Intelligent Recognition Algorithm of Multiple Myocardial Infarction Based on Morphological Feature Extraction

Myocardial infarction is a type of heart disease marked by rapid progression and high mortality. In this paper, a novel intelligent recognition algorithm of multiple myocardial infarctions using a bidirectional long short-term memory (BiLSTM) neural network classification was proposed. This algorith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes Jg. 10; H. 11; S. 2348
Hauptverfasser: Xu, Wenchang, Wang, Lei, Wang, Biao, Cheng, Wenbo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.11.2022
Schlagworte:
ISSN:2227-9717, 2227-9717
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Myocardial infarction is a type of heart disease marked by rapid progression and high mortality. In this paper, a novel intelligent recognition algorithm of multiple myocardial infarctions using a bidirectional long short-term memory (BiLSTM) neural network classification was proposed. This algorithm was based on morphological feature extraction, which can greatly improve the diagnostic efficiency of doctors for different kinds of myocardial infarction diseases. The algorithm includes noise reduction and beat segmentation of electrocardiogram (ECG) signals from the Physikalisch-Technische Bundesanstalt (PTB) database. According to the medical diagnosis guide, the distance feature of the whole waveform and the amplitude feature of the branch lead waveform are extracted. According to the extracted features, the long short-term memory network (LSTM) and the BiLSTM neural networks are built to classify and recognize heartbeats. The experimental results show that the accuracy of the morphological feature + BiLSTM algorithm in MI detection is 99.4%. At the same time, among the six common myocardial infarction diseases, the location and recognition rate of the culprit vessel is high. The sensitivity, specificity, PPV, NPV, and F1 score parameters all reach more than 98.4%, and the kappa coefficient also reaches 0.983, while the overall accuracy reaches 98.6%. The accuracy of this algorithm is improved by at least 1% compared with that of other existing algorithms. Thus, this study exhibits a very important clinical application value.
AbstractList Myocardial infarction is a type of heart disease marked by rapid progression and high mortality. In this paper, a novel intelligent recognition algorithm of multiple myocardial infarctions using a bidirectional long short-term memory (BiLSTM) neural network classification was proposed. This algorithm was based on morphological feature extraction, which can greatly improve the diagnostic efficiency of doctors for different kinds of myocardial infarction diseases. The algorithm includes noise reduction and beat segmentation of electrocardiogram (ECG) signals from the Physikalisch-Technische Bundesanstalt (PTB) database. According to the medical diagnosis guide, the distance feature of the whole waveform and the amplitude feature of the branch lead waveform are extracted. According to the extracted features, the long short-term memory network (LSTM) and the BiLSTM neural networks are built to classify and recognize heartbeats. The experimental results show that the accuracy of the morphological feature + BiLSTM algorithm in MI detection is 99.4%. At the same time, among the six common myocardial infarction diseases, the location and recognition rate of the culprit vessel is high. The sensitivity, specificity, PPV, NPV, and F1 score parameters all reach more than 98.4%, and the kappa coefficient also reaches 0.983, while the overall accuracy reaches 98.6%. The accuracy of this algorithm is improved by at least 1% compared with that of other existing algorithms. Thus, this study exhibits a very important clinical application value.
Audience Academic
Author Cheng, Wenbo
Wang, Lei
Wang, Biao
Xu, Wenchang
Author_xml – sequence: 1
  givenname: Wenchang
  orcidid: 0000-0002-3573-0439
  surname: Xu
  fullname: Xu, Wenchang
– sequence: 2
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
– sequence: 3
  givenname: Biao
  surname: Wang
  fullname: Wang, Biao
– sequence: 4
  givenname: Wenbo
  surname: Cheng
  fullname: Cheng, Wenbo
BookMark eNptkV1LwzAUhoNMcE5v_AUF74TNfHRtcznHpoMNQfS6pOlJl5EmNc1A_72ZClMxucghPE9yDu85GlhnAaErgieMcXzbeYIJoSwtTtCQUpqPeU7ywY_6DF32_Q7HxQkrptkQtSsbwBjdgA3JE0jXWB20s8nMNM7rsG0Tp5LN3gTdGUg2704KX2thkpVVwstP9k70UCex2DjfbZ1xjZaRWIIIew_J4i148UleoFMlTA-X3-cIvSwXz_OH8frxfjWfrceSZTSMJeapqlVRs5rjKa4ylWHBpJJpUVVFNs1qJTmwSslMYaJSzClwinMpFRACgo3Q9de7nXeve-hDuXN7b-OXJc1ZmmPOGTtSjTBQaqvcoc9W97Kc5WkaGTKlkZr8Q8VdQ6tlTEDpeP9LwF-C9K7vPahS6iAO40dRm5Lg8hBXeYwrKjd_lM7rVvj3_-APSLCX_A
CitedBy_id crossref_primary_10_3390_app13084964
crossref_primary_10_1016_j_isci_2024_109307
crossref_primary_10_3390_s25051412
Cites_doi 10.1109/ICASSP.2017.7952519
10.1016/j.compbiomed.2018.07.005
10.1007/s11760-017-1146-z
10.1007/978-1-4615-3262-0
10.1016/j.compbiomed.2022.106199
10.1016/j.bspc.2009.09.001
10.1016/j.irbm.2019.09.003
10.1016/j.bspc.2013.01.005
10.1016/j.cmpb.2019.05.004
10.1016/j.compbiomed.2017.09.017
10.1016/j.neunet.2014.09.003
10.1016/j.compbiomed.2018.12.012
10.1016/j.asoc.2017.12.001
10.1016/j.bspc.2016.07.007
10.1016/j.compbiomed.2022.105550
10.1161/01.CIR.101.23.e215
10.4236/jbise.2014.710081
10.1016/j.knosys.2016.01.040
10.1016/j.cmpb.2019.05.028
10.1016/j.compbiomed.2016.09.012
10.1016/j.artmed.2004.01.003
10.1016/j.mcna.2007.03.007
10.1109/INDICON.2015.7443220
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
JG9
KB.
LK8
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/pr10112348
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
Materials Science Database
ProQuest Biological Science Collection
Biological Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2227-9717
ExternalDocumentID A744993152
10_3390_pr10112348
GeographicLocations Michigan
GeographicLocations_xml – name: Michigan
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ACPRK
ADBBV
ADMLS
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
HCIFZ
IAO
IGS
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RNS
7SR
8FD
ABUWG
AZQEC
DWQXO
GNUQQ
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c362t-c094fdf8d3d9050b6f60a3cfc48bb8656dfc9e3bfc6f01f4092e9207ccfe11ea3
IEDL.DBID M7P
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000881668900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-9717
IngestDate Fri Jul 25 12:01:38 EDT 2025
Tue Nov 11 10:48:43 EST 2025
Tue Nov 04 18:14:36 EST 2025
Tue Nov 18 21:36:24 EST 2025
Sat Nov 29 07:17:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-c094fdf8d3d9050b6f60a3cfc48bb8656dfc9e3bfc6f01f4092e9207ccfe11ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3573-0439
OpenAccessLink https://www.proquest.com/docview/2734709933?pq-origsite=%requestingapplication%
PQID 2734709933
PQPubID 2032344
ParticipantIDs proquest_journals_2734709933
gale_infotracmisc_A744993152
gale_infotracacademiconefile_A744993152
crossref_citationtrail_10_3390_pr10112348
crossref_primary_10_3390_pr10112348
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Processes
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kong (ref_13) 2019; 177
Jahmunah (ref_9) 2022; 146
Jager (ref_18) 2010; 5
Martis (ref_5) 2013; 8
Padhy (ref_16) 2017; 31
ref_12
Acharya (ref_25) 2018; 100
Goldberger (ref_11) 2000; 101
Xu (ref_14) 2021; 43
Dohare (ref_7) 2018; 64
Yildirim (ref_19) 2019; 176
Sharma (ref_22) 2020; 41
Schmidhuber (ref_20) 2015; 61
Safdarian (ref_24) 2014; 2014
Roger (ref_15) 2007; 91
Chen (ref_17) 2016; 78
Sharma (ref_8) 2018; 102
ref_21
Oh (ref_3) 2019; 105
ref_2
Haraldsson (ref_6) 2004; 32
Sharma (ref_26) 2018; 12
Wei (ref_10) 2022; 150
Go (ref_1) 2013; 127
Acharya (ref_23) 2016; 99
ref_4
References_xml – ident: ref_21
  doi: 10.1109/ICASSP.2017.7952519
– volume: 102
  start-page: 341
  year: 2018
  ident: ref_8
  article-title: A novel automated diagnostic system for classification of myocardial infarction ECG signals using an optimal biorthogonal filter bank
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.07.005
– volume: 12
  start-page: 199
  year: 2018
  ident: ref_26
  article-title: Inferior myocardial infarction detection using stationary wavelet transform and machine learning approach
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-017-1146-z
– ident: ref_12
  doi: 10.1007/978-1-4615-3262-0
– volume: 150
  start-page: 106199
  year: 2022
  ident: ref_10
  article-title: MCA-net: A multi-task channel attention network for Myocardial infarction detection and location using 12-lead ECGs
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106199
– volume: 127
  start-page: e6
  year: 2013
  ident: ref_1
  article-title: Heart Disease and Stroke Statistics—2013 Update
  publication-title: Circulation
– volume: 5
  start-page: 21
  year: 2010
  ident: ref_18
  article-title: Discrimination between ischemic and artifactual ST segment events in Holter recordings
  publication-title: Biomed. Signal Process.
  doi: 10.1016/j.bspc.2009.09.001
– volume: 41
  start-page: 58
  year: 2020
  ident: ref_22
  article-title: Myocardial infarction detection and localization using optimal features based lead specific approach
  publication-title: IRBM
  doi: 10.1016/j.irbm.2019.09.003
– volume: 8
  start-page: 437
  year: 2013
  ident: ref_5
  article-title: ECG beat classification using PCA, LDA, ICA and Discrete Wavelet Transform
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2013.01.005
– volume: 176
  start-page: 121
  year: 2019
  ident: ref_19
  article-title: A new approach for arrhythmia classification using deep coded features and LSTM networks
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.05.004
– volume: 100
  start-page: 270
  year: 2018
  ident: ref_25
  article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.09.017
– volume: 61
  start-page: 85
  year: 2015
  ident: ref_20
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 105
  start-page: 92
  year: 2019
  ident: ref_3
  article-title: Automated beat-wise arrhythmia diagnosis using modified U-net on extended electrocardiographic recordings with heterogeneous arrhythmia types
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.12.012
– volume: 64
  start-page: 138
  year: 2018
  ident: ref_7
  article-title: Detection of myocardial infarction in 12 lead ECG using support vector machine
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.12.001
– volume: 31
  start-page: 71
  year: 2017
  ident: ref_16
  article-title: Third-order tensor based analysis of multilead ECG for classification of myocardial infarction
  publication-title: Biomed. Signal Process.
  doi: 10.1016/j.bspc.2016.07.007
– ident: ref_4
– volume: 146
  start-page: 105550
  year: 2022
  ident: ref_9
  article-title: Explainable detection of myocardial infarction using deep learning models with Grad-CAM technique on ECG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105550
– volume: 101
  start-page: E215
  year: 2000
  ident: ref_11
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 2014
  start-page: 818
  year: 2014
  ident: ref_24
  article-title: A new pattern recognition method for detection and localization of myocardial infarction using T-Wave integral and total integral as extracted features from one cycle of ECG signal
  publication-title: J. Biomed. Sci. Eng.
  doi: 10.4236/jbise.2014.710081
– volume: 99
  start-page: 146
  year: 2016
  ident: ref_23
  article-title: Automated detection and localization of myocardial infarction using electrocardiogram: A comparative study of different leads
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2016.01.040
– volume: 177
  start-page: 183
  year: 2019
  ident: ref_13
  article-title: A novel IRBF-RVM model for diagnosis of atrial fibrillation
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.05.028
– volume: 43
  start-page: 2561
  year: 2021
  ident: ref_14
  article-title: Acute Inferior Myocardial Infarction Detection Algorithm Based on BiLSTM Network of Morphological Feature Extraction
  publication-title: J. Electron. Inf. Technol.
– volume: 78
  start-page: 65
  year: 2016
  ident: ref_17
  article-title: Multi-window detection for P-wave in electrocardiograms based on bilateral accumulative area
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.09.012
– volume: 32
  start-page: 127
  year: 2004
  ident: ref_6
  article-title: Detecting acute myocardial infarction in the 12-lead ECG using Hermite expansions and neural networks
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2004.01.003
– volume: 91
  start-page: 537
  year: 2007
  ident: ref_15
  article-title: Epidemiology of Myocardial Infarction
  publication-title: Med. Clin. N. Am.
  doi: 10.1016/j.mcna.2007.03.007
– ident: ref_2
  doi: 10.1109/INDICON.2015.7443220
SSID ssj0000913856
Score 2.2278273
Snippet Myocardial infarction is a type of heart disease marked by rapid progression and high mortality. In this paper, a novel intelligent recognition algorithm of...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2348
SubjectTerms Accuracy
Algorithms
Cardiovascular diseases
Computational linguistics
Development and progression
Diagnosis
Disease
EKG
Electrocardiogram
Electrocardiography
Feature extraction
Health aspects
Heart attacks
Heart diseases
Language processing
Localization
Long short-term memory
Michigan
Morphology
Mortality
Myocardial infarction
Natural language interfaces
Neural networks
Noise control
Noise reduction
Parameter sensitivity
Segmentation
Waveforms
Wavelet transforms
Title Intelligent Recognition Algorithm of Multiple Myocardial Infarction Based on Morphological Feature Extraction
URI https://www.proquest.com/docview/2734709933
Volume 10
WOSCitedRecordID wos000881668900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: M7P
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: KB.
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS9xAFH9U7aEetNqWrtVlwELrIZpk8nmSXVnpIrsEacGeQubLFtZkzcbSXvq3973sZFUQL72EwDzIhPc9897vAXzUaWG48qTD09A46KECp4hV6IRCqiQSAnOfoB02EU-nydVVmtkDt4Utq-xsYmuoVSXpjPyEYFhiDGc4P53fOjQ1im5X7QiNNdgglAS_Ld3LVmcshHmZhNESlZRjdn8yr1EE0VjTuJ8Hfuhpa9y6mPPt_93ca9iywSUbLKVhB17ochc2H0AO7sKOVeYF-2wRp4_ewM14BczZsMuupKgq2WB2jZ9pftywyrCJrT1kkz_oAEmwZmxcGtSUlnaI_lAxfJlUyLvOpjKKMe9qzUa_m3rZRPEWvp2Pvp59cewcBkeie2sciSmgUSZRXKVu6IrIRG7BpZFBIkSCAaEyMtVcGBkZ1zOYMfo69d1YSqM9Txf8HayXVanfAys8bnwKkqQQQaRFoVyMxyKt0kAnifF6cNRxJZcWpJxmZcxyTFaIg_k9B3twuKKdL6E5nqT6RMzNSV_pPwvbdoD7IeSrfBAHmPRxFJ4e7D-iRD2Tj5c73udWzxf5PeP3nl_-AK98apxouxj3Yb2p7_QBvJS_mp-Lug8bw9E0u-zD2sXwuN8KMT3_jnAlG0-y7_8AcxP-aw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9RQEJ7gYiI8qCCEVdSTqFEeGtqeXh-MWRVCA91sDCb4VHtuaLK0a7eo_Cl_ozO9LJAQ33jwrcmZND3td76ZOT3zDcBLHeeGK0daPPaNhR7Ks_JQ-ZYvpIoCITD38ZpmE-F4HJ2cxJMl-NPXwtCxyp4TG6JWpaQ98l2SYQkxnOH83eyHRV2j6O9q30KjhcWhvviFKdv8bfIRv-8r193fO_5wYHVdBSyJZF1bEhMao0ykuIpt3xaBCeycSyO9SIgIwxtlZKy5MDIwtmMw_3F17NqhlEY7js453vcOLHsE9gEsT5J08mWxq0Mqm5EftDqonMf27qxC0KN7oAZDVzzfzfzfOLX9B__b63gI97vwmY1avK_Bki7WYfWKqOI6rHV0NWdvOk3tnUdwliykR2v2qT80VRZsND3FadXfzlhpWNqdrmTpBbp4WjpTlhQGZ9nYvkePrxhepCWis_cajKLo80qzvd911ZaJbMDnW3kJmzAoykJvAcsdblwKA6UQXqBFrmyMOAOtYk9HkXGGsNOjIJOdDDt1A5lmmI4RYrJLxAzhxcJ21oqP3Gj1msCUESPRPPOusAKfh7S9slHoYVrLMVAbwvY1S2QSeX24x1rWMdk8uwTa438PP4d7B8fpUXaUjA-fwIpLZSJNzeY2DOrqXD-Fu_Jn_X1ePesWDYOvtw3Mv_l0Wqg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFCE4AC0gAgVWAgQ9WLG9_jwgFGgjrJIoQiCVk_F-AVJqB8cF-tf4dczY67SVKm49cLO0K8trv515s555A_BMp4XhypMOT0PjoIcKnCJWoRMKqZJICIx9grbZRDybJYeH6XwD_vS1MJRW2dvE1lCrStIZ-YhkWGKkM5yPjE2LmO9NXi9_ONRBiv609u00Oogc6JNfGL6tXmV7-K2f-_5k_-Pbd47tMOBINNyNIzG4McokiqvUDV0RmcgtuDQySIRIkOooI1PNhZGRcT2DsZCvU9-NpTTa83TB8b5XYBMpeeAPYHOeTeef1yc8pLiZhFGnicp56o6WNW4AdBXUbOiMF7zYF7QObnLrf341t-GmpdVs3O2DLdjQ5TbcOCO2uA1b1oyt2Eurtb17B46ytSRpwz70yVRVycaLr7is5tsRqwyb2qxLNj1B109basGy0uAq27lvkAkohhfTClHbexNG7Pq41mz_d1N35SN34dOlvIR7MCirUt8HVnjc-EQPpRBBpEWhXGSikVZpoJPEeEPY7RGRSyvPTl1CFjmGaYSe_BQ9Q3i6nrvsREkunPWCgJWTpaJ1FrbgAp-HNL_ycRxguMuRwA1h59xMtDDy_HCPu9xauFV-CroH_x5-AtcQjfn7bHbwEK77VD3SlnLuwKCpj_UjuCp_Nt9X9WO7fxh8uWxc_gVQ3mNo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Recognition+Algorithm+of+Multiple+Myocardial+Infarction+Based+on+Morphological+Feature+Extraction&rft.jtitle=Processes&rft.au=Xu%2C+Wenchang&rft.au=Wang%2C+Lei&rft.au=Wang%2C+Biao&rft.au=Cheng%2C+Wenbo&rft.date=2022-11-01&rft.pub=MDPI+AG&rft.issn=2227-9717&rft.eissn=2227-9717&rft.volume=10&rft.issue=11&rft_id=info:doi/10.3390%2Fpr10112348&rft.externalDocID=A744993152
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon