Multi-Center Fetal Brain Tissue Annotation (FeTA) Challenge 2022 Results

Segmentation is a critical step in analyzing the developing human fetal brain. There have been vast improvements in automatic segmentation methods in the past several years, and the Fetal Brain Tissue Annotation (FeTA) Challenge 2021 helped to establish an excellent standard of fetal brain segmentat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging Jg. 44; H. 3; S. 1257 - 1272
Hauptverfasser: Payette, Kelly, Steger, Celine, Licandro, Roxane, Dumast, Priscille de, Li, Hongwei Bran, Barkovich, Matthew, Li, Liu, Dannecker, Maik, Chen, Chen, Ouyang, Cheng, McConnell, Niccolo, Miron, Alina, Li, Yongmin, Uus, Alena, Grigorescu, Irina, Gilliland, Paula Ramirez, Siddiquee, Md Mahfuzur Rahman, Xu, Daguang, Myronenko, Andriy, Wang, Haoyu, Huang, Ziyan, Ye, Jin, Alenya, Mireia, Comte, Valentin, Camara, Oscar, Masson, Jean-Baptiste, Nilsson, Astrid, Godard, Charlotte, Mazher, Moona, Qayyum, Abdul, Gao, Yibo, Zhou, Hangqi, Gao, Shangqi, Fu, Jia, Dong, Guiming, Wang, Guotai, Rieu, ZunHyan, Yang, HyeonSik, Lee, Minwoo, Plotka, Szymon, Grzeszczyk, Michal K., Sitek, Arkadiusz, Daza, Luisa Vargas, Usma, Santiago, Arbelaez, Pablo, Lu, Wenying, Zhang, Wenhao, Liang, Jing, Valabregue, Romain, Joshi, Anand A., Nayak, Krishna N., Leahy, Richard M., Wilhelmi, Luca, Dandliker, Aline, Ji, Hui, Gennari, Antonio G., Jakovcic, Anton, Klaic, Melita, Adzic, Ana, Markovic, Pavel, Grabaric, Gracia, Kasprian, Gregor, Dovjak, Gregor, Rados, Milan, Vasung, Lana, Cuadra, Meritxell Bach, Jakab, Andras
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.03.2025
Schlagworte:
ISSN:0278-0062, 1558-254X, 1558-254X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Segmentation is a critical step in analyzing the developing human fetal brain. There have been vast improvements in automatic segmentation methods in the past several years, and the Fetal Brain Tissue Annotation (FeTA) Challenge 2021 helped to establish an excellent standard of fetal brain segmentation. However, FeTA 2021 was a single center study, limiting real-world clinical applicability and acceptance. The multi-center FeTA Challenge 2022 focused on advancing the generalizability of fetal brain segmentation algorithms for magnetic resonance imaging (MRI). In FeTA 2022, the training dataset contained images and corresponding manually annotated multi-class labels from two imaging centers, and the testing data contained images from these two centers as well as two additional unseen centers. The multi-center data included different MR scanners, imaging parameters, and fetal brain super-resolution algorithms applied. 16 teams participated and 17 algorithms were evaluated. Here, the challenge results are presented, focusing on the generalizability of the submissions. Both in- and out-of-domain, the white matter and ventricles were segmented with the highest accuracy (Top Dice scores: 0.89, 0.87 respectively), while the most challenging structure remains the grey matter (Top Dice score: 0.75) due to anatomical complexity. The top 5 average Dices scores ranged from 0.81-0.82, the top 5 average <inline-formula> <tex-math notation="LaTeX">95^{\text {th}} </tex-math></inline-formula> percentile Hausdorff distance values ranged from 2.3-2.5mm, and the top 5 volumetric similarity scores ranged from 0.90-0.92. The FeTA Challenge 2022 was able to successfully evaluate and advance generalizability of multi-class fetal brain tissue segmentation algorithms for MRI and it continues to benchmark new algorithms.
AbstractList Segmentation is a critical step in analyzing the developing human fetal brain. There have been vast improvements in automatic segmentation methods in the past several years, and the Fetal Brain Tissue Annotation (FeTA) Challenge 2021 helped to establish an excellent standard of fetal brain segmentation. However, FeTA 2021 was a single center study, limiting real-world clinical applicability and acceptance. The multi-center FeTA Challenge 2022 focused on advancing the generalizability of fetal brain segmentation algorithms for magnetic resonance imaging (MRI). In FeTA 2022, the training dataset contained images and corresponding manually annotated multi-class labels from two imaging centers, and the testing data contained images from these two centers as well as two additional unseen centers. The multi-center data included different MR scanners, imaging parameters, and fetal brain super-resolution algorithms applied. 16 teams participated and 17 algorithms were evaluated. Here, the challenge results are presented, focusing on the generalizability of the submissions. Both in- and out-of-domain, the white matter and ventricles were segmented with the highest accuracy (Top Dice scores: 0.89, 0.87 respectively), while the most challenging structure remains the grey matter (Top Dice score: 0.75) due to anatomical complexity. The top 5 average Dices scores ranged from 0.81-0.82, the top 5 average <inline-formula> <tex-math notation="LaTeX">95^{\text {th}} </tex-math></inline-formula> percentile Hausdorff distance values ranged from 2.3-2.5mm, and the top 5 volumetric similarity scores ranged from 0.90-0.92. The FeTA Challenge 2022 was able to successfully evaluate and advance generalizability of multi-class fetal brain tissue segmentation algorithms for MRI and it continues to benchmark new algorithms.
Segmentation is a critical step in analyzing the developing human fetal brain. There have been vast improvements in automatic segmentation methods in the past several years, and the Fetal Brain Tissue Annotation (FeTA) Challenge 2021 helped to establish an excellent standard of fetal brain segmentation. However, FeTA 2021 was a single center study, limiting real-world clinical applicability and acceptance. The multi-center FeTA Challenge 2022 focused on advancing the generalizability of fetal brain segmentation algorithms for magnetic resonance imaging (MRI). In FeTA 2022, the training dataset contained images and corresponding manually annotated multi-class labels from two imaging centers, and the testing data contained images from these two centers as well as two additional unseen centers. The multi-center data included different MR scanners, imaging parameters, and fetal brain super-resolution algorithms applied. 16 teams participated and 17 algorithms were evaluated. Here, the challenge results are presented, focusing on the generalizability of the submissions. Both in- and out-of-domain, the white matter and ventricles were segmented with the highest accuracy (Top Dice scores: 0.89, 0.87 respectively), while the most challenging structure remains the grey matter (Top Dice score: 0.75) due to anatomical complexity. The top 5 average Dices scores ranged from 0.81-0.82, the top 5 average percentile Hausdorff distance values ranged from 2.3-2.5mm, and the top 5 volumetric similarity scores ranged from 0.90-0.92. The FeTA Challenge 2022 was able to successfully evaluate and advance generalizability of multi-class fetal brain tissue segmentation algorithms for MRI and it continues to benchmark new algorithms.
Segmentation is a critical step in analyzing the developing human fetal brain. There have been vast improvements in automatic segmentation methods in the past several years, and the Fetal Brain Tissue Annotation (FeTA) Challenge 2021 helped to establish an excellent standard of fetal brain segmentation. However, FeTA 2021 was a single center study, limiting real-world clinical applicability and acceptance. The multi-center FeTA Challenge 2022 focused on advancing the generalizability of fetal brain segmentation algorithms for magnetic resonance imaging (MRI). In FeTA 2022, the training dataset contained images and corresponding manually annotated multi-class labels from two imaging centers, and the testing data contained images from these two centers as well as two additional unseen centers. The multi-center data included different MR scanners, imaging parameters, and fetal brain super-resolution algorithms applied. 16 teams participated and 17 algorithms were evaluated. Here, the challenge results are presented, focusing on the generalizability of the submissions. Both in- and out-of-domain, the white matter and ventricles were segmented with the highest accuracy (Top Dice scores: 0.89, 0.87 respectively), while the most challenging structure remains the grey matter (Top Dice score: 0.75) due to anatomical complexity. The top 5 average Dices scores ranged from 0.81-0.82, the top 5 average percentile Hausdorff distance values ranged from 2.3-2.5mm, and the top 5 volumetric similarity scores ranged from 0.90-0.92. The FeTA Challenge 2022 was able to successfully evaluate and advance generalizability of multi-class fetal brain tissue segmentation algorithms for MRI and it continues to benchmark new algorithms.Segmentation is a critical step in analyzing the developing human fetal brain. There have been vast improvements in automatic segmentation methods in the past several years, and the Fetal Brain Tissue Annotation (FeTA) Challenge 2021 helped to establish an excellent standard of fetal brain segmentation. However, FeTA 2021 was a single center study, limiting real-world clinical applicability and acceptance. The multi-center FeTA Challenge 2022 focused on advancing the generalizability of fetal brain segmentation algorithms for magnetic resonance imaging (MRI). In FeTA 2022, the training dataset contained images and corresponding manually annotated multi-class labels from two imaging centers, and the testing data contained images from these two centers as well as two additional unseen centers. The multi-center data included different MR scanners, imaging parameters, and fetal brain super-resolution algorithms applied. 16 teams participated and 17 algorithms were evaluated. Here, the challenge results are presented, focusing on the generalizability of the submissions. Both in- and out-of-domain, the white matter and ventricles were segmented with the highest accuracy (Top Dice scores: 0.89, 0.87 respectively), while the most challenging structure remains the grey matter (Top Dice score: 0.75) due to anatomical complexity. The top 5 average Dices scores ranged from 0.81-0.82, the top 5 average percentile Hausdorff distance values ranged from 2.3-2.5mm, and the top 5 volumetric similarity scores ranged from 0.90-0.92. The FeTA Challenge 2022 was able to successfully evaluate and advance generalizability of multi-class fetal brain tissue segmentation algorithms for MRI and it continues to benchmark new algorithms.
Author Grabaric, Gracia
Ouyang, Cheng
Alenya, Mireia
Li, Liu
Usma, Santiago
McConnell, Niccolo
Cuadra, Meritxell Bach
Dumast, Priscille de
Masson, Jean-Baptiste
Markovic, Pavel
Zhou, Hangqi
Mazher, Moona
Dannecker, Maik
Ye, Jin
Chen, Chen
Joshi, Anand A.
Wang, Guotai
Qayyum, Abdul
Xu, Daguang
Vasung, Lana
Jakovcic, Anton
Rados, Milan
Li, Hongwei Bran
Licandro, Roxane
Yang, HyeonSik
Godard, Charlotte
Valabregue, Romain
Leahy, Richard M.
Payette, Kelly
Camara, Oscar
Lu, Wenying
Dandliker, Aline
Li, Yongmin
Huang, Ziyan
Zhang, Wenhao
Nayak, Krishna N.
Lee, Minwoo
Grzeszczyk, Michal K.
Gao, Shangqi
Myronenko, Andriy
Comte, Valentin
Wang, Haoyu
Gao, Yibo
Klaic, Melita
Siddiquee, Md Mahfuzur Rahman
Fu, Jia
Sitek, Arkadiusz
Dong, Guiming
Daza, Luisa Vargas
Dovjak, Gregor
Miron, Alina
Gilliland, Paula Ramirez
Arbelaez, Pablo
Steger, Celine
Nilsson, Astrid
Ji, Hui
Uus, Alena
Grigorescu, Irina
Adzic, Ana
Jakab, Andras
Rieu, ZunHyan
Kasprian, Gregor
Plotka, Szymon
Wilhelmi, Luca
Liang, Jing
Barkovich, Matthew
Gennari, Antonio G.
Author_xml – sequence: 1
  givenname: Kelly
  orcidid: 0000-0001-7041-0150
  surname: Payette
  fullname: Payette, Kelly
  email: kelly.payette@kispi.uzh.ch
  organization: Center for MR Research, University Children's Hospital Zurich, University of Zurich, Zürich, Switzerland
– sequence: 2
  givenname: Celine
  surname: Steger
  fullname: Steger, Celine
  email: celine.steger@kispi.uzh.ch
  organization: Center for MR Research, University Children's Hospital Zurich, University of Zurich, Zürich, Switzerland
– sequence: 3
  givenname: Roxane
  orcidid: 0000-0001-9066-4473
  surname: Licandro
  fullname: Licandro, Roxane
  email: roxane.licandro@meduniwien.ac.at
  organization: Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
– sequence: 4
  givenname: Priscille de
  surname: Dumast
  fullname: Dumast, Priscille de
  email: priscille. guerrier-de-dumast@cpe.fr
  organization: Department of Diagnostic and Interventional Radiology, Medical Image Analysis Laboratory, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
– sequence: 5
  givenname: Hongwei Bran
  orcidid: 0000-0002-5328-6407
  surname: Li
  fullname: Li, Hongwei Bran
  email: holi2@mgh.harvard.edu
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA
– sequence: 6
  givenname: Matthew
  orcidid: 0000-0002-8257-423X
  surname: Barkovich
  fullname: Barkovich, Matthew
  email: Matthew.Barkovich@ucsf.edu
  organization: Department of Radiology and Biomedical Imaging, UCSF Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, USA
– sequence: 7
  givenname: Liu
  orcidid: 0000-0003-2376-8162
  surname: Li
  fullname: Li, Liu
  email: liu.li20@imperial.ac.uk
  organization: Computing Department, Imperial College London, London, U.K
– sequence: 8
  givenname: Maik
  orcidid: 0000-0001-9012-9606
  surname: Dannecker
  fullname: Dannecker, Maik
  email: m.dannecker@tum.de
  organization: School of Computation, Information and Technology, and School of Medicine and Health, Technical University of Munich, Munich, Germany
– sequence: 9
  givenname: Chen
  orcidid: 0000-0002-3525-9755
  surname: Chen
  fullname: Chen, Chen
  email: chen.chen15@imperial.ac.uk
  organization: Computing Department, Imperial College London, London, U.K
– sequence: 10
  givenname: Cheng
  orcidid: 0000-0002-3069-8708
  surname: Ouyang
  fullname: Ouyang, Cheng
  email: c.ouyang@imperial.ac.uk
  organization: Department of Engineering Science, University of Oxford, Oxford, U.K
– sequence: 11
  givenname: Niccolo
  surname: McConnell
  fullname: McConnell, Niccolo
  email: niccolo.mcconnell.17@ucl.ac.uk
  organization: Computer Science Department, Brunel University of London, Uxbridge, U.K
– sequence: 12
  givenname: Alina
  orcidid: 0000-0002-0068-4495
  surname: Miron
  fullname: Miron, Alina
  email: alina.miron@brunel.ac.uk
  organization: Computer Science Department, Brunel University of London, Uxbridge, U.K
– sequence: 13
  givenname: Yongmin
  orcidid: 0000-0003-1668-2440
  surname: Li
  fullname: Li, Yongmin
  email: yongmin. li@brunel.ac.uk
  organization: Department of Computer Science, Brunel University of London, Uxbridge, U.K
– sequence: 14
  givenname: Alena
  surname: Uus
  fullname: Uus, Alena
  email: alena.uus@kcl.ac.uk
  organization: Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, U.K
– sequence: 15
  givenname: Irina
  orcidid: 0000-0002-9756-3787
  surname: Grigorescu
  fullname: Grigorescu, Irina
  email: irina.grigorescu@kcl.ac.uk
  organization: Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, U.K
– sequence: 16
  givenname: Paula Ramirez
  surname: Gilliland
  fullname: Gilliland, Paula Ramirez
  email: paula.ramirez_gilliland@kcl.ac.uk
  organization: Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, U.K
– sequence: 17
  givenname: Md Mahfuzur Rahman
  orcidid: 0000-0001-7145-215X
  surname: Siddiquee
  fullname: Siddiquee, Md Mahfuzur Rahman
  email: mrahmans@asu.edu
