Intelligent Recognition Algorithm of Multiple Myocardial Infarction Based on Morphological Feature Extraction
Myocardial infarction is a type of heart disease marked by rapid progression and high mortality. In this paper, a novel intelligent recognition algorithm of multiple myocardial infarctions using a bidirectional long short-term memory (BiLSTM) neural network classification was proposed. This algorith...
Gespeichert in:
| Veröffentlicht in: | Processes Jg. 10; H. 11; S. 2348 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.11.2022
|
| Schlagworte: | |
| ISSN: | 2227-9717, 2227-9717 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Myocardial infarction is a type of heart disease marked by rapid progression and high mortality. In this paper, a novel intelligent recognition algorithm of multiple myocardial infarctions using a bidirectional long short-term memory (BiLSTM) neural network classification was proposed. This algorithm was based on morphological feature extraction, which can greatly improve the diagnostic efficiency of doctors for different kinds of myocardial infarction diseases. The algorithm includes noise reduction and beat segmentation of electrocardiogram (ECG) signals from the Physikalisch-Technische Bundesanstalt (PTB) database. According to the medical diagnosis guide, the distance feature of the whole waveform and the amplitude feature of the branch lead waveform are extracted. According to the extracted features, the long short-term memory network (LSTM) and the BiLSTM neural networks are built to classify and recognize heartbeats. The experimental results show that the accuracy of the morphological feature + BiLSTM algorithm in MI detection is 99.4%. At the same time, among the six common myocardial infarction diseases, the location and recognition rate of the culprit vessel is high. The sensitivity, specificity, PPV, NPV, and F1 score parameters all reach more than 98.4%, and the kappa coefficient also reaches 0.983, while the overall accuracy reaches 98.6%. The accuracy of this algorithm is improved by at least 1% compared with that of other existing algorithms. Thus, this study exhibits a very important clinical application value. |
|---|---|
| AbstractList | Myocardial infarction is a type of heart disease marked by rapid progression and high mortality. In this paper, a novel intelligent recognition algorithm of multiple myocardial infarctions using a bidirectional long short-term memory (BiLSTM) neural network classification was proposed. This algorithm was based on morphological feature extraction, which can greatly improve the diagnostic efficiency of doctors for different kinds of myocardial infarction diseases. The algorithm includes noise reduction and beat segmentation of electrocardiogram (ECG) signals from the Physikalisch-Technische Bundesanstalt (PTB) database. According to the medical diagnosis guide, the distance feature of the whole waveform and the amplitude feature of the branch lead waveform are extracted. According to the extracted features, the long short-term memory network (LSTM) and the BiLSTM neural networks are built to classify and recognize heartbeats. The experimental results show that the accuracy of the morphological feature + BiLSTM algorithm in MI detection is 99.4%. At the same time, among the six common myocardial infarction diseases, the location and recognition rate of the culprit vessel is high. The sensitivity, specificity, PPV, NPV, and F1 score parameters all reach more than 98.4%, and the kappa coefficient also reaches 0.983, while the overall accuracy reaches 98.6%. The accuracy of this algorithm is improved by at least 1% compared with that of other existing algorithms. Thus, this study exhibits a very important clinical application value. |
| Audience | Academic |
| Author | Cheng, Wenbo Wang, Lei Wang, Biao Xu, Wenchang |
| Author_xml | – sequence: 1 givenname: Wenchang orcidid: 0000-0002-3573-0439 surname: Xu fullname: Xu, Wenchang – sequence: 2 givenname: Lei surname: Wang fullname: Wang, Lei – sequence: 3 givenname: Biao surname: Wang fullname: Wang, Biao – sequence: 4 givenname: Wenbo surname: Cheng fullname: Cheng, Wenbo |
| BookMark | eNptkV1LwzAUhoNMcE5v_AUF74TNfHRtcznHpoMNQfS6pOlJl5EmNc1A_72ZClMxucghPE9yDu85GlhnAaErgieMcXzbeYIJoSwtTtCQUpqPeU7ywY_6DF32_Q7HxQkrptkQtSsbwBjdgA3JE0jXWB20s8nMNM7rsG0Tp5LN3gTdGUg2704KX2thkpVVwstP9k70UCex2DjfbZ1xjZaRWIIIew_J4i148UleoFMlTA-X3-cIvSwXz_OH8frxfjWfrceSZTSMJeapqlVRs5rjKa4ylWHBpJJpUVVFNs1qJTmwSslMYaJSzClwinMpFRACgo3Q9de7nXeve-hDuXN7b-OXJc1ZmmPOGTtSjTBQaqvcoc9W97Kc5WkaGTKlkZr8Q8VdQ6tlTEDpeP9LwF-C9K7vPahS6iAO40dRm5Lg8hBXeYwrKjd_lM7rVvj3_-APSLCX_A |
| CitedBy_id | crossref_primary_10_3390_app13084964 crossref_primary_10_1016_j_isci_2024_109307 crossref_primary_10_3390_s25051412 |
| Cites_doi | 10.1109/ICASSP.2017.7952519 10.1016/j.compbiomed.2018.07.005 10.1007/s11760-017-1146-z 10.1007/978-1-4615-3262-0 10.1016/j.compbiomed.2022.106199 10.1016/j.bspc.2009.09.001 10.1016/j.irbm.2019.09.003 10.1016/j.bspc.2013.01.005 10.1016/j.cmpb.2019.05.004 10.1016/j.compbiomed.2017.09.017 10.1016/j.neunet.2014.09.003 10.1016/j.compbiomed.2018.12.012 10.1016/j.asoc.2017.12.001 10.1016/j.bspc.2016.07.007 10.1016/j.compbiomed.2022.105550 10.1161/01.CIR.101.23.e215 10.4236/jbise.2014.710081 10.1016/j.knosys.2016.01.040 10.1016/j.cmpb.2019.05.028 10.1016/j.compbiomed.2016.09.012 10.1016/j.artmed.2004.01.003 10.1016/j.mcna.2007.03.007 10.1109/INDICON.2015.7443220 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SR 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ JG9 KB. LK8 M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.3390/pr10112348 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Research Database Materials Science Database ProQuest Biological Science Collection Biological Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2227-9717 |
| ExternalDocumentID | A744993152 10_3390_pr10112348 |
| GeographicLocations | Michigan |
| GeographicLocations_xml | – name: Michigan |
| GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ACIWK ACPRK ADBBV ADMLS AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I HCIFZ IAO IGS ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PQGLB PROAC RNS 7SR 8FD ABUWG AZQEC DWQXO GNUQQ JG9 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c362t-c094fdf8d3d9050b6f60a3cfc48bb8656dfc9e3bfc6f01f4092e9207ccfe11ea3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000881668900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-9717 |
| IngestDate | Fri Jul 25 12:01:38 EDT 2025 Tue Nov 11 10:48:43 EST 2025 Tue Nov 04 18:14:36 EST 2025 Tue Nov 18 21:36:24 EST 2025 Sat Nov 29 07:17:47 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c362t-c094fdf8d3d9050b6f60a3cfc48bb8656dfc9e3bfc6f01f4092e9207ccfe11ea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3573-0439 |
| OpenAccessLink | https://www.proquest.com/docview/2734709933?pq-origsite=%requestingapplication% |
| PQID | 2734709933 |
| PQPubID | 2032344 |
| ParticipantIDs | proquest_journals_2734709933 gale_infotracmisc_A744993152 gale_infotracacademiconefile_A744993152 crossref_citationtrail_10_3390_pr10112348 crossref_primary_10_3390_pr10112348 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Processes |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Kong (ref_13) 2019; 177 Jahmunah (ref_9) 2022; 146 Jager (ref_18) 2010; 5 Martis (ref_5) 2013; 8 Padhy (ref_16) 2017; 31 ref_12 Acharya (ref_25) 2018; 100 Goldberger (ref_11) 2000; 101 Xu (ref_14) 2021; 43 Dohare (ref_7) 2018; 64 Yildirim (ref_19) 2019; 176 Sharma (ref_22) 2020; 41 Schmidhuber (ref_20) 2015; 61 Safdarian (ref_24) 2014; 2014 Roger (ref_15) 2007; 91 Chen (ref_17) 2016; 78 Sharma (ref_8) 2018; 102 ref_21 Oh (ref_3) 2019; 105 ref_2 Haraldsson (ref_6) 2004; 32 Sharma (ref_26) 2018; 12 Wei (ref_10) 2022; 150 Go (ref_1) 2013; 127 Acharya (ref_23) 2016; 99 ref_4 |
| References_xml | – ident: ref_21 doi: 10.1109/ICASSP.2017.7952519 – volume: 102 start-page: 341 year: 2018 ident: ref_8 article-title: A novel automated diagnostic system for classification of myocardial infarction ECG signals using an optimal biorthogonal filter bank publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.07.005 – volume: 12 start-page: 199 year: 2018 ident: ref_26 article-title: Inferior myocardial infarction detection using stationary wavelet transform and machine learning approach publication-title: Signal Image Video Process. doi: 10.1007/s11760-017-1146-z – ident: ref_12 doi: 10.1007/978-1-4615-3262-0 – volume: 150 start-page: 106199 year: 2022 ident: ref_10 article-title: MCA-net: A multi-task channel attention network for Myocardial infarction detection and location using 12-lead ECGs publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.106199 – volume: 127 start-page: e6 year: 2013 ident: ref_1 article-title: Heart Disease and Stroke Statistics—2013 Update publication-title: Circulation – volume: 5 start-page: 21 year: 2010 ident: ref_18 article-title: Discrimination between ischemic and artifactual ST segment events in Holter recordings publication-title: Biomed. Signal Process. doi: 10.1016/j.bspc.2009.09.001 – volume: 41 start-page: 58 year: 2020 ident: ref_22 article-title: Myocardial infarction detection and localization using optimal features based lead specific approach publication-title: IRBM doi: 10.1016/j.irbm.2019.09.003 – volume: 8 start-page: 437 year: 2013 ident: ref_5 article-title: ECG beat classification using PCA, LDA, ICA and Discrete Wavelet Transform publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2013.01.005 – volume: 176 start-page: 121 year: 2019 ident: ref_19 article-title: A new approach for arrhythmia classification using deep coded features and LSTM networks publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.05.004 – volume: 100 start-page: 270 year: 2018 ident: ref_25 article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.09.017 – volume: 61 start-page: 85 year: 2015 ident: ref_20 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: 105 start-page: 92 year: 2019 ident: ref_3 article-title: Automated beat-wise arrhythmia diagnosis using modified U-net on extended electrocardiographic recordings with heterogeneous arrhythmia types publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.12.012 – volume: 64 start-page: 138 year: 2018 ident: ref_7 article-title: Detection of myocardial infarction in 12 lead ECG using support vector machine publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.12.001 – volume: 31 start-page: 71 year: 2017 ident: ref_16 article-title: Third-order tensor based analysis of multilead ECG for classification of myocardial infarction publication-title: Biomed. Signal Process. doi: 10.1016/j.bspc.2016.07.007 – ident: ref_4 – volume: 146 start-page: 105550 year: 2022 ident: ref_9 article-title: Explainable detection of myocardial infarction using deep learning models with Grad-CAM technique on ECG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105550 – volume: 101 start-page: E215 year: 2000 ident: ref_11 article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 2014 start-page: 818 year: 2014 ident: ref_24 article-title: A new pattern recognition method for detection and localization of myocardial infarction using T-Wave integral and total integral as extracted features from one cycle of ECG signal publication-title: J. Biomed. Sci. Eng. doi: 10.4236/jbise.2014.710081 – volume: 99 start-page: 146 year: 2016 ident: ref_23 article-title: Automated detection and localization of myocardial infarction using electrocardiogram: A comparative study of different leads publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2016.01.040 – volume: 177 start-page: 183 year: 2019 ident: ref_13 article-title: A novel IRBF-RVM model for diagnosis of atrial fibrillation publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.05.028 – volume: 43 start-page: 2561 year: 2021 ident: ref_14 article-title: Acute Inferior Myocardial Infarction Detection Algorithm Based on BiLSTM Network of Morphological Feature Extraction publication-title: J. Electron. Inf. Technol. – volume: 78 start-page: 65 year: 2016 ident: ref_17 article-title: Multi-window detection for P-wave in electrocardiograms based on bilateral accumulative area publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.09.012 – volume: 32 start-page: 127 year: 2004 ident: ref_6 article-title: Detecting acute myocardial infarction in the 12-lead ECG using Hermite expansions and neural networks publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2004.01.003 – volume: 91 start-page: 537 year: 2007 ident: ref_15 article-title: Epidemiology of Myocardial Infarction publication-title: Med. Clin. N. Am. doi: 10.1016/j.mcna.2007.03.007 – ident: ref_2 doi: 10.1109/INDICON.2015.7443220 |
| SSID | ssj0000913856 |
| Score | 2.2278273 |
| Snippet | Myocardial infarction is a type of heart disease marked by rapid progression and high mortality. In this paper, a novel intelligent recognition algorithm of... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 2348 |
| SubjectTerms | Accuracy Algorithms Cardiovascular diseases Computational linguistics Development and progression Diagnosis Disease EKG Electrocardiogram Electrocardiography Feature extraction Health aspects Heart attacks Heart diseases Language processing Localization Long short-term memory Michigan Morphology Mortality Myocardial infarction Natural language interfaces Neural networks Noise control Noise reduction Parameter sensitivity Segmentation Waveforms Wavelet transforms |
| Title | Intelligent Recognition Algorithm of Multiple Myocardial Infarction Based on Morphological Feature Extraction |
| URI | https://www.proquest.com/docview/2734709933 |
| Volume | 10 |
| WOSCitedRecordID | wos000881668900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: M7P dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: KB. dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS9xAFH9U7aEetNqWrtVlwELrIZpk8nmSXVnpIrsEacGeQubLFtZkzcbSXvq3973sZFUQL72EwDzIhPc9897vAXzUaWG48qTD09A46KECp4hV6IRCqiQSAnOfoB02EU-nydVVmtkDt4Utq-xsYmuoVSXpjPyEYFhiDGc4P53fOjQ1im5X7QiNNdgglAS_Ld3LVmcshHmZhNESlZRjdn8yr1EE0VjTuJ8Hfuhpa9y6mPPt_93ca9iywSUbLKVhB17ochc2H0AO7sKOVeYF-2wRp4_ewM14BczZsMuupKgq2WB2jZ9pftywyrCJrT1kkz_oAEmwZmxcGtSUlnaI_lAxfJlUyLvOpjKKMe9qzUa_m3rZRPEWvp2Pvp59cewcBkeie2sciSmgUSZRXKVu6IrIRG7BpZFBIkSCAaEyMtVcGBkZ1zOYMfo69d1YSqM9Txf8HayXVanfAys8bnwKkqQQQaRFoVyMxyKt0kAnifF6cNRxJZcWpJxmZcxyTFaIg_k9B3twuKKdL6E5nqT6RMzNSV_pPwvbdoD7IeSrfBAHmPRxFJ4e7D-iRD2Tj5c73udWzxf5PeP3nl_-AK98apxouxj3Yb2p7_QBvJS_mp-Lug8bw9E0u-zD2sXwuN8KMT3_jnAlG0-y7_8AcxP-aw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9RQEJ7gYiI8qCCEVdSTqFEeGtqeXh-MWRVCA91sDCb4VHtuaLK0a7eo_Cl_ozO9LJAQ33jwrcmZND3td76ZOT3zDcBLHeeGK0daPPaNhR7Ks_JQ-ZYvpIoCITD38ZpmE-F4HJ2cxJMl-NPXwtCxyp4TG6JWpaQ98l2SYQkxnOH83eyHRV2j6O9q30KjhcWhvviFKdv8bfIRv-8r193fO_5wYHVdBSyJZF1bEhMao0ykuIpt3xaBCeycSyO9SIgIwxtlZKy5MDIwtmMw_3F17NqhlEY7js453vcOLHsE9gEsT5J08mWxq0Mqm5EftDqonMf27qxC0KN7oAZDVzzfzfzfOLX9B__b63gI97vwmY1avK_Bki7WYfWKqOI6rHV0NWdvOk3tnUdwliykR2v2qT80VRZsND3FadXfzlhpWNqdrmTpBbp4WjpTlhQGZ9nYvkePrxhepCWis_cajKLo80qzvd911ZaJbMDnW3kJmzAoykJvAcsdblwKA6UQXqBFrmyMOAOtYk9HkXGGsNOjIJOdDDt1A5lmmI4RYrJLxAzhxcJ21oqP3Gj1msCUESPRPPOusAKfh7S9slHoYVrLMVAbwvY1S2QSeX24x1rWMdk8uwTa438PP4d7B8fpUXaUjA-fwIpLZSJNzeY2DOrqXD-Fu_Jn_X1ePesWDYOvtw3Mv_l0Wqg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFCE4AC0gAgVWAgQ9WLG9_jwgFGgjrJIoQiCVk_F-AVJqB8cF-tf4dczY67SVKm49cLO0K8trv515s555A_BMp4XhypMOT0PjoIcKnCJWoRMKqZJICIx9grbZRDybJYeH6XwD_vS1MJRW2dvE1lCrStIZ-YhkWGKkM5yPjE2LmO9NXi9_ONRBiv609u00Oogc6JNfGL6tXmV7-K2f-_5k_-Pbd47tMOBINNyNIzG4McokiqvUDV0RmcgtuDQySIRIkOooI1PNhZGRcT2DsZCvU9-NpTTa83TB8b5XYBMpeeAPYHOeTeef1yc8pLiZhFGnicp56o6WNW4AdBXUbOiMF7zYF7QObnLrf341t-GmpdVs3O2DLdjQ5TbcOCO2uA1b1oyt2Eurtb17B46ytSRpwz70yVRVycaLr7is5tsRqwyb2qxLNj1B109basGy0uAq27lvkAkohhfTClHbexNG7Pq41mz_d1N35SN34dOlvIR7MCirUt8HVnjc-EQPpRBBpEWhXGSikVZpoJPEeEPY7RGRSyvPTl1CFjmGaYSe_BQ9Q3i6nrvsREkunPWCgJWTpaJ1FrbgAp-HNL_ycRxguMuRwA1h59xMtDDy_HCPu9xauFV-CroH_x5-AtcQjfn7bHbwEK77VD3SlnLuwKCpj_UjuCp_Nt9X9WO7fxh8uWxc_gVQ3mNo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Recognition+Algorithm+of+Multiple+Myocardial+Infarction+Based+on+Morphological+Feature+Extraction&rft.jtitle=Processes&rft.au=Xu%2C+Wenchang&rft.au=Wang%2C+Lei&rft.au=Wang%2C+Biao&rft.au=Cheng%2C+Wenbo&rft.date=2022-11-01&rft.pub=MDPI+AG&rft.issn=2227-9717&rft.eissn=2227-9717&rft.volume=10&rft.issue=11&rft_id=info:doi/10.3390%2Fpr10112348&rft.externalDocID=A744993152 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon |