Development of regression models for estimating main particulars of RoPax vessels in the conceptual design stage

•Analysis of a modern database of RoPax vessels.•Implementation of simple and advanced regression models.•Comparison between literature and new regressions.•Testing of multiple regression models for main particulars estimation. The design of new ships is a process that requires knowledge of several...

Full description

Saved in:
Bibliographic Details
Published in:Ocean engineering Vol. 333; p. 121407
Main Authors: Mauro, Francesco, Salem, Ahmed
Format: Journal Article
Language:English
Published: Elsevier Ltd 30.07.2025
Subjects:
ISSN:0029-8018
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Analysis of a modern database of RoPax vessels.•Implementation of simple and advanced regression models.•Comparison between literature and new regressions.•Testing of multiple regression models for main particulars estimation. The design of new ships is a process that requires knowledge of several aspects of naval architecture and marine engineering. During the early design stage, one of the first issues that designers should face is the preliminary estimation of the vessel’s main dimensions, respecting the desiderata of the ship owner. Therefore, it is relevant to provide designers with suitable tools that may help estimate the principal dimensions, consider conventional methods and investigate the applicability of modern techniques based on machine learning. The present work focuses on applying different regression techniques to a database of RoPax vessels, finding mathematical instruments to evaluate the ship’s main dimensions. Conventional regression techniques are first investigated here to compare with the existing formulae provided by other databases. The study is then extended by applying multiple linear regression and forest tree algorithms, seeking an improvement of conventional formulations available in the literature. The results highlight how the most modern regression techniques allow for better coverage of the design space, allowing the use of more than one input to obtain the final dimensions.
AbstractList •Analysis of a modern database of RoPax vessels.•Implementation of simple and advanced regression models.•Comparison between literature and new regressions.•Testing of multiple regression models for main particulars estimation. The design of new ships is a process that requires knowledge of several aspects of naval architecture and marine engineering. During the early design stage, one of the first issues that designers should face is the preliminary estimation of the vessel’s main dimensions, respecting the desiderata of the ship owner. Therefore, it is relevant to provide designers with suitable tools that may help estimate the principal dimensions, consider conventional methods and investigate the applicability of modern techniques based on machine learning. The present work focuses on applying different regression techniques to a database of RoPax vessels, finding mathematical instruments to evaluate the ship’s main dimensions. Conventional regression techniques are first investigated here to compare with the existing formulae provided by other databases. The study is then extended by applying multiple linear regression and forest tree algorithms, seeking an improvement of conventional formulations available in the literature. The results highlight how the most modern regression techniques allow for better coverage of the design space, allowing the use of more than one input to obtain the final dimensions.
ArticleNumber 121407
Author Salem, Ahmed
Mauro, Francesco
Author_xml – sequence: 1
  givenname: Francesco
  orcidid: 0000-0003-3471-9411
  surname: Mauro
  fullname: Mauro, Francesco
  email: fmauro@units.it
  organization: University of Trieste, Trieste, 34100, Italy
– sequence: 2
  givenname: Ahmed
  orcidid: 0000-0002-3268-537X
  surname: Salem
  fullname: Salem, Ahmed
  email: Ahmed.Salem@sma.ac.ae
  organization: Sharjah Maritime Academy, Sharjah, 180018, Khorfakkan, UAE
BookMark eNqF0M1KAzEQwPEcKthWX0HyArsm2a8ueFCqVqGgiJ5DNpmsKbvJkqRF395dqhcvPc1h-A_Mb4Fm1llA6IqSlBJaXu9SJ0FYsG3KCCtSymhOqhmaE8LqZEXo6hwtQtgRQsqSZHM03MMBOjf0YCN2GntoPYRgnMW9U9AFrJ3HEKLpRTS2xb0wFg_CRyP3nfBhit7cq_jCh7GbgnEfPwFLZyUMcS86rCCY1uIQRQsX6EyLLsDl71yij8eH9_VTsn3ZPK_vtonMShYTWQhJRcMqnRdEUQAlRVWwoswaASWTmpKq0bWiGTRVLfNsVVeCQq6BqawpqmyJbo53pXcheNBcmji-4Gz0wnScEj6J8R3_E-OTGD-KjXn5Lx_8SOC_T4e3x3CkgIMBz4M0MFIo40FGrpw5deIHdLuRiQ
CitedBy_id crossref_primary_10_3390_jmse13071319
Cites_doi 10.1016/j.oceaneng.2023.116499
10.1098/rspa.1998.0154
10.2307/2341124
10.1080/17445302.2018.1425337
10.1007/s00773-010-0107-9
10.1016/j.procs.2021.01.074
10.2478/ntpe-2018-0031
10.1016/j.oceaneng.2021.109727
10.5957/JOSR.12190070
10.1016/j.asoc.2010.08.015
10.1016/j.aej.2020.04.038
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.oceaneng.2025.121407
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
ExternalDocumentID 10_1016_j_oceaneng_2025_121407
S0029801825011205
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JM
9JN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSH
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
9DU
AAQXK
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ADMUD
ADNMO
AFFNX
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
LY6
LY7
R2-
SAC
SET
WUQ
~HD
ID FETCH-LOGICAL-c362t-c5ac1ab27f450d1eedca752563bae62cf107bf9d13eb79c43897a1e4fe2d3b573
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001496914700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-8018
IngestDate Tue Nov 18 20:42:58 EST 2025
Sat Nov 29 07:48:08 EST 2025
Sat Jul 05 17:11:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Ship design
RoPax vessels
Regression models
Multiple linear regression
Forest tree algorithms
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-c5ac1ab27f450d1eedca752563bae62cf107bf9d13eb79c43897a1e4fe2d3b573
ORCID 0000-0003-3471-9411
0000-0002-3268-537X
OpenAccessLink https://dx.doi.org/10.1016/j.oceaneng.2025.121407
ParticipantIDs crossref_citationtrail_10_1016_j_oceaneng_2025_121407
crossref_primary_10_1016_j_oceaneng_2025_121407
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2025_121407
PublicationCentury 2000
PublicationDate 2025-07-30
PublicationDateYYYYMMDD 2025-07-30
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-30
  day: 30
PublicationDecade 2020
PublicationTitle Ocean engineering
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Fisher (bib0010) 1922; 85 (4)
Žanić, Grubišić, Trincas (bib0029) 1992
Putra, Aryawan, Suisetyono (bib0024) 2022
Friis, Andersen, Jensen (bib0012) 2002
Novak, Majanarić, Deihalla, Zamarin (bib0020) 2020; 3
Gurgen, Altin, Ozkok (bib0014) 2018; 13 (5)
Andrews (bib0002) 1998; 454 (1968)
Ho (bib0015) 1998; 20 (8)
Caprace, Rigo (bib0004) 2011; 16
Grubišić, Begović (bib0013) 2001; 49 (1)
Papanikolaou, Harries, Hooijmans, Marzi, Nena, Torben, Yrjan, Boden (bib0022) 2022; 66
Asrol, Papilo, Gunawan (bib0003) 2021; 179
Cepowski, Chorab (bib0005) 2021; 238
Rinauro, Begovic, Mauro, Rosano (bib0025) 2024; 292
Abramowski, Cepowski, Zvolensky (bib0001) 2018; 1(1)
Ljulj, Slapničar, Grubišić (bib0018) 2020; 59 (3)
Schneekluth, Bertram (bib0026) 1998
Clausen, Lutzen, Hansen, Bjorneboe (bib0007) 2001; 38 (4)
Clarksons, 2024. Shipping and trade data analysis and research services. on-line.
.
Freedman (bib0011) 2009
Kalokairinos, Mavroeidis, Radou, Zachariou (bib0016) 2005
Papanikolaou (bib0021) 2014
Piko (bib0023) 1980
Ferry-site, 2024. “Official website”, available at: on-line.
Trincas, Žanić, Grubišić (bib0027) 1994
Ekinci, Celabi, Bal, Amasyali, Boyaci (bib0008) 2011; 11 (2)
Watson (bib0028) 1998; vol. I
Majanarić, Šegota, Lorencin, Car (bib0019) 2022; 265
Kristensen (bib0017) 2016
Trincas (10.1016/j.oceaneng.2025.121407_bib0027) 1994
Kalokairinos (10.1016/j.oceaneng.2025.121407_bib0016) 2005
Kristensen (10.1016/j.oceaneng.2025.121407_bib0017) 2016
Caprace (10.1016/j.oceaneng.2025.121407_bib0004) 2011; 16
Putra (10.1016/j.oceaneng.2025.121407_bib0024) 2022
Fisher (10.1016/j.oceaneng.2025.121407_bib0010) 1922; 85 (4)
Abramowski (10.1016/j.oceaneng.2025.121407_bib0001) 2018; 1(1)
Ekinci (10.1016/j.oceaneng.2025.121407_bib0008) 2011; 11 (2)
Watson (10.1016/j.oceaneng.2025.121407_bib0028) 1998; vol. I
Asrol (10.1016/j.oceaneng.2025.121407_bib0003) 2021; 179
Andrews (10.1016/j.oceaneng.2025.121407_bib0002) 1998; 454 (1968)
Friis (10.1016/j.oceaneng.2025.121407_bib0012) 2002
Piko (10.1016/j.oceaneng.2025.121407_bib0023) 1980
Clausen (10.1016/j.oceaneng.2025.121407_bib0007) 2001; 38 (4)
Freedman (10.1016/j.oceaneng.2025.121407_bib0011) 2009
Majanarić (10.1016/j.oceaneng.2025.121407_bib0019) 2022; 265
Novak (10.1016/j.oceaneng.2025.121407_bib0020) 2020; 3
Grubišić (10.1016/j.oceaneng.2025.121407_bib0013) 2001; 49 (1)
Žanić (10.1016/j.oceaneng.2025.121407_bib0029) 1992
Papanikolaou (10.1016/j.oceaneng.2025.121407_bib0022) 2022; 66
10.1016/j.oceaneng.2025.121407_bib0006
Rinauro (10.1016/j.oceaneng.2025.121407_bib0025) 2024; 292
10.1016/j.oceaneng.2025.121407_bib0009
Ho (10.1016/j.oceaneng.2025.121407_bib0015) 1998; 20 (8)
Schneekluth (10.1016/j.oceaneng.2025.121407_bib0026) 1998
Cepowski (10.1016/j.oceaneng.2025.121407_bib0005) 2021; 238
Gurgen (10.1016/j.oceaneng.2025.121407_bib0014) 2018; 13 (5)
Papanikolaou (10.1016/j.oceaneng.2025.121407_bib0021) 2014
Ljulj (10.1016/j.oceaneng.2025.121407_bib0018) 2020; 59 (3)
References_xml – volume: 179
  start-page: 854
  year: 2021
  end-page: 862
  ident: bib0003
  article-title: Support vector machine with k-fold validation to improve the industry’s sustainability performance classification
  publication-title: Procedia Comput. Sci.
– volume: 292
  year: 2024
  ident: bib0025
  article-title: Regression analysis for container ships in the early design stage
  publication-title: Ocean Eng.
– year: 1994
  ident: bib0027
  article-title: Comprehensive concept of fast Ro-ro ships by multiattribute decision making
  publication-title: IMDC 94, Proceeding of the 5th International Marine Design Conference, Delft
– volume: 238
  year: 2021
  ident: bib0005
  article-title: Determination of design formulas for container ships at the preliminary design stage using artificial neural network and multiple nonlinear regression
  publication-title: Ocean Eng.
– year: 2002
  ident: bib0012
  article-title: Ship Design (Part I and II)
– year: 2014
  ident: bib0021
  article-title: Ship Design. Methodologies of Preliminary Design
– reference: Clarksons, 2024. Shipping and trade data analysis and research services. on-line.
– volume: 11 (2)
  start-page: 2356
  year: 2011
  end-page: 2366
  ident: bib0008
  article-title: Predictions of oil/chemical tanker main design parameters using computational intelligence techniques
  publication-title: Appl. Soft Comput.
– volume: 85 (4)
  start-page: 597
  year: 1922
  end-page: 612
  ident: bib0010
  article-title: The goodness of fit of regression formulae, and the distribution of regression coefficients
  publication-title: J. R. Stat. Soc.
– volume: 265
  year: 2022
  ident: bib0019
  article-title: Prediction of main particulars of container ships using artificial intelligence algorithms
  publication-title: Ocean Eng.
– year: 2009
  ident: bib0011
  article-title: Statistical Models: Theory and Practice
– volume: 20 (8)
  start-page: 832
  year: 1998
  end-page: 844
  ident: bib0015
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 141
  year: 2022
  end-page: 147
  ident: bib0024
  article-title: Lane meters correlation analysis towards the main dimensions of Ro-ro ships under 2000 GT
  publication-title: Proceedings of the 4th International Conference on Marine Technology
– volume: 1(1)
  start-page: 247
  year: 2018
  end-page: 257
  ident: bib0001
  article-title: Determination of regression formulas for key design characteristics of container ships at preliminary design stage
  publication-title: New Trends Prod. Eng.
– volume: 13 (5)
  start-page: 459
  year: 2018
  end-page: 465
  ident: bib0014
  article-title: Prediction of main particulars of a chemical tanker at preliminary ship design using artificial neural network
  publication-title: Ship Offshore Struct.
– year: 1998
  ident: bib0026
  article-title: Ship Design for Efficiency and Economy
– volume: 38 (4)
  start-page: 268
  year: 2001
  end-page: 277
  ident: bib0007
  article-title: Bayesian and neural networks for preliminary ship design
  publication-title: Mar. Technol.
– volume: 3
  start-page: 33
  year: 2020
  end-page: 48
  ident: bib0020
  article-title: An analysis of basic parameters of Ro-Pax ships and double-ended ferries as basis for new hybrid ferries design
  publication-title: Pomorski zbornik
– year: 2016
  ident: bib0017
  article-title: Analysis of Technical Data of Ro-Ro Ships
  publication-title: Technical Report
– reference: .
– volume: 59 (3)
  start-page: 1725
  year: 2020
  end-page: 1734
  ident: bib0018
  article-title: Multi-attribute concept design procedure of a generic naval vessel
  publication-title: Alex. Eng. J.
– year: 1980
  ident: bib0023
  article-title: Regression Analysis of Ship Characteristics
  publication-title: Technical Report
– volume: 454 (1968)
  start-page: 187
  year: 1998
  end-page: 211
  ident: bib0002
  article-title: A comprehensive methodology for the design of ships (and other complex systems)
  publication-title: Proc. Math. Phys. Eng. Sci.
– start-page: 17
  year: 1992
  end-page: 22
  ident: bib0029
  article-title: Multiattribute decision-making system based on random generation of non dominated solutions: an application to fishing vessel design
  publication-title: Proceedings of the PRAD, 5th International symposium on the practical design of ships and mobile units
– volume: 66
  start-page: 25
  year: 2022
  end-page: 63
  ident: bib0022
  article-title: A holistic approach to ship design: tools and applications
  publication-title: Journal of Ship Research
– volume: 16
  start-page: 68
  year: 2011
  end-page: 75
  ident: bib0004
  article-title: Ship complexity assessment at the concept design stage
  publication-title: J. Mar Sci Technol
– volume: 49 (1)
  start-page: 39
  year: 2001
  end-page: 54
  ident: bib0013
  article-title: Multi-attribute concept design model of the adriatic type of fishing vessel
  publication-title: Brodogradnja
– volume: vol. I
  year: 1998
  ident: bib0028
  article-title: Practical Ship Design
– reference: Ferry-site, 2024. “Official website”, available at: on-line.
– year: 2005
  ident: bib0016
  publication-title: Regression Analysis of Basic Ship Design Values for Merchant Ships
– volume: 20 (8)
  start-page: 832
  year: 1998
  ident: 10.1016/j.oceaneng.2025.121407_bib0015
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 292
  year: 2024
  ident: 10.1016/j.oceaneng.2025.121407_bib0025
  article-title: Regression analysis for container ships in the early design stage
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.116499
– start-page: 141
  year: 2022
  ident: 10.1016/j.oceaneng.2025.121407_bib0024
  article-title: Lane meters correlation analysis towards the main dimensions of Ro-ro ships under 2000 GT
– year: 2002
  ident: 10.1016/j.oceaneng.2025.121407_bib0012
– year: 2016
  ident: 10.1016/j.oceaneng.2025.121407_bib0017
  article-title: Analysis of Technical Data of Ro-Ro Ships
– year: 1998
  ident: 10.1016/j.oceaneng.2025.121407_bib0026
– year: 1980
  ident: 10.1016/j.oceaneng.2025.121407_bib0023
  article-title: Regression Analysis of Ship Characteristics
– volume: 454 (1968)
  start-page: 187
  year: 1998
  ident: 10.1016/j.oceaneng.2025.121407_bib0002
  article-title: A comprehensive methodology for the design of ships (and other complex systems)
  publication-title: Proc. Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0154
– volume: 3
  start-page: 33
  year: 2020
  ident: 10.1016/j.oceaneng.2025.121407_bib0020
  article-title: An analysis of basic parameters of Ro-Pax ships and double-ended ferries as basis for new hybrid ferries design
  publication-title: Pomorski zbornik
– ident: 10.1016/j.oceaneng.2025.121407_bib0006
– ident: 10.1016/j.oceaneng.2025.121407_bib0009
– volume: 85 (4)
  start-page: 597
  issue: 4
  year: 1922
  ident: 10.1016/j.oceaneng.2025.121407_bib0010
  article-title: The goodness of fit of regression formulae, and the distribution of regression coefficients
  publication-title: J. R. Stat. Soc.
  doi: 10.2307/2341124
– volume: 265
  year: 2022
  ident: 10.1016/j.oceaneng.2025.121407_bib0019
  article-title: Prediction of main particulars of container ships using artificial intelligence algorithms
  publication-title: Ocean Eng.
– year: 2014
  ident: 10.1016/j.oceaneng.2025.121407_bib0021
– volume: 13 (5)
  start-page: 459
  year: 2018
  ident: 10.1016/j.oceaneng.2025.121407_bib0014
  article-title: Prediction of main particulars of a chemical tanker at preliminary ship design using artificial neural network
  publication-title: Ship Offshore Struct.
  doi: 10.1080/17445302.2018.1425337
– volume: 16
  start-page: 68
  year: 2011
  ident: 10.1016/j.oceaneng.2025.121407_bib0004
  article-title: Ship complexity assessment at the concept design stage
  publication-title: J. Mar Sci Technol
  doi: 10.1007/s00773-010-0107-9
– volume: 179
  start-page: 854
  year: 2021
  ident: 10.1016/j.oceaneng.2025.121407_bib0003
  article-title: Support vector machine with k-fold validation to improve the industry’s sustainability performance classification
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2021.01.074
– volume: 38 (4)
  start-page: 268
  year: 2001
  ident: 10.1016/j.oceaneng.2025.121407_bib0007
  article-title: Bayesian and neural networks for preliminary ship design
  publication-title: Mar. Technol.
– year: 2005
  ident: 10.1016/j.oceaneng.2025.121407_bib0016
– year: 1994
  ident: 10.1016/j.oceaneng.2025.121407_bib0027
  article-title: Comprehensive concept of fast Ro-ro ships by multiattribute decision making
– start-page: 17
  year: 1992
  ident: 10.1016/j.oceaneng.2025.121407_bib0029
  article-title: Multiattribute decision-making system based on random generation of non dominated solutions: an application to fishing vessel design
– volume: 49 (1)
  start-page: 39
  year: 2001
  ident: 10.1016/j.oceaneng.2025.121407_bib0013
  article-title: Multi-attribute concept design model of the adriatic type of fishing vessel
  publication-title: Brodogradnja
– volume: 1(1)
  start-page: 247
  year: 2018
  ident: 10.1016/j.oceaneng.2025.121407_bib0001
  article-title: Determination of regression formulas for key design characteristics of container ships at preliminary design stage
  publication-title: New Trends Prod. Eng.
  doi: 10.2478/ntpe-2018-0031
– year: 2009
  ident: 10.1016/j.oceaneng.2025.121407_bib0011
– volume: vol. I
  year: 1998
  ident: 10.1016/j.oceaneng.2025.121407_bib0028
– volume: 238
  year: 2021
  ident: 10.1016/j.oceaneng.2025.121407_bib0005
  article-title: Determination of design formulas for container ships at the preliminary design stage using artificial neural network and multiple nonlinear regression
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.109727
– volume: 66
  start-page: 25
  year: 2022
  ident: 10.1016/j.oceaneng.2025.121407_bib0022
  article-title: A holistic approach to ship design: tools and applications
  publication-title: Journal of Ship Research
  doi: 10.5957/JOSR.12190070
– volume: 11 (2)
  start-page: 2356
  year: 2011
  ident: 10.1016/j.oceaneng.2025.121407_bib0008
  article-title: Predictions of oil/chemical tanker main design parameters using computational intelligence techniques
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.08.015
– volume: 59 (3)
  start-page: 1725
  year: 2020
  ident: 10.1016/j.oceaneng.2025.121407_bib0018
  article-title: Multi-attribute concept design procedure of a generic naval vessel
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2020.04.038
SSID ssj0006603
Score 2.4291728
Snippet •Analysis of a modern database of RoPax vessels.•Implementation of simple and advanced regression models.•Comparison between literature and new...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 121407
SubjectTerms Forest tree algorithms
Multiple linear regression
Regression models
RoPax vessels
Ship design
Title Development of regression models for estimating main particulars of RoPax vessels in the conceptual design stage
URI https://dx.doi.org/10.1016/j.oceaneng.2025.121407
Volume 333
WOSCitedRecordID wos001496914700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0029-8018
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006603
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywGQEBQQLQ_5wK3KkthxvD6uUBEgVHooaG-R7dilVZusNku1P7_jRx5FK0oPXKLdrMZ2dj7b48nMNwi9zwtSpVTYRFMmE_iWJ0KnIpGMq9xyw5Vn4Pv5jR8dzRYLcRzDbVtfToDX9WyzEcv_qmq4B8p2qbN3UHffKNyAz6B0uILa4fpPih-FATlLcGVOQ6hrHaretIHkG2a2s1Xr04NL6elVV56FA465np6kOZabgyvHK37RdqGQOmQ4unyTysd9OD_EzVCi79o59s3AcTg4vGNCjS_kYVrd9K4d2KE8Jue_LmOiVXRCEOa9m-l4YSXCbXaz8cJKKR0tjRmBsxzfumoHB8L5tHGDhDFOXRfTQeAmTfYf21cfVNjFq52XXTula6cM7dxHO4QzMZugnfmXw8XXfrsuipR2cUDuCUZp5NtHtN2CGVklJ0_Rk3icwPMAg2fonql30aMRyeQueuyVEpnJn6PlCB-4sXjABw74wIAPPOADO3zgET6ckMcHjvjA8DvgAw_4wAEf2OPjBfrx6fDk4-cklt2A-VqQdaKZ1JlUhNucpVUGRpSWnIFpTJU0BdE2S7myosqoUVzoHExeLjOTW0MqqhinL9GkbmrzCmGbKi2EqqqcuzfOUrBKZcRIOHcoywzZQ6z7K0sdOeldaZSL8u_K3EMferllYGW5VUJ0miqjbRlsxhJAeIvs_p17e40eDrPkDZqsV7_NW_RAX63P2tW7iMBrCsGjMQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+regression+models+for+estimating+main+particulars+of+RoPax+vessels+in+the+conceptual+design+stage&rft.jtitle=Ocean+engineering&rft.au=Mauro%2C+Francesco&rft.au=Salem%2C+Ahmed&rft.date=2025-07-30&rft.issn=0029-8018&rft.volume=333&rft.spage=121407&rft_id=info:doi/10.1016%2Fj.oceaneng.2025.121407&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2025_121407
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon