Denoising Autoencoder Self-Organizing Map (DASOM)

In this report, we address the question of combining nonlinearities of neurons into networks for modeling increasingly varying and progressively more complex functions. A fundamental approach is the use of higher-level representations devised by restricted Boltzmann machines and (denoising) autoenco...

Full description

Saved in:
Bibliographic Details
Published in:Neural networks Vol. 105; pp. 112 - 131
Main Authors: Ferles, Christos, Papanikolaou, Yannis, Naidoo, Kevin J.
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 01.09.2018
Subjects:
ISSN:0893-6080, 1879-2782, 1879-2782
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this report, we address the question of combining nonlinearities of neurons into networks for modeling increasingly varying and progressively more complex functions. A fundamental approach is the use of higher-level representations devised by restricted Boltzmann machines and (denoising) autoencoders. We present the Denoising Autoencoder Self-Organizing Map (DASOM) that integrates the latter into a hierarchically organized hybrid model where the front-end component is a grid of topologically ordered neurons. The approach is to interpose a layer of hidden representations between the input space and the neural lattice of the self-organizing map. In so doing the parameters are adjusted by the proposed unsupervised learning algorithm. The model therefore maintains the clustering properties of its predecessor, whereas by extending and enhancing its visualization capacity enables an inclusion and an analysis of the intermediate representation space. A comprehensive series of experiments comprising optical recognition of text and images, and cancer type clustering and categorization is used to demonstrate DASOM’s efficiency, performance and projection capabilities.
AbstractList In this report, we address the question of combining nonlinearities of neurons into networks for modeling increasingly varying and progressively more complex functions. A fundamental approach is the use of higher-level representations devised by restricted Boltzmann machines and (denoising) autoencoders. We present the Denoising Autoencoder Self-Organizing Map (DASOM) that integrates the latter into a hierarchically organized hybrid model where the front-end component is a grid of topologically ordered neurons. The approach is to interpose a layer of hidden representations between the input space and the neural lattice of the self-organizing map. In so doing the parameters are adjusted by the proposed unsupervised learning algorithm. The model therefore maintains the clustering properties of its predecessor, whereas by extending and enhancing its visualization capacity enables an inclusion and an analysis of the intermediate representation space. A comprehensive series of experiments comprising optical recognition of text and images, and cancer type clustering and categorization is used to demonstrate DASOM’s efficiency, performance and projection capabilities.
In this report, we address the question of combining nonlinearities of neurons into networks for modeling increasingly varying and progressively more complex functions. A fundamental approach is the use of higher-level representations devised by restricted Boltzmann machines and (denoising) autoencoders. We present the Denoising Autoencoder Self-Organizing Map (DASOM) that integrates the latter into a hierarchically organized hybrid model where the front-end component is a grid of topologically ordered neurons. The approach is to interpose a layer of hidden representations between the input space and the neural lattice of the self-organizing map. In so doing the parameters are adjusted by the proposed unsupervised learning algorithm. The model therefore maintains the clustering properties of its predecessor, whereas by extending and enhancing its visualization capacity enables an inclusion and an analysis of the intermediate representation space. A comprehensive series of experiments comprising optical recognition of text and images, and cancer type clustering and categorization is used to demonstrate DASOM's efficiency, performance and projection capabilities.In this report, we address the question of combining nonlinearities of neurons into networks for modeling increasingly varying and progressively more complex functions. A fundamental approach is the use of higher-level representations devised by restricted Boltzmann machines and (denoising) autoencoders. We present the Denoising Autoencoder Self-Organizing Map (DASOM) that integrates the latter into a hierarchically organized hybrid model where the front-end component is a grid of topologically ordered neurons. The approach is to interpose a layer of hidden representations between the input space and the neural lattice of the self-organizing map. In so doing the parameters are adjusted by the proposed unsupervised learning algorithm. The model therefore maintains the clustering properties of its predecessor, whereas by extending and enhancing its visualization capacity enables an inclusion and an analysis of the intermediate representation space. A comprehensive series of experiments comprising optical recognition of text and images, and cancer type clustering and categorization is used to demonstrate DASOM's efficiency, performance and projection capabilities.
Author Papanikolaou, Yannis
Naidoo, Kevin J.
Ferles, Christos
Author_xml – sequence: 1
  givenname: Christos
  surname: Ferles
  fullname: Ferles, Christos
  email: christos.ferles@gmail.com, Christos.Ferles@uct.ac.za
  organization: Scientific Computing Research Unit, Faculty of Science, University of Cape Town, Rondebosch, 7701, South Africa
– sequence: 2
  givenname: Yannis
  surname: Papanikolaou
  fullname: Papanikolaou, Yannis
  email: ypapanik@csd.auth.gr
  organization: Department of Informatics, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
– sequence: 3
  givenname: Kevin J.
  orcidid: 0000-0002-9898-3708
  surname: Naidoo
  fullname: Naidoo, Kevin J.
  email: kevin.naidoo@uct.ac.za
  organization: Scientific Computing Research Unit, Faculty of Science, University of Cape Town, Rondebosch, 7701, South Africa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29803188$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1LxDAQhoMoun78A5E96qF1kqYx9SAs6ycoe1DPIU0nkqWbrEkr6K-3y6oHD3oaeOd5B-bZJZs-eCTkkEJOgYrTee6x99jlDKjMgedDuEFGVJ5VGTuTbJOMQFZFJkDCDtlNaQ4AQvJim-ywSkJBpRwReok-uOT8y3jSdwG9CQ3G8SO2NpvFF-3dx2r3oJfj48vJ4-zhZJ9sWd0mPPiae-T5-uppepvdz27uppP7zBSCdZkR3AphGLesroQoDasBagncMIoaS7B11XBkphSyZqU2w8JKbssKLdQWij1yvL67jOG1x9SphUsG21Z7DH1SDHjJRFWWfECPvtC-XmCjltEtdHxX328OAF8DJoaUItofhIJa2VRztbapVjYVcDWEQ-38V824Tncu-C5q1_5XvliXcZD05jCqZNzgFxsX0XSqCe7vA58bO5DI
CitedBy_id crossref_primary_10_1109_ACCESS_2020_3040298
crossref_primary_10_1016_j_jrras_2023_100691
crossref_primary_10_1109_TII_2019_2906083
crossref_primary_10_3390_make3040044
crossref_primary_10_1109_ACCESS_2021_3112397
crossref_primary_10_1016_j_aej_2024_08_081
crossref_primary_10_1145_3568308
crossref_primary_10_1016_j_procs_2020_03_341
crossref_primary_10_1016_j_neunet_2025_107528
crossref_primary_10_1007_s00521_021_06331_w
crossref_primary_10_1016_j_buildenv_2023_110573
crossref_primary_10_1016_j_ijar_2019_02_006
crossref_primary_10_1016_j_ins_2023_119121
crossref_primary_10_1051_matecconf_201925209001
crossref_primary_10_3390_mti7080075
crossref_primary_10_1190_geo2021_0798_1
crossref_primary_10_1109_ACCESS_2020_3000829
crossref_primary_10_1109_TVCG_2023_3337868
crossref_primary_10_1007_s42979_022_01344_1
crossref_primary_10_1016_j_asoc_2020_106627
crossref_primary_10_3390_ijms221910891
crossref_primary_10_1111_exsy_12435
crossref_primary_10_1007_s00170_020_06009_y
crossref_primary_10_1007_s40747_022_00826_2
crossref_primary_10_1016_j_ins_2021_04_074
crossref_primary_10_1016_j_sasc_2024_200079
crossref_primary_10_1007_s11063_020_10251_6
crossref_primary_10_1155_2020_2971565
crossref_primary_10_1049_iet_sen_2019_0278
crossref_primary_10_1016_j_asoc_2020_107003
Cites_doi 10.1016/j.neunet.2012.09.018
10.1109/TNN.2005.845141
10.1016/S0893-6080(05)80089-9
10.1007/BF00288907
10.3233/IDA-1999-3203
10.1364/JOSAA.20.001434
10.1109/72.977314
10.1016/j.neunet.2006.05.013
10.1016/j.neunet.2014.09.003
10.1007/BF00275687
10.1523/JNEUROSCI.4364-03.2004
10.1145/331499.331504
10.1109/TNN.2007.909556
10.1016/S0042-6989(97)00464-1
10.1016/j.neucom.2004.01.008
10.1561/2200000006
10.1142/S0129065791000030
10.1109/34.291440
10.1016/j.patrec.2009.09.011
10.1109/TNN.2008.2005409
10.1162/neco.2006.18.7.1527
10.1109/TNN.2006.871720
10.1109/TSMCB.2003.810442
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.neunet.2018.04.016
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 131
ExternalDocumentID 29803188
10_1016_j_neunet_2018_04_016
S0893608018301382
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
NPM
SSH
7X8
ID FETCH-LOGICAL-c362t-c64f66c24f2b9665c2b00b804c21eae50fb9d4e2c568b25ac4c2f84f59ef0bf03
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000441874700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0893-6080
1879-2782
IngestDate Sun Sep 28 10:06:04 EDT 2025
Mon Jul 21 05:55:51 EDT 2025
Sat Nov 29 07:09:31 EST 2025
Tue Nov 18 22:00:30 EST 2025
Fri Feb 23 02:48:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Visualization
Denoising autoencoder
Clustering
Self-organizing map
Unsupervised learning
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-c64f66c24f2b9665c2b00b804c21eae50fb9d4e2c568b25ac4c2f84f59ef0bf03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9898-3708
PMID 29803188
PQID 2045269554
PQPubID 23479
PageCount 20
ParticipantIDs proquest_miscellaneous_2045269554
pubmed_primary_29803188
crossref_primary_10_1016_j_neunet_2018_04_016
crossref_citationtrail_10_1016_j_neunet_2018_04_016
elsevier_sciencedirect_doi_10_1016_j_neunet_2018_04_016
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Heskes (b11) 1999
Ito, Komatsu (b14) 2004; 24
Vesanto (b34) 1999; 3
Kohonen (b19) 2014
Arthur, Vassilvitskii (b1) 2007
(pp. 225–230).
Von der Malsburg (b37) 1973; 14
Hammer, Micheli, Sperduti, Strickert (b10) 2004; 57
Pampalk, Rauber, Merkl (b26) 2002
Bengio, Lamblin, Popovici, Larochelle (b5) 2007; 19
Erhan, Manzagol, Bengio, Bengio, Vincent (b9) 2009
Jain, Murty, Flynn (b16) 1999; 31
Becker (b3) 1991; 2
Jain (b15) 2010; 31
Ultsch, A. (2005). Clustering wih som: U* c. In
Brugger, Bogdan, Rosenstiel (b7) 2008; 19
Lee, Mumford (b21) 2003; 20
Erhan, Bengio, Courville, Manzagol, Vincent, Bengio (b8) 2010; 11
Vincent, Larochelle, Lajoie, Bengio, Manzagol (b36) 2010; 11
Yin (b39) 2002; 13
(pp. 75–82).
Kohonen (b17) 2001; vol. 30
Tasdemir, Merényi (b31) 2009; 20
Ultsch, A. (2003). Maps for the visualization of high-dimensional data spaces. In
Pölzlbauer, Dittenbach, Rauber (b27) 2006; 19
Lee, Mumford, Romero, Lamme (b22) 1998; 38
Oja (b24) 1982; 15
Vincent, Larochelle, Bengio, Manzagol (b35) 2008
Bache, Lichman (b2) 2013
Nene, S. A., Nayar, S. K., & Murase, H. (1996). Columbia object image library (COIL-20). In: Technical report CUCS-005-96.
Xu, Wunsch (b38) 2005; 16
Lee, Ekanadham, Ng (b20) 2008
Hinton, Osindero, Teh (b12) 2006; 18
Shah-Hosseini, Safabakhsh (b29) 2003; 33
Hull (b13) 1994; 16
Kohonen (b18) 2013; 37
Oja (b25) 1992; 5
Bengio (b4) 2009; 2
Schmidhuber (b28) 2015; 61
Strehl, Ghosh (b30) 2002; 3
Berglund, Sitte (b6) 2006; 17
Erhan (10.1016/j.neunet.2018.04.016_b9) 2009
10.1016/j.neunet.2018.04.016_b23
Vincent (10.1016/j.neunet.2018.04.016_b36) 2010; 11
Xu (10.1016/j.neunet.2018.04.016_b38) 2005; 16
Shah-Hosseini (10.1016/j.neunet.2018.04.016_b29) 2003; 33
Pampalk (10.1016/j.neunet.2018.04.016_b26) 2002
Vincent (10.1016/j.neunet.2018.04.016_b35) 2008
Becker (10.1016/j.neunet.2018.04.016_b3) 1991; 2
Hammer (10.1016/j.neunet.2018.04.016_b10) 2004; 57
Lee (10.1016/j.neunet.2018.04.016_b21) 2003; 20
Jain (10.1016/j.neunet.2018.04.016_b16) 1999; 31
Arthur (10.1016/j.neunet.2018.04.016_b1) 2007
Lee (10.1016/j.neunet.2018.04.016_b22) 1998; 38
Kohonen (10.1016/j.neunet.2018.04.016_b18) 2013; 37
Bache (10.1016/j.neunet.2018.04.016_b2) 2013
Schmidhuber (10.1016/j.neunet.2018.04.016_b28) 2015; 61
Heskes (10.1016/j.neunet.2018.04.016_b11) 1999
Strehl (10.1016/j.neunet.2018.04.016_b30) 2002; 3
Von der Malsburg (10.1016/j.neunet.2018.04.016_b37) 1973; 14
Lee (10.1016/j.neunet.2018.04.016_b20) 2008
Oja (10.1016/j.neunet.2018.04.016_b24) 1982; 15
Pölzlbauer (10.1016/j.neunet.2018.04.016_b27) 2006; 19
Brugger (10.1016/j.neunet.2018.04.016_b7) 2008; 19
Jain (10.1016/j.neunet.2018.04.016_b15) 2010; 31
Bengio (10.1016/j.neunet.2018.04.016_b4) 2009; 2
10.1016/j.neunet.2018.04.016_b33
10.1016/j.neunet.2018.04.016_b32
Hinton (10.1016/j.neunet.2018.04.016_b12) 2006; 18
Ito (10.1016/j.neunet.2018.04.016_b14) 2004; 24
Tasdemir (10.1016/j.neunet.2018.04.016_b31) 2009; 20
Yin (10.1016/j.neunet.2018.04.016_b39) 2002; 13
Hull (10.1016/j.neunet.2018.04.016_b13) 1994; 16
Berglund (10.1016/j.neunet.2018.04.016_b6) 2006; 17
Kohonen (10.1016/j.neunet.2018.04.016_b19) 2014
Bengio (10.1016/j.neunet.2018.04.016_b5) 2007; 19
Oja (10.1016/j.neunet.2018.04.016_b25) 1992; 5
Erhan (10.1016/j.neunet.2018.04.016_b8) 2010; 11
Kohonen (10.1016/j.neunet.2018.04.016_b17) 2001; vol. 30
Vesanto (10.1016/j.neunet.2018.04.016_b34) 1999; 3
References_xml – volume: 19
  start-page: 153
  year: 2007
  ident: b5
  article-title: Greedy layer-wise training of deep networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 31
  start-page: 264
  year: 1999
  end-page: 323
  ident: b16
  article-title: Data clustering: a review
  publication-title: ACM Computing Surveys (CSUR)
– volume: 5
  start-page: 927
  year: 1992
  end-page: 935
  ident: b25
  article-title: Principal components, minor components, and linear neural networks
  publication-title: Neural Networks
– volume: 20
  start-page: 1434
  year: 2003
  end-page: 1448
  ident: b21
  article-title: Hierarchical Bayesian inference in the visual cortex
  publication-title: Journal of the Optical Society of America A
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: b35
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the 25th international conference on machine learning
– start-page: 1027
  year: 2007
  end-page: 1035
  ident: b1
  article-title: k-means++: The advantages of careful seeding
  publication-title: Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms
– reference: Nene, S. A., Nayar, S. K., & Murase, H. (1996). Columbia object image library (COIL-20). In: Technical report CUCS-005-96.
– volume: 19
  start-page: 442
  year: 2008
  end-page: 459
  ident: b7
  article-title: Automatic cluster detection in Kohonen’s SOM
  publication-title: IEEE Transactions on Neural Networks
– volume: 19
  start-page: 911
  year: 2006
  end-page: 922
  ident: b27
  article-title: Advanced visualization of self-organizing maps with vector fields
  publication-title: Neural Networks
– start-page: 153
  year: 2009
  end-page: 160
  ident: b9
  article-title: The difficulty of training deep architectures and the effect of unsupervised pre-training
  publication-title: AISTATS, Vol. 5
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: b36
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: Journal of Machine Learning Research (JMLR)
– volume: 3
  start-page: 111
  year: 1999
  end-page: 126
  ident: b34
  article-title: SOM-based data visualization methods
  publication-title: Intelligent Data Analysis
– volume: 14
  start-page: 85
  year: 1973
  end-page: 100
  ident: b37
  article-title: Self-organization of orientation sensitive cells in the striate cortex
  publication-title: Kybernetik
– year: 2013
  ident: b2
  article-title: UCI machine learning repository
– reference: Ultsch, A. (2003). Maps for the visualization of high-dimensional data spaces. In:
– volume: 24
  start-page: 3313
  year: 2004
  end-page: 3324
  ident: b14
  article-title: Representation of angles embedded within contour stimuli in area V2 of macaque monkeys
  publication-title: The Journal of Neuroscience
– volume: 15
  start-page: 267
  year: 1982
  end-page: 273
  ident: b24
  article-title: Simplified neuron model as a principal component analyzer
  publication-title: Journal of Mathematical Biology
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: b4
  article-title: Learning deep architectures for AI
  publication-title: Foundation and Trends
– volume: 57
  start-page: 3
  year: 2004
  end-page: 35
  ident: b10
  article-title: A general framework for unsupervised processing of structured data
  publication-title: Neurocomputing
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: b12
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Computation
– start-page: 873
  year: 2008
  end-page: 880
  ident: b20
  article-title: Sparse deep belief net model for visual area V2
  publication-title: Advances in Neural Information Processing Systems
– volume: 33
  start-page: 271
  year: 2003
  end-page: 282
  ident: b29
  article-title: TASOM: a new time adaptive self-organizing map
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
– volume: 16
  start-page: 550
  year: 1994
  end-page: 554
  ident: b13
  article-title: A database for handwritten text recognition research
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: b28
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Networks
– reference: , (pp. 225–230).
– volume: 20
  start-page: 549
  year: 2009
  end-page: 562
  ident: b31
  article-title: Exploiting data topology in visualization and clustering of self-organizing maps
  publication-title: IEEE Transactions on Neural Networks
– reference: , (pp. 75–82).
– volume: 31
  start-page: 651
  year: 2010
  end-page: 666
  ident: b15
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recognition Letters
– volume: vol. 30
  year: 2001
  ident: b17
  publication-title: Self-organizing maps
– volume: 38
  start-page: 2429
  year: 1998
  end-page: 2454
  ident: b22
  article-title: The role of the primary visual cortex in higher level vision
  publication-title: Vision Research
– start-page: 871
  year: 2002
  end-page: 876
  ident: b26
  article-title: Using smoothed data histograms for cluster visualization in self-organizing maps
  publication-title: International conference on artificial neural networks
– volume: 17
  start-page: 305
  year: 2006
  end-page: 316
  ident: b6
  article-title: The parameterless self-organizing map algorithm
  publication-title: IEEE Transactions on Neural Networks
– volume: 2
  start-page: 17
  year: 1991
  end-page: 33
  ident: b3
  article-title: Unsupervised learning procedures for neural networks
  publication-title: International Journal of Neural Systems
– start-page: 303
  year: 1999
  end-page: 315
  ident: b11
  article-title: Energy functions for self-organizing maps
  publication-title: Kohonen maps
– volume: 37
  start-page: 52
  year: 2013
  end-page: 65
  ident: b18
  article-title: Essentials of the self-organizing map
  publication-title: Neural Networks
– volume: 3
  start-page: 583
  year: 2002
  end-page: 617
  ident: b30
  article-title: Cluster ensembles—a knowledge reuse framework for combining multiple partitions
  publication-title: Journal of Machine Learning Research (JMLR)
– volume: 16
  start-page: 645
  year: 2005
  end-page: 678
  ident: b38
  article-title: Survey of clustering algorithms
  publication-title: IEEE Transactions on Neural Networks
– volume: 13
  start-page: 237
  year: 2002
  end-page: 243
  ident: b39
  article-title: ViSOM-a novel method for multivariate data projection and structure visualization
  publication-title: IEEE Transactions on Neural Networks
– volume: 11
  start-page: 625
  year: 2010
  end-page: 660
  ident: b8
  article-title: Why does unsupervised pre-training help deep learning?
  publication-title: Journal of Machine Learning Research (JMLR)
– reference: Ultsch, A. (2005). Clustering wih som: U* c. In:
– start-page: 11
  year: 2014
  end-page: 23
  ident: b19
  article-title: MATLAB implementations and applications of the self-organizing map
– start-page: 153
  year: 2009
  ident: 10.1016/j.neunet.2018.04.016_b9
  article-title: The difficulty of training deep architectures and the effect of unsupervised pre-training
– volume: vol. 30
  year: 2001
  ident: 10.1016/j.neunet.2018.04.016_b17
– volume: 11
  start-page: 625
  year: 2010
  ident: 10.1016/j.neunet.2018.04.016_b8
  article-title: Why does unsupervised pre-training help deep learning?
  publication-title: Journal of Machine Learning Research (JMLR)
– volume: 37
  start-page: 52
  year: 2013
  ident: 10.1016/j.neunet.2018.04.016_b18
  article-title: Essentials of the self-organizing map
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2012.09.018
– volume: 16
  start-page: 645
  year: 2005
  ident: 10.1016/j.neunet.2018.04.016_b38
  article-title: Survey of clustering algorithms
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2005.845141
– volume: 5
  start-page: 927
  year: 1992
  ident: 10.1016/j.neunet.2018.04.016_b25
  article-title: Principal components, minor components, and linear neural networks
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80089-9
– start-page: 1096
  year: 2008
  ident: 10.1016/j.neunet.2018.04.016_b35
  article-title: Extracting and composing robust features with denoising autoencoders
– volume: 14
  start-page: 85
  year: 1973
  ident: 10.1016/j.neunet.2018.04.016_b37
  article-title: Self-organization of orientation sensitive cells in the striate cortex
  publication-title: Kybernetik
  doi: 10.1007/BF00288907
– ident: 10.1016/j.neunet.2018.04.016_b32
– volume: 3
  start-page: 111
  year: 1999
  ident: 10.1016/j.neunet.2018.04.016_b34
  article-title: SOM-based data visualization methods
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-1999-3203
– volume: 20
  start-page: 1434
  year: 2003
  ident: 10.1016/j.neunet.2018.04.016_b21
  article-title: Hierarchical Bayesian inference in the visual cortex
  publication-title: Journal of the Optical Society of America A
  doi: 10.1364/JOSAA.20.001434
– volume: 13
  start-page: 237
  year: 2002
  ident: 10.1016/j.neunet.2018.04.016_b39
  article-title: ViSOM-a novel method for multivariate data projection and structure visualization
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.977314
– year: 2013
  ident: 10.1016/j.neunet.2018.04.016_b2
– volume: 11
  start-page: 3371
  year: 2010
  ident: 10.1016/j.neunet.2018.04.016_b36
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: Journal of Machine Learning Research (JMLR)
– start-page: 303
  year: 1999
  ident: 10.1016/j.neunet.2018.04.016_b11
  article-title: Energy functions for self-organizing maps
– start-page: 871
  year: 2002
  ident: 10.1016/j.neunet.2018.04.016_b26
  article-title: Using smoothed data histograms for cluster visualization in self-organizing maps
– volume: 19
  start-page: 911
  year: 2006
  ident: 10.1016/j.neunet.2018.04.016_b27
  article-title: Advanced visualization of self-organizing maps with vector fields
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2006.05.013
– volume: 19
  start-page: 153
  year: 2007
  ident: 10.1016/j.neunet.2018.04.016_b5
  article-title: Greedy layer-wise training of deep networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.neunet.2018.04.016_b28
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.09.003
– volume: 15
  start-page: 267
  year: 1982
  ident: 10.1016/j.neunet.2018.04.016_b24
  article-title: Simplified neuron model as a principal component analyzer
  publication-title: Journal of Mathematical Biology
  doi: 10.1007/BF00275687
– volume: 24
  start-page: 3313
  year: 2004
  ident: 10.1016/j.neunet.2018.04.016_b14
  article-title: Representation of angles embedded within contour stimuli in area V2 of macaque monkeys
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.4364-03.2004
– volume: 31
  start-page: 264
  year: 1999
  ident: 10.1016/j.neunet.2018.04.016_b16
  article-title: Data clustering: a review
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/331499.331504
– volume: 19
  start-page: 442
  year: 2008
  ident: 10.1016/j.neunet.2018.04.016_b7
  article-title: Automatic cluster detection in Kohonen’s SOM
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2007.909556
– volume: 3
  start-page: 583
  year: 2002
  ident: 10.1016/j.neunet.2018.04.016_b30
  article-title: Cluster ensembles—a knowledge reuse framework for combining multiple partitions
  publication-title: Journal of Machine Learning Research (JMLR)
– start-page: 11
  year: 2014
  ident: 10.1016/j.neunet.2018.04.016_b19
– volume: 38
  start-page: 2429
  year: 1998
  ident: 10.1016/j.neunet.2018.04.016_b22
  article-title: The role of the primary visual cortex in higher level vision
  publication-title: Vision Research
  doi: 10.1016/S0042-6989(97)00464-1
– ident: 10.1016/j.neunet.2018.04.016_b23
– volume: 57
  start-page: 3
  year: 2004
  ident: 10.1016/j.neunet.2018.04.016_b10
  article-title: A general framework for unsupervised processing of structured data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2004.01.008
– volume: 2
  start-page: 1
  year: 2009
  ident: 10.1016/j.neunet.2018.04.016_b4
  article-title: Learning deep architectures for AI
  publication-title: Foundation and Trends® in Machine Learning
  doi: 10.1561/2200000006
– volume: 2
  start-page: 17
  year: 1991
  ident: 10.1016/j.neunet.2018.04.016_b3
  article-title: Unsupervised learning procedures for neural networks
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065791000030
– volume: 16
  start-page: 550
  year: 1994
  ident: 10.1016/j.neunet.2018.04.016_b13
  article-title: A database for handwritten text recognition research
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.291440
– volume: 31
  start-page: 651
  year: 2010
  ident: 10.1016/j.neunet.2018.04.016_b15
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2009.09.011
– volume: 20
  start-page: 549
  year: 2009
  ident: 10.1016/j.neunet.2018.04.016_b31
  article-title: Exploiting data topology in visualization and clustering of self-organizing maps
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2008.2005409
– ident: 10.1016/j.neunet.2018.04.016_b33
– volume: 18
  start-page: 1527
  year: 2006
  ident: 10.1016/j.neunet.2018.04.016_b12
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Computation
  doi: 10.1162/neco.2006.18.7.1527
– volume: 17
  start-page: 305
  year: 2006
  ident: 10.1016/j.neunet.2018.04.016_b6
  article-title: The parameterless self-organizing map algorithm
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2006.871720
– start-page: 1027
  year: 2007
  ident: 10.1016/j.neunet.2018.04.016_b1
  article-title: k-means++: The advantages of careful seeding
– start-page: 873
  year: 2008
  ident: 10.1016/j.neunet.2018.04.016_b20
  article-title: Sparse deep belief net model for visual area V2
  publication-title: Advances in Neural Information Processing Systems
– volume: 33
  start-page: 271
  year: 2003
  ident: 10.1016/j.neunet.2018.04.016_b29
  article-title: TASOM: a new time adaptive self-organizing map
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/TSMCB.2003.810442
SSID ssj0006843
Score 2.4401407
Snippet In this report, we address the question of combining nonlinearities of neurons into networks for modeling increasingly varying and progressively more complex...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 112
SubjectTerms Clustering
Denoising autoencoder
Self-organizing map
Unsupervised learning
Visualization
Title Denoising Autoencoder Self-Organizing Map (DASOM)
URI https://dx.doi.org/10.1016/j.neunet.2018.04.016
https://www.ncbi.nlm.nih.gov/pubmed/29803188
https://www.proquest.com/docview/2045269554
Volume 105
WOSCitedRecordID wos000441874700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECWapIdeui_uEqhAUbQHBhKthTwajYO2cJwAcQDfCIkiAbkB5dpWkM_vcFOCJkHSQy-CQIq2zBkPZ8iZ9xD6xJSCQIIKXMua4FTVFWa5qnA9ZDkbSnCgKwviOimmUzqfs2PP1b62dAKF1vTigi3_q6ihDYRtSmf_Qdz9h0ID3IPQ4Qpih-u9BL8vddvYHYBRt2kNTqWBiziRZwr7wkvTd1gujXO5Pzo5Ogy7AYuA5GShOLRLEL-sD5Erz4_tAQn6nmNYcHXzC4LktrMm3fAg9b3Tsqnb1tUAnTfan0P5jYaE9plUwTbSgmFSOK6gPXlDWzCocXbFJCYuTfqaqXa7Bos9LTv4QSbJjlrQ2eQGZOzpET84nUz4bDyffV7-xoY0zByuewaVLbRDioyBUdsZ_RjPf_ZLcU5dhUV4y1A7aRP8rn_xbb7JbbGH9UFmT9FjHzxEIyf0Z-iB1M_Rk0DMEXk7_QIlvQ5EV3Qg-ksHItCB6IvVgK8v0enBePbtO_bcGFiAy7HBIk9VnguSKlJBxJoJAvazonEqSCJLmcWqYnUqichyWpGsFNChaKoyJlVcqXj4Cm3rVss3KEpgnUlzYZF-UmVq_ytaS1nlpT3TLQdoGGaFCw8cb_hLznjIEFxwN5fczCWPUw6NA4T7UUsHnHLH80WYcO6dP-fUcVCYO0Z-DPLhYBvNgVepZdutuaFaIDkDj3mAXjvB9e9CGDXrGX17j9Hv0KPLP8R7tL1ZdfIDeijON816tYu2ijnd9ar3BxDnjFA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Denoising+Autoencoder+Self-Organizing+Map+%28DASOM%29&rft.jtitle=Neural+networks&rft.au=Ferles%2C+Christos&rft.au=Papanikolaou%2C+Yannis&rft.au=Naidoo%2C+Kevin+J&rft.date=2018-09-01&rft.issn=1879-2782&rft.eissn=1879-2782&rft.volume=105&rft.spage=112&rft_id=info:doi/10.1016%2Fj.neunet.2018.04.016&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon