A data driven approach for condition monitoring of wind turbine blade using vibration signals through best-first tree algorithm and functional trees algorithm: A comparative study
Wind energy is one of the important renewable energy resources available in nature. It is one of the major resources for production of energy because of its dependability due to the development of the technology and relatively low cost. Wind energy is converted into electrical energy using rotating...
Saved in:
| Published in: | ISA transactions Vol. 67; pp. 160 - 172 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Ltd
01.03.2017
|
| Subjects: | |
| ISSN: | 0019-0578, 1879-2022, 1879-2022 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Wind energy is one of the important renewable energy resources available in nature. It is one of the major resources for production of energy because of its dependability due to the development of the technology and relatively low cost. Wind energy is converted into electrical energy using rotating blades. Due to environmental conditions and large structure, the blades are subjected to various vibration forces that may cause damage to the blades. This leads to a liability in energy production and turbine shutdown. The downtime can be reduced when the blades are diagnosed continuously using structural health condition monitoring. These are considered as a pattern recognition problem which consists of three phases namely, feature extraction, feature selection, and feature classification. In this study, statistical features were extracted from vibration signals, feature selection was carried out using a J48 decision tree algorithm and feature classification was performed using best-first tree algorithm and functional trees algorithm. The better algorithm is suggested for fault diagnosis of wind turbine blade.
•Machine learning based condition monitoring is proposed for wind turbine blade.•Crack, Erosion, Loose connection, Pitch angle twist and Bend faults are considered.•Descriptive statistical features were extracted from the vibration signals.•Feature classification was performed using different machine learning classifiers.•Functional tree leaves shows the better result of 91.67%. |
|---|---|
| AbstractList | Wind energy is one of the important renewable energy resources available in nature. It is one of the major resources for production of energy because of its dependability due to the development of the technology and relatively low cost. Wind energy is converted into electrical energy using rotating blades. Due to environmental conditions and large structure, the blades are subjected to various vibration forces that may cause damage to the blades. This leads to a liability in energy production and turbine shutdown. The downtime can be reduced when the blades are diagnosed continuously using structural health condition monitoring. These are considered as a pattern recognition problem which consists of three phases namely, feature extraction, feature selection, and feature classification. In this study, statistical features were extracted from vibration signals, feature selection was carried out using a J48 decision tree algorithm and feature classification was performed using best-first tree algorithm and functional trees algorithm. The better algorithm is suggested for fault diagnosis of wind turbine blade.Wind energy is one of the important renewable energy resources available in nature. It is one of the major resources for production of energy because of its dependability due to the development of the technology and relatively low cost. Wind energy is converted into electrical energy using rotating blades. Due to environmental conditions and large structure, the blades are subjected to various vibration forces that may cause damage to the blades. This leads to a liability in energy production and turbine shutdown. The downtime can be reduced when the blades are diagnosed continuously using structural health condition monitoring. These are considered as a pattern recognition problem which consists of three phases namely, feature extraction, feature selection, and feature classification. In this study, statistical features were extracted from vibration signals, feature selection was carried out using a J48 decision tree algorithm and feature classification was performed using best-first tree algorithm and functional trees algorithm. The better algorithm is suggested for fault diagnosis of wind turbine blade. Wind energy is one of the important renewable energy resources available in nature. It is one of the major resources for production of energy because of its dependability due to the development of the technology and relatively low cost. Wind energy is converted into electrical energy using rotating blades. Due to environmental conditions and large structure, the blades are subjected to various vibration forces that may cause damage to the blades. This leads to a liability in energy production and turbine shutdown. The downtime can be reduced when the blades are diagnosed continuously using structural health condition monitoring. These are considered as a pattern recognition problem which consists of three phases namely, feature extraction, feature selection, and feature classification. In this study, statistical features were extracted from vibration signals, feature selection was carried out using a J48 decision tree algorithm and feature classification was performed using best-first tree algorithm and functional trees algorithm. The better algorithm is suggested for fault diagnosis of wind turbine blade. Wind energy is one of the important renewable energy resources available in nature. It is one of the major resources for production of energy because of its dependability due to the development of the technology and relatively low cost. Wind energy is converted into electrical energy using rotating blades. Due to environmental conditions and large structure, the blades are subjected to various vibration forces that may cause damage to the blades. This leads to a liability in energy production and turbine shutdown. The downtime can be reduced when the blades are diagnosed continuously using structural health condition monitoring. These are considered as a pattern recognition problem which consists of three phases namely, feature extraction, feature selection, and feature classification. In this study, statistical features were extracted from vibration signals, feature selection was carried out using a J48 decision tree algorithm and feature classification was performed using best-first tree algorithm and functional trees algorithm. The better algorithm is suggested for fault diagnosis of wind turbine blade. •Machine learning based condition monitoring is proposed for wind turbine blade.•Crack, Erosion, Loose connection, Pitch angle twist and Bend faults are considered.•Descriptive statistical features were extracted from the vibration signals.•Feature classification was performed using different machine learning classifiers.•Functional tree leaves shows the better result of 91.67%. |
| Author | Sugumaran, V Joshuva, A |
| Author_xml | – sequence: 1 givenname: A surname: Joshuva fullname: Joshuva, A email: joshuva1991@gmail.com – sequence: 2 givenname: V surname: Sugumaran fullname: Sugumaran, V email: v_sugu@yahoo.com |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28189258$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkcFu1DAYhC1URLeFN0DIRy4JtrOJ4x6QVhXQSpW4wNly7N-7XiX2YjuL-ly8IM5uAYkDnHyYb0a_Z67QhQ8eEHpNSU0J7d7ta5dUjqpmhPKasJoQ9gytaM9FxQhjF2hFCBUVaXl_ia5S2pNCtKJ_gS5ZT3vB2n6FfmywUVlhE90RPFaHQwxK77ANEevgjcsueDwF73KIzm9xsPi78wbnOQ7OAx5GZQDPadGObojqZEhu69WYcN7FMG93eICUK-tiyjhHAKzGbYnLuwmrkmVnrxebGk9q-iPf4E05YzqoJfcIOOXZPL5Ez20Jh1dP7zX6-vHDl9u76uHzp_vbzUOlm47lSnDoGk2tscNakDXrqCCmtZwCG-ia8EH30JtuGJhtO6G5ZlZ1rBHcKNWytWqu0dtzbunk21x-ICeXNIyj8hDmJGnfcdE3tOEFffOEzsMERh6im1R8lL-KLsD6DOgYUopgfyOUyGVPuZfnPeWypyRMlrWK7eYvm3b5VHEh3fg_8_uzGUpJRwdRJu3AazAugs7SBPfvgJ_vZsLi |
| CitedBy_id | crossref_primary_10_1007_s42835_020_00561_z crossref_primary_10_3390_en16062628 crossref_primary_10_1109_TII_2020_3011441 crossref_primary_10_1007_s11668_025_02130_w crossref_primary_10_1177_0957650919844065 crossref_primary_10_1109_TIM_2020_3016413 crossref_primary_10_1007_s11804_019_00080_y crossref_primary_10_1016_j_advengsoft_2023_103409 crossref_primary_10_1177_10775463231213423 crossref_primary_10_3390_app11125327 crossref_primary_10_1016_j_renene_2020_04_096 crossref_primary_10_1177_0309524X221124031 crossref_primary_10_1016_j_isatra_2021_11_029 crossref_primary_10_1016_j_renene_2021_04_040 crossref_primary_10_1002_eng2_12618 crossref_primary_10_1016_j_energy_2019_01_042 crossref_primary_10_1007_s00170_018_2869_x crossref_primary_10_1016_j_grets_2024_100153 crossref_primary_10_1080_15567036_2023_2246400 crossref_primary_10_1016_j_isatra_2019_08_016 crossref_primary_10_1016_j_renene_2019_07_133 crossref_primary_10_1109_JPROC_2022_3171691 crossref_primary_10_1016_j_energy_2022_126159 crossref_primary_10_1016_j_engappai_2025_111484 crossref_primary_10_1088_1757_899X_1012_1_012032 crossref_primary_10_1088_1742_6596_1969_1_012051 crossref_primary_10_1016_j_measurement_2020_107858 crossref_primary_10_1109_TIM_2023_3336723 crossref_primary_10_1016_j_renene_2020_08_125 crossref_primary_10_1177_25726641251353350 crossref_primary_10_1016_j_measurement_2019_107295 crossref_primary_10_1016_j_rser_2022_112326 crossref_primary_10_3390_en13123132 crossref_primary_10_3390_e25081188 crossref_primary_10_1007_s11668_024_01894_x crossref_primary_10_1016_j_ymssp_2024_111319 crossref_primary_10_1016_j_isatra_2022_01_032 crossref_primary_10_1016_j_solener_2025_113348 crossref_primary_10_1016_j_isatra_2019_03_026 crossref_primary_10_1016_j_ymssp_2024_111592 crossref_primary_10_1002_ese3_247 crossref_primary_10_3390_logistics6020035 crossref_primary_10_1177_10775463211062330 crossref_primary_10_1007_s11803_019_0515_8 crossref_primary_10_1177_1748006X20965434 crossref_primary_10_1016_j_compbiomed_2022_105959 crossref_primary_10_3390_app14051710 crossref_primary_10_3390_en12142801 crossref_primary_10_1080_14786451_2021_1890736 crossref_primary_10_1016_j_ref_2022_08_005 crossref_primary_10_3233_JIFS_212336 crossref_primary_10_3390_app12030972 crossref_primary_10_3390_en14217262 crossref_primary_10_1016_j_isatra_2022_01_024 crossref_primary_10_1117_1_JEI_32_1_011210 crossref_primary_10_1109_ACCESS_2021_3124025 |
| Cites_doi | 10.1145/3828.3830 10.1016/j.eswa.2010.09.089 10.1093/bioinformatics/16.5.412 10.1145/122344.122353 10.1016/j.compstruct.2005.04.027 10.1016/j.renene.2015.10.040 10.1016/j.measurement.2013.04.068 10.1016/j.renene.2015.09.002 10.1049/ip-vis:19982013 10.1613/jair.63 10.1145/1143844.1143874 10.1016/B978-1-55860-307-3.50037-X 10.1016/j.measurement.2012.11.011 10.1016/j.enconman.2015.11.003 10.1016/j.rser.2015.07.200 10.1016/j.compstruct.2013.11.012 10.1016/j.renene.2016.03.068 10.1016/j.eswa.2009.10.002 10.1007/s00500-008-0392-y 10.1145/1656274.1656278 10.1016/j.ymssp.2014.08.007 10.1023/B:MACH.0000027782.67192.13 10.1613/jair.279 |
| ContentType | Journal Article |
| Copyright | 2017 ISA Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2017 ISA – notice: Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1016/j.isatra.2017.02.002 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 1879-2022 |
| EndPage | 172 |
| ExternalDocumentID | 28189258 10_1016_j_isatra_2017_02_002 S0019057817302094 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 6P2 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFO ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFDAS AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K T9H TAE TN5 UHS UNMZH WUQ XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD NPM PKN 7X8 |
| ID | FETCH-LOGICAL-c362t-97e63c1fdfb490426190d5f71e2b1407bc8e8d6bb2f569c7c2fa62397daa524a3 |
| ISICitedReferencesCount | 72 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000397355900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0019-0578 1879-2022 |
| IngestDate | Thu Oct 02 04:40:59 EDT 2025 Wed Feb 19 02:40:13 EST 2025 Sat Nov 29 02:28:34 EST 2025 Tue Nov 18 22:11:16 EST 2025 Fri Feb 23 02:32:13 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fault diagnosis Functional trees algorithm Best-first tree algorithm Wind turbine blade Structural health condition monitoring Statistical features |
| Language | English |
| License | Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c362t-97e63c1fdfb490426190d5f71e2b1407bc8e8d6bb2f569c7c2fa62397daa524a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 28189258 |
| PQID | 1867983137 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1867983137 pubmed_primary_28189258 crossref_primary_10_1016_j_isatra_2017_02_002 crossref_citationtrail_10_1016_j_isatra_2017_02_002 elsevier_sciencedirect_doi_10_1016_j_isatra_2017_02_002 |
| PublicationCentury | 2000 |
| PublicationDate | March 2017 2017-03-00 2017-Mar 20170301 |
| PublicationDateYYYYMMDD | 2017-03-01 |
| PublicationDate_xml | – month: 03 year: 2017 text: March 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | ISA transactions |
| PublicationTitleAlternate | ISA Trans |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Vučina, Marinić-Kragić, Milas (bib14) 2016; 87 Pourrajabian, Afshar, Ahmadizadeh, Wood (bib2) 2016; 87 Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (bib29) 2009; 11 Jeffries, Chambers, Infield (bib6) 1998; 145 Carbonell, Etzioni, Gil, Joseph, Knoblock, Minton, Veloso (bib27) 1991; 2 Frost, Goebel, Obrecht (bib11) 2013 Shi (bib24) 2007 Gama (bib35) 1997 García, Fernández, Luengo, Herrera (bib38) 2009; 13 Jegadeeshwaran, Sugumaran (bib21) 2015; 52 Witten, Frank (bib17) 2005 Sugumaran, Ramachandran (bib20) 2011; 38 Kohavi, Wolpert (bib32) 1996; 96 Davis J, Goadrich M. The relationship between Precision-Recall and ROC curves. In: Proceedings of the 23rd international conference on Machine learning Jun 25:233–240; 2006. Kumar, Ringenberg, Depuru, Devabhaktuni, Lee, Nikolaidis, Andersen, Afjeh (bib1) 2016; 53 Loh, Shih (bib36) 1997 Kohavi (bib37) 1995; 14 IEC 61400-1: Wind Turbines – Part 1: Design Requirements, Third Edition, 2005-08. Jegadeeshwaran, Sugumaran (bib22) 2013; 46 IEC 61400-1: Wind Turbine Generator Systems – Part 1: Safety Requirements, Second Edition, 1999-02. Utgo, Brodley (bib33) 1991 Wang, Sun, Dong, Zhu, Huang, Zheng (bib13) 2016; 108 Pollayi, Yu (bib9) 2014; 110 Quinlan (bib31) 1996; 4 Villacampa O. Feature selection and classification methods for decision making: a comparative analysis, 2015. Sakthivel, Sugumaran, Babudevasenapati (bib19) 2010; 37 Russell, Norvig, Canny, Malik, Edwards (bib26) 2003 Amarnath, Sugumaran, Kumar (bib15) 2013; 46 Liu (bib12) 2016; 94 Shokrieh, Rafiee (bib7) 2006; 74 Quinlan JR. Combining instance-based and model-based learning. In: Proceedings of the Tenth International Conference on Machine Learning:236–243; 1993. Mitchell (bib16) 1997; 45 Gama (bib28) 2004; 55 Kusiak, Verma (bib8) 2011; 2 Godwin, Matthews (bib10) 2013 Joshuva, Sugumaran (bib5) 2016; 11 Murthy, Kasif, Salzberg (bib34) 1994 Hall (bib25) 1999 Dechter, Pearl (bib23) 1985; 32 Baldi, Brunak, Chauvin, Andersen, Nielsen (bib39) 2000; 16 Shokrieh (10.1016/j.isatra.2017.02.002_bib7) 2006; 74 10.1016/j.isatra.2017.02.002_bib3 10.1016/j.isatra.2017.02.002_bib4 Joshuva (10.1016/j.isatra.2017.02.002_bib5) 2016; 11 Kumar (10.1016/j.isatra.2017.02.002_bib1) 2016; 53 Kohavi (10.1016/j.isatra.2017.02.002_bib37) 1995; 14 Hall (10.1016/j.isatra.2017.02.002_bib29) 2009; 11 Gama (10.1016/j.isatra.2017.02.002_bib28) 2004; 55 10.1016/j.isatra.2017.02.002_bib30 Carbonell (10.1016/j.isatra.2017.02.002_bib27) 1991; 2 Jegadeeshwaran (10.1016/j.isatra.2017.02.002_bib22) 2013; 46 Baldi (10.1016/j.isatra.2017.02.002_bib39) 2000; 16 Wang (10.1016/j.isatra.2017.02.002_bib13) 2016; 108 Jegadeeshwaran (10.1016/j.isatra.2017.02.002_bib21) 2015; 52 Sakthivel (10.1016/j.isatra.2017.02.002_bib19) 2010; 37 10.1016/j.isatra.2017.02.002_bib18 Pourrajabian (10.1016/j.isatra.2017.02.002_bib2) 2016; 87 Vučina (10.1016/j.isatra.2017.02.002_bib14) 2016; 87 Kohavi (10.1016/j.isatra.2017.02.002_bib32) 1996; 96 Russell (10.1016/j.isatra.2017.02.002_bib26) 2003 Shi (10.1016/j.isatra.2017.02.002_bib24) 2007 Dechter (10.1016/j.isatra.2017.02.002_bib23) 1985; 32 Loh (10.1016/j.isatra.2017.02.002_bib36) 1997 Godwin (10.1016/j.isatra.2017.02.002_bib10) 2013 Witten (10.1016/j.isatra.2017.02.002_bib17) 2005 Murthy (10.1016/j.isatra.2017.02.002_bib34) 1994 Kusiak (10.1016/j.isatra.2017.02.002_bib8) 2011; 2 Sugumaran (10.1016/j.isatra.2017.02.002_bib20) 2011; 38 Jeffries (10.1016/j.isatra.2017.02.002_bib6) 1998; 145 Mitchell (10.1016/j.isatra.2017.02.002_bib16) 1997; 45 Utgo (10.1016/j.isatra.2017.02.002_bib33) 1991 Hall (10.1016/j.isatra.2017.02.002_bib25) 1999 Quinlan (10.1016/j.isatra.2017.02.002_bib31) 1996; 4 10.1016/j.isatra.2017.02.002_bib40 Liu (10.1016/j.isatra.2017.02.002_bib12) 2016; 94 Pollayi (10.1016/j.isatra.2017.02.002_bib9) 2014; 110 García (10.1016/j.isatra.2017.02.002_bib38) 2009; 13 Gama (10.1016/j.isatra.2017.02.002_bib35) 1997 Frost (10.1016/j.isatra.2017.02.002_bib11) 2013 Amarnath (10.1016/j.isatra.2017.02.002_bib15) 2013; 46 |
| References_xml | – reference: Villacampa O. Feature selection and classification methods for decision making: a comparative analysis, 2015. – volume: 52 start-page: 436 year: 2015 end-page: 446 ident: bib21 article-title: Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines publication-title: Mech Syst Signal Process – reference: Quinlan JR. Combining instance-based and model-based learning. In: Proceedings of the Tenth International Conference on Machine Learning:236–243; 1993. – reference: IEC 61400-1: Wind Turbine Generator Systems – Part 1: Safety Requirements, Second Edition, 1999-02. – start-page: 90 year: 2013 ident: bib10 article-title: Classification and detection of wind turbine pitch faults through SCADA data analysis publication-title: IJPHM Spec Issue Wind Turbine PHM (Color) – volume: 14 start-page: 1137 year: 1995 end-page: 1145 ident: bib37 article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection publication-title: IJCAI – volume: 46 start-page: 3247 year: 2013 end-page: 3260 ident: bib22 article-title: Comparative study of decision tree classifier and best first tree classifier for fault diagnosis of automobile hydraulic brake system using statistical features publication-title: Measurement – start-page: 11 year: 2013 ident: bib11 article-title: Integrating Structural Health Management with Contingency Control for Wind Turbines publication-title: IJPHM Spec Issue Wind Turbine PHM (Color) – volume: 108 start-page: 275 year: 2016 end-page: 286 ident: bib13 article-title: Numerical investigation on aerodynamic performance of a novel vertical axis wind turbine with adaptive blades publication-title: Energy Convers Manag – year: 1994 ident: bib34 article-title: A system for induction of oblique decision trees publication-title: J Artif Intell Res – year: 2005 ident: bib17 article-title: Data Mining: practical machine learning tools and techniques – reference: IEC 61400-1: Wind Turbines – Part 1: Design Requirements, Third Edition, 2005-08. – volume: 87 start-page: 849 year: 2016 end-page: 862 ident: bib14 article-title: Numerical models for robust shape optimization of wind turbine blades publication-title: Renew Energy – start-page: 815 year: 1997 end-page: 840 ident: bib36 article-title: Split selection methods for classification trees publication-title: Stat Sin – volume: 4 start-page: 77 year: 1996 end-page: 90 ident: bib31 article-title: Improved use of continuous attributes in C4. 5 publication-title: J Artif Intell Res – start-page: 134 year: 1997 end-page: 142 ident: bib35 article-title: Probabilistic linear tree publication-title: ICML – volume: 110 start-page: 62 year: 2014 end-page: 76 ident: bib9 article-title: Modeling matrix cracking in composite rotor blades within VABS framework publication-title: Compos Struct – volume: 87 start-page: 837 year: 2016 end-page: 848 ident: bib2 article-title: Aero-structural design and optimization of a small wind turbine blade publication-title: Renew Energy – volume: 11 start-page: 10 year: 2009 end-page: 18 ident: bib29 article-title: The WEKA data mining software: an update publication-title: ACM SIGKDD Explor Newsl – volume: 53 start-page: 209 year: 2016 end-page: 224 ident: bib1 article-title: Wind energy: trends and enabling technologies publication-title: Renew Sustain Energy Rev – volume: 32 start-page: 505 year: 1985 end-page: 536 ident: bib23 article-title: Generalized best-first search strategies and the optimality of A publication-title: J ACM (JACM) – volume: 37 start-page: 4040 year: 2010 end-page: 4049 ident: bib19 article-title: Vibration based fault diagnosis of monoblock centrifugal pump using decision tree publication-title: Expert Syst Appl – volume: 2 start-page: 51 year: 1991 end-page: 55 ident: bib27 article-title: Prodigy: an integrated architecture for planning and learning publication-title: ACM SIGART Bull – volume: 96 start-page: 275 year: 1996 end-page: 283 ident: bib32 article-title: Bias plus variance decomposition for zero-one loss functions publication-title: InICML – volume: 38 start-page: 4901 year: 2011 end-page: 4907 ident: bib20 article-title: Fault diagnosis of roller bearing using fuzzy classifier and histogram features with focus on automatic rule learning publication-title: Expert Syst Appl – volume: 45 start-page: 37 year: 1997 ident: bib16 publication-title: Machine learning – reference: Davis J, Goadrich M. The relationship between Precision-Recall and ROC curves. In: Proceedings of the 23rd international conference on Machine learning Jun 25:233–240; 2006. – year: 2003 ident: bib26 article-title: Artificial intelligence: a modern approach – volume: 55 start-page: 219 year: 2004 end-page: 250 ident: bib28 article-title: Functional trees publication-title: Mach Learn – volume: 16 start-page: 412 year: 2000 end-page: 424 ident: bib39 article-title: Assessing the accuracy of prediction algorithms for classification: an overview publication-title: Bioinformatics – volume: 94 start-page: 547 year: 2016 end-page: 557 ident: bib12 article-title: Design and kinetic analysis of wind turbine blade-hub-tower coupled system publication-title: Renew Energy – volume: 74 start-page: 332 year: 2006 end-page: 342 ident: bib7 article-title: Simulation of fatigue failure in a full composite wind turbine blade publication-title: Compos Struct – volume: 46 start-page: 1250 year: 2013 end-page: 1256 ident: bib15 article-title: Exploiting sound signals for fault diagnosis of bearings using decision tree publication-title: Measurement – volume: 2 start-page: 87 year: 2011 end-page: 96 ident: bib8 article-title: A data-driven approach for monitoring blade pitch faults in wind turbines publication-title: IEEE Trans Sustain Energy – volume: 11 start-page: 4654 year: 2016 end-page: 4668 ident: bib5 article-title: Fault Diagnostic Methods for Wind Turbine: a review publication-title: ARPN J Eng Appl Sci – volume: 145 start-page: 141 year: 1998 end-page: 148 ident: bib6 article-title: Experience with bicoherence of electrical power for condition monitoring of wind turbine blades publication-title: IEE Proc-Vision, Image Signal Process – year: 1991 ident: bib33 article-title: Linear machine decision trees – year: 1999 ident: bib25 article-title: Correlation-based feature selection for machine learning – year: 2007 ident: bib24 article-title: Best-first decision tree learning – volume: 13 start-page: 959 year: 2009 end-page: 977 ident: bib38 article-title: A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability publication-title: Soft Comput – volume: 32 start-page: 505 issue: 3 year: 1985 ident: 10.1016/j.isatra.2017.02.002_bib23 article-title: Generalized best-first search strategies and the optimality of A publication-title: J ACM (JACM) doi: 10.1145/3828.3830 – volume: 2 start-page: 87 issue: 1 year: 2011 ident: 10.1016/j.isatra.2017.02.002_bib8 article-title: A data-driven approach for monitoring blade pitch faults in wind turbines publication-title: IEEE Trans Sustain Energy – volume: 38 start-page: 4901 issue: 5 year: 2011 ident: 10.1016/j.isatra.2017.02.002_bib20 article-title: Fault diagnosis of roller bearing using fuzzy classifier and histogram features with focus on automatic rule learning publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.09.089 – volume: 14 start-page: 1137 issue: 2 year: 1995 ident: 10.1016/j.isatra.2017.02.002_bib37 article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection publication-title: IJCAI – volume: 16 start-page: 412 issue: 5 year: 2000 ident: 10.1016/j.isatra.2017.02.002_bib39 article-title: Assessing the accuracy of prediction algorithms for classification: an overview publication-title: Bioinformatics doi: 10.1093/bioinformatics/16.5.412 – year: 1999 ident: 10.1016/j.isatra.2017.02.002_bib25 – volume: 2 start-page: 51 issue: 4 year: 1991 ident: 10.1016/j.isatra.2017.02.002_bib27 article-title: Prodigy: an integrated architecture for planning and learning publication-title: ACM SIGART Bull doi: 10.1145/122344.122353 – volume: 96 start-page: 275 year: 1996 ident: 10.1016/j.isatra.2017.02.002_bib32 article-title: Bias plus variance decomposition for zero-one loss functions publication-title: InICML – ident: 10.1016/j.isatra.2017.02.002_bib18 – volume: 74 start-page: 332 issue: 3 year: 2006 ident: 10.1016/j.isatra.2017.02.002_bib7 article-title: Simulation of fatigue failure in a full composite wind turbine blade publication-title: Compos Struct doi: 10.1016/j.compstruct.2005.04.027 – start-page: 134 year: 1997 ident: 10.1016/j.isatra.2017.02.002_bib35 article-title: Probabilistic linear tree publication-title: ICML – volume: 87 start-page: 849 year: 2016 ident: 10.1016/j.isatra.2017.02.002_bib14 article-title: Numerical models for robust shape optimization of wind turbine blades publication-title: Renew Energy doi: 10.1016/j.renene.2015.10.040 – year: 2005 ident: 10.1016/j.isatra.2017.02.002_bib17 – year: 2003 ident: 10.1016/j.isatra.2017.02.002_bib26 – volume: 46 start-page: 3247 issue: 9 year: 2013 ident: 10.1016/j.isatra.2017.02.002_bib22 article-title: Comparative study of decision tree classifier and best first tree classifier for fault diagnosis of automobile hydraulic brake system using statistical features publication-title: Measurement doi: 10.1016/j.measurement.2013.04.068 – ident: 10.1016/j.isatra.2017.02.002_bib4 – volume: 87 start-page: 837 year: 2016 ident: 10.1016/j.isatra.2017.02.002_bib2 article-title: Aero-structural design and optimization of a small wind turbine blade publication-title: Renew Energy doi: 10.1016/j.renene.2015.09.002 – start-page: 11 year: 2013 ident: 10.1016/j.isatra.2017.02.002_bib11 article-title: Integrating Structural Health Management with Contingency Control for Wind Turbines publication-title: IJPHM Spec Issue Wind Turbine PHM (Color) – start-page: 815 year: 1997 ident: 10.1016/j.isatra.2017.02.002_bib36 article-title: Split selection methods for classification trees publication-title: Stat Sin – volume: 145 start-page: 141 issue: 3 year: 1998 ident: 10.1016/j.isatra.2017.02.002_bib6 article-title: Experience with bicoherence of electrical power for condition monitoring of wind turbine blades publication-title: IEE Proc-Vision, Image Signal Process doi: 10.1049/ip-vis:19982013 – year: 1994 ident: 10.1016/j.isatra.2017.02.002_bib34 article-title: A system for induction of oblique decision trees publication-title: J Artif Intell Res doi: 10.1613/jair.63 – ident: 10.1016/j.isatra.2017.02.002_bib40 doi: 10.1145/1143844.1143874 – volume: 11 start-page: 4654 issue: 7 year: 2016 ident: 10.1016/j.isatra.2017.02.002_bib5 article-title: Fault Diagnostic Methods for Wind Turbine: a review publication-title: ARPN J Eng Appl Sci – ident: 10.1016/j.isatra.2017.02.002_bib30 doi: 10.1016/B978-1-55860-307-3.50037-X – start-page: 90 year: 2013 ident: 10.1016/j.isatra.2017.02.002_bib10 article-title: Classification and detection of wind turbine pitch faults through SCADA data analysis publication-title: IJPHM Spec Issue Wind Turbine PHM (Color) – volume: 46 start-page: 1250 issue: 3 year: 2013 ident: 10.1016/j.isatra.2017.02.002_bib15 article-title: Exploiting sound signals for fault diagnosis of bearings using decision tree publication-title: Measurement doi: 10.1016/j.measurement.2012.11.011 – volume: 108 start-page: 275 year: 2016 ident: 10.1016/j.isatra.2017.02.002_bib13 article-title: Numerical investigation on aerodynamic performance of a novel vertical axis wind turbine with adaptive blades publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.11.003 – volume: 45 start-page: 37 year: 1997 ident: 10.1016/j.isatra.2017.02.002_bib16 – volume: 53 start-page: 209 year: 2016 ident: 10.1016/j.isatra.2017.02.002_bib1 article-title: Wind energy: trends and enabling technologies publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.07.200 – volume: 110 start-page: 62 year: 2014 ident: 10.1016/j.isatra.2017.02.002_bib9 article-title: Modeling matrix cracking in composite rotor blades within VABS framework publication-title: Compos Struct doi: 10.1016/j.compstruct.2013.11.012 – volume: 94 start-page: 547 year: 2016 ident: 10.1016/j.isatra.2017.02.002_bib12 article-title: Design and kinetic analysis of wind turbine blade-hub-tower coupled system publication-title: Renew Energy doi: 10.1016/j.renene.2016.03.068 – year: 1991 ident: 10.1016/j.isatra.2017.02.002_bib33 – volume: 37 start-page: 4040 issue: 6 year: 2010 ident: 10.1016/j.isatra.2017.02.002_bib19 article-title: Vibration based fault diagnosis of monoblock centrifugal pump using decision tree publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.10.002 – year: 2007 ident: 10.1016/j.isatra.2017.02.002_bib24 – volume: 13 start-page: 959 issue: 10 year: 2009 ident: 10.1016/j.isatra.2017.02.002_bib38 article-title: A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability publication-title: Soft Comput doi: 10.1007/s00500-008-0392-y – volume: 11 start-page: 10 issue: 1 year: 2009 ident: 10.1016/j.isatra.2017.02.002_bib29 article-title: The WEKA data mining software: an update publication-title: ACM SIGKDD Explor Newsl doi: 10.1145/1656274.1656278 – volume: 52 start-page: 436 year: 2015 ident: 10.1016/j.isatra.2017.02.002_bib21 article-title: Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2014.08.007 – volume: 55 start-page: 219 issue: 3 year: 2004 ident: 10.1016/j.isatra.2017.02.002_bib28 article-title: Functional trees publication-title: Mach Learn doi: 10.1023/B:MACH.0000027782.67192.13 – volume: 4 start-page: 77 year: 1996 ident: 10.1016/j.isatra.2017.02.002_bib31 article-title: Improved use of continuous attributes in C4. 5 publication-title: J Artif Intell Res doi: 10.1613/jair.279 – ident: 10.1016/j.isatra.2017.02.002_bib3 |
| SSID | ssj0002598 |
| Score | 2.4719625 |
| Snippet | Wind energy is one of the important renewable energy resources available in nature. It is one of the major resources for production of energy because of its... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 160 |
| SubjectTerms | Best-first tree algorithm Fault diagnosis Functional trees algorithm Statistical features Structural health condition monitoring Wind turbine blade |
| Title | A data driven approach for condition monitoring of wind turbine blade using vibration signals through best-first tree algorithm and functional trees algorithm: A comparative study |
| URI | https://dx.doi.org/10.1016/j.isatra.2017.02.002 https://www.ncbi.nlm.nih.gov/pubmed/28189258 https://www.proquest.com/docview/1867983137 |
| Volume | 67 |
| WOSCitedRecordID | wos000397355900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2022 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002598 issn: 0019-0578 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lb9NAEMdXacoBDoiWV3hUg4QQKHIVP9fLzUKpKIoCUlOUm2Wv7TZVSEISh34SvghfkJndtR1UqpYDFyuys4ml-XlnZv3fGcZeJ37mekWQWZ7rpZYnRWGlac-zZCAkz7hEn6wsPeDDYTgeiy-t1s9qL8xmymez8PJSLP6rqfEcGpu2zv6DuesfxRP4GY2ORzQ7Hm9l-KhLqs9utqR5rK4ZruSEmPtmSqLV_aYe5aWRPP-YkIyyXKYUcqbTJMu7pVpD2FAyrQaQzoMqLVd9fVL0JlYxwdiRtOp5N5me4c-tz3XHDfKWjZI9XzWX9U54uVVzvClwa2Lk45OIOldUbcwbjeN8dV5ukj8WYE_KM9KI61Xcr9tLGOgWaw2XmXVDLtCGeoPyYf6Xc2aq1p07zFxr60YEV3yAXo64UHKoJZWWsrkuy-o0Pq96zz_8HB-dDgbxqD8evVl8t6gbGb21N61Zdtiuw30RttludNwff6p9PCaNapNldZPVpkylHLz6x9cFPdclNSq4GT1g901WApGmaY-18tk-u7dVq3Kf7RkvsIK3plT5u4fsVwQEG2jYoIINEDaoYYMGNpgXQLCBgQ0UbKBggxo2MLCBgQ0a2IBwgpomQNiggU1dXTWX30MEW6iBQu0ROz3qjz58tEwbEEtidLW2BM8DV9pFVqSe0Cl_L_MLbudOans9nsowD7MgTZ3CpxlGOkWCQb3gWZL4jpe4j1l7Np_lTxn4RZg4qQz8LMe8WwQYnNu-pBREBNIPwg5zKzvF0tTIp1Yt07gSQ17E2roxWTfuOTFat8OsetRC14i54fu8QiA2ca6OX2NE-IaRrypiYnQD9G4vmeXzchVTXUoRurbLO-yJRqm-Fyr4Jhw_fHaL0c_Z3eYJfcHa62WZv2R35GY9WS0P2A4fhwfmYfgNncnnbw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data+driven+approach+for+condition+monitoring+of+wind+turbine+blade+using+vibration+signals+through+best-first+tree+algorithm+and+functional+trees+algorithm%3A+A+comparative+study&rft.jtitle=ISA+transactions&rft.au=Joshuva%2C+A&rft.au=Sugumaran%2C+V&rft.date=2017-03-01&rft.issn=1879-2022&rft.eissn=1879-2022&rft.volume=67&rft.spage=160&rft_id=info:doi/10.1016%2Fj.isatra.2017.02.002&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-0578&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-0578&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-0578&client=summon |