A data driven approach for condition monitoring of wind turbine blade using vibration signals through best-first tree algorithm and functional trees algorithm: A comparative study

Wind energy is one of the important renewable energy resources available in nature. It is one of the major resources for production of energy because of its dependability due to the development of the technology and relatively low cost. Wind energy is converted into electrical energy using rotating...

Full description

Saved in:
Bibliographic Details
Published in:ISA transactions Vol. 67; pp. 160 - 172
Main Authors: Joshuva, A, Sugumaran, V
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 01.03.2017
Subjects:
ISSN:0019-0578, 1879-2022, 1879-2022
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Wind energy is one of the important renewable energy resources available in nature. It is one of the major resources for production of energy because of its dependability due to the development of the technology and relatively low cost. Wind energy is converted into electrical energy using rotating blades. Due to environmental conditions and large structure, the blades are subjected to various vibration forces that may cause damage to the blades. This leads to a liability in energy production and turbine shutdown. The downtime can be reduced when the blades are diagnosed continuously using structural health condition monitoring. These are considered as a pattern recognition problem which consists of three phases namely, feature extraction, feature selection, and feature classification. In this study, statistical features were extracted from vibration signals, feature selection was carried out using a J48 decision tree algorithm and feature classification was performed using best-first tree algorithm and functional trees algorithm. The better algorithm is suggested for fault diagnosis of wind turbine blade. •Machine learning based condition monitoring is proposed for wind turbine blade.•Crack, Erosion, Loose connection, Pitch angle twist and Bend faults are considered.•Descriptive statistical features were extracted from the vibration signals.•Feature classification was performed using different machine learning classifiers.•Functional tree leaves shows the better result of 91.67%.
AbstractList Wind energy is one of the important renewable energy resources available in nature. It is one of the major resources for production of energy because of its dependability due to the development of the technology and relatively low cost. Wind energy is converted into electrical energy using rotating blades. Due to environmental conditions and large structure, the blades are subjected to various vibration forces that may cause damage to the blades. This leads to a liability in energy production and turbine shutdown. The downtime can be reduced when the blades are diagnosed continuously using structural health condition monitoring. These are considered as a pattern recognition problem which consists of three phases namely, feature extraction, feature selection, and feature classification. In this study, statistical features were extracted from vibration signals, feature selection was carried out using a J48 decision tree algorithm and feature classification was performed using best-first tree algorithm and functional trees algorithm. The better algorithm is suggested for fault diagnosis of wind turbine blade.Wind energy is one of the important renewable energy resources available in nature. It is one of the major resources for production of energy because of its dependability due to the development of the technology and relatively low cost. Wind energy is converted into electrical energy using rotating blades. Due to environmental conditions and large structure, the blades are subjected to various vibration forces that may cause damage to the blades. This leads to a liability in energy production and turbine shutdown. The downtime can be reduced when the blades are diagnosed continuously using structural health condition monitoring. These are considered as a pattern recognition problem which consists of three phases namely, feature extraction, feature selection, and feature classification. In this study, statistical features were extracted from vibration signals, feature selection was carried out using a J48 decision tree algorithm and feature classification was performed using best-first tree algorithm and functional trees algorithm. The better algorithm is suggested for fault diagnosis of wind turbine blade.
Wind energy is one of the important renewable energy resources available in nature. It is one of the major resources for production of energy because of its dependability due to the development of the technology and relatively low cost. Wind energy is converted into electrical energy using rotating blades. Due to environmental conditions and large structure, the blades are subjected to various vibration forces that may cause damage to the blades. This leads to a liability in energy production and turbine shutdown. The downtime can be reduced when the blades are diagnosed continuously using structural health condition monitoring. These are considered as a pattern recognition problem which consists of three phases namely, feature extraction, feature selection, and feature classification. In this study, statistical features were extracted from vibration signals, feature selection was carried out using a J48 decision tree algorithm and feature classification was performed using best-first tree algorithm and functional trees algorithm. The better algorithm is suggested for fault diagnosis of wind turbine blade.
Wind energy is one of the important renewable energy resources available in nature. It is one of the major resources for production of energy because of its dependability due to the development of the technology and relatively low cost. Wind energy is converted into electrical energy using rotating blades. Due to environmental conditions and large structure, the blades are subjected to various vibration forces that may cause damage to the blades. This leads to a liability in energy production and turbine shutdown. The downtime can be reduced when the blades are diagnosed continuously using structural health condition monitoring. These are considered as a pattern recognition problem which consists of three phases namely, feature extraction, feature selection, and feature classification. In this study, statistical features were extracted from vibration signals, feature selection was carried out using a J48 decision tree algorithm and feature classification was performed using best-first tree algorithm and functional trees algorithm. The better algorithm is suggested for fault diagnosis of wind turbine blade. •Machine learning based condition monitoring is proposed for wind turbine blade.•Crack, Erosion, Loose connection, Pitch angle twist and Bend faults are considered.•Descriptive statistical features were extracted from the vibration signals.•Feature classification was performed using different machine learning classifiers.•Functional tree leaves shows the better result of 91.67%.
Author Sugumaran, V
Joshuva, A
Author_xml – sequence: 1
  givenname: A
  surname: Joshuva
  fullname: Joshuva, A
  email: joshuva1991@gmail.com
– sequence: 2
  givenname: V
  surname: Sugumaran
  fullname: Sugumaran, V
  email: v_sugu@yahoo.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28189258$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAYhC1URLeFN0DIRy4JtrOJ4x6QVhXQSpW4wNly7N-7XiX2YjuL-ly8IM5uAYkDnHyYb0a_Z67QhQ8eEHpNSU0J7d7ta5dUjqpmhPKasJoQ9gytaM9FxQhjF2hFCBUVaXl_ia5S2pNCtKJ_gS5ZT3vB2n6FfmywUVlhE90RPFaHQwxK77ANEevgjcsueDwF73KIzm9xsPi78wbnOQ7OAx5GZQDPadGObojqZEhu69WYcN7FMG93eICUK-tiyjhHAKzGbYnLuwmrkmVnrxebGk9q-iPf4E05YzqoJfcIOOXZPL5Ez20Jh1dP7zX6-vHDl9u76uHzp_vbzUOlm47lSnDoGk2tscNakDXrqCCmtZwCG-ia8EH30JtuGJhtO6G5ZlZ1rBHcKNWytWqu0dtzbunk21x-ICeXNIyj8hDmJGnfcdE3tOEFffOEzsMERh6im1R8lL-KLsD6DOgYUopgfyOUyGVPuZfnPeWypyRMlrWK7eYvm3b5VHEh3fg_8_uzGUpJRwdRJu3AazAugs7SBPfvgJ_vZsLi
CitedBy_id crossref_primary_10_1007_s42835_020_00561_z
crossref_primary_10_3390_en16062628
crossref_primary_10_1109_TII_2020_3011441
crossref_primary_10_1007_s11668_025_02130_w
crossref_primary_10_1177_0957650919844065
crossref_primary_10_1109_TIM_2020_3016413
crossref_primary_10_1007_s11804_019_00080_y
crossref_primary_10_1016_j_advengsoft_2023_103409
crossref_primary_10_1177_10775463231213423
crossref_primary_10_3390_app11125327
crossref_primary_10_1016_j_renene_2020_04_096
crossref_primary_10_1177_0309524X221124031
crossref_primary_10_1016_j_isatra_2021_11_029
crossref_primary_10_1016_j_renene_2021_04_040
crossref_primary_10_1002_eng2_12618
crossref_primary_10_1016_j_energy_2019_01_042
crossref_primary_10_1007_s00170_018_2869_x
crossref_primary_10_1016_j_grets_2024_100153
crossref_primary_10_1080_15567036_2023_2246400
crossref_primary_10_1016_j_isatra_2019_08_016
crossref_primary_10_1016_j_renene_2019_07_133
crossref_primary_10_1109_JPROC_2022_3171691
crossref_primary_10_1016_j_energy_2022_126159
crossref_primary_10_1016_j_engappai_2025_111484
crossref_primary_10_1088_1757_899X_1012_1_012032
crossref_primary_10_1088_1742_6596_1969_1_012051
crossref_primary_10_1016_j_measurement_2020_107858
crossref_primary_10_1109_TIM_2023_3336723
crossref_primary_10_1016_j_renene_2020_08_125
crossref_primary_10_1177_25726641251353350
crossref_primary_10_1016_j_measurement_2019_107295
crossref_primary_10_1016_j_rser_2022_112326
crossref_primary_10_3390_en13123132
crossref_primary_10_3390_e25081188
crossref_primary_10_1007_s11668_024_01894_x
crossref_primary_10_1016_j_ymssp_2024_111319
crossref_primary_10_1016_j_isatra_2022_01_032
crossref_primary_10_1016_j_solener_2025_113348
crossref_primary_10_1016_j_isatra_2019_03_026
crossref_primary_10_1016_j_ymssp_2024_111592
crossref_primary_10_1002_ese3_247
crossref_primary_10_3390_logistics6020035
crossref_primary_10_1177_10775463211062330
crossref_primary_10_1007_s11803_019_0515_8
crossref_primary_10_1177_1748006X20965434
crossref_primary_10_1016_j_compbiomed_2022_105959
crossref_primary_10_3390_app14051710
crossref_primary_10_3390_en12142801
crossref_primary_10_1080_14786451_2021_1890736
crossref_primary_10_1016_j_ref_2022_08_005
crossref_primary_10_3233_JIFS_212336
crossref_primary_10_3390_app12030972
crossref_primary_10_3390_en14217262
crossref_primary_10_1016_j_isatra_2022_01_024
crossref_primary_10_1117_1_JEI_32_1_011210
crossref_primary_10_1109_ACCESS_2021_3124025
Cites_doi 10.1145/3828.3830
10.1016/j.eswa.2010.09.089
10.1093/bioinformatics/16.5.412
10.1145/122344.122353
10.1016/j.compstruct.2005.04.027
10.1016/j.renene.2015.10.040
10.1016/j.measurement.2013.04.068
10.1016/j.renene.2015.09.002
10.1049/ip-vis:19982013
10.1613/jair.63
10.1145/1143844.1143874
10.1016/B978-1-55860-307-3.50037-X
10.1016/j.measurement.2012.11.011
10.1016/j.enconman.2015.11.003
10.1016/j.rser.2015.07.200
10.1016/j.compstruct.2013.11.012
10.1016/j.renene.2016.03.068
10.1016/j.eswa.2009.10.002
10.1007/s00500-008-0392-y
10.1145/1656274.1656278
10.1016/j.ymssp.2014.08.007
10.1023/B:MACH.0000027782.67192.13
10.1613/jair.279
ContentType Journal Article
Copyright 2017 ISA
Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 ISA
– notice: Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.isatra.2017.02.002
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1879-2022
EndPage 172
ExternalDocumentID 28189258
10_1016_j_isatra_2017_02_002
S0019057817302094
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
6P2
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFDAS
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
T9H
TAE
TN5
UHS
UNMZH
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
NPM
PKN
7X8
ID FETCH-LOGICAL-c362t-97e63c1fdfb490426190d5f71e2b1407bc8e8d6bb2f569c7c2fa62397daa524a3
ISICitedReferencesCount 72
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000397355900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0019-0578
1879-2022
IngestDate Thu Oct 02 04:40:59 EDT 2025
Wed Feb 19 02:40:13 EST 2025
Sat Nov 29 02:28:34 EST 2025
Tue Nov 18 22:11:16 EST 2025
Fri Feb 23 02:32:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Functional trees algorithm
Best-first tree algorithm
Wind turbine blade
Structural health condition monitoring
Statistical features
Language English
License Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-97e63c1fdfb490426190d5f71e2b1407bc8e8d6bb2f569c7c2fa62397daa524a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28189258
PQID 1867983137
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_1867983137
pubmed_primary_28189258
crossref_primary_10_1016_j_isatra_2017_02_002
crossref_citationtrail_10_1016_j_isatra_2017_02_002
elsevier_sciencedirect_doi_10_1016_j_isatra_2017_02_002
PublicationCentury 2000
PublicationDate March 2017
2017-03-00
2017-Mar
20170301
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: March 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ISA transactions
PublicationTitleAlternate ISA Trans
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Vučina, Marinić-Kragić, Milas (bib14) 2016; 87
Pourrajabian, Afshar, Ahmadizadeh, Wood (bib2) 2016; 87
Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (bib29) 2009; 11
Jeffries, Chambers, Infield (bib6) 1998; 145
Carbonell, Etzioni, Gil, Joseph, Knoblock, Minton, Veloso (bib27) 1991; 2
Frost, Goebel, Obrecht (bib11) 2013
Shi (bib24) 2007
Gama (bib35) 1997
García, Fernández, Luengo, Herrera (bib38) 2009; 13
Jegadeeshwaran, Sugumaran (bib21) 2015; 52
Witten, Frank (bib17) 2005
Sugumaran, Ramachandran (bib20) 2011; 38
Kohavi, Wolpert (bib32) 1996; 96
Davis J, Goadrich M. The relationship between Precision-Recall and ROC curves. In: Proceedings of the 23rd international conference on Machine learning Jun 25:233–240; 2006.
Kumar, Ringenberg, Depuru, Devabhaktuni, Lee, Nikolaidis, Andersen, Afjeh (bib1) 2016; 53
Loh, Shih (bib36) 1997
Kohavi (bib37) 1995; 14
IEC 61400-1: Wind Turbines – Part 1: Design Requirements, Third Edition, 2005-08.
Jegadeeshwaran, Sugumaran (bib22) 2013; 46
IEC 61400-1: Wind Turbine Generator Systems – Part 1: Safety Requirements, Second Edition, 1999-02.
Utgo, Brodley (bib33) 1991
Wang, Sun, Dong, Zhu, Huang, Zheng (bib13) 2016; 108
Pollayi, Yu (bib9) 2014; 110
Quinlan (bib31) 1996; 4
Villacampa O. Feature selection and classification methods for decision making: a comparative analysis, 2015.
Sakthivel, Sugumaran, Babudevasenapati (bib19) 2010; 37
Russell, Norvig, Canny, Malik, Edwards (bib26) 2003
Amarnath, Sugumaran, Kumar (bib15) 2013; 46
Liu (bib12) 2016; 94
Shokrieh, Rafiee (bib7) 2006; 74
Quinlan JR. Combining instance-based and model-based learning. In: Proceedings of the Tenth International Conference on Machine Learning:236–243; 1993.
Mitchell (bib16) 1997; 45
Gama (bib28) 2004; 55
Kusiak, Verma (bib8) 2011; 2
Godwin, Matthews (bib10) 2013
Joshuva, Sugumaran (bib5) 2016; 11
Murthy, Kasif, Salzberg (bib34) 1994
Hall (bib25) 1999
Dechter, Pearl (bib23) 1985; 32
Baldi, Brunak, Chauvin, Andersen, Nielsen (bib39) 2000; 16
Shokrieh (10.1016/j.isatra.2017.02.002_bib7) 2006; 74
10.1016/j.isatra.2017.02.002_bib3
10.1016/j.isatra.2017.02.002_bib4
Joshuva (10.1016/j.isatra.2017.02.002_bib5) 2016; 11
Kumar (10.1016/j.isatra.2017.02.002_bib1) 2016; 53
Kohavi (10.1016/j.isatra.2017.02.002_bib37) 1995; 14
Hall (10.1016/j.isatra.2017.02.002_bib29) 2009; 11
Gama (10.1016/j.isatra.2017.02.002_bib28) 2004; 55
10.1016/j.isatra.2017.02.002_bib30
Carbonell (10.1016/j.isatra.2017.02.002_bib27) 1991; 2
Jegadeeshwaran (10.1016/j.isatra.2017.02.002_bib22) 2013; 46
Baldi (10.1016/j.isatra.2017.02.002_bib39) 2000; 16
Wang (10.1016/j.isatra.2017.02.002_bib13) 2016; 108
Jegadeeshwaran (10.1016/j.isatra.2017.02.002_bib21) 2015; 52
Sakthivel (10.1016/j.isatra.2017.02.002_bib19) 2010; 37
10.1016/j.isatra.2017.02.002_bib18
Pourrajabian (10.1016/j.isatra.2017.02.002_bib2) 2016; 87
Vučina (10.1016/j.isatra.2017.02.002_bib14) 2016; 87
Kohavi (10.1016/j.isatra.2017.02.002_bib32) 1996; 96
Russell (10.1016/j.isatra.2017.02.002_bib26) 2003
Shi (10.1016/j.isatra.2017.02.002_bib24) 2007
Dechter (10.1016/j.isatra.2017.02.002_bib23) 1985; 32
Loh (10.1016/j.isatra.2017.02.002_bib36) 1997
Godwin (10.1016/j.isatra.2017.02.002_bib10) 2013
Witten (10.1016/j.isatra.2017.02.002_bib17) 2005
Murthy (10.1016/j.isatra.2017.02.002_bib34) 1994
Kusiak (10.1016/j.isatra.2017.02.002_bib8) 2011; 2
Sugumaran (10.1016/j.isatra.2017.02.002_bib20) 2011; 38
Jeffries (10.1016/j.isatra.2017.02.002_bib6) 1998; 145
Mitchell (10.1016/j.isatra.2017.02.002_bib16) 1997; 45
Utgo (10.1016/j.isatra.2017.02.002_bib33) 1991
Hall (10.1016/j.isatra.2017.02.002_bib25) 1999
Quinlan (10.1016/j.isatra.2017.02.002_bib31) 1996; 4
10.1016/j.isatra.2017.02.002_bib40
Liu (10.1016/j.isatra.2017.02.002_bib12) 2016; 94
Pollayi (10.1016/j.isatra.2017.02.002_bib9) 2014; 110
García (10.1016/j.isatra.2017.02.002_bib38) 2009; 13
Gama (10.1016/j.isatra.2017.02.002_bib35) 1997
Frost (10.1016/j.isatra.2017.02.002_bib11) 2013
Amarnath (10.1016/j.isatra.2017.02.002_bib15) 2013; 46
References_xml – reference: Villacampa O. Feature selection and classification methods for decision making: a comparative analysis, 2015.
– volume: 52
  start-page: 436
  year: 2015
  end-page: 446
  ident: bib21
  article-title: Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines
  publication-title: Mech Syst Signal Process
– reference: Quinlan JR. Combining instance-based and model-based learning. In: Proceedings of the Tenth International Conference on Machine Learning:236–243; 1993.
– reference: IEC 61400-1: Wind Turbine Generator Systems – Part 1: Safety Requirements, Second Edition, 1999-02.
– start-page: 90
  year: 2013
  ident: bib10
  article-title: Classification and detection of wind turbine pitch faults through SCADA data analysis
  publication-title: IJPHM Spec Issue Wind Turbine PHM (Color)
– volume: 14
  start-page: 1137
  year: 1995
  end-page: 1145
  ident: bib37
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
  publication-title: IJCAI
– volume: 46
  start-page: 3247
  year: 2013
  end-page: 3260
  ident: bib22
  article-title: Comparative study of decision tree classifier and best first tree classifier for fault diagnosis of automobile hydraulic brake system using statistical features
  publication-title: Measurement
– start-page: 11
  year: 2013
  ident: bib11
  article-title: Integrating Structural Health Management with Contingency Control for Wind Turbines
  publication-title: IJPHM Spec Issue Wind Turbine PHM (Color)
– volume: 108
  start-page: 275
  year: 2016
  end-page: 286
  ident: bib13
  article-title: Numerical investigation on aerodynamic performance of a novel vertical axis wind turbine with adaptive blades
  publication-title: Energy Convers Manag
– year: 1994
  ident: bib34
  article-title: A system for induction of oblique decision trees
  publication-title: J Artif Intell Res
– year: 2005
  ident: bib17
  article-title: Data Mining: practical machine learning tools and techniques
– reference: IEC 61400-1: Wind Turbines – Part 1: Design Requirements, Third Edition, 2005-08.
– volume: 87
  start-page: 849
  year: 2016
  end-page: 862
  ident: bib14
  article-title: Numerical models for robust shape optimization of wind turbine blades
  publication-title: Renew Energy
– start-page: 815
  year: 1997
  end-page: 840
  ident: bib36
  article-title: Split selection methods for classification trees
  publication-title: Stat Sin
– volume: 4
  start-page: 77
  year: 1996
  end-page: 90
  ident: bib31
  article-title: Improved use of continuous attributes in C4. 5
  publication-title: J Artif Intell Res
– start-page: 134
  year: 1997
  end-page: 142
  ident: bib35
  article-title: Probabilistic linear tree
  publication-title: ICML
– volume: 110
  start-page: 62
  year: 2014
  end-page: 76
  ident: bib9
  article-title: Modeling matrix cracking in composite rotor blades within VABS framework
  publication-title: Compos Struct
– volume: 87
  start-page: 837
  year: 2016
  end-page: 848
  ident: bib2
  article-title: Aero-structural design and optimization of a small wind turbine blade
  publication-title: Renew Energy
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  ident: bib29
  article-title: The WEKA data mining software: an update
  publication-title: ACM SIGKDD Explor Newsl
– volume: 53
  start-page: 209
  year: 2016
  end-page: 224
  ident: bib1
  article-title: Wind energy: trends and enabling technologies
  publication-title: Renew Sustain Energy Rev
– volume: 32
  start-page: 505
  year: 1985
  end-page: 536
  ident: bib23
  article-title: Generalized best-first search strategies and the optimality of A
  publication-title: J ACM (JACM)
– volume: 37
  start-page: 4040
  year: 2010
  end-page: 4049
  ident: bib19
  article-title: Vibration based fault diagnosis of monoblock centrifugal pump using decision tree
  publication-title: Expert Syst Appl
– volume: 2
  start-page: 51
  year: 1991
  end-page: 55
  ident: bib27
  article-title: Prodigy: an integrated architecture for planning and learning
  publication-title: ACM SIGART Bull
– volume: 96
  start-page: 275
  year: 1996
  end-page: 283
  ident: bib32
  article-title: Bias plus variance decomposition for zero-one loss functions
  publication-title: InICML
– volume: 38
  start-page: 4901
  year: 2011
  end-page: 4907
  ident: bib20
  article-title: Fault diagnosis of roller bearing using fuzzy classifier and histogram features with focus on automatic rule learning
  publication-title: Expert Syst Appl
– volume: 45
  start-page: 37
  year: 1997
  ident: bib16
  publication-title: Machine learning
– reference: Davis J, Goadrich M. The relationship between Precision-Recall and ROC curves. In: Proceedings of the 23rd international conference on Machine learning Jun 25:233–240; 2006.
– year: 2003
  ident: bib26
  article-title: Artificial intelligence: a modern approach
– volume: 55
  start-page: 219
  year: 2004
  end-page: 250
  ident: bib28
  article-title: Functional trees
  publication-title: Mach Learn
– volume: 16
  start-page: 412
  year: 2000
  end-page: 424
  ident: bib39
  article-title: Assessing the accuracy of prediction algorithms for classification: an overview
  publication-title: Bioinformatics
– volume: 94
  start-page: 547
  year: 2016
  end-page: 557
  ident: bib12
  article-title: Design and kinetic analysis of wind turbine blade-hub-tower coupled system
  publication-title: Renew Energy
– volume: 74
  start-page: 332
  year: 2006
  end-page: 342
  ident: bib7
  article-title: Simulation of fatigue failure in a full composite wind turbine blade
  publication-title: Compos Struct
– volume: 46
  start-page: 1250
  year: 2013
  end-page: 1256
  ident: bib15
  article-title: Exploiting sound signals for fault diagnosis of bearings using decision tree
  publication-title: Measurement
– volume: 2
  start-page: 87
  year: 2011
  end-page: 96
  ident: bib8
  article-title: A data-driven approach for monitoring blade pitch faults in wind turbines
  publication-title: IEEE Trans Sustain Energy
– volume: 11
  start-page: 4654
  year: 2016
  end-page: 4668
  ident: bib5
  article-title: Fault Diagnostic Methods for Wind Turbine: a review
  publication-title: ARPN J Eng Appl Sci
– volume: 145
  start-page: 141
  year: 1998
  end-page: 148
  ident: bib6
  article-title: Experience with bicoherence of electrical power for condition monitoring of wind turbine blades
  publication-title: IEE Proc-Vision, Image Signal Process
– year: 1991
  ident: bib33
  article-title: Linear machine decision trees
– year: 1999
  ident: bib25
  article-title: Correlation-based feature selection for machine learning
– year: 2007
  ident: bib24
  article-title: Best-first decision tree learning
– volume: 13
  start-page: 959
  year: 2009
  end-page: 977
  ident: bib38
  article-title: A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability
  publication-title: Soft Comput
– volume: 32
  start-page: 505
  issue: 3
  year: 1985
  ident: 10.1016/j.isatra.2017.02.002_bib23
  article-title: Generalized best-first search strategies and the optimality of A
  publication-title: J ACM (JACM)
  doi: 10.1145/3828.3830
– volume: 2
  start-page: 87
  issue: 1
  year: 2011
  ident: 10.1016/j.isatra.2017.02.002_bib8
  article-title: A data-driven approach for monitoring blade pitch faults in wind turbines
  publication-title: IEEE Trans Sustain Energy
– volume: 38
  start-page: 4901
  issue: 5
  year: 2011
  ident: 10.1016/j.isatra.2017.02.002_bib20
  article-title: Fault diagnosis of roller bearing using fuzzy classifier and histogram features with focus on automatic rule learning
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.09.089
– volume: 14
  start-page: 1137
  issue: 2
  year: 1995
  ident: 10.1016/j.isatra.2017.02.002_bib37
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
  publication-title: IJCAI
– volume: 16
  start-page: 412
  issue: 5
  year: 2000
  ident: 10.1016/j.isatra.2017.02.002_bib39
  article-title: Assessing the accuracy of prediction algorithms for classification: an overview
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.5.412
– year: 1999
  ident: 10.1016/j.isatra.2017.02.002_bib25
– volume: 2
  start-page: 51
  issue: 4
  year: 1991
  ident: 10.1016/j.isatra.2017.02.002_bib27
  article-title: Prodigy: an integrated architecture for planning and learning
  publication-title: ACM SIGART Bull
  doi: 10.1145/122344.122353
– volume: 96
  start-page: 275
  year: 1996
  ident: 10.1016/j.isatra.2017.02.002_bib32
  article-title: Bias plus variance decomposition for zero-one loss functions
  publication-title: InICML
– ident: 10.1016/j.isatra.2017.02.002_bib18
– volume: 74
  start-page: 332
  issue: 3
  year: 2006
  ident: 10.1016/j.isatra.2017.02.002_bib7
  article-title: Simulation of fatigue failure in a full composite wind turbine blade
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2005.04.027
– start-page: 134
  year: 1997
  ident: 10.1016/j.isatra.2017.02.002_bib35
  article-title: Probabilistic linear tree
  publication-title: ICML
– volume: 87
  start-page: 849
  year: 2016
  ident: 10.1016/j.isatra.2017.02.002_bib14
  article-title: Numerical models for robust shape optimization of wind turbine blades
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.10.040
– year: 2005
  ident: 10.1016/j.isatra.2017.02.002_bib17
– year: 2003
  ident: 10.1016/j.isatra.2017.02.002_bib26
– volume: 46
  start-page: 3247
  issue: 9
  year: 2013
  ident: 10.1016/j.isatra.2017.02.002_bib22
  article-title: Comparative study of decision tree classifier and best first tree classifier for fault diagnosis of automobile hydraulic brake system using statistical features
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.04.068
– ident: 10.1016/j.isatra.2017.02.002_bib4
– volume: 87
  start-page: 837
  year: 2016
  ident: 10.1016/j.isatra.2017.02.002_bib2
  article-title: Aero-structural design and optimization of a small wind turbine blade
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.09.002
– start-page: 11
  year: 2013
  ident: 10.1016/j.isatra.2017.02.002_bib11
  article-title: Integrating Structural Health Management with Contingency Control for Wind Turbines
  publication-title: IJPHM Spec Issue Wind Turbine PHM (Color)
– start-page: 815
  year: 1997
  ident: 10.1016/j.isatra.2017.02.002_bib36
  article-title: Split selection methods for classification trees
  publication-title: Stat Sin
– volume: 145
  start-page: 141
  issue: 3
  year: 1998
  ident: 10.1016/j.isatra.2017.02.002_bib6
  article-title: Experience with bicoherence of electrical power for condition monitoring of wind turbine blades
  publication-title: IEE Proc-Vision, Image Signal Process
  doi: 10.1049/ip-vis:19982013
– year: 1994
  ident: 10.1016/j.isatra.2017.02.002_bib34
  article-title: A system for induction of oblique decision trees
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.63
– ident: 10.1016/j.isatra.2017.02.002_bib40
  doi: 10.1145/1143844.1143874
– volume: 11
  start-page: 4654
  issue: 7
  year: 2016
  ident: 10.1016/j.isatra.2017.02.002_bib5
  article-title: Fault Diagnostic Methods for Wind Turbine: a review
  publication-title: ARPN J Eng Appl Sci
– ident: 10.1016/j.isatra.2017.02.002_bib30
  doi: 10.1016/B978-1-55860-307-3.50037-X
– start-page: 90
  year: 2013
  ident: 10.1016/j.isatra.2017.02.002_bib10
  article-title: Classification and detection of wind turbine pitch faults through SCADA data analysis
  publication-title: IJPHM Spec Issue Wind Turbine PHM (Color)
– volume: 46
  start-page: 1250
  issue: 3
  year: 2013
  ident: 10.1016/j.isatra.2017.02.002_bib15
  article-title: Exploiting sound signals for fault diagnosis of bearings using decision tree
  publication-title: Measurement
  doi: 10.1016/j.measurement.2012.11.011
– volume: 108
  start-page: 275
  year: 2016
  ident: 10.1016/j.isatra.2017.02.002_bib13
  article-title: Numerical investigation on aerodynamic performance of a novel vertical axis wind turbine with adaptive blades
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.11.003
– volume: 45
  start-page: 37
  year: 1997
  ident: 10.1016/j.isatra.2017.02.002_bib16
– volume: 53
  start-page: 209
  year: 2016
  ident: 10.1016/j.isatra.2017.02.002_bib1
  article-title: Wind energy: trends and enabling technologies
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.07.200
– volume: 110
  start-page: 62
  year: 2014
  ident: 10.1016/j.isatra.2017.02.002_bib9
  article-title: Modeling matrix cracking in composite rotor blades within VABS framework
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2013.11.012
– volume: 94
  start-page: 547
  year: 2016
  ident: 10.1016/j.isatra.2017.02.002_bib12
  article-title: Design and kinetic analysis of wind turbine blade-hub-tower coupled system
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.03.068
– year: 1991
  ident: 10.1016/j.isatra.2017.02.002_bib33
– volume: 37
  start-page: 4040
  issue: 6
  year: 2010
  ident: 10.1016/j.isatra.2017.02.002_bib19
  article-title: Vibration based fault diagnosis of monoblock centrifugal pump using decision tree
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.10.002
– year: 2007
  ident: 10.1016/j.isatra.2017.02.002_bib24
– volume: 13
  start-page: 959
  issue: 10
  year: 2009
  ident: 10.1016/j.isatra.2017.02.002_bib38
  article-title: A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability
  publication-title: Soft Comput
  doi: 10.1007/s00500-008-0392-y
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  ident: 10.1016/j.isatra.2017.02.002_bib29
  article-title: The WEKA data mining software: an update
  publication-title: ACM SIGKDD Explor Newsl
  doi: 10.1145/1656274.1656278
– volume: 52
  start-page: 436
  year: 2015
  ident: 10.1016/j.isatra.2017.02.002_bib21
  article-title: Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2014.08.007
– volume: 55
  start-page: 219
  issue: 3
  year: 2004
  ident: 10.1016/j.isatra.2017.02.002_bib28
  article-title: Functional trees
  publication-title: Mach Learn
  doi: 10.1023/B:MACH.0000027782.67192.13
– volume: 4
  start-page: 77
  year: 1996
  ident: 10.1016/j.isatra.2017.02.002_bib31
  article-title: Improved use of continuous attributes in C4. 5
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.279
– ident: 10.1016/j.isatra.2017.02.002_bib3
SSID ssj0002598
Score 2.4719625
Snippet Wind energy is one of the important renewable energy resources available in nature. It is one of the major resources for production of energy because of its...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 160
SubjectTerms Best-first tree algorithm
Fault diagnosis
Functional trees algorithm
Statistical features
Structural health condition monitoring
Wind turbine blade
Title A data driven approach for condition monitoring of wind turbine blade using vibration signals through best-first tree algorithm and functional trees algorithm: A comparative study
URI https://dx.doi.org/10.1016/j.isatra.2017.02.002
https://www.ncbi.nlm.nih.gov/pubmed/28189258
https://www.proquest.com/docview/1867983137
Volume 67
WOSCitedRecordID wos000397355900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2022
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002598
  issn: 0019-0578
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lb9NAEMdXacoBDoiWV3hUg4QQKHIVP9fLzUKpKIoCUlOUm2Wv7TZVSEISh34SvghfkJndtR1UqpYDFyuys4ml-XlnZv3fGcZeJ37mekWQWZ7rpZYnRWGlac-zZCAkz7hEn6wsPeDDYTgeiy-t1s9qL8xmymez8PJSLP6rqfEcGpu2zv6DuesfxRP4GY2ORzQ7Hm9l-KhLqs9utqR5rK4ZruSEmPtmSqLV_aYe5aWRPP-YkIyyXKYUcqbTJMu7pVpD2FAyrQaQzoMqLVd9fVL0JlYxwdiRtOp5N5me4c-tz3XHDfKWjZI9XzWX9U54uVVzvClwa2Lk45OIOldUbcwbjeN8dV5ukj8WYE_KM9KI61Xcr9tLGOgWaw2XmXVDLtCGeoPyYf6Xc2aq1p07zFxr60YEV3yAXo64UHKoJZWWsrkuy-o0Pq96zz_8HB-dDgbxqD8evVl8t6gbGb21N61Zdtiuw30RttludNwff6p9PCaNapNldZPVpkylHLz6x9cFPdclNSq4GT1g901WApGmaY-18tk-u7dVq3Kf7RkvsIK3plT5u4fsVwQEG2jYoIINEDaoYYMGNpgXQLCBgQ0UbKBggxo2MLCBgQ0a2IBwgpomQNiggU1dXTWX30MEW6iBQu0ROz3qjz58tEwbEEtidLW2BM8DV9pFVqSe0Cl_L_MLbudOans9nsowD7MgTZ3CpxlGOkWCQb3gWZL4jpe4j1l7Np_lTxn4RZg4qQz8LMe8WwQYnNu-pBREBNIPwg5zKzvF0tTIp1Yt07gSQ17E2roxWTfuOTFat8OsetRC14i54fu8QiA2ca6OX2NE-IaRrypiYnQD9G4vmeXzchVTXUoRurbLO-yJRqm-Fyr4Jhw_fHaL0c_Z3eYJfcHa62WZv2R35GY9WS0P2A4fhwfmYfgNncnnbw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data+driven+approach+for+condition+monitoring+of+wind+turbine+blade+using+vibration+signals+through+best-first+tree+algorithm+and+functional+trees+algorithm%3A+A+comparative+study&rft.jtitle=ISA+transactions&rft.au=Joshuva%2C+A&rft.au=Sugumaran%2C+V&rft.date=2017-03-01&rft.issn=1879-2022&rft.eissn=1879-2022&rft.volume=67&rft.spage=160&rft_id=info:doi/10.1016%2Fj.isatra.2017.02.002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-0578&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-0578&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-0578&client=summon