Simultaneous Displacement/Force Self-Sensing in Piezoelectric Actuators and Applications to Robust Control
Self-sensing technique consists of using an actuator as a sensor at the same time. This is possible for most actuators with physically reversible principle such as piezoelectric materials. The main advantages of self-sensing are: 1) the embeddability of the measurement technique, and 2) its low cost...
Uloženo v:
| Vydáno v: | IEEE/ASME transactions on mechatronics Ročník 20; číslo 2; s. 519 - 531 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.04.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Témata: | |
| ISSN: | 1083-4435, 1941-014X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Self-sensing technique consists of using an actuator as a sensor at the same time. This is possible for most actuators with physically reversible principle such as piezoelectric materials. The main advantages of self-sensing are: 1) the embeddability of the measurement technique, and 2) its low cost as no additional sensor is required. This paper presents a self-sensing technique for piezoelectric actuators used in precise positioning applications like micromanipulation and microassembly. The main novelty is that both displacement and force signals can be simultaneously estimated. This allows a feedback control using one of these two signals with a display of the other signal. To demonstrate this advantage, a robust H ∞ feedback control on displacement with real-time display of the force is used as an application of the proposed self-sensing technique. In this paper, experimental results obtained with a piezoelectric cantilever actuator validate and demonstrate the efficiency of the proposed self-sensing. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1083-4435 1941-014X |
| DOI: | 10.1109/TMECH.2014.2300333 |