Existence of density function for the running maximum of SDEs driven by nontruncated pure-jump Lévy processes

The existence of density function of the running maximum of a stochastic differential equation (SDE) driven by a Brownian motion and a nontruncated pure-jump process is verified. This is proved by the existence of density function of the running maximum of the Wiener–Poisson functionals resulting fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Modern Stochastics: Theory and Applications Jg. 11; H. 3; S. 303 - 321
Hauptverfasser: Nakagawa, Takuya, Suzuki, Ryoichi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: VTeX 2024
Schlagworte:
ISSN:2351-6046, 2351-6054
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The existence of density function of the running maximum of a stochastic differential equation (SDE) driven by a Brownian motion and a nontruncated pure-jump process is verified. This is proved by the existence of density function of the running maximum of the Wiener–Poisson functionals resulting from Bismut’s approach to the Malliavin calculus for jump processes.
ISSN:2351-6046
2351-6054
DOI:10.15559/24-VMSTA245