Collaborative obstacle avoidance algorithm of multiple bionic snake robots in fluid based on IB-LBM
This paper presents a collaborative obstacle avoidance algorithm of multiple bionic snake robots in fluid based on IB-LBM. The method can make the multiple bionic snake robots avoid different obstacles in the fluid under the control of the improved Serpenoid curve function. The proposed method has h...
Uložené v:
| Vydané v: | ISA transactions Ročník 122; s. 271 - 280 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier Ltd
01.03.2022
|
| Predmet: | |
| ISSN: | 0019-0578, 1879-2022, 1879-2022 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper presents a collaborative obstacle avoidance algorithm of multiple bionic snake robots in fluid based on IB-LBM. The method can make the multiple bionic snake robots avoid different obstacles in the fluid under the control of the improved Serpenoid curve function. The proposed method has high parallelism, can simulate the complex non-linear phenomenon of the multiple snake robots, deal with the complex boundary conditions of the robot, and reduce the conversion of the computational grid. Firstly, a non-linear fluid model is established by LBM, which solves the non-linear problem that the classical Navier–Stokes equations cannot explain the random motion. Secondly, the force source boundary model of multiple bionic snake robots is established by IBM, which saves the calculation time, improves the calculation efficiency and system stability. After that, each bionic snake robot is given a special force to make the robots collaborate with each other and non-colliding with each other in the process of the obstacle avoidance. Finally, through simulation experiments, the trajectory of multiple bionic snake robots avoiding different number of the obstacles in the fluid is analyzed and the collaborative obstacle avoidance process of multiple bionic snake robots in fluid is observed. The validity of the collaborative obstacle avoidance algorithm of multiple bionic snake robots in fluid based on the IB-LBM is verified.
•The cooperative obstacle avoidance of bionic snake robots in fluid is realized.•The nonlinear control problem of stochastic motion is explained by IB-LBM.•The macro-micro and discrete-continuous relationships of the model are considered.•IBM realizes fluid-solid coupling control between fluid and robot immersed boundary. |
|---|---|
| AbstractList | This paper presents a collaborative obstacle avoidance algorithm of multiple bionic snake robots in fluid based on IB-LBM. The method can make the multiple bionic snake robots avoid different obstacles in the fluid under the control of the improved Serpenoid curve function. The proposed method has high parallelism, can simulate the complex non-linear phenomenon of the multiple snake robots, deal with the complex boundary conditions of the robot, and reduce the conversion of the computational grid. Firstly, a non-linear fluid model is established by LBM, which solves the non-linear problem that the classical Navier-Stokes equations cannot explain the random motion. Secondly, the force source boundary model of multiple bionic snake robots is established by IBM, which saves the calculation time, improves the calculation efficiency and system stability. After that, each bionic snake robot is given a special force to make the robots collaborate with each other and non-colliding with each other in the process of the obstacle avoidance. Finally, through simulation experiments, the trajectory of multiple bionic snake robots avoiding different number of the obstacles in the fluid is analyzed and the collaborative obstacle avoidance process of multiple bionic snake robots in fluid is observed. The validity of the collaborative obstacle avoidance algorithm of multiple bionic snake robots in fluid based on the IB-LBM is verified.This paper presents a collaborative obstacle avoidance algorithm of multiple bionic snake robots in fluid based on IB-LBM. The method can make the multiple bionic snake robots avoid different obstacles in the fluid under the control of the improved Serpenoid curve function. The proposed method has high parallelism, can simulate the complex non-linear phenomenon of the multiple snake robots, deal with the complex boundary conditions of the robot, and reduce the conversion of the computational grid. Firstly, a non-linear fluid model is established by LBM, which solves the non-linear problem that the classical Navier-Stokes equations cannot explain the random motion. Secondly, the force source boundary model of multiple bionic snake robots is established by IBM, which saves the calculation time, improves the calculation efficiency and system stability. After that, each bionic snake robot is given a special force to make the robots collaborate with each other and non-colliding with each other in the process of the obstacle avoidance. Finally, through simulation experiments, the trajectory of multiple bionic snake robots avoiding different number of the obstacles in the fluid is analyzed and the collaborative obstacle avoidance process of multiple bionic snake robots in fluid is observed. The validity of the collaborative obstacle avoidance algorithm of multiple bionic snake robots in fluid based on the IB-LBM is verified. This paper presents a collaborative obstacle avoidance algorithm of multiple bionic snake robots in fluid based on IB-LBM. The method can make the multiple bionic snake robots avoid different obstacles in the fluid under the control of the improved Serpenoid curve function. The proposed method has high parallelism, can simulate the complex non-linear phenomenon of the multiple snake robots, deal with the complex boundary conditions of the robot, and reduce the conversion of the computational grid. Firstly, a non-linear fluid model is established by LBM, which solves the non-linear problem that the classical Navier–Stokes equations cannot explain the random motion. Secondly, the force source boundary model of multiple bionic snake robots is established by IBM, which saves the calculation time, improves the calculation efficiency and system stability. After that, each bionic snake robot is given a special force to make the robots collaborate with each other and non-colliding with each other in the process of the obstacle avoidance. Finally, through simulation experiments, the trajectory of multiple bionic snake robots avoiding different number of the obstacles in the fluid is analyzed and the collaborative obstacle avoidance process of multiple bionic snake robots in fluid is observed. The validity of the collaborative obstacle avoidance algorithm of multiple bionic snake robots in fluid based on the IB-LBM is verified. •The cooperative obstacle avoidance of bionic snake robots in fluid is realized.•The nonlinear control problem of stochastic motion is explained by IB-LBM.•The macro-micro and discrete-continuous relationships of the model are considered.•IBM realizes fluid-solid coupling control between fluid and robot immersed boundary. This paper presents a collaborative obstacle avoidance algorithm of multiple bionic snake robots in fluid based on IB-LBM. The method can make the multiple bionic snake robots avoid different obstacles in the fluid under the control of the improved Serpenoid curve function. The proposed method has high parallelism, can simulate the complex non-linear phenomenon of the multiple snake robots, deal with the complex boundary conditions of the robot, and reduce the conversion of the computational grid. Firstly, a non-linear fluid model is established by LBM, which solves the non-linear problem that the classical Navier-Stokes equations cannot explain the random motion. Secondly, the force source boundary model of multiple bionic snake robots is established by IBM, which saves the calculation time, improves the calculation efficiency and system stability. After that, each bionic snake robot is given a special force to make the robots collaborate with each other and non-colliding with each other in the process of the obstacle avoidance. Finally, through simulation experiments, the trajectory of multiple bionic snake robots avoiding different number of the obstacles in the fluid is analyzed and the collaborative obstacle avoidance process of multiple bionic snake robots in fluid is observed. The validity of the collaborative obstacle avoidance algorithm of multiple bionic snake robots in fluid based on the IB-LBM is verified. |
| Author | Li, Dongfang Pan, Zhenhua Xiu, Yang Deng, Hongbin |
| Author_xml | – sequence: 1 givenname: Dongfang orcidid: 0000-0001-9863-4172 surname: Li fullname: Li, Dongfang email: 188377985@qq.com organization: Fuzhou university, Fuzhou, Fujian, China – sequence: 2 givenname: Hongbin surname: Deng fullname: Deng, Hongbin email: denghongbin@bit.edu.cn organization: Beijing Institute of Technology, Beijing, China – sequence: 3 givenname: Zhenhua surname: Pan fullname: Pan, Zhenhua email: pzh-mingzhe@outlook.com organization: Beijing Institute of Technology, Beijing, China – sequence: 4 givenname: Yang surname: Xiu fullname: Xiu, Yang email: 1608996477@qq.com organization: Beijing Institute of Technology, Beijing, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33992419$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUUtrGzEYFCWhcR7_IAQde1lX0r6kHAqNSdKASy_tWejxbSp3V3IkrSH_PjJOLjk0MCDxaWb4NHOKjnzwgNAlJUtKaPd1s3RJ5aiWjDC6JE0B_4QWlPeiKiN2hBaEUFGRtucn6DSlDSGEtYJ_Rid1LQRrqFggswrjqHSIKrsd4KBTVmYErHbBWeVNuY2PIbr8d8JhwNM8Zrct79oF7wxOXv0DHIMOOWHn8TDOzmKtElgcPH64qdY3P8_R8aDGBBev5xn6c3f7e_WjWv-6f1h9X1em7liudA-UmY4MPTOmV4xru193qK3tRN_WrVaGaMXZoGxjB86sabi10LdKtSBofYa-HHy3MTzNkLKcXDJQ_uchzEmylvGmFl3NCvXqlTrrCazcRjep-CzfgimE6wPBxJBShEEal0tGwZfI3SgpkfsW5EYeWpD7FiRpCngRN-_Eb_4fyL4dZFBC2jmIMhkHpQPrIpgsbXD_N3gB8Bukcw |
| CitedBy_id | crossref_primary_10_1016_j_oceaneng_2023_114855 crossref_primary_10_1007_s12555_022_0445_5 crossref_primary_10_1016_j_oceaneng_2022_113147 crossref_primary_10_1109_TIE_2023_3288202 crossref_primary_10_3390_act11080222 crossref_primary_10_1109_TMECH_2023_3254817 crossref_primary_10_1016_j_mechmachtheory_2023_105554 crossref_primary_10_1109_TASE_2023_3327958 crossref_primary_10_1016_j_isatra_2024_03_028 crossref_primary_10_1109_JAS_2022_106052 crossref_primary_10_1007_s10483_022_2866_7 crossref_primary_10_1109_TIE_2023_3342304 crossref_primary_10_1109_JAS_2023_123612 crossref_primary_10_1109_TII_2024_3407866 crossref_primary_10_1007_s10791_025_09662_7 crossref_primary_10_3390_jmse12060967 crossref_primary_10_3390_jmse13030468 crossref_primary_10_1016_j_eswa_2024_125609 crossref_primary_10_1108_IR_04_2024_0173 crossref_primary_10_1109_TII_2023_3254534 crossref_primary_10_3390_act12010038 crossref_primary_10_1109_TASE_2023_3348469 crossref_primary_10_1109_TSMC_2023_3256383 crossref_primary_10_1016_j_isatra_2024_11_035 crossref_primary_10_1109_TASE_2023_3324434 |
| Cites_doi | 10.1016/j.jcp.2020.109487 10.1109/TSG.2016.2637408 10.1142/S1793524512500611 10.1080/10255842.2012.729581 10.1073/pnas.79.8.2554 10.1007/s10846-019-01097-9 10.1109/TC.2014.2329689 10.1016/0021-9991(72)90065-4 10.1109/TASE.2019.2909638 10.1109/TRO.2019.2895509 10.1142/S0219519413400125 10.1109/TCYB.2018.2856089 10.1177/0142331219897992 10.1109/MCI.2006.329691 10.1006/jcph.2001.6778 10.1016/j.cma.2020.112978 10.1109/TCYB.2019.2922740 10.1109/TWC.2019.2935201 10.1007/BF01386390 10.1016/j.jcp.2011.05.028 10.3847/1538-3881/aae697 10.1109/TII.2019.2951741 10.1016/j.matcom.2020.04.029 10.1109/TIE.2018.2883278 10.1007/s00466-013-0875-2 |
| ContentType | Journal Article |
| Copyright | 2021 ISA Copyright © 2021 ISA. Published by Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2021 ISA – notice: Copyright © 2021 ISA. Published by Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.isatra.2021.04.048 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 1879-2022 |
| EndPage | 280 |
| ExternalDocumentID | 33992419 10_1016_j_isatra_2021_04_048 S0019057821002457 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 6P2 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFO ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFDAS AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K T9H TAE TN5 UHS UNMZH WUQ XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 |
| ID | FETCH-LOGICAL-c362t-b7e12c60f72cc7a28bd2598f3dd697535bac0ba82fad4df82dc48dde75aa5e913 |
| ISICitedReferencesCount | 36 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000784448600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0019-0578 1879-2022 |
| IngestDate | Thu Oct 02 05:57:41 EDT 2025 Mon Jul 21 05:49:26 EDT 2025 Tue Nov 18 21:39:27 EST 2025 Sat Nov 29 07:27:15 EST 2025 Fri Feb 23 02:41:03 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multiple bionic snake robots IB-LBM Collaborative obstacle avoidance |
| Language | English |
| License | Copyright © 2021 ISA. Published by Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c362t-b7e12c60f72cc7a28bd2598f3dd697535bac0ba82fad4df82dc48dde75aa5e913 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-9863-4172 |
| PMID | 33992419 |
| PQID | 2528439632 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2528439632 pubmed_primary_33992419 crossref_citationtrail_10_1016_j_isatra_2021_04_048 crossref_primary_10_1016_j_isatra_2021_04_048 elsevier_sciencedirect_doi_10_1016_j_isatra_2021_04_048 |
| PublicationCentury | 2000 |
| PublicationDate | March 2022 2022-03-00 2022-Mar 20220301 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | ISA transactions |
| PublicationTitleAlternate | ISA Trans |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Yu, Zhai, Yuan, Wang (b2) 2019; 16 Peskin (b24) 1972; 10 Xu, Tian, Deng (b27) 2012; 06 Yamada, Hirose (b6) 2009; 7 Cui, Liu, Nallanathan (b5) 2020; 19 Brinon-Arranz, Renzaglia, Schenato (b20) 2019; 35 Holland (b13) 1992 Li, Pan, Deng (b11) 2020; 40 Kim, Kim, Choi (b23) 2001; 171 Ghosh, Kumar (b31) 2020; 177 Tian, Xu, Tang, Deng (b28) 2013; 13 Deng, Xu, Chen, Dai, Wu, Tian (b17) 2013; 52 Vadala-Roth, Acharya, Patankar, Rossi, Griffith (b29) 2020; 365 Liljeback, Pettersen, Stavdahl (b7) 2009 YuanQing, XiaoYing, FangBao, YuHua, Yong, YanJun (b26) 2014; 17 Hatton, Choset (b9) 2010 Lim, Kim, Cho, Gong, Khodaei (b1) 2018; 9 Ma, Wang, Young, Lai, Sui, Tian (b22) 2020; 415 Ma (b8) 1999 Tian, Luo, Zhu, Liao, Lu (b25) 2011; 230 Guo, Zhu, Fang (b4) 2019; 66 Khatib (b15) 1985 Dorigo, Birattari, Stutzle (b16) 2006; 1 Lukic, Barnawi, Stojmenovic (b21) 2015; 64 Burt, Holden, Wolfgang, Bouma (b30) 2018; 156 Deng, Er, Yang, Wang (b18) 2020; 50 Dijkstra (b12) 1959; 1 Hopfield (b14) 1982; 79 Wang, Liu, Wang, Ju, Chen (b3) 2020; 16 Moghadam, Modares (b19) 2019; 49 Li, Pan, Deng, Peng (b10) 2020; 98 Deng (10.1016/j.isatra.2021.04.048_b18) 2020; 50 Liljeback (10.1016/j.isatra.2021.04.048_b7) 2009 Li (10.1016/j.isatra.2021.04.048_b11) 2020; 40 Dijkstra (10.1016/j.isatra.2021.04.048_b12) 1959; 1 Xu (10.1016/j.isatra.2021.04.048_b27) 2012; 06 Hopfield (10.1016/j.isatra.2021.04.048_b14) 1982; 79 Moghadam (10.1016/j.isatra.2021.04.048_b19) 2019; 49 Khatib (10.1016/j.isatra.2021.04.048_b15) 1985 Deng (10.1016/j.isatra.2021.04.048_b17) 2013; 52 Hatton (10.1016/j.isatra.2021.04.048_b9) 2010 Li (10.1016/j.isatra.2021.04.048_b10) 2020; 98 Vadala-Roth (10.1016/j.isatra.2021.04.048_b29) 2020; 365 Lukic (10.1016/j.isatra.2021.04.048_b21) 2015; 64 Cui (10.1016/j.isatra.2021.04.048_b5) 2020; 19 Tian (10.1016/j.isatra.2021.04.048_b25) 2011; 230 Guo (10.1016/j.isatra.2021.04.048_b4) 2019; 66 YuanQing (10.1016/j.isatra.2021.04.048_b26) 2014; 17 Holland (10.1016/j.isatra.2021.04.048_b13) 1992 Yu (10.1016/j.isatra.2021.04.048_b2) 2019; 16 Ghosh (10.1016/j.isatra.2021.04.048_b31) 2020; 177 Tian (10.1016/j.isatra.2021.04.048_b28) 2013; 13 Yamada (10.1016/j.isatra.2021.04.048_b6) 2009; 7 Burt (10.1016/j.isatra.2021.04.048_b30) 2018; 156 Ma (10.1016/j.isatra.2021.04.048_b8) 1999 Wang (10.1016/j.isatra.2021.04.048_b3) 2020; 16 Peskin (10.1016/j.isatra.2021.04.048_b24) 1972; 10 Dorigo (10.1016/j.isatra.2021.04.048_b16) 2006; 1 Brinon-Arranz (10.1016/j.isatra.2021.04.048_b20) 2019; 35 Ma (10.1016/j.isatra.2021.04.048_b22) 2020; 415 Lim (10.1016/j.isatra.2021.04.048_b1) 2018; 9 Kim (10.1016/j.isatra.2021.04.048_b23) 2001; 171 |
| References_xml | – volume: 79 start-page: 2554 year: 1982 end-page: 2558 ident: b14 article-title: Neural networks and physical systems with emergent collective computational abilities publication-title: Proc Natl Acad Sci USA – volume: 415 year: 2020 ident: b22 article-title: An immersed boundary-lattice Boltzmann method for fluid–structure interaction problems involving viscoelastic fluids and complex geometries publication-title: J Comput Phys – volume: 9 start-page: 3643 year: 2018 end-page: 3651 ident: b1 article-title: Multi-UAV pre-positioning and routing for power network damage assessment publication-title: IEEE Trans Smart Grid – volume: 230 start-page: 7266 year: 2011 end-page: 7283 ident: b25 article-title: An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments publication-title: J Comput Phys – start-page: 691 year: 2010 end-page: 696 ident: b9 article-title: Sidewinding on slopes publication-title: IEEE Int Conf Robot Autom – volume: 1 start-page: 28 year: 2006 end-page: 39 ident: b16 article-title: Ant colony optimization publication-title: IEEE Comput Intell Mag – start-page: 3807 year: 2009 end-page: 3814 ident: b7 article-title: Modelling and control of obstacle-aided snake robot locomotion based on jam resolution publication-title: IEEE Int Conf Robot Autom – volume: 1 start-page: 269 year: 1959 end-page: 271 ident: b12 article-title: A note on two problems in connexion with graphs publication-title: Numer Math – volume: 52 start-page: 1221 year: 2013 end-page: 1242 ident: b17 article-title: On numerical modeling of animal swimming and flight publication-title: Comput Mech – volume: 171 start-page: 132 year: 2001 end-page: 150 ident: b23 article-title: An immersed-boundary finite-volume method for simulations of flow in complex geometries publication-title: J Comput Phys – volume: 40 start-page: 1840 year: 2020 end-page: 1857 ident: b11 article-title: Two-dimensional obstacle avoidance control algorithm for snake-like robot in water based on immersed boundary-lattice Boltzmann method and improved artificial potential field method publication-title: Trans Inst Meas Control – volume: 16 start-page: 5234 year: 2020 end-page: 5243 ident: b3 article-title: Time-delay control using a novel nonlinear adaptive law for accurate trajectory tracking of cable-driven robots publication-title: IEEE Trans Ind Inf – volume: 66 start-page: 7120 year: 2019 end-page: 7130 ident: b4 article-title: Guided motion planning for snake-like robots based on geometry mechanics and HJB equation publication-title: IEEE Trans Ind Electron – start-page: 3007 year: 1999 end-page: 3013 ident: b8 article-title: Analysis of snake movement forms for realization of snake-like robots publication-title: IEEE Int Conf Robot Autom – volume: 98 start-page: 771 year: 2020 end-page: 790 ident: b10 article-title: 2d underwater obstacle avoidance control algorithm based on IB-LBM and APF method for a multi-joint snake-like robot publication-title: J Intell Robot Syst – year: 1992 ident: b13 article-title: Adaptation in natural and articial systems: an introductory analysis with applications to biology – volume: 365 year: 2020 ident: b29 article-title: Stabilization approaches for the hyperelastic immersed boundary method for problems of large deformation incompressible elasticity publication-title: Comput Methods Appl Mech Engrg – volume: 64 start-page: 1416 year: 2015 end-page: 1428 ident: b21 article-title: Robot coordination for energy-balanced matching and sequence dispatch of robots to events publication-title: IEEE Trans Comput – volume: 13 year: 2013 ident: b28 article-title: Study on a self-propelled fish swimming in viscous fluid by a finite element method publication-title: J Mech Med Biol – volume: 156 year: 2018 ident: b30 article-title: Simulating the M-R relation from APF follow-up of TESS targets: survey design and strategies for overcoming mass biases publication-title: Astron J – volume: 49 start-page: 3957 year: 2019 end-page: 3967 ident: b19 article-title: Resilient autonomous control of distributed multiagent systems in contested environments publication-title: IEEE Trans Cybern – start-page: 500 year: 1985 end-page: 505 ident: b15 article-title: Real-time obstacle avoidance for manipulators and mobile robots publication-title: IEEE Int Conf Robot Autom – volume: 17 start-page: 978 year: 2014 end-page: 985 ident: b26 article-title: IB-LBM simulation of the haemocyte dynamics in a stenotic capillary publication-title: Comput Methods Biomech Biomed Eng – volume: 06 year: 2012 ident: b27 article-title: An efficient red blood cell model in the frame of IB-LBM and its application publication-title: Int J Biomath – volume: 16 start-page: 1640 year: 2019 end-page: 1652 ident: b2 article-title: A bionic robot navigation algorithm based on cognitive mechanism of hippocampus publication-title: IEEE Trans Autom Sci Eng – volume: 35 start-page: 782 year: 2019 end-page: 789 ident: b20 article-title: Multirobot symmetric formations for gradient and hessian estimation with application to source seeking publication-title: IEEE Trans Robot – volume: 177 start-page: 341 year: 2020 end-page: 357 ident: b31 article-title: Study of drafting, kissing and tumbling process of two particles with different sizes using immersed boundary method in a confined medium publication-title: Math Comput Simulation – volume: 19 start-page: 729 year: 2020 end-page: 743 ident: b5 article-title: Multi-agent reinforcement learning-based resource allocation for UAV networks publication-title: IEEE Trans Wireless Commun – volume: 50 start-page: 2916 year: 2020 end-page: 2925 ident: b18 article-title: Event-triggered consensus of linear multiagent systems with time-varying communication delays publication-title: IEEE Trans Cybern – volume: 10 start-page: 252 year: 1972 ident: b24 article-title: Flow patterns around heart valves - numerical method publication-title: J Comput Phys – volume: 7 start-page: 4155 year: 2009 end-page: 4160 ident: b6 article-title: Study of a 2-DOF joint for the small active cord mechanism publication-title: IEEE Int Conf Robot Autom – volume: 7 start-page: 4155 year: 2009 ident: 10.1016/j.isatra.2021.04.048_b6 article-title: Study of a 2-DOF joint for the small active cord mechanism publication-title: IEEE Int Conf Robot Autom – volume: 415 year: 2020 ident: 10.1016/j.isatra.2021.04.048_b22 article-title: An immersed boundary-lattice Boltzmann method for fluid–structure interaction problems involving viscoelastic fluids and complex geometries publication-title: J Comput Phys doi: 10.1016/j.jcp.2020.109487 – volume: 9 start-page: 3643 issue: 4 year: 2018 ident: 10.1016/j.isatra.2021.04.048_b1 article-title: Multi-UAV pre-positioning and routing for power network damage assessment publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2016.2637408 – volume: 06 issue: 01 year: 2012 ident: 10.1016/j.isatra.2021.04.048_b27 article-title: An efficient red blood cell model in the frame of IB-LBM and its application publication-title: Int J Biomath doi: 10.1142/S1793524512500611 – start-page: 3007 year: 1999 ident: 10.1016/j.isatra.2021.04.048_b8 article-title: Analysis of snake movement forms for realization of snake-like robots publication-title: IEEE Int Conf Robot Autom – volume: 17 start-page: 978 issue: 9 year: 2014 ident: 10.1016/j.isatra.2021.04.048_b26 article-title: IB-LBM simulation of the haemocyte dynamics in a stenotic capillary publication-title: Comput Methods Biomech Biomed Eng doi: 10.1080/10255842.2012.729581 – volume: 79 start-page: 2554 issue: 8 year: 1982 ident: 10.1016/j.isatra.2021.04.048_b14 article-title: Neural networks and physical systems with emergent collective computational abilities publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.79.8.2554 – start-page: 3807 year: 2009 ident: 10.1016/j.isatra.2021.04.048_b7 article-title: Modelling and control of obstacle-aided snake robot locomotion based on jam resolution publication-title: IEEE Int Conf Robot Autom – volume: 98 start-page: 771 issue: 3 year: 2020 ident: 10.1016/j.isatra.2021.04.048_b10 article-title: 2d underwater obstacle avoidance control algorithm based on IB-LBM and APF method for a multi-joint snake-like robot publication-title: J Intell Robot Syst doi: 10.1007/s10846-019-01097-9 – volume: 64 start-page: 1416 issue: 5 year: 2015 ident: 10.1016/j.isatra.2021.04.048_b21 article-title: Robot coordination for energy-balanced matching and sequence dispatch of robots to events publication-title: IEEE Trans Comput doi: 10.1109/TC.2014.2329689 – volume: 10 start-page: 252 issue: 2 year: 1972 ident: 10.1016/j.isatra.2021.04.048_b24 article-title: Flow patterns around heart valves - numerical method publication-title: J Comput Phys doi: 10.1016/0021-9991(72)90065-4 – volume: 16 start-page: 1640 issue: 4 year: 2019 ident: 10.1016/j.isatra.2021.04.048_b2 article-title: A bionic robot navigation algorithm based on cognitive mechanism of hippocampus publication-title: IEEE Trans Autom Sci Eng doi: 10.1109/TASE.2019.2909638 – start-page: 691 year: 2010 ident: 10.1016/j.isatra.2021.04.048_b9 article-title: Sidewinding on slopes publication-title: IEEE Int Conf Robot Autom – volume: 35 start-page: 782 issue: 3 year: 2019 ident: 10.1016/j.isatra.2021.04.048_b20 article-title: Multirobot symmetric formations for gradient and hessian estimation with application to source seeking publication-title: IEEE Trans Robot doi: 10.1109/TRO.2019.2895509 – volume: 13 issue: 6 year: 2013 ident: 10.1016/j.isatra.2021.04.048_b28 article-title: Study on a self-propelled fish swimming in viscous fluid by a finite element method publication-title: J Mech Med Biol doi: 10.1142/S0219519413400125 – volume: 49 start-page: 3957 issue: 11 year: 2019 ident: 10.1016/j.isatra.2021.04.048_b19 article-title: Resilient autonomous control of distributed multiagent systems in contested environments publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2018.2856089 – volume: 40 start-page: 1840 issue: 10 year: 2020 ident: 10.1016/j.isatra.2021.04.048_b11 article-title: Two-dimensional obstacle avoidance control algorithm for snake-like robot in water based on immersed boundary-lattice Boltzmann method and improved artificial potential field method publication-title: Trans Inst Meas Control doi: 10.1177/0142331219897992 – volume: 1 start-page: 28 issue: 4 year: 2006 ident: 10.1016/j.isatra.2021.04.048_b16 article-title: Ant colony optimization publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2006.329691 – volume: 171 start-page: 132 issue: 1 year: 2001 ident: 10.1016/j.isatra.2021.04.048_b23 article-title: An immersed-boundary finite-volume method for simulations of flow in complex geometries publication-title: J Comput Phys doi: 10.1006/jcph.2001.6778 – volume: 365 year: 2020 ident: 10.1016/j.isatra.2021.04.048_b29 article-title: Stabilization approaches for the hyperelastic immersed boundary method for problems of large deformation incompressible elasticity publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2020.112978 – volume: 50 start-page: 2916 issue: 7 year: 2020 ident: 10.1016/j.isatra.2021.04.048_b18 article-title: Event-triggered consensus of linear multiagent systems with time-varying communication delays publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2019.2922740 – year: 1992 ident: 10.1016/j.isatra.2021.04.048_b13 – volume: 19 start-page: 729 issue: 2 year: 2020 ident: 10.1016/j.isatra.2021.04.048_b5 article-title: Multi-agent reinforcement learning-based resource allocation for UAV networks publication-title: IEEE Trans Wireless Commun doi: 10.1109/TWC.2019.2935201 – volume: 1 start-page: 269 issue: 1 year: 1959 ident: 10.1016/j.isatra.2021.04.048_b12 article-title: A note on two problems in connexion with graphs publication-title: Numer Math doi: 10.1007/BF01386390 – start-page: 500 year: 1985 ident: 10.1016/j.isatra.2021.04.048_b15 article-title: Real-time obstacle avoidance for manipulators and mobile robots publication-title: IEEE Int Conf Robot Autom – volume: 230 start-page: 7266 issue: 19 year: 2011 ident: 10.1016/j.isatra.2021.04.048_b25 article-title: An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments publication-title: J Comput Phys doi: 10.1016/j.jcp.2011.05.028 – volume: 156 issue: 6 year: 2018 ident: 10.1016/j.isatra.2021.04.048_b30 article-title: Simulating the M-R relation from APF follow-up of TESS targets: survey design and strategies for overcoming mass biases publication-title: Astron J doi: 10.3847/1538-3881/aae697 – volume: 16 start-page: 5234 issue: 8 year: 2020 ident: 10.1016/j.isatra.2021.04.048_b3 article-title: Time-delay control using a novel nonlinear adaptive law for accurate trajectory tracking of cable-driven robots publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2019.2951741 – volume: 177 start-page: 341 year: 2020 ident: 10.1016/j.isatra.2021.04.048_b31 article-title: Study of drafting, kissing and tumbling process of two particles with different sizes using immersed boundary method in a confined medium publication-title: Math Comput Simulation doi: 10.1016/j.matcom.2020.04.029 – volume: 66 start-page: 7120 issue: 9 year: 2019 ident: 10.1016/j.isatra.2021.04.048_b4 article-title: Guided motion planning for snake-like robots based on geometry mechanics and HJB equation publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2018.2883278 – volume: 52 start-page: 1221 issue: 6 year: 2013 ident: 10.1016/j.isatra.2021.04.048_b17 article-title: On numerical modeling of animal swimming and flight publication-title: Comput Mech doi: 10.1007/s00466-013-0875-2 |
| SSID | ssj0002598 |
| Score | 2.455531 |
| Snippet | This paper presents a collaborative obstacle avoidance algorithm of multiple bionic snake robots in fluid based on IB-LBM. The method can make the multiple... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 271 |
| SubjectTerms | Algorithms Bionics Collaborative obstacle avoidance Computer Simulation IB-LBM Motion Multiple bionic snake robots Robotics - methods |
| Title | Collaborative obstacle avoidance algorithm of multiple bionic snake robots in fluid based on IB-LBM |
| URI | https://dx.doi.org/10.1016/j.isatra.2021.04.048 https://www.ncbi.nlm.nih.gov/pubmed/33992419 https://www.proquest.com/docview/2528439632 |
| Volume | 122 |
| WOSCitedRecordID | wos000784448600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Ja9tAFB4ap4f2UJp0c5cwhVJagkCrNTo6wSEurhuoA6IXodlipa7keiM_v282JSENSQ8FM9jjGVno-_zem5m3IPQhyVjWIyT2YhJAE2e-R2NBvZ4Egz9KKSeE62IT6XhM8jw7sZs5S11OIK1rcnGRzf8r1NAHYKvQ2X-Au70odMB7AB1agB3aewF_eInsRuw3FMw_GLFfbpqKm_iA2VmzqFbTX_ps3TkU0krXwlnW5U_lc0iblfaUlbN1BTYq6DquzhWGB97o4OtVi3b4va_qTLii462JPjIR7E19JkurHZW9LIxsOYZ-WrXEPDHbsD-mop6uW0WRV2utIdx8uzkB69rWO8vKU5JmnvrCqJu_9DkhbD9aMWrKstwQ72an4Vx7Oi1U1qgw0IlqTbLO69m0x9-Ko9PRqJgM8snH-W9PFRpTB_K26soW2g7TJCMdtN0fDvIvrfqG9aCOn3R36eIttVPgzR--zZ65bb2i7ZbJU_TELjhw3xBlBz0Q9S56fCUN5S7asQJ-iT_ZLOSfnyF2jUfY8Qi3PMItj3AjseMRNjzCmkfY8AhXNdY8wppHuKmx4dFzdHo0mBwee7Yih8fA0Fl5NBVByHq-TEPG0jIklKvHJSPOeypCO6El82lJQlnymEsSchYTUKBpUpaJyILoBerUTS1eIewT4Zchy4SQMFT0iC8DWA5IwTjPuJBdFLnnWjCbrl5VTZkVzi_xvDBoFAqNwo_hRbrIa2fNTbqWO8anDrLCmpzGlCyAcnfMfO8QLkAiq2O2shbNelmECZh8ESi2sIteGujbe4lUHug4yF7fY_Yb9OjyL_UWdVaLtXiHHrLNqlou9tBWmpM9S94_fN-4jQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+obstacle+avoidance+algorithm+of+multiple+bionic+snake+robots+in+fluid+based+on+IB-LBM&rft.jtitle=ISA+transactions&rft.au=Li%2C+Dongfang&rft.au=Deng%2C+Hongbin&rft.au=Pan%2C+Zhenhua&rft.au=Xiu%2C+Yang&rft.date=2022-03-01&rft.issn=1879-2022&rft.eissn=1879-2022&rft.volume=122&rft.spage=271&rft_id=info:doi/10.1016%2Fj.isatra.2021.04.048&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-0578&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-0578&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-0578&client=summon |