07.022_b6 article-title: Digital image steganography: Survey and analysis of current methods publication-title: Signal Processing doi: 10.1016/j.sigpro.2009.08.010 – start-page: 1096 year: 2008 ident: 10.1016/j.neunet.2020.07.022_b25 article-title: Extracting features with autoencoders – volume: 89 start-page: 1129 issue: 6 year: 2009 ident: 10.1016/j.neunet.2020.07.022_b23 article-title: Reversible image hiding scheme using predictive coding and histogram shifting publication-title: Signal Processing doi: 10.1016/j.sigpro.2008.12.017 – year: 2015 ident: 10.1016/j.neunet.2020.07.022_b24 article-title: Siamese neural networks for one-shot image recognition – start-page: 59 year: 2011 ident: 10.1016/j.neunet.2020.07.022_b3 – start-page: 67 year: 2017 ident: 10.1016/j.neunet.2020.07.022_b28 article-title: Deep convolutional neural network to detect j-UNIWARD – ident: 10.1016/j.neunet.2020.07.022_b4 – volume: 10 start-page: 219 issue: 2 year: 2015 ident: 10.1016/j.neunet.2020.07.022_b12 article-title: Low-complexity features for JPEG steganalysis using undecimated DCT publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2014.2364918 – volume: vol. 8389 start-page: 19 year: 2014 ident: 10.1016/j.neunet.2020.07.022_b14 article-title: Improved algorithm of edge adaptive image steganography based on LSB matching revisited algorithm – year: 1992 ident: 10.1016/j.neunet.2020.07.022_b30 – year: 2014 ident: 10.1016/j.neunet.2020.07.022_b13 article-title: Universal distortion function for steganography in an arbitrary domain publication-title: Eurasip Journal on Information Security doi: 10.1186/1687-417X-2014-1 – volume: 11 start-page: 286 issue: 2 year: 2002 ident: 10.1016/j.neunet.2020.07.022_b22 article-title: JPEG2000: Image compression fundamentals, standards and practice publication-title: Journal of Electronic Imaging doi: 10.1117/1.1469618 – volume: 14 start-page: 1181 issue: 5 year: 2019 ident: 10.1016/j.neunet.2020.07.022_b5 article-title: Deep residual network for steganalysis of digital images publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2018.2871749 – start-page: 13 year: 2001 ident: 10.1016/j.neunet.2020.07.022_b18 article-title: An implementation of key-based digital signal steganography – start-page: 75 year: 2017 ident: 10.1016/j.neunet.2020.07.022_b7 article-title: JPEG-Phase-aware convolutional neural network for steganalysis of JPEG images – volume: 13 start-page: 1200 issue: 5 year: 2018 ident: 10.1016/j.neunet.2020.07.022_b29 article-title: Large-scale JPEG image steganalysis using hybrid deep-learning framework publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2017.2779446 – start-page: 234 year: 2012 ident: 10.1016/j.neunet.2020.07.022_b11 article-title: Designing steganographic distortion using directional filters – volume: 8 start-page: 111 issue: 1 year: 2013 ident: 10.1016/j.neunet.2020.07.022_b9 article-title: Reversible watermarking based on invariant image classification and dynamic histogram shifting publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2012.2224108 – volume: vol. 4567 start-page: 16 year: 2007 ident: 10.1016/j.neunet.2020.07.022_b20 article-title: YASS: Yet another steganographic scheme that resists blind steganalysis – year: 2018 ident: 10.1016/j.neunet.2020.07.022_b27 – volume: C–23 start-page: 90 issue: 1 year: 1974 ident: 10.1016/j.neunet.2020.07.022_b1 article-title: Discrete cosine transform publication-title: IEEE Transactions on Computers doi: 10.1109/T-C.1974.223784 – ident: 10.1016/j.neunet.2020.07.022_b10 – volume: vol. 6387 start-page: 161 year: 2010 ident: 10.1016/j.neunet.2020.07.022_b16 article-title: Using high-dimensional image models to perform highly undetectable steganography |
| SSID | ssj0006843 |
| Score | 2.3843596 |
| Snippet | Steganography is the art of embedding a confidential message within a host message. Modern steganography is focused on widely used multimedia file formats,... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 64 |
| SubjectTerms | Autoencoder Convolution neural network Deep learning Image Processing, Computer-Assisted - methods Image Processing, Computer-Assisted - standards Neural Networks, Computer Siamese neural network Signal-To-Noise Ratio Software Steganalysis Steganography |
| Title | ASSAF: Advanced and Slim StegAnalysis Detection Framework for JPEG images based on deep convolutional denoising autoencoder and Siamese networks |
| URI | https://dx.doi.org/10.1016/j.neunet.2020.07.022 https://www.ncbi.nlm.nih.gov/pubmed/32759032 https://www.proquest.com/docview/2431809191 |
| Volume | 131 |
| WOSCitedRecordID | wos000581746300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lLQcuvB8tUC0St8qV7fVruUWQABWqKqUg3yzbu0auUidKnKi_oSd-MjP7cB2iqoDExYpsb2bt7_Ps7OzsDCHvIviIorxKnFCg6ybk3EmKMnLAtMX8VjzJVd6C71_j09MkTfnZYHBt98Ksp3HTJFdXfP5foYZzADZunf0LuLs_hRPwG0CHI8AOxz8CfjiZDMfK32eX91V05rS-xJCuH10Wko-ylbpO-NgGaKmYw5Oz0aej-jLH5A84xglcTxBSzlWEuuk6Lu3IZlYrT0O-ameYDxPTUihZNYbeyqNGh5gv-wYwJgOBxhuX-rtEgC55tX12Xeeit4SyrA2NF32vBUxRvQ2vRbed5iZ2SWk8zpzI1aWdOvVsRgmtYHXKczNU6wIwW4OA9kdcHDdyBU9zjOJVgla9Afq39NoTFIoyfVB3fsTSHbLnxyEHJb83_DJKT7pxPUp0DKbtpN2IqaIFt2XdZujcNpFRBs35I_LAzEToUDPoMRnI5gl5aKt8UKP0n5KfilDvqaUTBYgp0on26UQ7OtGOThToRJFOVNOJKjpRuAXpRDfoRDs60R6dtCxNJ2o584x8G4_OP3x2TB0PpwTzqHXKwisCAUoB16h9z40KP5Rg2Ua8YkEsfFGCzSm8oqoEXAly0BIiDGI_KlxecsDlOdltZo18SSjzk7zCWvQ8FEHlhYkEG68CFcOYW0jm7RNmX3pWmiT3WGtlmtloxotMQ5UhVJkbZwDVPnG6VnOd5OWO-2OLZ2YMVW2AZkDBO1q-tfBnoMdxcS5v5Gy1zHyw5BMw3jk8wwvNi64vDAnpMv_gn-W-IvdvvsLXZLddrOQbcq9ct_VycUh24jQ5NHz_BccD0Q4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ASSAF%3A+Advanced+and+Slim+StegAnalysis+Detection+Framework+for+JPEG+images+based+on+deep+convolutional+denoising+autoencoder+and+Siamese+networks&rft.jtitle=Neural+networks&rft.au=Cohen%2C+Assaf&rft.au=Cohen%2C+Aviad&rft.au=Nissim%2C+Nir&rft.date=2020-11-01&rft.pub=Elsevier+Ltd&rft.issn=0893-6080&rft.volume=131&rft.spage=64&rft.epage=77&rft_id=info:doi/10.1016%2Fj.neunet.2020.07.022&rft.externalDocID=S089360802030263X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |