Development of regression models for estimating main particulars of RoPax vessels in the conceptual design stage
•Analysis of a modern database of RoPax vessels.•Implementation of simple and advanced regression models.•Comparison between literature and new regressions.•Testing of multiple regression models for main particulars estimation. The design of new ships is a process that requires knowledge of several...
Saved in:
| Published in: | Ocean engineering Vol. 333; p. 121407 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
30.07.2025
|
| Subjects: | |
| ISSN: | 0029-8018 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Analysis of a modern database of RoPax vessels.•Implementation of simple and advanced regression models.•Comparison between literature and new regressions.•Testing of multiple regression models for main particulars estimation.
The design of new ships is a process that requires knowledge of several aspects of naval architecture and marine engineering. During the early design stage, one of the first issues that designers should face is the preliminary estimation of the vessel’s main dimensions, respecting the desiderata of the ship owner. Therefore, it is relevant to provide designers with suitable tools that may help estimate the principal dimensions, consider conventional methods and investigate the applicability of modern techniques based on machine learning. The present work focuses on applying different regression techniques to a database of RoPax vessels, finding mathematical instruments to evaluate the ship’s main dimensions. Conventional regression techniques are first investigated here to compare with the existing formulae provided by other databases. The study is then extended by applying multiple linear regression and forest tree algorithms, seeking an improvement of conventional formulations available in the literature. The results highlight how the most modern regression techniques allow for better coverage of the design space, allowing the use of more than one input to obtain the final dimensions. |
|---|---|
| AbstractList | •Analysis of a modern database of RoPax vessels.•Implementation of simple and advanced regression models.•Comparison between literature and new regressions.•Testing of multiple regression models for main particulars estimation.
The design of new ships is a process that requires knowledge of several aspects of naval architecture and marine engineering. During the early design stage, one of the first issues that designers should face is the preliminary estimation of the vessel’s main dimensions, respecting the desiderata of the ship owner. Therefore, it is relevant to provide designers with suitable tools that may help estimate the principal dimensions, consider conventional methods and investigate the applicability of modern techniques based on machine learning. The present work focuses on applying different regression techniques to a database of RoPax vessels, finding mathematical instruments to evaluate the ship’s main dimensions. Conventional regression techniques are first investigated here to compare with the existing formulae provided by other databases. The study is then extended by applying multiple linear regression and forest tree algorithms, seeking an improvement of conventional formulations available in the literature. The results highlight how the most modern regression techniques allow for better coverage of the design space, allowing the use of more than one input to obtain the final dimensions. |
| ArticleNumber | 121407 |
| Author | Salem, Ahmed Mauro, Francesco |
| Author_xml | – sequence: 1 givenname: Francesco orcidid: 0000-0003-3471-9411 surname: Mauro fullname: Mauro, Francesco email: fmauro@units.it organization: University of Trieste, Trieste, 34100, Italy – sequence: 2 givenname: Ahmed orcidid: 0000-0002-3268-537X surname: Salem fullname: Salem, Ahmed email: Ahmed.Salem@sma.ac.ae organization: Sharjah Maritime Academy, Sharjah, 180018, Khorfakkan, UAE |
| BookMark | eNqF0M1KAzEQwPEcKthWX0HyArsm2a8ueFCqVqGgiJ5DNpmsKbvJkqRF395dqhcvPc1h-A_Mb4Fm1llA6IqSlBJaXu9SJ0FYsG3KCCtSymhOqhmaE8LqZEXo6hwtQtgRQsqSZHM03MMBOjf0YCN2GntoPYRgnMW9U9AFrJ3HEKLpRTS2xb0wFg_CRyP3nfBhit7cq_jCh7GbgnEfPwFLZyUMcS86rCCY1uIQRQsX6EyLLsDl71yij8eH9_VTsn3ZPK_vtonMShYTWQhJRcMqnRdEUQAlRVWwoswaASWTmpKq0bWiGTRVLfNsVVeCQq6BqawpqmyJbo53pXcheNBcmji-4Gz0wnScEj6J8R3_E-OTGD-KjXn5Lx_8SOC_T4e3x3CkgIMBz4M0MFIo40FGrpw5deIHdLuRiQ |
| CitedBy_id | crossref_primary_10_3390_jmse13071319 |
| Cites_doi | 10.1016/j.oceaneng.2023.116499 10.1098/rspa.1998.0154 10.2307/2341124 10.1080/17445302.2018.1425337 10.1007/s00773-010-0107-9 10.1016/j.procs.2021.01.074 10.2478/ntpe-2018-0031 10.1016/j.oceaneng.2021.109727 10.5957/JOSR.12190070 10.1016/j.asoc.2010.08.015 10.1016/j.aej.2020.04.038 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s) |
| Copyright_xml | – notice: 2025 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.oceaneng.2025.121407 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Oceanography |
| ExternalDocumentID | 10_1016_j_oceaneng_2025_121407 S0029801825011205 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JM 9JN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BJAXD BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSH SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ 9DU AAQXK AAYXX ABFNM ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ADMUD ADNMO AFFNX AGQPQ ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ LY6 LY7 R2- SAC SET WUQ ~HD |
| ID | FETCH-LOGICAL-c362t-c5ac1ab27f450d1eedca752563bae62cf107bf9d13eb79c43897a1e4fe2d3b573 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001496914700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-8018 |
| IngestDate | Tue Nov 18 20:42:58 EST 2025 Sat Nov 29 07:48:08 EST 2025 Sat Jul 05 17:11:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Ship design RoPax vessels Regression models Multiple linear regression Forest tree algorithms |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c362t-c5ac1ab27f450d1eedca752563bae62cf107bf9d13eb79c43897a1e4fe2d3b573 |
| ORCID | 0000-0003-3471-9411 0000-0002-3268-537X |
| OpenAccessLink | https://dx.doi.org/10.1016/j.oceaneng.2025.121407 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_oceaneng_2025_121407 crossref_primary_10_1016_j_oceaneng_2025_121407 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2025_121407 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-30 |
| PublicationDateYYYYMMDD | 2025-07-30 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | Ocean engineering |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Fisher (bib0010) 1922; 85 (4) Žanić, Grubišić, Trincas (bib0029) 1992 Putra, Aryawan, Suisetyono (bib0024) 2022 Friis, Andersen, Jensen (bib0012) 2002 Novak, Majanarić, Deihalla, Zamarin (bib0020) 2020; 3 Gurgen, Altin, Ozkok (bib0014) 2018; 13 (5) Andrews (bib0002) 1998; 454 (1968) Ho (bib0015) 1998; 20 (8) Caprace, Rigo (bib0004) 2011; 16 Grubišić, Begović (bib0013) 2001; 49 (1) Papanikolaou, Harries, Hooijmans, Marzi, Nena, Torben, Yrjan, Boden (bib0022) 2022; 66 Asrol, Papilo, Gunawan (bib0003) 2021; 179 Cepowski, Chorab (bib0005) 2021; 238 Rinauro, Begovic, Mauro, Rosano (bib0025) 2024; 292 Abramowski, Cepowski, Zvolensky (bib0001) 2018; 1(1) Ljulj, Slapničar, Grubišić (bib0018) 2020; 59 (3) Schneekluth, Bertram (bib0026) 1998 Clausen, Lutzen, Hansen, Bjorneboe (bib0007) 2001; 38 (4) Clarksons, 2024. Shipping and trade data analysis and research services. on-line. . Freedman (bib0011) 2009 Kalokairinos, Mavroeidis, Radou, Zachariou (bib0016) 2005 Papanikolaou (bib0021) 2014 Piko (bib0023) 1980 Ferry-site, 2024. “Official website”, available at: on-line. Trincas, Žanić, Grubišić (bib0027) 1994 Ekinci, Celabi, Bal, Amasyali, Boyaci (bib0008) 2011; 11 (2) Watson (bib0028) 1998; vol. I Majanarić, Šegota, Lorencin, Car (bib0019) 2022; 265 Kristensen (bib0017) 2016 Trincas (10.1016/j.oceaneng.2025.121407_bib0027) 1994 Kalokairinos (10.1016/j.oceaneng.2025.121407_bib0016) 2005 Kristensen (10.1016/j.oceaneng.2025.121407_bib0017) 2016 Caprace (10.1016/j.oceaneng.2025.121407_bib0004) 2011; 16 Putra (10.1016/j.oceaneng.2025.121407_bib0024) 2022 Fisher (10.1016/j.oceaneng.2025.121407_bib0010) 1922; 85 (4) Abramowski (10.1016/j.oceaneng.2025.121407_bib0001) 2018; 1(1) Ekinci (10.1016/j.oceaneng.2025.121407_bib0008) 2011; 11 (2) Watson (10.1016/j.oceaneng.2025.121407_bib0028) 1998; vol. I Asrol (10.1016/j.oceaneng.2025.121407_bib0003) 2021; 179 Andrews (10.1016/j.oceaneng.2025.121407_bib0002) 1998; 454 (1968) Friis (10.1016/j.oceaneng.2025.121407_bib0012) 2002 Piko (10.1016/j.oceaneng.2025.121407_bib0023) 1980 Clausen (10.1016/j.oceaneng.2025.121407_bib0007) 2001; 38 (4) Freedman (10.1016/j.oceaneng.2025.121407_bib0011) 2009 Majanarić (10.1016/j.oceaneng.2025.121407_bib0019) 2022; 265 Novak (10.1016/j.oceaneng.2025.121407_bib0020) 2020; 3 Grubišić (10.1016/j.oceaneng.2025.121407_bib0013) 2001; 49 (1) Žanić (10.1016/j.oceaneng.2025.121407_bib0029) 1992 Papanikolaou (10.1016/j.oceaneng.2025.121407_bib0022) 2022; 66 10.1016/j.oceaneng.2025.121407_bib0006 Rinauro (10.1016/j.oceaneng.2025.121407_bib0025) 2024; 292 10.1016/j.oceaneng.2025.121407_bib0009 Ho (10.1016/j.oceaneng.2025.121407_bib0015) 1998; 20 (8) Schneekluth (10.1016/j.oceaneng.2025.121407_bib0026) 1998 Cepowski (10.1016/j.oceaneng.2025.121407_bib0005) 2021; 238 Gurgen (10.1016/j.oceaneng.2025.121407_bib0014) 2018; 13 (5) Papanikolaou (10.1016/j.oceaneng.2025.121407_bib0021) 2014 Ljulj (10.1016/j.oceaneng.2025.121407_bib0018) 2020; 59 (3) |
| References_xml | – volume: 179 start-page: 854 year: 2021 end-page: 862 ident: bib0003 article-title: Support vector machine with k-fold validation to improve the industry’s sustainability performance classification publication-title: Procedia Comput. Sci. – volume: 292 year: 2024 ident: bib0025 article-title: Regression analysis for container ships in the early design stage publication-title: Ocean Eng. – year: 1994 ident: bib0027 article-title: Comprehensive concept of fast Ro-ro ships by multiattribute decision making publication-title: IMDC 94, Proceeding of the 5th International Marine Design Conference, Delft – volume: 238 year: 2021 ident: bib0005 article-title: Determination of design formulas for container ships at the preliminary design stage using artificial neural network and multiple nonlinear regression publication-title: Ocean Eng. – year: 2002 ident: bib0012 article-title: Ship Design (Part I and II) – year: 2014 ident: bib0021 article-title: Ship Design. Methodologies of Preliminary Design – reference: Clarksons, 2024. Shipping and trade data analysis and research services. on-line. – volume: 11 (2) start-page: 2356 year: 2011 end-page: 2366 ident: bib0008 article-title: Predictions of oil/chemical tanker main design parameters using computational intelligence techniques publication-title: Appl. Soft Comput. – volume: 85 (4) start-page: 597 year: 1922 end-page: 612 ident: bib0010 article-title: The goodness of fit of regression formulae, and the distribution of regression coefficients publication-title: J. R. Stat. Soc. – volume: 265 year: 2022 ident: bib0019 article-title: Prediction of main particulars of container ships using artificial intelligence algorithms publication-title: Ocean Eng. – year: 2009 ident: bib0011 article-title: Statistical Models: Theory and Practice – volume: 20 (8) start-page: 832 year: 1998 end-page: 844 ident: bib0015 article-title: The random subspace method for constructing decision forests publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 141 year: 2022 end-page: 147 ident: bib0024 article-title: Lane meters correlation analysis towards the main dimensions of Ro-ro ships under 2000 GT publication-title: Proceedings of the 4th International Conference on Marine Technology – volume: 1(1) start-page: 247 year: 2018 end-page: 257 ident: bib0001 article-title: Determination of regression formulas for key design characteristics of container ships at preliminary design stage publication-title: New Trends Prod. Eng. – volume: 13 (5) start-page: 459 year: 2018 end-page: 465 ident: bib0014 article-title: Prediction of main particulars of a chemical tanker at preliminary ship design using artificial neural network publication-title: Ship Offshore Struct. – year: 1998 ident: bib0026 article-title: Ship Design for Efficiency and Economy – volume: 38 (4) start-page: 268 year: 2001 end-page: 277 ident: bib0007 article-title: Bayesian and neural networks for preliminary ship design publication-title: Mar. Technol. – volume: 3 start-page: 33 year: 2020 end-page: 48 ident: bib0020 article-title: An analysis of basic parameters of Ro-Pax ships and double-ended ferries as basis for new hybrid ferries design publication-title: Pomorski zbornik – year: 2016 ident: bib0017 article-title: Analysis of Technical Data of Ro-Ro Ships publication-title: Technical Report – reference: . – volume: 59 (3) start-page: 1725 year: 2020 end-page: 1734 ident: bib0018 article-title: Multi-attribute concept design procedure of a generic naval vessel publication-title: Alex. Eng. J. – year: 1980 ident: bib0023 article-title: Regression Analysis of Ship Characteristics publication-title: Technical Report – volume: 454 (1968) start-page: 187 year: 1998 end-page: 211 ident: bib0002 article-title: A comprehensive methodology for the design of ships (and other complex systems) publication-title: Proc. Math. Phys. Eng. Sci. – start-page: 17 year: 1992 end-page: 22 ident: bib0029 article-title: Multiattribute decision-making system based on random generation of non dominated solutions: an application to fishing vessel design publication-title: Proceedings of the PRAD, 5th International symposium on the practical design of ships and mobile units – volume: 66 start-page: 25 year: 2022 end-page: 63 ident: bib0022 article-title: A holistic approach to ship design: tools and applications publication-title: Journal of Ship Research – volume: 16 start-page: 68 year: 2011 end-page: 75 ident: bib0004 article-title: Ship complexity assessment at the concept design stage publication-title: J. Mar Sci Technol – volume: 49 (1) start-page: 39 year: 2001 end-page: 54 ident: bib0013 article-title: Multi-attribute concept design model of the adriatic type of fishing vessel publication-title: Brodogradnja – volume: vol. I year: 1998 ident: bib0028 article-title: Practical Ship Design – reference: Ferry-site, 2024. “Official website”, available at: on-line. – year: 2005 ident: bib0016 publication-title: Regression Analysis of Basic Ship Design Values for Merchant Ships – volume: 20 (8) start-page: 832 year: 1998 ident: 10.1016/j.oceaneng.2025.121407_bib0015 article-title: The random subspace method for constructing decision forests publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 292 year: 2024 ident: 10.1016/j.oceaneng.2025.121407_bib0025 article-title: Regression analysis for container ships in the early design stage publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.116499 – start-page: 141 year: 2022 ident: 10.1016/j.oceaneng.2025.121407_bib0024 article-title: Lane meters correlation analysis towards the main dimensions of Ro-ro ships under 2000 GT – year: 2002 ident: 10.1016/j.oceaneng.2025.121407_bib0012 – year: 2016 ident: 10.1016/j.oceaneng.2025.121407_bib0017 article-title: Analysis of Technical Data of Ro-Ro Ships – year: 1998 ident: 10.1016/j.oceaneng.2025.121407_bib0026 – year: 1980 ident: 10.1016/j.oceaneng.2025.121407_bib0023 article-title: Regression Analysis of Ship Characteristics – volume: 454 (1968) start-page: 187 year: 1998 ident: 10.1016/j.oceaneng.2025.121407_bib0002 article-title: A comprehensive methodology for the design of ships (and other complex systems) publication-title: Proc. Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0154 – volume: 3 start-page: 33 year: 2020 ident: 10.1016/j.oceaneng.2025.121407_bib0020 article-title: An analysis of basic parameters of Ro-Pax ships and double-ended ferries as basis for new hybrid ferries design publication-title: Pomorski zbornik – ident: 10.1016/j.oceaneng.2025.121407_bib0006 – ident: 10.1016/j.oceaneng.2025.121407_bib0009 – volume: 85 (4) start-page: 597 issue: 4 year: 1922 ident: 10.1016/j.oceaneng.2025.121407_bib0010 article-title: The goodness of fit of regression formulae, and the distribution of regression coefficients publication-title: J. R. Stat. Soc. doi: 10.2307/2341124 – volume: 265 year: 2022 ident: 10.1016/j.oceaneng.2025.121407_bib0019 article-title: Prediction of main particulars of container ships using artificial intelligence algorithms publication-title: Ocean Eng. – year: 2014 ident: 10.1016/j.oceaneng.2025.121407_bib0021 – volume: 13 (5) start-page: 459 year: 2018 ident: 10.1016/j.oceaneng.2025.121407_bib0014 article-title: Prediction of main particulars of a chemical tanker at preliminary ship design using artificial neural network publication-title: Ship Offshore Struct. doi: 10.1080/17445302.2018.1425337 – volume: 16 start-page: 68 year: 2011 ident: 10.1016/j.oceaneng.2025.121407_bib0004 article-title: Ship complexity assessment at the concept design stage publication-title: J. Mar Sci Technol doi: 10.1007/s00773-010-0107-9 – volume: 179 start-page: 854 year: 2021 ident: 10.1016/j.oceaneng.2025.121407_bib0003 article-title: Support vector machine with k-fold validation to improve the industry’s sustainability performance classification publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2021.01.074 – volume: 38 (4) start-page: 268 year: 2001 ident: 10.1016/j.oceaneng.2025.121407_bib0007 article-title: Bayesian and neural networks for preliminary ship design publication-title: Mar. Technol. – year: 2005 ident: 10.1016/j.oceaneng.2025.121407_bib0016 – year: 1994 ident: 10.1016/j.oceaneng.2025.121407_bib0027 article-title: Comprehensive concept of fast Ro-ro ships by multiattribute decision making – start-page: 17 year: 1992 ident: 10.1016/j.oceaneng.2025.121407_bib0029 article-title: Multiattribute decision-making system based on random generation of non dominated solutions: an application to fishing vessel design – volume: 49 (1) start-page: 39 year: 2001 ident: 10.1016/j.oceaneng.2025.121407_bib0013 article-title: Multi-attribute concept design model of the adriatic type of fishing vessel publication-title: Brodogradnja – volume: 1(1) start-page: 247 year: 2018 ident: 10.1016/j.oceaneng.2025.121407_bib0001 article-title: Determination of regression formulas for key design characteristics of container ships at preliminary design stage publication-title: New Trends Prod. Eng. doi: 10.2478/ntpe-2018-0031 – year: 2009 ident: 10.1016/j.oceaneng.2025.121407_bib0011 – volume: vol. I year: 1998 ident: 10.1016/j.oceaneng.2025.121407_bib0028 – volume: 238 year: 2021 ident: 10.1016/j.oceaneng.2025.121407_bib0005 article-title: Determination of design formulas for container ships at the preliminary design stage using artificial neural network and multiple nonlinear regression publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.109727 – volume: 66 start-page: 25 year: 2022 ident: 10.1016/j.oceaneng.2025.121407_bib0022 article-title: A holistic approach to ship design: tools and applications publication-title: Journal of Ship Research doi: 10.5957/JOSR.12190070 – volume: 11 (2) start-page: 2356 year: 2011 ident: 10.1016/j.oceaneng.2025.121407_bib0008 article-title: Predictions of oil/chemical tanker main design parameters using computational intelligence techniques publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.08.015 – volume: 59 (3) start-page: 1725 year: 2020 ident: 10.1016/j.oceaneng.2025.121407_bib0018 article-title: Multi-attribute concept design procedure of a generic naval vessel publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2020.04.038 |
| SSID | ssj0006603 |
| Score | 2.4291728 |
| Snippet | •Analysis of a modern database of RoPax vessels.•Implementation of simple and advanced regression models.•Comparison between literature and new... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 121407 |
| SubjectTerms | Forest tree algorithms Multiple linear regression Regression models RoPax vessels Ship design |
| Title | Development of regression models for estimating main particulars of RoPax vessels in the conceptual design stage |
| URI | https://dx.doi.org/10.1016/j.oceaneng.2025.121407 |
| Volume | 333 |
| WOSCitedRecordID | wos001496914700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0029-8018 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006603 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywGQEBQQLQ_5wK3KkthxvD6uUBEgVHooaG-R7dilVZusNku1P7_jRx5FK0oPXKLdrMZ2dj7b48nMNwi9zwtSpVTYRFMmE_iWJ0KnIpGMq9xyw5Vn4Pv5jR8dzRYLcRzDbVtfToDX9WyzEcv_qmq4B8p2qbN3UHffKNyAz6B0uILa4fpPih-FATlLcGVOQ6hrHaretIHkG2a2s1Xr04NL6elVV56FA465np6kOZabgyvHK37RdqGQOmQ4unyTysd9OD_EzVCi79o59s3AcTg4vGNCjS_kYVrd9K4d2KE8Jue_LmOiVXRCEOa9m-l4YSXCbXaz8cJKKR0tjRmBsxzfumoHB8L5tHGDhDFOXRfTQeAmTfYf21cfVNjFq52XXTula6cM7dxHO4QzMZugnfmXw8XXfrsuipR2cUDuCUZp5NtHtN2CGVklJ0_Rk3icwPMAg2fonql30aMRyeQueuyVEpnJn6PlCB-4sXjABw74wIAPPOADO3zgET6ckMcHjvjA8DvgAw_4wAEf2OPjBfrx6fDk4-cklt2A-VqQdaKZ1JlUhNucpVUGRpSWnIFpTJU0BdE2S7myosqoUVzoHExeLjOTW0MqqhinL9GkbmrzCmGbKi2EqqqcuzfOUrBKZcRIOHcoywzZQ6z7K0sdOeldaZSL8u_K3EMferllYGW5VUJ0miqjbRlsxhJAeIvs_p17e40eDrPkDZqsV7_NW_RAX63P2tW7iMBrCsGjMQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+regression+models+for+estimating+main+particulars+of+RoPax+vessels+in+the+conceptual+design+stage&rft.jtitle=Ocean+engineering&rft.au=Mauro%2C+Francesco&rft.au=Salem%2C+Ahmed&rft.date=2025-07-30&rft.issn=0029-8018&rft.volume=333&rft.spage=121407&rft_id=info:doi/10.1016%2Fj.oceaneng.2025.121407&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2025_121407 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |