Wideband 2-D sparse array optimization combined with multiline reception for real-time 3-D medical ultrasound

•Simulated Annealing optimization of sparse array for 3-D ultrasound medical imaging.•Method to reduce the active channel count and implement high volume rate imaging.•Combination of dense array in transmission and optimized sparse array in reception.•Original cost function assessed under different...

Full description

Saved in:
Bibliographic Details
Published in:Ultrasonics Vol. 111; p. 106318
Main Authors: Sciallero, Claudia, Trucco, Andrea
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01.03.2021
Subjects:
ISSN:0041-624X, 1874-9968, 1874-9968
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Simulated Annealing optimization of sparse array for 3-D ultrasound medical imaging.•Method to reduce the active channel count and implement high volume rate imaging.•Combination of dense array in transmission and optimized sparse array in reception.•Original cost function assessed under different signal fractional bandwidths.•Uniform image quality in terms of resolution and contrast by varying the bandwidths. Three-dimensional (3-D) ultrasound medical imaging provides advantages over a traditional 2-D visualization method. However, the use of a 2-D array to acquire 3-D images may result in a transducer composed of thousands of elements and a large amount of data in the front-end, making it impractical to implement high volume rate imaging and individually control all elements with the scanner. This paper proposes an original approach, valid for wideband operations centered on the design center frequency, to maintain a limited number of active elements and firing events, while preserving high resolution and volume rate. A 7 MHz 2-D array is composed of two circular concentric subparts. In the inner footprint the elements are distributed following a regular grid, while in the outer subpart a sparse non-grid solution is adopted. The inner circular dense array is composed of 256 elements with a pitch of 0.5λ. The overall footprint, delimited by the outer subpart, is equivalent to a 256-element array with a pitch of 1.5λ. All the elements of the inner subpart are activated in transmission. Following an optimization procedure, both subparts, including a subset of the elements placed in the inner footprint (i.e., sparse on-the-grid array) and the elements spread over the outer subpart (i.e., sparse off-the-grid array) are used to receive. A total number of 256 elements, defined by the sum of elements distributed in the inner and outer subparts, is fixed in reception. The proposed approach implies a multiline reception strategy, where for each transmission 3 × 3 firing events occur in reception. The sparse receive array is optimized by using a simulated annealing optimization. An original cost function is designed specifically to achieve successful results in wideband conditions. The receive array is optimized in order to obtain consistent results for different signal bandwidths of the excitation pulse. For all the desired bandwidths, the optimized array will provide the recovery of the lower lateral resolution of the transmission phase and, at the same time, a significant reduction of the undesired side lobe raised in the 3-D two-way beam pattern. The 3-D two-way beam pattern analysis reveals that the proposed solution is able to guarantee a lateral resolution of 1.35 mm at a focus depth of 25 mm for the three fractional signal bandwidths of interest (i.e., 30%, 50% and 70%) considered in the optimization process. The undesired side lobes are successfully suppressed especially when, as a consequence of the multiline strategy, non-coincident steering angles are used in transmission and reception. Moreover, thanks to the firing scheme adopted, a high-volume rate of 63 volumes per second may be achieved at the focus depth. The volume rate decreases to 32 volumes per second at twice the focal depth. Phantom image simulations show that the proposed method maintains a satisfactory and almost uniform image quality in terms of resolution and contrast for all the signal bandwidths of interest.
AbstractList Three-dimensional (3-D) ultrasound medical imaging provides advantages over a traditional 2-D visualization method. However, the use of a 2-D array to acquire 3-D images may result in a transducer composed of thousands of elements and a large amount of data in the front-end, making it impractical to implement high volume rate imaging and individually control all elements with the scanner. This paper proposes an original approach, valid for wideband operations centered on the design center frequency, to maintain a limited number of active elements and firing events, while preserving high resolution and volume rate. A 7 MHz 2-D array is composed of two circular concentric subparts. In the inner footprint the elements are distributed following a regular grid, while in the outer subpart a sparse non-grid solution is adopted. The inner circular dense array is composed of 256 elements with a pitch of 0.5λ. The overall footprint, delimited by the outer subpart, is equivalent to a 256-element array with a pitch of 1.5λ. All the elements of the inner subpart are activated in transmission. Following an optimization procedure, both subparts, including a subset of the elements placed in the inner footprint (i.e., sparse on-the-grid array) and the elements spread over the outer subpart (i.e., sparse off-the-grid array) are used to receive. A total number of 256 elements, defined by the sum of elements distributed in the inner and outer subparts, is fixed in reception. The proposed approach implies a multiline reception strategy, where for each transmission 3 × 3 firing events occur in reception. The sparse receive array is optimized by using a simulated annealing optimization. An original cost function is designed specifically to achieve successful results in wideband conditions. The receive array is optimized in order to obtain consistent results for different signal bandwidths of the excitation pulse. For all the desired bandwidths, the optimized array will provide the recovery of the lower lateral resolution of the transmission phase and, at the same time, a significant reduction of the undesired side lobe raised in the 3-D two-way beam pattern. The 3-D two-way beam pattern analysis reveals that the proposed solution is able to guarantee a lateral resolution of 1.35 mm at a focus depth of 25 mm for the three fractional signal bandwidths of interest (i.e., 30%, 50% and 70%) considered in the optimization process. The undesired side lobes are successfully suppressed especially when, as a consequence of the multiline strategy, non-coincident steering angles are used in transmission and reception. Moreover, thanks to the firing scheme adopted, a high-volume rate of 63 volumes per second may be achieved at the focus depth. The volume rate decreases to 32 volumes per second at twice the focal depth. Phantom image simulations show that the proposed method maintains a satisfactory and almost uniform image quality in terms of resolution and contrast for all the signal bandwidths of interest.
•Simulated Annealing optimization of sparse array for 3-D ultrasound medical imaging.•Method to reduce the active channel count and implement high volume rate imaging.•Combination of dense array in transmission and optimized sparse array in reception.•Original cost function assessed under different signal fractional bandwidths.•Uniform image quality in terms of resolution and contrast by varying the bandwidths. Three-dimensional (3-D) ultrasound medical imaging provides advantages over a traditional 2-D visualization method. However, the use of a 2-D array to acquire 3-D images may result in a transducer composed of thousands of elements and a large amount of data in the front-end, making it impractical to implement high volume rate imaging and individually control all elements with the scanner. This paper proposes an original approach, valid for wideband operations centered on the design center frequency, to maintain a limited number of active elements and firing events, while preserving high resolution and volume rate. A 7 MHz 2-D array is composed of two circular concentric subparts. In the inner footprint the elements are distributed following a regular grid, while in the outer subpart a sparse non-grid solution is adopted. The inner circular dense array is composed of 256 elements with a pitch of 0.5λ. The overall footprint, delimited by the outer subpart, is equivalent to a 256-element array with a pitch of 1.5λ. All the elements of the inner subpart are activated in transmission. Following an optimization procedure, both subparts, including a subset of the elements placed in the inner footprint (i.e., sparse on-the-grid array) and the elements spread over the outer subpart (i.e., sparse off-the-grid array) are used to receive. A total number of 256 elements, defined by the sum of elements distributed in the inner and outer subparts, is fixed in reception. The proposed approach implies a multiline reception strategy, where for each transmission 3 × 3 firing events occur in reception. The sparse receive array is optimized by using a simulated annealing optimization. An original cost function is designed specifically to achieve successful results in wideband conditions. The receive array is optimized in order to obtain consistent results for different signal bandwidths of the excitation pulse. For all the desired bandwidths, the optimized array will provide the recovery of the lower lateral resolution of the transmission phase and, at the same time, a significant reduction of the undesired side lobe raised in the 3-D two-way beam pattern. The 3-D two-way beam pattern analysis reveals that the proposed solution is able to guarantee a lateral resolution of 1.35 mm at a focus depth of 25 mm for the three fractional signal bandwidths of interest (i.e., 30%, 50% and 70%) considered in the optimization process. The undesired side lobes are successfully suppressed especially when, as a consequence of the multiline strategy, non-coincident steering angles are used in transmission and reception. Moreover, thanks to the firing scheme adopted, a high-volume rate of 63 volumes per second may be achieved at the focus depth. The volume rate decreases to 32 volumes per second at twice the focal depth. Phantom image simulations show that the proposed method maintains a satisfactory and almost uniform image quality in terms of resolution and contrast for all the signal bandwidths of interest.
Three-dimensional (3-D) ultrasound medical imaging provides advantages over a traditional 2-D visualization method. However, the use of a 2-D array to acquire 3-D images may result in a transducer composed of thousands of elements and a large amount of data in the front-end, making it impractical to implement high volume rate imaging and individually control all elements with the scanner. This paper proposes an original approach, valid for wideband operations centered on the design center frequency, to maintain a limited number of active elements and firing events, while preserving high resolution and volume rate. A 7 MHz 2-D array is composed of two circular concentric subparts. In the inner footprint the elements are distributed following a regular grid, while in the outer subpart a sparse non-grid solution is adopted. The inner circular dense array is composed of 256 elements with a pitch of 0.5λ. The overall footprint, delimited by the outer subpart, is equivalent to a 256-element array with a pitch of 1.5λ. All the elements of the inner subpart are activated in transmission. Following an optimization procedure, both subparts, including a subset of the elements placed in the inner footprint (i.e., sparse on-the-grid array) and the elements spread over the outer subpart (i.e., sparse off-the-grid array) are used to receive. A total number of 256 elements, defined by the sum of elements distributed in the inner and outer subparts, is fixed in reception. The proposed approach implies a multiline reception strategy, where for each transmission 3 × 3 firing events occur in reception. The sparse receive array is optimized by using a simulated annealing optimization. An original cost function is designed specifically to achieve successful results in wideband conditions. The receive array is optimized in order to obtain consistent results for different signal bandwidths of the excitation pulse. For all the desired bandwidths, the optimized array will provide the recovery of the lower lateral resolution of the transmission phase and, at the same time, a significant reduction of the undesired side lobe raised in the 3-D two-way beam pattern. The 3-D two-way beam pattern analysis reveals that the proposed solution is able to guarantee a lateral resolution of 1.35 mm at a focus depth of 25 mm for the three fractional signal bandwidths of interest (i.e., 30%, 50% and 70%) considered in the optimization process. The undesired side lobes are successfully suppressed especially when, as a consequence of the multiline strategy, non-coincident steering angles are used in transmission and reception. Moreover, thanks to the firing scheme adopted, a high-volume rate of 63 volumes per second may be achieved at the focus depth. The volume rate decreases to 32 volumes per second at twice the focal depth. Phantom image simulations show that the proposed method maintains a satisfactory and almost uniform image quality in terms of resolution and contrast for all the signal bandwidths of interest.Three-dimensional (3-D) ultrasound medical imaging provides advantages over a traditional 2-D visualization method. However, the use of a 2-D array to acquire 3-D images may result in a transducer composed of thousands of elements and a large amount of data in the front-end, making it impractical to implement high volume rate imaging and individually control all elements with the scanner. This paper proposes an original approach, valid for wideband operations centered on the design center frequency, to maintain a limited number of active elements and firing events, while preserving high resolution and volume rate. A 7 MHz 2-D array is composed of two circular concentric subparts. In the inner footprint the elements are distributed following a regular grid, while in the outer subpart a sparse non-grid solution is adopted. The inner circular dense array is composed of 256 elements with a pitch of 0.5λ. The overall footprint, delimited by the outer subpart, is equivalent to a 256-element array with a pitch of 1.5λ. All the elements of the inner subpart are activated in transmission. Following an optimization procedure, both subparts, including a subset of the elements placed in the inner footprint (i.e., sparse on-the-grid array) and the elements spread over the outer subpart (i.e., sparse off-the-grid array) are used to receive. A total number of 256 elements, defined by the sum of elements distributed in the inner and outer subparts, is fixed in reception. The proposed approach implies a multiline reception strategy, where for each transmission 3 × 3 firing events occur in reception. The sparse receive array is optimized by using a simulated annealing optimization. An original cost function is designed specifically to achieve successful results in wideband conditions. The receive array is optimized in order to obtain consistent results for different signal bandwidths of the excitation pulse. For all the desired bandwidths, the optimized array will provide the recovery of the lower lateral resolution of the transmission phase and, at the same time, a significant reduction of the undesired side lobe raised in the 3-D two-way beam pattern. The 3-D two-way beam pattern analysis reveals that the proposed solution is able to guarantee a lateral resolution of 1.35 mm at a focus depth of 25 mm for the three fractional signal bandwidths of interest (i.e., 30%, 50% and 70%) considered in the optimization process. The undesired side lobes are successfully suppressed especially when, as a consequence of the multiline strategy, non-coincident steering angles are used in transmission and reception. Moreover, thanks to the firing scheme adopted, a high-volume rate of 63 volumes per second may be achieved at the focus depth. The volume rate decreases to 32 volumes per second at twice the focal depth. Phantom image simulations show that the proposed method maintains a satisfactory and almost uniform image quality in terms of resolution and contrast for all the signal bandwidths of interest.
ArticleNumber 106318
Author Sciallero, Claudia
Trucco, Andrea
Author_xml – sequence: 1
  givenname: Claudia
  surname: Sciallero
  fullname: Sciallero, Claudia
  email: claudia.sciallero@unige.it
– sequence: 2
  givenname: Andrea
  surname: Trucco
  fullname: Trucco, Andrea
  email: andrea.trucco@unige.it
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33333484$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1P3DAUtCpQWWj_QYV85JKtv0icHiqhBVokJC5U7c3yx7PwKolTOwHBr8dL4NJD8cV61sx43swh2hviAAh9oWRNCa2_btdzNyWd14yw3VPNqfyAVlQ2omrbWu6hFSGCVjUTfw7QYc5bQqiQlH9EB3x3hBQr1P8ODoweHGbVOc6jThmwTkk_4jhOoQ9PegpxwDb2Jgzg8EOY7nBfvg5dmXECC-MLwsdUJt1VhQWYF7UeXLC6w4vPOA_uE9r3usvw-fU-Qr8uL243P6vrmx9Xm7PryvKaTZURjTGkNbRhvJg7ld4zCcSBN9J5ralvnW6ccJ623HJtLIGatZSA5IZpy4_QyaI7pvh3hjypPmQLXacHiHNWTDRU1KeyaQr0-BU6m2JYjSn0Oj2qt4gK4NsCsCnmnMArG6aXUMpWoVOUqF0faquWPdWuD7X0UcjiH_Kb_ju07wsNSkj3AZLKNsBgS6Al8Em5GP4v8AyML6jn
CitedBy_id crossref_primary_10_1109_TUFFC_2022_3162419
crossref_primary_10_1016_j_ultras_2021_106599
crossref_primary_10_1007_s40846_022_00755_y
crossref_primary_10_1016_j_ultras_2025_107748
crossref_primary_10_1109_TUFFC_2024_3460688
crossref_primary_10_1109_TUFFC_2025_3583178
Cites_doi 10.1177/016173469401600301
10.1016/j.ultras.2005.06.005
10.1038/s41598-017-09534-1
10.1016/S0165-1684(96)00166-1
10.1631/jzus.C0910037
10.1155/2017/6027029
10.1016/S0041-624X(02)00163-4
10.1109/EUSIPCO.2015.7362602
10.1016/S0301-5629(98)00043-X
10.1243/09544119JEIM586
10.1109/TUFFC.2017.2687521
10.1109/TUFFC.2011.2123
10.1109/JSSC.2015.2505714
10.1109/TBME.2013.2267742
10.1016/S0041-624X(99)00089-X
10.1109/58.753023
10.1109/TUFFC.2016.2557622
10.1109/58.935711
10.1109/ULTSYM.2010.5935854
10.1126/science.220.4598.671
10.1016/S0041-624X(00)00013-5
10.1109/58.139123
10.1109/TUFFC.2015.2496580
10.1109/TUFFC.2018.2839085
10.1109/TUFFC.2016.2614776
10.1109/TUFFC.2016.2602242
10.1109/48.775291
10.1109/58.484458
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.ultras.2020.106318
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1874-9968
ExternalDocumentID 33333484
10_1016_j_ultras_2020_106318
S0041624X2030250X
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABBQC
ABEFU
ABFNM
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
BNPGV
C45
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SPG
SSH
SSQ
SSZ
T5K
TAE
TEORI
UHS
WH7
WUQ
XPP
ZGI
ZMT
ZXP
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
ID FETCH-LOGICAL-c362t-b47bb09b1723eba58ff28e0defb8dfaa1f9da7d4df193c3abc0e62910e83b2ac3
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000616286900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0041-624X
1874-9968
IngestDate Sun Sep 28 06:04:19 EDT 2025
Wed Feb 19 02:29:07 EST 2025
Sat Nov 29 07:26:25 EST 2025
Tue Nov 18 22:23:10 EST 2025
Fri Feb 23 02:48:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sparse array
2-D arrays
3-D medical ultrasound
Simulated annealing
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-b47bb09b1723eba58ff28e0defb8dfaa1f9da7d4df193c3abc0e62910e83b2ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 33333484
PQID 2471465877
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2471465877
pubmed_primary_33333484
crossref_citationtrail_10_1016_j_ultras_2020_106318
crossref_primary_10_1016_j_ultras_2020_106318
elsevier_sciencedirect_doi_10_1016_j_ultras_2020_106318
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
2021-Mar
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Ultrasonics
PublicationTitleAlternate Ultrasonics
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Roux, Ramalli, Tortoli, Cachard, Robini, Liebgott (b0120) 2016; 63
Roux, Ramalli, Liebgott, Cachard, Robini, Tortoli (b0095) 2017; 64
Trucco (b0065) 1999; 46
Behar, Adam (b0100) 2005; 43
Trucco (b0140) 2000; 38
Savord, Solomon (b0020) 2003; 1
Cardone, Cincotti, Gori, Pappalardo (b0130) 2001; 48
Lockwood, Fosyer (b0055) 1996; 43
C. Sciallero, A. Trucco, Design of a sparse planar array for optimized 3D medical ultrasound imaging, 23rd Eur. Signal Process. Conf. (EUSIPCO), Nice, France, Aug./Sep. 2015, pp. 1341–1345.
Chen, Shen, Zhou, Chen (b0075) Apr. 2010; 11
Diarra, Robini, Tortoli, Cachard, Liebgott (b0085) Nov. 2013; 60
Carpenter, Rashid, Ghovanloo, Cowell, Freear, Degertek (b0040) 2016; 63
Nikolov, Jensen (b0060) 2000; 37
J.W. Choe, Ö. Oralkan, P.T. Khuri-Yakub, Design optimization for a 2-D sparse transducer array for 3-D ultrasound imaging, in Proc. IEEE Ultrason. Symp. (IUS), Oct. 2010, pp. 1928–1931.
Nelson, Pretorius (b0005) 1998; 24
Bouzari (b0045) 2017; 64
Jensen (b0155) 1996; 34
I. Ben Daya, A. Chen, M.J. Shafiee, A. Wong, J. T. W. Yeow, Compensated row-column ultrasound imaging system using multilayered edge guided stochastically fully connected random fields, Sci. Rep. 7, 2017.
Trucco (b0070) 2002; 40
Zhou, Wei, Jintamethasawat, Sampson, Kripfgans, Fowlkes, Wenisch, Chakrabarti (b0105) 2018; 65
Holm, Elgetun (b0115) 1995; 2
Kirkpatrick, Gellat, Vecchi (b0135) 1983; 220
Tekes, Karaman, Degertekin (b0110) 2011; 58
Chao Chen, Shreyas B. Raghunathan, Zili Yu, Maysam Shabanimotlagh, Zhao Chen, Zu-yao Chang, Sandra Blaak, Christian Prins, Jacco Ponte, Emile Noothout, Hendrik J. Vos, Johan G. Bosch, Martin D. Verweij, Nico de Jong, Michiel A. P. Pertijs, A prototype PZT matrix transducer with low-power integrated receive ASIC for 3-D transesophageal echocardiography, IEEE Trans. Ultrason, Ferroelect., Freq. Control 63(1) (2016) 47-59.
Trucco, Murino (b0125) 1999; 24
Prager, Ijaz, Gee, Treece (b0010) 2010; 224
R.E. Davidsen, J.A. Jensen, S.W. Smith, Two-dimensional random arrays for real-time volumetric imaging, Ultrason. Imaging 16 (1994) 143-163.
J.A. Jensen, N.B. Svendsen, Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers, IEEE Trans. Ultrason, Ferroelect., Freq. Control, vol. 39, no. 2, pp. 262-267, 1992.
Chen, Lee, Sodini (b0025) 2016; 51
Q. Huang, Z. Zeng, A review on real-time 3D ultrasound imaging technology, BioMed Res. Int., vol. 2017, article ID 6027029, 20 pages, 2017.
Szabo (b0145) 2004
Murino, Trucco, Tesei (b0150) 1997; 56
Carpenter (10.1016/j.ultras.2020.106318_b0040) 2016; 63
Diarra (10.1016/j.ultras.2020.106318_b0085) 2013; 60
10.1016/j.ultras.2020.106318_b0160
Roux (10.1016/j.ultras.2020.106318_b0120) 2016; 63
Jensen (10.1016/j.ultras.2020.106318_b0155) 1996; 34
10.1016/j.ultras.2020.106318_b0080
Chen (10.1016/j.ultras.2020.106318_b0025) 2016; 51
Trucco (10.1016/j.ultras.2020.106318_b0140) 2000; 38
Murino (10.1016/j.ultras.2020.106318_b0150) 1997; 56
Zhou (10.1016/j.ultras.2020.106318_b0105) 2018; 65
Trucco (10.1016/j.ultras.2020.106318_b0125) 1999; 24
Bouzari (10.1016/j.ultras.2020.106318_b0045) 2017; 64
Szabo (10.1016/j.ultras.2020.106318_b0145) 2004
Nikolov (10.1016/j.ultras.2020.106318_b0060) 2000; 37
Prager (10.1016/j.ultras.2020.106318_b0010) 2010; 224
Trucco (10.1016/j.ultras.2020.106318_b0065) 1999; 46
Nelson (10.1016/j.ultras.2020.106318_b0005) 1998; 24
Savord (10.1016/j.ultras.2020.106318_b0020) 2003; 1
Roux (10.1016/j.ultras.2020.106318_b0095) 2017; 64
Tekes (10.1016/j.ultras.2020.106318_b0110) 2011; 58
10.1016/j.ultras.2020.106318_b0030
10.1016/j.ultras.2020.106318_b0050
Behar (10.1016/j.ultras.2020.106318_b0100) 2005; 43
10.1016/j.ultras.2020.106318_b0090
Holm (10.1016/j.ultras.2020.106318_b0115) 1995; 2
Lockwood (10.1016/j.ultras.2020.106318_b0055) 1996; 43
Cardone (10.1016/j.ultras.2020.106318_b0130) 2001; 48
Trucco (10.1016/j.ultras.2020.106318_b0070) 2002; 40
Chen (10.1016/j.ultras.2020.106318_b0075) 2010; 11
10.1016/j.ultras.2020.106318_b0015
10.1016/j.ultras.2020.106318_b0035
Kirkpatrick (10.1016/j.ultras.2020.106318_b0135) 1983; 220
References_xml – volume: 40
  start-page: 485
  year: 2002
  end-page: 489
  ident: b0070
  article-title: Weighting and thinning wide-band arrays by simulated annealing
  publication-title: Ultrasonics
– volume: 224
  start-page: 193
  year: 2010
  end-page: 223
  ident: b0010
  article-title: Three-dimensional ultrasound imaging
  publication-title: Proc. Inst. Mech. Eng. H, J. Eng. Med.
– volume: 1
  start-page: 945
  year: 2003
  end-page: 953
  ident: b0020
  article-title: Fully sampled matrix transducer for real time 3D ultrasonic imaging
  publication-title: Proc. IEEE Ultrason. Symp.
– volume: 65
  start-page: 1346
  year: 2018
  end-page: 1358
  ident: b0105
  article-title: High-volume-rate 3-D ultrasound imaging based on synthetic aperture sequential beamforming with chirp-coded excitation
  publication-title: IEEE Trans. Ultrason. Ferroelect., Freq Control
– volume: 37
  start-page: 667
  year: 2000
  end-page: 671
  ident: b0060
  article-title: Application of different spatial sampling patterns for sparse array transducer design
  publication-title: Ultrasonics
– volume: 11
  start-page: 261
  year: Apr. 2010
  end-page: 269
  ident: b0075
  article-title: Optimized simulated annealing algorithm for thinning and weighting large planar arrays
  publication-title: J. Zhejiang Univ. Sci. C
– volume: 48
  start-page: 943
  year: 2001
  end-page: 952
  ident: b0130
  article-title: Optimization of wide-band linear arrays
  publication-title: IEEE Trans. Ultrason., Ferroelect., Freq Control
– year: 2004
  ident: b0145
  article-title: Diagnostic ultrasound imaging: inside out
– volume: 64
  start-page: 108
  year: 2017
  end-page: 125
  ident: b0095
  article-title: Wideband 2-D array design optimization with fabrication constrains for 3-D US imaging
  publication-title: IEEE Trans. Ultrason. Ferroelect. Freq Control
– volume: 51
  start-page: 738
  year: 2016
  end-page: 751
  ident: b0025
  article-title: A column-row-parallel ASIC architecture for 3-D portable medical ultrasonic imaging
  publication-title: IEEE J. Solid-State Circuits
– volume: 56
  start-page: 177
  year: 1997
  end-page: 183
  ident: b0150
  article-title: Beam pattern formulation and analysis for wide-band beamforming systems using sparse arrays
  publication-title: Signal Process.
– volume: 38
  start-page: 161
  year: 2000
  end-page: 165
  ident: b0140
  article-title: Aperture and element minimization in linear sparse arrays with desired beam patterns
  publication-title: Ultrasonics
– reference: C. Sciallero, A. Trucco, Design of a sparse planar array for optimized 3D medical ultrasound imaging, 23rd Eur. Signal Process. Conf. (EUSIPCO), Nice, France, Aug./Sep. 2015, pp. 1341–1345.
– volume: 43
  start-page: 15
  year: 1996
  end-page: 19
  ident: b0055
  article-title: Optimising the radiation pattern of sparse periodic two-dimensional arrays
  publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control
– volume: 24
  start-page: 291
  year: 1999
  end-page: 299
  ident: b0125
  article-title: Stochastic optimization of linear sparse arrays
  publication-title: IEEE J. Oceanic Eng.
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: b0135
  article-title: Optimization by simulated annealing
  publication-title: Science
– volume: 46
  start-page: 347
  year: 1999
  end-page: 355
  ident: b0065
  article-title: Thinning and weighting of large planar arrays by simulated annealing
  publication-title: IEEE Trans. Ultrason., Ferroelect., Freq. Control, Mar.
– reference: J.A. Jensen, N.B. Svendsen, Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers, IEEE Trans. Ultrason, Ferroelect., Freq. Control, vol. 39, no. 2, pp. 262-267, 1992.
– volume: 58
  start-page: 2596
  year: 2011
  end-page: 2607
  ident: b0110
  article-title: Optimizing circular ring arrays for forward-looking IVUS imaging
  publication-title: IEEE Trans. Ultrason, Ferroelect., Freq Control
– reference: R.E. Davidsen, J.A. Jensen, S.W. Smith, Two-dimensional random arrays for real-time volumetric imaging, Ultrason. Imaging 16 (1994) 143-163.
– volume: 43
  start-page: 777
  year: 2005
  end-page: 778
  ident: b0100
  article-title: Optimization of sparse synthetic transmit aperture imaging with coded excitation and frequency division
  publication-title: Ultrasonics
– volume: 24
  start-page: 1243
  year: 1998
  end-page: 1270
  ident: b0005
  article-title: Three-dimensional ultrasound imaging
  publication-title: Ultrasound Med. Biol.
– reference: I. Ben Daya, A. Chen, M.J. Shafiee, A. Wong, J. T. W. Yeow, Compensated row-column ultrasound imaging system using multilayered edge guided stochastically fully connected random fields, Sci. Rep. 7, 2017.
– volume: 34
  start-page: 351
  year: 1996
  end-page: 353
  ident: b0155
  article-title: “FIELD: A program for simulating ultrasound systems
  publication-title: 10th Nordic-Baltic Conf. on Biomedical Imaging
– volume: 63
  start-page: 1078
  year: 2016
  end-page: 1085
  ident: b0040
  article-title: Direct digital demultiplexing of analog TDM signals for cable reduction in ultrasound imaging catheters
  publication-title: IEEE Trans. Ultrason., Ferroelect., Freq Control
– volume: 2
  start-page: 1345
  year: 1995
  end-page: 1348
  ident: b0115
  article-title: Optimization of the beampattern of 2D sparse arrays by weighting
  publication-title: Proc. IEEE Ultrason. Symp.
– volume: 64
  start-page: 978
  year: 2017
  end-page: 988
  ident: b0045
  article-title: Curvilinear 3-D imaging using row-column-addressed 2-D arrays with a diverging lens: feasibility study
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 60
  start-page: 3093
  year: Nov. 2013
  end-page: 3102
  ident: b0085
  article-title: Design of optimal 2-D nongrid sparse arrays for medical ultrasound
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 63
  start-page: 2138
  year: 2016
  end-page: 2149
  ident: b0120
  article-title: 2-D ultrasound sparse arrays multidepth radiation optimization using simulated annealing and spiral-array inspired energy functions
  publication-title: IEEE Trans. Ultrason, Ferroelect., Freq Control
– reference: Q. Huang, Z. Zeng, A review on real-time 3D ultrasound imaging technology, BioMed Res. Int., vol. 2017, article ID 6027029, 20 pages, 2017.
– reference: J.W. Choe, Ö. Oralkan, P.T. Khuri-Yakub, Design optimization for a 2-D sparse transducer array for 3-D ultrasound imaging, in Proc. IEEE Ultrason. Symp. (IUS), Oct. 2010, pp. 1928–1931.
– reference: Chao Chen, Shreyas B. Raghunathan, Zili Yu, Maysam Shabanimotlagh, Zhao Chen, Zu-yao Chang, Sandra Blaak, Christian Prins, Jacco Ponte, Emile Noothout, Hendrik J. Vos, Johan G. Bosch, Martin D. Verweij, Nico de Jong, Michiel A. P. Pertijs, A prototype PZT matrix transducer with low-power integrated receive ASIC for 3-D transesophageal echocardiography, IEEE Trans. Ultrason, Ferroelect., Freq. Control 63(1) (2016) 47-59.
– ident: 10.1016/j.ultras.2020.106318_b0050
  doi: 10.1177/016173469401600301
– volume: 43
  start-page: 777
  year: 2005
  ident: 10.1016/j.ultras.2020.106318_b0100
  article-title: Optimization of sparse synthetic transmit aperture imaging with coded excitation and frequency division
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2005.06.005
– ident: 10.1016/j.ultras.2020.106318_b0035
  doi: 10.1038/s41598-017-09534-1
– volume: 1
  start-page: 945
  year: 2003
  ident: 10.1016/j.ultras.2020.106318_b0020
  article-title: Fully sampled matrix transducer for real time 3D ultrasonic imaging
  publication-title: Proc. IEEE Ultrason. Symp.
– volume: 56
  start-page: 177
  year: 1997
  ident: 10.1016/j.ultras.2020.106318_b0150
  article-title: Beam pattern formulation and analysis for wide-band beamforming systems using sparse arrays
  publication-title: Signal Process.
  doi: 10.1016/S0165-1684(96)00166-1
– volume: 11
  start-page: 261
  issue: 4
  year: 2010
  ident: 10.1016/j.ultras.2020.106318_b0075
  article-title: Optimized simulated annealing algorithm for thinning and weighting large planar arrays
  publication-title: J. Zhejiang Univ. Sci. C
  doi: 10.1631/jzus.C0910037
– year: 2004
  ident: 10.1016/j.ultras.2020.106318_b0145
– ident: 10.1016/j.ultras.2020.106318_b0015
  doi: 10.1155/2017/6027029
– volume: 40
  start-page: 485
  year: 2002
  ident: 10.1016/j.ultras.2020.106318_b0070
  article-title: Weighting and thinning wide-band arrays by simulated annealing
  publication-title: Ultrasonics
  doi: 10.1016/S0041-624X(02)00163-4
– ident: 10.1016/j.ultras.2020.106318_b0090
  doi: 10.1109/EUSIPCO.2015.7362602
– volume: 34
  start-page: 351
  year: 1996
  ident: 10.1016/j.ultras.2020.106318_b0155
  article-title: “FIELD: A program for simulating ultrasound systems
  publication-title: 10th Nordic-Baltic Conf. on Biomedical Imaging
– volume: 24
  start-page: 1243
  issue: 9
  year: 1998
  ident: 10.1016/j.ultras.2020.106318_b0005
  article-title: Three-dimensional ultrasound imaging
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/S0301-5629(98)00043-X
– volume: 224
  start-page: 193
  issue: 2
  year: 2010
  ident: 10.1016/j.ultras.2020.106318_b0010
  article-title: Three-dimensional ultrasound imaging
  publication-title: Proc. Inst. Mech. Eng. H, J. Eng. Med.
  doi: 10.1243/09544119JEIM586
– volume: 2
  start-page: 1345
  year: 1995
  ident: 10.1016/j.ultras.2020.106318_b0115
  article-title: Optimization of the beampattern of 2D sparse arrays by weighting
  publication-title: Proc. IEEE Ultrason. Symp.
– volume: 64
  start-page: 978
  year: 2017
  ident: 10.1016/j.ultras.2020.106318_b0045
  article-title: Curvilinear 3-D imaging using row-column-addressed 2-D arrays with a diverging lens: feasibility study
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2017.2687521
– volume: 58
  start-page: 2596
  issue: 12
  year: 2011
  ident: 10.1016/j.ultras.2020.106318_b0110
  article-title: Optimizing circular ring arrays for forward-looking IVUS imaging
  publication-title: IEEE Trans. Ultrason, Ferroelect., Freq Control
  doi: 10.1109/TUFFC.2011.2123
– volume: 51
  start-page: 738
  issue: 3
  year: 2016
  ident: 10.1016/j.ultras.2020.106318_b0025
  article-title: A column-row-parallel ASIC architecture for 3-D portable medical ultrasonic imaging
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2015.2505714
– volume: 60
  start-page: 3093
  issue: 11
  year: 2013
  ident: 10.1016/j.ultras.2020.106318_b0085
  article-title: Design of optimal 2-D nongrid sparse arrays for medical ultrasound
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2267742
– volume: 38
  start-page: 161
  year: 2000
  ident: 10.1016/j.ultras.2020.106318_b0140
  article-title: Aperture and element minimization in linear sparse arrays with desired beam patterns
  publication-title: Ultrasonics
  doi: 10.1016/S0041-624X(99)00089-X
– volume: 46
  start-page: 347
  issue: 2
  year: 1999
  ident: 10.1016/j.ultras.2020.106318_b0065
  article-title: Thinning and weighting of large planar arrays by simulated annealing
  publication-title: IEEE Trans. Ultrason., Ferroelect., Freq. Control, Mar.
  doi: 10.1109/58.753023
– volume: 63
  start-page: 1078
  issue: 8
  year: 2016
  ident: 10.1016/j.ultras.2020.106318_b0040
  article-title: Direct digital demultiplexing of analog TDM signals for cable reduction in ultrasound imaging catheters
  publication-title: IEEE Trans. Ultrason., Ferroelect., Freq Control
  doi: 10.1109/TUFFC.2016.2557622
– volume: 48
  start-page: 943
  issue: 4
  year: 2001
  ident: 10.1016/j.ultras.2020.106318_b0130
  article-title: Optimization of wide-band linear arrays
  publication-title: IEEE Trans. Ultrason., Ferroelect., Freq Control
  doi: 10.1109/58.935711
– ident: 10.1016/j.ultras.2020.106318_b0080
  doi: 10.1109/ULTSYM.2010.5935854
– volume: 220
  start-page: 671
  year: 1983
  ident: 10.1016/j.ultras.2020.106318_b0135
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 37
  start-page: 667
  issue: 10
  year: 2000
  ident: 10.1016/j.ultras.2020.106318_b0060
  article-title: Application of different spatial sampling patterns for sparse array transducer design
  publication-title: Ultrasonics
  doi: 10.1016/S0041-624X(00)00013-5
– ident: 10.1016/j.ultras.2020.106318_b0160
  doi: 10.1109/58.139123
– ident: 10.1016/j.ultras.2020.106318_b0030
  doi: 10.1109/TUFFC.2015.2496580
– volume: 65
  start-page: 1346
  issue: 8
  year: 2018
  ident: 10.1016/j.ultras.2020.106318_b0105
  article-title: High-volume-rate 3-D ultrasound imaging based on synthetic aperture sequential beamforming with chirp-coded excitation
  publication-title: IEEE Trans. Ultrason. Ferroelect., Freq Control
  doi: 10.1109/TUFFC.2018.2839085
– volume: 64
  start-page: 108
  year: 2017
  ident: 10.1016/j.ultras.2020.106318_b0095
  article-title: Wideband 2-D array design optimization with fabrication constrains for 3-D US imaging
  publication-title: IEEE Trans. Ultrason. Ferroelect. Freq Control
  doi: 10.1109/TUFFC.2016.2614776
– volume: 63
  start-page: 2138
  issue: 12
  year: 2016
  ident: 10.1016/j.ultras.2020.106318_b0120
  article-title: 2-D ultrasound sparse arrays multidepth radiation optimization using simulated annealing and spiral-array inspired energy functions
  publication-title: IEEE Trans. Ultrason, Ferroelect., Freq Control
  doi: 10.1109/TUFFC.2016.2602242
– volume: 24
  start-page: 291
  issue: 3
  year: 1999
  ident: 10.1016/j.ultras.2020.106318_b0125
  article-title: Stochastic optimization of linear sparse arrays
  publication-title: IEEE J. Oceanic Eng.
  doi: 10.1109/48.775291
– volume: 43
  start-page: 15
  issue: 1
  year: 1996
  ident: 10.1016/j.ultras.2020.106318_b0055
  article-title: Optimising the radiation pattern of sparse periodic two-dimensional arrays
  publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control
  doi: 10.1109/58.484458
SSID ssj0014813
Score 2.353037
Snippet •Simulated Annealing optimization of sparse array for 3-D ultrasound medical imaging.•Method to reduce the active channel count and implement high volume rate...
Three-dimensional (3-D) ultrasound medical imaging provides advantages over a traditional 2-D visualization method. However, the use of a 2-D array to acquire...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106318
SubjectTerms 2-D arrays
3-D medical ultrasound
Algorithms
Humans
Image Enhancement - methods
Imaging, Three-Dimensional - methods
Simulated annealing
Sparse array
Ultrasonography - methods
Title Wideband 2-D sparse array optimization combined with multiline reception for real-time 3-D medical ultrasound
URI https://dx.doi.org/10.1016/j.ultras.2020.106318
https://www.ncbi.nlm.nih.gov/pubmed/33333484
https://www.proquest.com/docview/2471465877
Volume 111
WOSCitedRecordID wos000616286900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1874-9968
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014813
  issn: 0041-624X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLa6DtA4IBgDyo_JSNwqT4mdxM5xGkOApgmJDnqLbMeROqVplbbT-O95juMsbKoGB3qIKsdxrHxfXr5nv2cj9CEMldCJZiTIY0EixQqiEpWSWHBKw4QK2WTI_Tjj5-diOk2_DQZnPhfmquRVJa6v0-V_hRrKAGybOvsPcHeNQgH8B9DhCLDD8a-A_znLjbLD4ZR8HIO9qFdmLOta_hovwDzM27xLG0sOTrEPPm_iChvFCRbQBbo0AYggKUti958fM2ht3s7qQOVaruyGTH1te-FKq178_Hc7IF8al0tzUspNPus-AxNglV50QZWyP_5AewFYR8bZTMEjAm6T-MOotibUmUXwO5kzs3csths8uDxyPQeHndrC29XhES_nDWDM_tz6p7dXyvandtAu5XEqhmj3-Mvp9Gs3qxSJkPn0ySbG7-5N99Aj38w2pbLNE2kUyeQpetK6EvjYUeAZGphqHz3uLTC5jx42Ab569RzNPS0w0AI7WuCGFrhPC-xpgS0tcEcL3NECAy1wRwsMtMAtLfANLQ7QxafTycln0m61QTQomDVREVcqSBXIWQadiUVRUGGC3BRK5IWUYZHmkudRXoDg10wqHZiEgtQ0gikqNXuBhtWiMq8QDlId0SIJdAz106QQeQJenJQqTTloVTlCzD_WTLfr0NvtUMrMBxxeZq6_mcUlc7iMEOmuWrp1WO6pzz1iWaslnUbMgHj3XPneA5yBqbXzZ7Iyiw1UAiEXgWLnfIReOuS7vnjSvN565g3au3l93qLhut6Yd-iBvlrPVvUh2uFTcdgS9jc9U6bL
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wideband+2-D+sparse+array+optimization+combined+with+multiline+reception+for+real-time+3-D+medical+ultrasound&rft.jtitle=Ultrasonics&rft.au=Sciallero%2C+Claudia&rft.au=Trucco%2C+Andrea&rft.date=2021-03-01&rft.eissn=1874-9968&rft.volume=111&rft.spage=106318&rft_id=info:doi/10.1016%2Fj.ultras.2020.106318&rft_id=info%3Apmid%2F33333484&rft.externalDocID=33333484
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-624X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-624X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-624X&client=summon