Existence of density function for the running maximum of SDEs driven by nontruncated pure-jump Lévy processes
The existence of density function of the running maximum of a stochastic differential equation (SDE) driven by a Brownian motion and a nontruncated pure-jump process is verified. This is proved by the existence of density function of the running maximum of the Wiener–Poisson functionals resulting fr...
Gespeichert in:
| Veröffentlicht in: | Modern Stochastics: Theory and Applications Jg. 11; H. 3; S. 303 - 321 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
VTeX
2024
|
| Schlagworte: | |
| ISSN: | 2351-6046, 2351-6054 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The existence of density function of the running maximum of a stochastic differential equation (SDE) driven by a Brownian motion and a nontruncated pure-jump process is verified. This is proved by the existence of density function of the running maximum of the Wiener–Poisson functionals resulting from Bismut’s approach to the Malliavin calculus for jump processes. |
|---|---|
| ISSN: | 2351-6046 2351-6054 |
| DOI: | 10.15559/24-VMSTA245 |