  organization: School of Computing and Augmented Intelligence, NVIDIA, Bethesda, MD, USA
– sequence: 18
  givenname: Daguang
  orcidid: 0000-0002-4621-881X
  surname: Xu
  fullname: Xu, Daguang
  email: daguangx@nvidia.com
  organization: NVIDIA, Bethesda, MD, USA
– sequence: 19
  givenname: Andriy
  surname: Myronenko
  fullname: Myronenko, Andriy
  email: amyronenko@nvidia.com
  organization: NVIDIA, Bethesda, MD, USA
– sequence: 20
  givenname: Haoyu
  surname: Wang
  fullname: Wang, Haoyu
  email: small_dark@sjtu.edu.cn
  organization: Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
– sequence: 21
  givenname: Ziyan
  surname: Huang
  fullname: Huang, Ziyan
  email: ziyanhuang@sjtu.edu.cn
  organization: Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
– sequence: 22
  givenname: Jin
  orcidid: 0000-0003-0667-9889
  surname: Ye
  fullname: Ye, Jin
  email: yejin16@mails.ucas.ac.cn
  organization: Shanghai AI Laboratory, Shanghai, China
– sequence: 23
  givenname: Mireia
  surname: Alenya
  fullname: Alenya, Mireia
  email: mireia.alenya@upf.edu
  organization: Department of Information and Communications Technologies, BCN-MedTech, Universitat Pompeu Fabra, Barcelona, Spain
– sequence: 24
  givenname: Valentin
  orcidid: 0009-0001-7512-0256
  surname: Comte
  fullname: Comte, Valentin
  email: valentin.comte@upf.edu
  organization: Department of Information and Communications Technologies, BCN-MedTech, Universitat Pompeu Fabra, Barcelona, Spain
– sequence: 25
  givenname: Oscar
  orcidid: 0000-0002-5125-6132
  surname: Camara
  fullname: Camara, Oscar
  email: oscar.camara@upf.edu
  organization: Department of Information and Communications Technologies, BCN-MedTech, Universitat Pompeu Fabra, Barcelona, Spain
– sequence: 26
  givenname: Jean-Baptiste
  orcidid: 0000-0002-5484-9056
  surname: Masson
  fullname: Masson, Jean-Baptiste
  email: jbmasson@pasteur.fr
  organization: Institut Pasteur, Paris, France
– sequence: 27
  givenname: Astrid
  orcidid: 0009-0001-3667-1709
  surname: Nilsson
  fullname: Nilsson, Astrid
  email: astrid.nilsson@polytechnique.edu
  organization: École Polytechnique, Palaiseau, France
– sequence: 28
  givenname: Charlotte
  orcidid: 0000-0002-6995-6647
  surname: Godard
  fullname: Godard, Charlotte
  email: charlotte.godard@pasteur.fr
  organization: Institut Pasteur, Paris, France
– sequence: 29
  givenname: Moona
  orcidid: 0000-0003-4444-5776
  surname: Mazher
  fullname: Mazher, Moona
  email: moona.mazher@gmail.com
  organization: Department of Computer Science, Centre for Medical Image Computing, University College, London, London, U.K
– sequence: 30
  givenname: Abdul
  orcidid: 0000-0003-3102-1595
  surname: Qayyum
  fullname: Qayyum, Abdul
  email: engr.qayyum@gmail.com
  organization: National Heart and Lung Institute, Imperial College, London, London, U.K
– sequence: 31
  givenname: Yibo
  surname: Gao
  fullname: Gao, Yibo
  email: ybgao22@m.fudan.edu.cn
  organization: School of Data Science, Fudan University, Shanghai, China
– sequence: 32
  givenname: Hangqi
  surname: Zhou
  fullname: Zhou, Hangqi
  email: 17307110414@fudan.edu.cn
  organization: School of Data Science, Fudan University, Shanghai, China
– sequence: 33
  givenname: Shangqi
  orcidid: 0000-0003-4567-1636
  surname: Gao
  fullname: Gao, Shangqi
  email: shqgao@163.com
  organization: School of Data Science, Fudan University, Shanghai, China
– sequence: 34
  givenname: Jia
  surname: Fu
  fullname: Fu, Jia
  email: fujia98914@gmail.com
  organization: School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 35
  givenname: Guiming
  surname: Dong
  fullname: Dong, Guiming
  email: dgm0012@163.com
  organization: School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 36
  givenname: Guotai
  orcidid: 0000-0002-8632-158X
  surname: Wang
  fullname: Wang, Guotai
  email: guotai.wang@uestc.edu.cn
  organization: School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 37
  givenname: ZunHyan
  surname: Rieu
  fullname: Rieu, ZunHyan
  email: clarence@neurophet.com
  organization: NEUROPHET Research Institute, Seoul, Republic of Korea
– sequence: 38
  givenname: HyeonSik
  surname: Yang
  fullname: Yang, HyeonSik
  email: hsyang@neurophet.com
  organization: NEUROPHET Research Institute, Seoul, Republic of Korea
– sequence: 39
  givenname: Minwoo
  surname: Lee
  fullname: Lee, Minwoo
  email: minwoo@neurophet.com
  organization: NEUROPHET Research Institute, Seoul, Republic of Korea
– sequence: 40
  givenname: Szymon
  orcidid: 0000-0001-9411-820X
  surname: Plotka
  fullname: Plotka, Szymon
  email: s.plotka@saonscience.org
  organization: Sano Centre for Computational Medicine, Kraków, Poland
– sequence: 41
  givenname: Michal K.
  orcidid: 0000-0002-5304-1020
  surname: Grzeszczyk
  fullname: Grzeszczyk, Michal K.
  email: m.grzeszczyk@sanoscience.org
  organization: Sano Centre for Computational Medicine, Kraków, Poland
– sequence: 42
  givenname: Arkadiusz
  surname: Sitek
  fullname: Sitek, Arkadiusz
  email: asitek@mgh.harvard.edu
  organization: Center for Advanced Medical Computing and Simulation, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
– sequence: 43
  givenname: Luisa Vargas
  surname: Daza
  fullname: Daza, Luisa Vargas
  email: lf.vargas10@uniandes.edu.co
  organization: Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, Colombia
– sequence: 44
  givenname: Santiago
  surname: Usma
  fullname: Usma, Santiago
  email: as.usma@uniandes.edu.co
  organization: Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, Colombia
– sequence: 45
  givenname: Pablo
  orcidid: 0000-0001-5244-2407
  surname: Arbelaez
  fullname: Arbelaez, Pablo
  email: pa.arbelaez@uniandes.edu.co
  organization: Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, Colombia
– sequence: 46
  givenname: Wenying
  surname: Lu
  fullname: Lu, Wenying
  email: 1148434471@qq.com
  organization: School of Electronic and Information Engineering, South China University of Technology, Guangzhou, China
– sequence: 47
  givenname: Wenhao
  orcidid: 0000-0002-8680-1743
  surname: Zhang
  fullname: Zhang, Wenhao
  email: eewenhaozhang@mail.scut.edu.cn
  organization: School of Electronic and Information Engineering, South China University of Technology, Guangzhou, China
– sequence: 48
  givenname: Jing
  surname: Liang
  fullname: Liang, Jing
  email: eliangjing@mail.scut.edu.cn
  organization: School of Electronic and Information Engineering, South China University of Technology, Guangzhou, China
– sequence: 49
  givenname: Romain
  surname: Valabregue
  fullname: Valabregue, Romain
  email: romain.valabregue@upmc.fr
  organization: CENIR, ICM, INSERM U 1127, CNRS UMR F7225, Sorbonne Universiteì, Paris, France
– sequence: 50
  givenname: Anand A.
  surname: Joshi
  fullname: Joshi, Anand A.
  email: ajoshi@usc.edu
  organization: Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA
– sequence: 51
  givenname: Krishna N.
  surname: Nayak
  fullname: Nayak, Krishna N.
  email: knayak@usc.edu
  organization: Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA
– sequence: 52
  givenname: Richard M.
  surname: Leahy
  fullname: Leahy, Richard M.
  email: leahy@sipi.usc.edu
  organization: Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA
– sequence: 53
  givenname: Luca
  surname: Wilhelmi
  fullname: Wilhelmi, Luca
  email: Luca.Wilhelmi@gmail.com
  organization: Center for MR Research, University Children's Hospital Zurich, University of Zurich, Zürich, Switzerland
– sequence: 54
  givenname: Aline
  surname: Dandliker
  fullname: Dandliker, Aline
  email: Aline.Daendliker@kispi.uzh.ch
  organization: Center for MR Research, University Children's Hospital Zurich, University of Zurich, Zürich, Switzerland
– sequence: 55
  givenname: Hui
  surname: Ji
  fullname: Ji, Hui
  email: hiu.ji@kispi.uzh.ch
  organization: Center for MR Research, University Children's Hospital Zurich, University of Zurich, Zürich, Switzerland
– sequence: 56
  givenname: Antonio G.
  surname: Gennari
  fullname: Gennari, Antonio G.
  email: AntonioGiulio.Gennari@kispi.uzh.ch
  organization: Center for MR Research, University Children's Hospital Zurich, University of Zurich, Zürich, Switzerland
– sequence: 57
  givenname: Anton
  surname: Jakovcic
  fullname: Jakovcic, Anton
  email: anton.jakovcic97@gmail.com
  organization: Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
– sequence: 58
  givenname: Melita
  surname: Klaic
  fullname: Klaic, Melita
  email: melita.klaic@gmail.com
  organization: Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
– sequence: 59
  givenname: Ana
  surname: Adzic
  fullname: Adzic, Ana
  email: anaa.adzic@gmail.com
  organization: Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
– sequence: 60
  givenname: Pavel
  surname: Markovic
  fullname: Markovic, Pavel
  email: pavelm990@gmail.com
  organization: Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
– sequence: 61
  givenname: Gracia
  surname: Grabaric
  fullname: Grabaric, Gracia
  email: grabaricgracia@ gmail.com
  organization: Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
– sequence: 62
  givenname: Gregor
  surname: Kasprian
  fullname: Kasprian, Gregor
  email: gregor.kasprian@meduniwien.ac.at
  organization: Department of Biomedical Imaging and Image-Guided Therapy, Division of Neuroradiology and Musculoskeletal Radiology, Medical University of Vienna, Vienna, Austria
– sequence: 63
  givenname: Gregor
  surname: Dovjak
  fullname: Dovjak, Gregor
  email: gregor.dovjak@gmx.net
  organization: Department of Biomedical Imaging and Image-Guided Therapy, Division of General and Paediatric Radiology, Medical University of Vienna, Vienna, Austria
– sequence: 64
  givenname: Milan
  surname: Rados
  fullname: Rados, Milan
  email: mrados3@yahoo.com
  organization: Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
– sequence: 65
  givenname: Lana
  surname: Vasung
  fullname: Vasung, Lana
  email: Lana.Vasung@gmail.com
  organization: Department of Pediatrics, Boston Children's Hospital and the Department of Pediatrics, Division of Newborn Medicine, Harvard Medical School, Boston, MA, USA
– sequence: 66
  givenname: Meritxell Bach
  orcidid: 0000-0003-2730-4285
  surname: Cuadra
  fullname: Cuadra, Meritxell Bach
  email: meritxell.bachcuadra@unil.ch
  organization: Department of Diagnostic and Interventional Radiology, Medical Image Analysis Laboratory, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
– sequence: 67
  givenname: Andras
  orcidid: 0000-0001-6291-9889
  surname: Jakab
  fullname: Jakab, Andras
  email: andras.jakab@kispi.uzh.ch
  organization: Center for MR Research, University Children's Hospital Zurich, University of Zurich, Zürich, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39475746$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1Lw0AQhhep2A-9exDJsR5S92vycazB2kKLIBW8LZvtRCPppmaTg__eLW1BPHiay_O-M_MMSc_WFgm5ZnTCGE3v16vFhFMuJ0ImACDPyIABJCEH-dYjA8rjJKQ04n0ydO6TUiaBphekL1IZQyyjAZmvuqotwwxti00ww1ZXwUOjSxusS-c6DKbW1q1uy9oG4xmup3dB9qGrCu07Bn41D17Q-Qp3Sc4LXTm8Os4ReZ09rrN5uHx-WmTTZWhExNswxxSgANhIKpEWsaESWFToHHJIEGjM8hip1EzApij8lcxIkWwKzA2mxggxIuND766pvzp0rdqWzmBVaYt155RgnEcCvBCP3h7RLt_iRu2acqubb3X63gPRATBN7VyDhTLl4dfWK6gUo2qvWXnNaq9ZHTX7IP0TPHX_E7k5REpE_IXHIvGnih9KrYWG
CODEN ITMID4
CitedBy_id crossref_primary_10_1038_s41597_025_04926_9
crossref_primary_10_1016_j_dcn_2025_101539
Cites_doi 10.1109/JBHI.2023.3267857
10.5555/2946645.2946704
10.1007/978-3-031-45544-5_1
10.1016/j.media.2020.101796
10.1038/s41598-017-00525-w
10.1007/978-3-030-60334-2_29
10.1016/j.media.2022.102731
10.1109/ICDMW.2016.0041
10.1038/s41598-022-10335-4
10.1038/s41592-020-01008-z
10.1007/978-3-319-46475-6_25
10.1007/978-3-540-33259-6_7
10.1186/s12880-015-0068-x
10.1371/journal.pmed.1002683
10.3389/fnins.2020.591683
10.1016/j.media.2012.07.004
10.1002/cmr.a.21321
10.3389/fnins.2022.886772
10.1093/cercor/bhab066
10.1148/ryai.2021210097
10.1016/j.media.2023.102833
10.1038/s41597-021-00946-3
10.1109/TMI.2021.3055428
10.1109/TBME.2021.3117407
10.1007/978-3-031-16443-9_15
10.1109/ISBI.2011.5872814
10.1007/978-3-030-59710-8_65
10.1109/TMI.2021.3090082
10.1016/j.neuroimage.2015.06.018
10.1007/978-3-031-43990-2_34
10.1109/TMI.2020.3046579
10.1007/978-3-030-87735-4_19
10.1007/978-3-030-58545-7_18
10.1038/s41598-021-82017-6
10.1007/978-1-4614-7657-3_19
10.1007/978-3-030-00937-3_45
10.3389/fninf.2021.805669
10.1148/ryai.2020190195
10.1016/j.neuroimage.2019.116324
10.1109/TMI.2007.906087
10.12688/openreseurope.13914.2
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TMI.2024.3485554
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 1272
ExternalDocumentID 39475746
10_1109_TMI_2024_3485554
10738483
Genre orig-research
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: University Research Priority Program Adaptive Brain Circuits in Development and Learning Project; in part by the Vontobel Foundation; in part by the Anna Müller Grocholski Foundation; in part by the EMDO Foundation; in part by the Prof
– fundername: NICHD NIH HHS
  grantid: U01 HD087202
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c362t-be955f55d404e0f7c04516fab5b58e5071b7e04a135dff4751c438dfebce9cc33
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001447560800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
1558-254X
IngestDate Sat Sep 27 21:53:46 EDT 2025
Tue Dec 02 01:41:12 EST 2025
Sat Nov 29 08:12:10 EST 2025
Tue Nov 18 22:25:24 EST 2025
Wed Aug 27 01:45:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-be955f55d404e0f7c04516fab5b58e5071b7e04a135dff4751c438dfebce9cc33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8632-158X
0000-0002-5484-9056
0000-0002-5328-6407
0000-0002-3069-8708
0000-0002-8257-423X
0000-0002-3525-9755
0000-0002-8680-1743
0000-0003-2730-4285
0000-0003-2376-8162
0000-0002-9756-3787
0009-0001-3667-1709
0000-0003-3102-1595
0000-0001-9411-820X
0000-0001-9066-4473
0000-0002-0068-4495
0000-0001-6291-9889
0000-0003-1668-2440
0009-0001-7512-0256
0000-0002-5125-6132
0000-0002-5304-1020
0000-0001-5244-2407
0000-0001-9012-9606
0000-0003-0667-9889
0000-0002-4621-881X
0000-0003-4444-5776
0000-0001-7145-215X
0000-0002-6995-6647
0000-0001-7041-0150
0000-0003-4567-1636
OpenAccessLink https://ieeexplore.ieee.org/document/10738483
PMID 39475746
PQID 3122635348
PQPubID 23479
PageCount 16
ParticipantIDs pubmed_primary_39475746
crossref_citationtrail_10_1109_TMI_2024_3485554
crossref_primary_10_1109_TMI_2024_3485554
proquest_miscellaneous_3122635348
ieee_primary_10738483
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref11
ref10
ref18
Verdera (ref46) 2023; 309
(ref37) 2020
ref50
ref45
ref48
ref47
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref6
ref5
ref40
ref35
ref34
Fetit (ref32); 121
ref36
ref31
ref30
ref33
ref2
ref1
Payette (ref16) 2024
ref39
ref38
Glocker (ref3) 2019
ref24
ref23
ref26
ref25
ref20
ref22
Payette (ref17) 2022
ref21
ref28
ref27
ref29
Jackson (ref42)
Deman (ref19) 2020
References_xml – ident: ref10
  doi: 10.1109/JBHI.2023.3267857
– year: 2020
  ident: ref19
  article-title: Meribach/mevislabFetalMRI: MEVISLAB MIAL super-resolution reconstruction of fetal brain MRI v1.0
– ident: ref43
  doi: 10.5555/2946645.2946704
– ident: ref48
  doi: 10.1007/978-3-031-45544-5_1
– ident: ref12
  doi: 10.1016/j.media.2020.101796
– ident: ref26
  doi: 10.1038/s41598-017-00525-w
– year: 2022
  ident: ref17
  article-title: Fetal tissue annotation challenge
– ident: ref49
  doi: 10.1007/978-3-030-60334-2_29
– ident: ref50
  doi: 10.1016/j.media.2022.102731
– ident: ref41
  doi: 10.1109/ICDMW.2016.0041
– ident: ref15
  doi: 10.1038/s41598-022-10335-4
– ident: ref36
  doi: 10.1038/s41592-020-01008-z
– ident: ref24
  doi: 10.1007/978-3-319-46475-6_25
– ident: ref30
  doi: 10.1007/978-3-540-33259-6_7
– ident: ref27
  doi: 10.1186/s12880-015-0068-x
– volume: 309
  issue: 1
  year: 2023
  ident: ref46
  article-title: Reliability and feasibility of low-field-strength fetal MRI at 0.55 T during pregnancy
  publication-title: Radiology
– ident: ref4
  doi: 10.1371/journal.pmed.1002683
– ident: ref33
  doi: 10.3389/fnins.2020.591683
– ident: ref20
  doi: 10.1016/j.media.2012.07.004
– ident: ref1
  doi: 10.1002/cmr.a.21321
– ident: ref44
  doi: 10.3389/fnins.2022.886772
– volume: 121
  start-page: 241
  volume-title: Proc. 3rd Conf. Med. Imag. Deep Learn.
  ident: ref32
  article-title: A deep learning approach to segmentation of the developing cortex in fetal brain MRI with minimal manual labeling
– ident: ref22
  doi: 10.1093/cercor/bhab066
– ident: ref9
  doi: 10.1148/ryai.2021210097
– ident: ref11
  doi: 10.1016/j.media.2023.102833
– ident: ref13
  doi: 10.1038/s41597-021-00946-3
– ident: ref7
  doi: 10.1109/TMI.2021.3055428
– ident: ref5
  doi: 10.1109/TBME.2021.3117407
– ident: ref39
  doi: 10.1007/978-3-031-16443-9_15
– ident: ref34
  doi: 10.1109/ISBI.2011.5872814
– year: 2019
  ident: ref3
  article-title: Machine learning with multi-site imaging data: An empirical study on the impact of scanner effects
  publication-title: arXiv:1910.04597
– start-page: 83
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops
  ident: ref42
  article-title: Style augmentation: Data augmentation via style randomization
– ident: ref38
  doi: 10.1007/978-3-030-59710-8_65
– ident: ref6
  doi: 10.1109/TMI.2021.3090082
– ident: ref18
  doi: 10.1016/j.neuroimage.2015.06.018
– ident: ref47
  doi: 10.1007/978-3-031-43990-2_34
– ident: ref31
  doi: 10.1109/TMI.2020.3046579
– ident: ref35
  doi: 10.1007/978-3-030-87735-4_19
– ident: ref40
  doi: 10.1007/978-3-030-58545-7_18
– year: 2024
  ident: ref16
  article-title: Supplementary information for the fetal tissue annotation 2022 challenge results
– ident: ref29
  doi: 10.1038/s41598-021-82017-6
– ident: ref21
  doi: 10.1007/978-1-4614-7657-3_19
– ident: ref28
  doi: 10.1016/j.media.2023.102833
– ident: ref14
  doi: 10.1007/978-3-030-00937-3_45
– ident: ref8
  doi: 10.3389/fninf.2021.805669
– ident: ref2
  doi: 10.1148/ryai.2020190195
– volume-title: MONAI: Medical Open Network for AI
  year: 2020
  ident: ref37
– ident: ref25
  doi: 10.1016/j.neuroimage.2019.116324
– ident: ref23
  doi: 10.1109/TMI.2007.906087
– ident: ref45
  doi: 10.12688/openreseurope.13914.2
SSID ssj0014509
Score 2.490019
Snippet Segmentation is a critical step in analyzing the developing human fetal brain. There have been vast improvements in automatic segmentation methods in the past...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1257
SubjectTerms Algorithms
Biomedical imaging
Brain - diagnostic imaging
Brain - embryology
Deep learning
domain generalization
Female
fetal brain MRI
Fetus - diagnostic imaging
Hospitals
Humans
Image Processing, Computer-Assisted - methods
Image segmentation
Imaging
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Measurement
multi-class image segmentation
Pregnancy
Superresolution
Testing
Topology
Training
Title Multi-Center Fetal Brain Tissue Annotation (FeTA) Challenge 2022 Results
URI https://ieeexplore.ieee.org/document/10738483
https://www.ncbi.nlm.nih.gov/pubmed/39475746
https://www.proquest.com/docview/3122635348
Volume 44
WOSCitedRecordID wos001447560800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6SEEp7yKtpu2kTFOihOTiR9bDk4yZ0SQ4JpWxgb8aSRxAo3rKP_v5qZHvZSwq9-SAJe2bkGWlmvg_ga9AiFK6h_GDhMyW4zpzWmClXF1L40AjVkU2Ypyc7m5U_-mb11AuDiKn4DK_pMeXym7lf01VZ3OFGWmXlLuwaU3TNWpuUgdJdPYcgyFheiCEnycub6eNDPAkKdS0JCkUTF48sldGGwt4td5T4VV4PNZPLmRz-58sewUEfW7JxZwzHsIPtCbzbQhw8gTePfS79Pdyn3tuMrndxwSYYo3B2S4QRbJqUwcZtO-8S9ezbBKfjK3Y3MK-w-J2C_cRlXGJ5Cs-T79O7-6znVch8dFerzGGpddC6UVwhD8YTxkwRaqedtkgBojPIVZ1L3YQQ5ZR7JW0T0HksvZfyA-y18xY_AXNFXlvMtedIBTZoG24a6YKlfweiH8HNIN7K96DjxH3xq0qHD15WUTcV6abqdTOCq82M3x3gxj_GnpLct8Z1Ih_B5aDCKu4WSoHULc7Xy0rmgtB34vwRfOx0u5k9mMTZK6t-hreCyH9TAdoX2Fst1ngO-_7P6mW5uIgmObMXyST_AjG918o
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6aNKTtoc2r7fYVFXLIHpzIevhx3IYuG5pdQnEgN2PJIwgUb9lHfn80sr3sJYXefJCEPSNZI30z3wdw5rRwiakJH0xspATXkdEaI2WqRArraqFasYl0Nsvu7_Pbrlg91MIgYkg-wwt6DFh-PbdruirzKzyVmcrkDrwk6ayuXGsDGijdZnQIIo3liehRSZ5fFtNrfxYU6kISGYomNR6Zq1SnFPhubUhBYeX5YDNsOuN3__m6B_C2iy7ZqJ0Oh_ACmyN4s8U5eAT70w5NP4ZJqL6N6IIXF2yMPg5nP0gyghXBHWzUNPMWqmfnYyxGQ3bVa68w_52C_calH2J5Anfjn8XVJOqUFSLrN6xVZDDX2mldK66Qu9QSy0ziKqONzpBCRJMiV1Usde2ct1Nslcxqh8Zibq2U72G3mTf4EZhJ4irDWFuOlGKDWc3TWhqX0d8D0Q7gsjdvaTvacVK_-FOG4wfPS--bknxTdr4ZwHDT429LufGPtidk9612rckH8L13YenXC4EgVYPz9bKUsSD-Hd9_AB9a325691Pi0zOjnsKrSTG9KW-uZ78-w2tBUsAhHe0L7K4Wa_wKe_Zx9bBcfAsT8wmGptor
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Center+Fetal+Brain+Tissue+Annotation+%28FeTA%29+Challenge+2022+Results&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Payette%2C+Kelly&rft.au=Steger%2C+Celine&rft.au=Licandro%2C+Roxane&rft.au=Dumast%2C+Priscille+de&rft.date=2025-03-01&rft.issn=1558-254X&rft.eissn=1558-254X&rft.volume=44&rft.issue=3&rft.spage=1257&rft_id=info:doi/10.1109%2FTMI.2024.3485554&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon