Spiking neural networks for handwritten digit recognition—Supervised learning and network optimization

We demonstrate supervised learning in Spiking Neural Networks (SNNs) for the problem of handwritten digit recognition using the spike triggered Normalized Approximate Descent (NormAD) algorithm. Our network that employs neurons operating at sparse biological spike rates below 300Hz achieves a classi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neural networks Ročník 103; s. 118 - 127
Hlavní autori: Kulkarni, Shruti R., Rajendran, Bipin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Ltd 01.07.2018
Predmet:
ISSN:0893-6080, 1879-2782, 1879-2782
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We demonstrate supervised learning in Spiking Neural Networks (SNNs) for the problem of handwritten digit recognition using the spike triggered Normalized Approximate Descent (NormAD) algorithm. Our network that employs neurons operating at sparse biological spike rates below 300Hz achieves a classification accuracy of 98.17% on the MNIST test database with four times fewer parameters compared to the state-of-the-art. We present several insights from extensive numerical experiments regarding optimization of learning parameters and network configuration to improve its accuracy. We also describe a number of strategies to optimize the SNN for implementation in memory and energy constrained hardware, including approximations in computing the neuronal dynamics and reduced precision in storing the synaptic weights. Experiments reveal that even with 3-bit synaptic weights, the classification accuracy of the designed SNN does not degrade beyond 1% as compared to the floating-point baseline. Further, the proposed SNN, which is trained based on the precise spike timing information outperforms an equivalent non-spiking artificial neural network (ANN) trained using back propagation, especially at low bit precision. Thus, our study shows the potential for realizing efficient neuromorphic systems that use spike based information encoding and learning for real-world applications.
AbstractList We demonstrate supervised learning in Spiking Neural Networks (SNNs) for the problem of handwritten digit recognition using the spike triggered Normalized Approximate Descent (NormAD) algorithm. Our network that employs neurons operating at sparse biological spike rates below 300Hz achieves a classification accuracy of 98.17% on the MNIST test database with four times fewer parameters compared to the state-of-the-art. We present several insights from extensive numerical experiments regarding optimization of learning parameters and network configuration to improve its accuracy. We also describe a number of strategies to optimize the SNN for implementation in memory and energy constrained hardware, including approximations in computing the neuronal dynamics and reduced precision in storing the synaptic weights. Experiments reveal that even with 3-bit synaptic weights, the classification accuracy of the designed SNN does not degrade beyond 1% as compared to the floating-point baseline. Further, the proposed SNN, which is trained based on the precise spike timing information outperforms an equivalent non-spiking artificial neural network (ANN) trained using back propagation, especially at low bit precision. Thus, our study shows the potential for realizing efficient neuromorphic systems that use spike based information encoding and learning for real-world applications.
We demonstrate supervised learning in Spiking Neural Networks (SNNs) for the problem of handwritten digit recognition using the spike triggered Normalized Approximate Descent (NormAD) algorithm. Our network that employs neurons operating at sparse biological spike rates below 300Hz achieves a classification accuracy of 98.17% on the MNIST test database with four times fewer parameters compared to the state-of-the-art. We present several insights from extensive numerical experiments regarding optimization of learning parameters and network configuration to improve its accuracy. We also describe a number of strategies to optimize the SNN for implementation in memory and energy constrained hardware, including approximations in computing the neuronal dynamics and reduced precision in storing the synaptic weights. Experiments reveal that even with 3-bit synaptic weights, the classification accuracy of the designed SNN does not degrade beyond 1% as compared to the floating-point baseline. Further, the proposed SNN, which is trained based on the precise spike timing information outperforms an equivalent non-spiking artificial neural network (ANN) trained using back propagation, especially at low bit precision. Thus, our study shows the potential for realizing efficient neuromorphic systems that use spike based information encoding and learning for real-world applications.We demonstrate supervised learning in Spiking Neural Networks (SNNs) for the problem of handwritten digit recognition using the spike triggered Normalized Approximate Descent (NormAD) algorithm. Our network that employs neurons operating at sparse biological spike rates below 300Hz achieves a classification accuracy of 98.17% on the MNIST test database with four times fewer parameters compared to the state-of-the-art. We present several insights from extensive numerical experiments regarding optimization of learning parameters and network configuration to improve its accuracy. We also describe a number of strategies to optimize the SNN for implementation in memory and energy constrained hardware, including approximations in computing the neuronal dynamics and reduced precision in storing the synaptic weights. Experiments reveal that even with 3-bit synaptic weights, the classification accuracy of the designed SNN does not degrade beyond 1% as compared to the floating-point baseline. Further, the proposed SNN, which is trained based on the precise spike timing information outperforms an equivalent non-spiking artificial neural network (ANN) trained using back propagation, especially at low bit precision. Thus, our study shows the potential for realizing efficient neuromorphic systems that use spike based information encoding and learning for real-world applications.
Author Rajendran, Bipin
Kulkarni, Shruti R.
Author_xml – sequence: 1
  givenname: Shruti R.
  orcidid: 0000-0001-6894-9851
  surname: Kulkarni
  fullname: Kulkarni, Shruti R.
– sequence: 2
  givenname: Bipin
  surname: Rajendran
  fullname: Rajendran, Bipin
  email: bipin@njit.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29674234$$D View this record in MEDLINE/PubMed
BookMark eNqFkb1uFDEUhS0URDaBN0BoSpoZru3dsU2BhCL-pEgUgdpyPNcbb2btwfYkChUPkSfMk-Blsw0FVLc53yfdc07IUYgBCXlJoaNA-zebLuAcsHQMqOyAd0DVE7KgUqiWCcmOyAKk4m0PEo7JSc4bAOjlkj8jx0z1Ysn4ckGuLiZ_7cO6qbJkxnrKbUzXuXExNVcmDLfJl4KhGfzalyahjevgi4_h4df9xTxhuvEZh2ZEk8LOU5GDpIlT8Vv_0-ziz8lTZ8aMLx7vKfn-8cO3s8_t-ddPX87en7eW96y0SlgObhCWOenoSrDBOQXDinJ-aQUDZlBSR1V9cGW4kgqsEih6S4UAtXL8lLzee6cUf8yYi976bHEcTcA4Z10VUvW95LJGXz1G58stDnpKfmvSnT60UwNv9wGbYs4Jnba-_PmmJONHTUHvptAbvZ9C76bQwHWdosLLv-CD_z_Yuz2GtaQbj0ln6zFYHHwtv-gh-n8LfgMNaKgq
CitedBy_id crossref_primary_10_1007_s00521_023_09186_5
crossref_primary_10_1155_2019_8429120
crossref_primary_10_1109_TNNLS_2021_3055421
crossref_primary_10_1016_j_procs_2020_04_206
crossref_primary_10_1162_neco_a_01499
crossref_primary_10_1007_s13369_021_05471_4
crossref_primary_10_1038_s41598_020_64878_5
crossref_primary_10_1016_j_patcog_2019_05_015
crossref_primary_10_46670_JSST_2021_30_1_20
crossref_primary_10_1002_advs_202407870
crossref_primary_10_1016_j_knosys_2020_106157
crossref_primary_10_1007_s11071_021_07177_6
crossref_primary_10_1002_EXP_20220162
crossref_primary_10_1007_s44163_022_00046_0
crossref_primary_10_2478_jaiscr_2019_0009
crossref_primary_10_1007_s11760_020_01703_6
crossref_primary_10_1038_s41598_020_60572_8
crossref_primary_10_3389_fnins_2018_00774
crossref_primary_10_1007_s13735_023_00291_8
crossref_primary_10_1088_1674_1056_abd2a5
crossref_primary_10_1016_j_neucom_2023_02_026
crossref_primary_10_1109_TAI_2022_3221688
crossref_primary_10_1109_TED_2024_3487085
crossref_primary_10_1364_PRJ_413742
crossref_primary_10_1109_TNNLS_2020_3006263
crossref_primary_10_1177_14727978241302442
crossref_primary_10_1016_j_asoc_2019_04_006
crossref_primary_10_1109_TNNLS_2024_3353571
crossref_primary_10_1109_TED_2019_2898402
crossref_primary_10_3390_s21186273
crossref_primary_10_1155_2020_8851351
crossref_primary_10_1038_s41467_018_07682_0
crossref_primary_10_3389_frai_2022_680165
crossref_primary_10_3390_bdcc7020110
crossref_primary_10_3390_s20174715
crossref_primary_10_1007_s10489_018_1373_1
crossref_primary_10_1016_j_neunet_2019_06_001
crossref_primary_10_1007_s00521_022_06936_9
crossref_primary_10_1016_j_applthermaleng_2023_121256
crossref_primary_10_1134_S1560354724560016
crossref_primary_10_1038_s43588_021_00184_y
crossref_primary_10_1002_aelm_202001241
crossref_primary_10_1109_TCDS_2021_3140115
crossref_primary_10_1109_TNNLS_2020_3015208
crossref_primary_10_1016_j_engappai_2023_106744
crossref_primary_10_1038_s42256_020_0187_0
crossref_primary_10_1007_s41870_022_01076_8
crossref_primary_10_1109_TCDS_2019_2909355
crossref_primary_10_1007_s11571_020_09605_6
crossref_primary_10_1021_acsaelm_4c02015
crossref_primary_10_1016_j_neunet_2020_02_011
crossref_primary_10_1109_MNANO_2021_3098219
crossref_primary_10_1016_j_imavis_2019_04_007
crossref_primary_10_1016_j_patcog_2021_108513
crossref_primary_10_1145_3304103
crossref_primary_10_1007_s10772_020_09735_6
crossref_primary_10_1016_j_neucom_2024_127598
crossref_primary_10_1016_j_neucom_2024_128483
crossref_primary_10_3389_fnins_2022_926256
crossref_primary_10_3389_fnins_2022_857513
crossref_primary_10_1088_1361_6528_ad6997
crossref_primary_10_1016_j_optmat_2025_116829
crossref_primary_10_3390_fractalfract8120689
crossref_primary_10_1007_s12559_022_10045_z
crossref_primary_10_1109_TGRS_2024_3516742
crossref_primary_10_3390_nano14080697
crossref_primary_10_1016_j_ipm_2022_103088
crossref_primary_10_1007_s00521_025_11066_z
crossref_primary_10_1007_s11063_020_10397_3
crossref_primary_10_1016_j_jclepro_2018_10_254
crossref_primary_10_1093_pnasnexus_pgae488
crossref_primary_10_1007_s12046_020_01410_5
crossref_primary_10_1007_s12293_022_00373_w
crossref_primary_10_1109_TNNLS_2021_3109064
crossref_primary_10_1002_mma_10000
crossref_primary_10_1016_j_neucom_2020_10_100
crossref_primary_10_1109_TED_2023_3317357
crossref_primary_10_1155_2023_2753941
crossref_primary_10_1109_JSEN_2021_3098013
crossref_primary_10_3389_fnins_2019_00405
crossref_primary_10_1007_s42979_022_01259_x
crossref_primary_10_1016_j_energy_2020_117072
crossref_primary_10_1007_s11432_019_1468_0
crossref_primary_10_1109_TCYB_2021_3109566
Cites_doi 10.1073/pnas.2536316100
10.1109/IJCNN.2015.7280618
10.1109/IJCNN.2016.7727509
10.1109/CVPR.2012.6248110
10.1016/j.neunet.2015.09.011
10.1109/IJCNN.2016.7727212
10.1371/journal.pone.0040233
10.1016/j.neunet.2014.01.006
10.1109/TNNLS.2018.2826721
10.1038/ncomms13276
10.1109/JPROC.2014.2304638
10.1142/S0129065712500128
10.3389/fncel.2016.00239
10.1613/jair.4992
10.1109/IJCNN.2017.7966099
10.1126/science.1254642
10.3389/fncom.2015.00099
10.3389/fnins.2016.00508
10.1016/S0361-9230(99)00161-6
10.1109/TNNLS.2015.2404938
10.1109/JPROC.2014.2313565
10.1109/IJCNN.2015.7280696
10.1162/neco.2006.18.7.1527
10.1007/s00359-006-0117-6
10.1371/journal.pcbi.0030031
10.1109/TNNLS.2016.2541339
10.1162/neco.2007.19.11.2881
10.3389/fnins.2017.00682
10.1016/S0925-2312(02)00838-X
10.3389/fnins.2015.00222
10.1109/TNNLS.2015.2501322
10.1016/S0925-2312(01)00658-0
10.1109/5.726791
10.1109/UKRICIS.2010.5898113
10.3389/fnins.2016.00333
10.1016/S0893-6080(97)00011-7
10.1113/jphysiol.1968.sp008455
10.1109/MSP.2012.2205597
10.1109/CVPR.2014.223
10.1371/journal.pone.0078318
10.3389/fnins.2013.00153
10.1016/j.neucom.2004.10.031
10.1007/s11263-014-0788-3
10.1109/FSKD.2016.7603446
10.1523/JNEUROSCI.1677-11.2011
10.1016/j.tins.2009.12.001
10.1038/nn1643
10.1016/j.neucom.2017.02.013
10.1109/TNNLS.2016.2582517
10.3389/fnins.2015.00141
10.1109/TNNLS.2015.2509479
10.1162/neco.2009.11-08-901
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neunet.2018.03.019
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 127
ExternalDocumentID 29674234
10_1016_j_neunet_2018_03_019
S0893608018301126
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
ID FETCH-LOGICAL-c362t-97c30fd7c2f8f1572dff90d5133bc7202ae81f197825a39890c97e76c177095f3
ISICitedReferencesCount 107
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432819400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0893-6080
1879-2782
IngestDate Mon Sep 29 06:02:56 EDT 2025
Thu Apr 03 07:06:25 EDT 2025
Sat Nov 29 07:12:07 EST 2025
Tue Nov 18 22:18:35 EST 2025
Fri Feb 23 02:28:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Spiking neurons
Pattern recognition
Neural networks
Supervised learning
Approximate computing
Neuromorphic computing
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-97c30fd7c2f8f1572dff90d5133bc7202ae81f197825a39890c97e76c177095f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6894-9851
PMID 29674234
PQID 2028966838
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2028966838
pubmed_primary_29674234
crossref_citationtrail_10_1016_j_neunet_2018_03_019
crossref_primary_10_1016_j_neunet_2018_03_019
elsevier_sciencedirect_doi_10_1016_j_neunet_2018_03_019
PublicationCentury 2000
PublicationDate July 2018
2018-07-00
2018-Jul
20180701
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: July 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Masquelier, Thorpe (b41) 2007; 3
Roy, Basu (b51) 2017; 28
Lecun, Bottou, Bengio, Haffner (b36) 1998; 86
Mozafari, M., Kheradpisheh, S. R., Masquelier, T., Nowzari-Dalini, A., & Ganjtabesh, M. (2017). First-spike based visual categorization using reward-modulated stdp. arxiv preprint
Cao, Chen, Khosla (b8) 2015; 113
Florian (b13) 2012; 7
Rueckauer, Lungu, Hu, Pfeiffer, Liu (b53) 2017; 11
Brader, Senn, Fusi (b6) 2007; 19
Ciregan, D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neural networks for image classification. In
Crotty, Levy (b10) 2005; 65
Kasabov, Scott, Tu, Marks, Sengupta, Capecci (b30) 2016; 78
Kulkarni, Rajendran (b34) 2015
Kheradpisheh, Ganjtabesh, Thorpe, Masquelier (b32) 2017
Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014). Large-scale video classification with convolutional neural networks. In
Diehl, Cook (b11) 2015; 9
Ponulak, Kasinski (b48) 2010; 22
pp. 1725–1732
Stromatias, Neil, Pfeiffer, Galluppi, Furber, Liu (b56) 2015; 9
Wan, Zeiler, Zhang, Cun, Fergus (b62) 2013; vol. 28
Goodfellow, Warde-Farley, Mirza, Courville, Bengio (b20) 2013; vol. 28
Hopfield, Brody (b24) 2004; 101
Merolla, Arthur, Alvarez-Icaza, Cassidy, Sawada, Akopyan (b42) 2014; 345
Hinton, Osindero, Teh (b23) 2006; 18
Krizhevsky, Sutskever, Hinton (b33) 2012
Yu, Tang, Tan, Li (b68) 2013; 8
Shoham, O’Connor, Segev (b55) 2006; 192
Hubel, Wiesel (b25) 1968; 195
Goldberg (b18) 2016; 57
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. URL
.
Mohemmed, Schliebs, Matsuda, Kasabov (b43) 2012; 22
Gokmen, Vlasov (b17) 2016; 10
Lillicrap, Cownden, Tweed, Akerman (b39) 2016
Panzeri, Brunel, Logothetis, Kayser (b47) 2010; 33
Allred, J. M., & Roy, K. (2016). Unsupervised incremental STDP learning using forced firing of dormant or idle neurons. In
Calderón, A., Roa, S., & Victorino, J. (2003). Handwritten digit recognition using convolutional neural networks and gabor filters. In
pp. 1773–1777
Furber, Galluppi, Temple, Plana (b14) 2014; 102
Lee, Kukreja, Thakor (b38) 2017; 28
Lee, Delbruck, Pfeiffer (b37) 2016; 10
Tapson, J., Cohen, G., Afshar, S., Stiefel, K., Buskila, Y., & Wang, R. et al. (2013). Synthesis of neural networks for spatio-temporal spike pattern recognition and processing. arXiv preprint
Gabbiani, Metzner (b15) 1999; 202
Tavanaei, A., & Maida, A. S. (2017). Multi-layer unsupervised learning in a spiking convolutional neural network. In
Roxin, Brunel, Hansel, Mongillo, van Vreeswijk (b50) 2011; 31
Wang, Belatreche, Maguire, McGinnity (b65) 2017; 28
Maass (b40) 1997; 10
Gehlhaar (b16) 2014
Benjamin, Gao, McQuinn, Choudhary, Chandrasekaran, Bussat (b4) 2014; 102
Xie, Qu, Yi, Kurths (b67) 2017; 28
Hunsberger, E., & Eliasmith, C. (2016). Training spiking deep networks for neuromorphic hardware. arXiv preprint
Lazar, Simonyi, Tóth (b35) 2005
pp. 3642–3649
Schreiber, Fellous, Whitmer, Tiesinga, Sejnowski (b54) 2003; 52
Bohte, Kok, La Poutre (b5) 2002; 48
Qiao, Mostafa, Corradi, Osswald, Stefanini, Sumislawska (b49) 2015; 9
Abbott (b1) 1999; 50
Panda, P., & Roy, K. (2016). Unsupervised regenerative learning of hierarchical features in Spiking Deep Networks for object recognition. In
Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S. C., & Pfeiffer, M. (2015). Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing. In
Kasabov (b29) 2014; 52
Khan, Ghani, Khurram (b31) 2017; 239
Rueckauer, B., Lungu, I.-A., Hu, Y., & Pfeiffer, M. (2016). Theory and tools for the conversion of analog to spiking convolutional neural networks. arXiv preprint
pp. 2023–2030
Tapson, De Chazal, van Schaik (b60) 2015
Takuya, T., Haruhiko, T., Hiroharu, K., & Shinji, T. (2016). A training algorithm for spike sequence in spiking neural networks –A discussion on growing network for stable training performance. In
Wang, Belatreche, Maguire, McGinnity (b64) 2015
pp. 1–8
Taherkhani, Belatreche, Li, Maguire (b57) 2015; 26
Wang, Ke, Guang, Chen, Yin, Deng (b66) 2016; 10
Hinton, Deng, Yu, Dahl, Mohamed, Jaitly (b22) 2012; 29
pp. 299–306
Gutig, Sompolinsky (b21) 2006; 9
Hunsberger (b27) 2018
[q-bio.NC].
pp. 1–6
NAE (2009). National academy of engineering - Reverse-engineer the brain. Available at
Wang, J., Belatreche, A., Maguire, L., & McGinnity, M. (2010). Online versus offline learning for spiking neural networks: A review and new strategies. In
Anwani, N., & Rajendran, B. (2015). NormAD - Normalized Approximate Descent based supervised learning rule for spiking neurons. In
Bohte (10.1016/j.neunet.2018.03.019_b5) 2002; 48
10.1016/j.neunet.2018.03.019_b19
Lee (10.1016/j.neunet.2018.03.019_b38) 2017; 28
Brader (10.1016/j.neunet.2018.03.019_b6) 2007; 19
Panzeri (10.1016/j.neunet.2018.03.019_b47) 2010; 33
Cao (10.1016/j.neunet.2018.03.019_b8) 2015; 113
Maass (10.1016/j.neunet.2018.03.019_b40) 1997; 10
10.1016/j.neunet.2018.03.019_b52
Gutig (10.1016/j.neunet.2018.03.019_b21) 2006; 9
Gehlhaar (10.1016/j.neunet.2018.03.019_b16) 2014
10.1016/j.neunet.2018.03.019_b58
10.1016/j.neunet.2018.03.019_b59
10.1016/j.neunet.2018.03.019_b12
Ponulak (10.1016/j.neunet.2018.03.019_b48) 2010; 22
Rueckauer (10.1016/j.neunet.2018.03.019_b53) 2017; 11
10.1016/j.neunet.2018.03.019_b28
Xie (10.1016/j.neunet.2018.03.019_b67) 2017; 28
Wang (10.1016/j.neunet.2018.03.019_b65) 2017; 28
Wang (10.1016/j.neunet.2018.03.019_b66) 2016; 10
Stromatias (10.1016/j.neunet.2018.03.019_b56) 2015; 9
Taherkhani (10.1016/j.neunet.2018.03.019_b57) 2015; 26
Wan (10.1016/j.neunet.2018.03.019_b62) 2013; vol. 28
Mohemmed (10.1016/j.neunet.2018.03.019_b43) 2012; 22
Yu (10.1016/j.neunet.2018.03.019_b68) 2013; 8
Lee (10.1016/j.neunet.2018.03.019_b37) 2016; 10
Lecun (10.1016/j.neunet.2018.03.019_b36) 1998; 86
10.1016/j.neunet.2018.03.019_b61
Qiao (10.1016/j.neunet.2018.03.019_b49) 2015; 9
10.1016/j.neunet.2018.03.019_b63
Kheradpisheh (10.1016/j.neunet.2018.03.019_b32) 2017
Krizhevsky (10.1016/j.neunet.2018.03.019_b33) 2012
Hinton (10.1016/j.neunet.2018.03.019_b23) 2006; 18
Hinton (10.1016/j.neunet.2018.03.019_b22) 2012; 29
10.1016/j.neunet.2018.03.019_b26
Crotty (10.1016/j.neunet.2018.03.019_b10) 2005; 65
Shoham (10.1016/j.neunet.2018.03.019_b55) 2006; 192
Wang (10.1016/j.neunet.2018.03.019_b64) 2015
Goodfellow (10.1016/j.neunet.2018.03.019_b20) 2013; vol. 28
Lazar (10.1016/j.neunet.2018.03.019_b35) 2005
Gabbiani (10.1016/j.neunet.2018.03.019_b15) 1999; 202
Hopfield (10.1016/j.neunet.2018.03.019_b24) 2004; 101
Hunsberger (10.1016/j.neunet.2018.03.019_b27) 2018
Hubel (10.1016/j.neunet.2018.03.019_b25) 1968; 195
Kulkarni (10.1016/j.neunet.2018.03.019_b34) 2015
Furber (10.1016/j.neunet.2018.03.019_b14) 2014; 102
Abbott (10.1016/j.neunet.2018.03.019_b1) 1999; 50
Khan (10.1016/j.neunet.2018.03.019_b31) 2017; 239
Roxin (10.1016/j.neunet.2018.03.019_b50) 2011; 31
Masquelier (10.1016/j.neunet.2018.03.019_b41) 2007; 3
Kasabov (10.1016/j.neunet.2018.03.019_b29) 2014; 52
Tapson (10.1016/j.neunet.2018.03.019_b60) 2015
Benjamin (10.1016/j.neunet.2018.03.019_b4) 2014; 102
Diehl (10.1016/j.neunet.2018.03.019_b11) 2015; 9
Roy (10.1016/j.neunet.2018.03.019_b51) 2017; 28
Goldberg (10.1016/j.neunet.2018.03.019_b18) 2016; 57
Lillicrap (10.1016/j.neunet.2018.03.019_b39) 2016
Gokmen (10.1016/j.neunet.2018.03.019_b17) 2016; 10
Kasabov (10.1016/j.neunet.2018.03.019_b30) 2016; 78
Schreiber (10.1016/j.neunet.2018.03.019_b54) 2003; 52
10.1016/j.neunet.2018.03.019_b2
Merolla (10.1016/j.neunet.2018.03.019_b42) 2014; 345
10.1016/j.neunet.2018.03.019_b46
10.1016/j.neunet.2018.03.019_b3
10.1016/j.neunet.2018.03.019_b7
10.1016/j.neunet.2018.03.019_b44
10.1016/j.neunet.2018.03.019_b9
Florian (10.1016/j.neunet.2018.03.019_b13) 2012; 7
10.1016/j.neunet.2018.03.019_b45
References_xml – volume: 202
  start-page: 1267
  year: 1999
  end-page: 1279
  ident: b15
  article-title: Encoding and processing of sensory information in neuronal spike trains
  publication-title: Journal of Fish Biology
– year: 2016
  ident: b39
  article-title: Random synaptic feedback weights support error backpropagation for deep learning
  publication-title: Nature Communications
– reference: (pp. 1–8),
– reference: Calderón, A., Roa, S., & Victorino, J. (2003). Handwritten digit recognition using convolutional neural networks and gabor filters. In
– volume: 52
  start-page: 925
  year: 2003
  end-page: 931
  ident: b54
  article-title: A new correlation-based measure of spike timing reliability
  publication-title: Neurocomputing
– volume: 78
  start-page: 1
  year: 2016
  end-page: 14
  ident: b30
  article-title: Evolving spatio-temporal data machines based on the NeuCube neuromorphic framework: design methodology and selected applications
  publication-title: Neural Networks
– reference: [q-bio.NC].
– volume: 33
  start-page: 111
  year: 2010
  end-page: 120
  ident: b47
  article-title: Sensory neural codes using multiplexed temporal scales
  publication-title: Trends in Neurosciences
– volume: 195
  start-page: 215
  year: 1968
  end-page: 243
  ident: b25
  article-title: Receptive fields and functional architecture of monkey striate cortex
  publication-title: The Journal of Physiology
– volume: 239
  start-page: 153
  year: 2017
  end-page: 164
  ident: b31
  article-title: Population coding for neuromorphic hardware
  publication-title: Neurocomputing
– year: 2017
  ident: b32
  article-title: STDP-based spiking deep convolutional neural networks for object recognition
  publication-title: Neural Networks
– reference: NAE (2009). National academy of engineering - Reverse-engineer the brain. Available at
– reference: Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. URL
– volume: vol. 28
  start-page: 1319
  year: 2013
  end-page: 1327
  ident: b20
  article-title: Maxout networks
  publication-title: Proceedings of the 30th international conference on machine learning
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: b36
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
– volume: 28
  start-page: 900
  year: 2017
  end-page: 910
  ident: b51
  article-title: An online unsupervised structural plasticity algorithm for spiking neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 345
  start-page: 668
  year: 2014
  end-page: 673
  ident: b42
  article-title: A million spiking-neuron integrated circuit with a scalable communication network and interface
  publication-title: Science
– year: 2018
  ident: b27
  article-title: Spiking deep neural networks: Engineered and biological approaches to object recognition
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: b23
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Computation
– volume: 52
  start-page: 62
  year: 2014
  end-page: 76
  ident: b29
  article-title: NeuCube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data
  publication-title: Neural Networks
– start-page: 259
  year: 2015
  end-page: 267
  ident: b64
  article-title: SpikeComp: An evolving spiking neural network with adaptive compact structure for pattern classification
  publication-title: Neural information processing: 22nd international conference, ICONIP 2015, Istanbul, Turkey, November 9-12, 2015, Proceedings, Part II
– reference: Takuya, T., Haruhiko, T., Hiroharu, K., & Shinji, T. (2016). A training algorithm for spike sequence in spiking neural networks –A discussion on growing network for stable training performance. In
– reference: Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014). Large-scale video classification with convolutional neural networks. In
– year: 2005
  ident: b35
  article-title: Time encoding of bandlimited signals, an overview
  publication-title: Proceedings of conference on telecommunication systems, modeling and analysis
– volume: 19
  start-page: 2881
  year: 2007
  end-page: 2912
  ident: b6
  article-title: Learning real-world stimuli in a neural network with spike-driven synaptic dynamics
  publication-title: Neural Computation
– volume: 28
  start-page: 1411
  year: 2017
  end-page: 1424
  ident: b67
  article-title: Efficient training of supervised spiking neural network via accurate synaptic-efficiency adjustment method
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 8
  start-page: 1
  year: 2013
  end-page: 16
  ident: b68
  article-title: Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns
  publication-title: Plos One
– volume: 9
  start-page: 222
  year: 2015
  ident: b56
  article-title: Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware platforms
  publication-title: Frontiers in Neuroscience
– reference: Tavanaei, A., & Maida, A. S. (2017). Multi-layer unsupervised learning in a spiking convolutional neural network. In
– volume: 101
  start-page: 337
  year: 2004
  end-page: 342
  ident: b24
  article-title: Learning rules and network repair in spike-timing-based computation networks
  publication-title: Proceedings of the National Academy of Sciences
– start-page: 41
  year: 2015
  end-page: 49
  ident: b60
  article-title: Explicit computation of input weights in extreme learning machines
  publication-title: Proceedings of ELM-2014 Volume 1:: Algorithms and theories
– volume: 10
  start-page: 239
  year: 2016
  ident: b66
  article-title: Firing frequency maxima of fast-spiking neurons in human, monkey, and mouse neocortex
  publication-title: Frontiers in Cellular Neuroscience
– reference: Hunsberger, E., & Eliasmith, C. (2016). Training spiking deep networks for neuromorphic hardware. arXiv preprint
– volume: 11
  start-page: 682
  year: 2017
  ident: b53
  article-title: Conversion of continuous-valued deep networks to efficient event-driven networks for image classification
  publication-title: Frontiers in Neuroscience
– volume: 26
  start-page: 3137
  year: 2015
  end-page: 3149
  ident: b57
  article-title: DL-ReSuMe: A delay learning-based remote supervised method for spiking neurons
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– reference: (pp. 1773–1777)
– reference: Mozafari, M., Kheradpisheh, S. R., Masquelier, T., Nowzari-Dalini, A., & Ganjtabesh, M. (2017). First-spike based visual categorization using reward-modulated stdp. arxiv preprint
– reference: Wang, J., Belatreche, A., Maguire, L., & McGinnity, M. (2010). Online versus offline learning for spiking neural networks: A review and new strategies. In
– reference: (pp. 3642–3649),
– volume: 28
  start-page: 849
  year: 2017
  end-page: 861
  ident: b38
  article-title: CONE: Convex-optimized-synaptic efficacies for temporally precise spike mapping
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– reference: Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S. C., & Pfeiffer, M. (2015). Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing. In
– start-page: 149
  year: 2015
  end-page: 158
  ident: b34
  article-title: Scalable digital CMOS Architecture for Spike based Supervised Learning
  publication-title: Engineering applications of neural networks: 16th international conference, EANN 2015, Rhodes, Greece, September 25-28 2015. Proceedings
– volume: 22
  year: 2012
  ident: b43
  article-title: SPAN: Spike pattern association neuron for learning spatio-temporal spike patterns
  publication-title: International Journal of Neural Systems
– volume: 22
  start-page: 467
  year: 2010
  end-page: 510
  ident: b48
  article-title: Supervised learning in spiking neural networks with ReSuMe: Sequence learning, classification, and spike shifting
  publication-title: Neural Computation
– reference: (pp. 1725–1732),
– volume: 29
  start-page: 82
  year: 2012
  end-page: 97
  ident: b22
  article-title: Deep Neural networks for acoustic modeling in speech recognition: The shared views of four research groups
  publication-title: IEEE Signal Processing Magazine
– volume: 3
  start-page: 1
  year: 2007
  end-page: 11
  ident: b41
  article-title: Unsupervised learning of visual features through spike timing dependent plasticity
  publication-title: PLOS Computational Biology
– volume: 28
  start-page: 30
  year: 2017
  end-page: 43
  ident: b65
  article-title: Spiketemp: An enhanced rank-order-based learning approach for spiking neural networks with adaptive structure
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 10
  start-page: 508
  year: 2016
  ident: b37
  article-title: Training deep spiking neural networks using backpropagation
  publication-title: Frontiers in Neuroscience
– volume: 192
  start-page: 777
  year: 2006
  end-page: 784
  ident: b55
  article-title: How silent is the brain: is there a “dark matter” problem in neuroscience?
  publication-title: Journal of Comparative Physiology A
– reference: (pp. 2023–2030),
– volume: 113
  start-page: 54
  year: 2015
  end-page: 66
  ident: b8
  article-title: Spiking deep convolutional neural networks for energy-efficient object recognition
  publication-title: International Journal of Computer Vision
– volume: 9
  start-page: 99
  year: 2015
  ident: b11
  article-title: Unsupervised learning of digit recognition using spike-timing-dependent plasticity
  publication-title: Frontiers in Computational Neuroscience
– reference: (pp. 1–6),
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: b33
  article-title: ImageNet Classification with Deep Convolutional Neural Networks
  publication-title: Advances in neural information processing systems 25
– volume: 10
  start-page: 333
  year: 2016
  ident: b17
  article-title: Acceleration of deep neural network training with resistive cross-point devices: Design considerations
  publication-title: Frontiers in Neuroscience
– reference: Rueckauer, B., Lungu, I.-A., Hu, Y., & Pfeiffer, M. (2016). Theory and tools for the conversion of analog to spiking convolutional neural networks. arXiv preprint
– reference: Allred, J. M., & Roy, K. (2016). Unsupervised incremental STDP learning using forced firing of dormant or idle neurons. In
– reference: .
– reference: Ciregan, D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neural networks for image classification. In
– volume: 7
  start-page: e40233
  year: 2012
  ident: b13
  article-title: The chronotron: A neuron that learns to fire temporally precise spike patterns
  publication-title: PloS One
– volume: 9
  start-page: 420
  year: 2006
  end-page: 428
  ident: b21
  article-title: The tempotron: a neuron that learns spike timing-based decisions
  publication-title: Nature Neuroscience
– reference: Tapson, J., Cohen, G., Afshar, S., Stiefel, K., Buskila, Y., & Wang, R. et al. (2013). Synthesis of neural networks for spatio-temporal spike pattern recognition and processing. arXiv preprint
– start-page: 317
  year: 2014
  end-page: 318
  ident: b16
  article-title: Neuromorphic processing: A new frontier in scaling computer architecture
  publication-title: Proceedings of the 19th international conference on architectural support for programming languages and operating systems
– volume: 9
  start-page: 141
  year: 2015
  ident: b49
  article-title: A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128k synapses
  publication-title: Frontiers in Neuroscience
– volume: 31
  start-page: 16217
  year: 2011
  end-page: 16226
  ident: b50
  article-title: On the distribution of firing rates in networks of cortical neurons
  publication-title: Journal of Neuroscience
– volume: 10
  start-page: 1659
  year: 1997
  end-page: 1671
  ident: b40
  article-title: Networks of spiking neurons: The third generation of neural network models
  publication-title: Neural Networks
– reference: Anwani, N., & Rajendran, B. (2015). NormAD - Normalized Approximate Descent based supervised learning rule for spiking neurons. In
– reference: (pp. 299–306),
– volume: 48
  start-page: 17
  year: 2002
  end-page: 37
  ident: b5
  article-title: Error-backpropagation in temporally encoded networks of spiking neurons
  publication-title: Neurocomputing
– volume: 57
  start-page: 345
  year: 2016
  end-page: 420
  ident: b18
  article-title: A Primer on neural network models for natural language processing
  publication-title: Journal of Artificial Intelligence Research (JAIR)
– volume: 102
  start-page: 699
  year: 2014
  end-page: 716
  ident: b4
  article-title: Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations
  publication-title: Proceedings of the IEEE
– reference: Panda, P., & Roy, K. (2016). Unsupervised regenerative learning of hierarchical features in Spiking Deep Networks for object recognition. In
– volume: 50
  start-page: 303
  year: 1999
  end-page: 304
  ident: b1
  article-title: Lapicque’s introduction of the integrate-and-fire model neuron (1907)
  publication-title: Brain Research Bulletin
– volume: 65
  start-page: 371
  year: 2005
  end-page: 378
  ident: b10
  article-title: Energy-efficient interspike interval codes
  publication-title: Neurocomputing
– volume: 102
  start-page: 652
  year: 2014
  end-page: 665
  ident: b14
  article-title: The SpiNNaker Project
  publication-title: Proceedings of the IEEE
– volume: vol. 28
  start-page: 1058
  year: 2013
  end-page: 1066
  ident: b62
  article-title: Regularization of Neural Networks using DropConnect
  publication-title: Proceedings of the 30th international conference on machine learning
– year: 2005
  ident: 10.1016/j.neunet.2018.03.019_b35
  article-title: Time encoding of bandlimited signals, an overview
– volume: 101
  start-page: 337
  issue: 1
  year: 2004
  ident: 10.1016/j.neunet.2018.03.019_b24
  article-title: Learning rules and network repair in spike-timing-based computation networks
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.2536316100
– ident: 10.1016/j.neunet.2018.03.019_b26
– ident: 10.1016/j.neunet.2018.03.019_b3
  doi: 10.1109/IJCNN.2015.7280618
– ident: 10.1016/j.neunet.2018.03.019_b2
  doi: 10.1109/IJCNN.2016.7727509
– ident: 10.1016/j.neunet.2018.03.019_b9
  doi: 10.1109/CVPR.2012.6248110
– volume: 78
  start-page: 1
  year: 2016
  ident: 10.1016/j.neunet.2018.03.019_b30
  article-title: Evolving spatio-temporal data machines based on the NeuCube neuromorphic framework: design methodology and selected applications
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2015.09.011
– ident: 10.1016/j.neunet.2018.03.019_b46
  doi: 10.1109/IJCNN.2016.7727212
– volume: 7
  start-page: e40233
  issue: 8
  year: 2012
  ident: 10.1016/j.neunet.2018.03.019_b13
  article-title: The chronotron: A neuron that learns to fire temporally precise spike patterns
  publication-title: PloS One
  doi: 10.1371/journal.pone.0040233
– year: 2018
  ident: 10.1016/j.neunet.2018.03.019_b27
– volume: 52
  start-page: 62
  year: 2014
  ident: 10.1016/j.neunet.2018.03.019_b29
  article-title: NeuCube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.01.006
– ident: 10.1016/j.neunet.2018.03.019_b44
  doi: 10.1109/TNNLS.2018.2826721
– year: 2016
  ident: 10.1016/j.neunet.2018.03.019_b39
  article-title: Random synaptic feedback weights support error backpropagation for deep learning
  publication-title: Nature Communications
  doi: 10.1038/ncomms13276
– volume: 102
  start-page: 652
  issue: 5
  year: 2014
  ident: 10.1016/j.neunet.2018.03.019_b14
  article-title: The SpiNNaker Project
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2014.2304638
– volume: 22
  issue: 04
  year: 2012
  ident: 10.1016/j.neunet.2018.03.019_b43
  article-title: SPAN: Spike pattern association neuron for learning spatio-temporal spike patterns
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065712500128
– year: 2017
  ident: 10.1016/j.neunet.2018.03.019_b32
  article-title: STDP-based spiking deep convolutional neural networks for object recognition
  publication-title: Neural Networks
– volume: 10
  start-page: 239
  year: 2016
  ident: 10.1016/j.neunet.2018.03.019_b66
  article-title: Firing frequency maxima of fast-spiking neurons in human, monkey, and mouse neocortex
  publication-title: Frontiers in Cellular Neuroscience
  doi: 10.3389/fncel.2016.00239
– start-page: 41
  year: 2015
  ident: 10.1016/j.neunet.2018.03.019_b60
  article-title: Explicit computation of input weights in extreme learning machines
– volume: 57
  start-page: 345
  year: 2016
  ident: 10.1016/j.neunet.2018.03.019_b18
  article-title: A Primer on neural network models for natural language processing
  publication-title: Journal of Artificial Intelligence Research (JAIR)
  doi: 10.1613/jair.4992
– ident: 10.1016/j.neunet.2018.03.019_b61
  doi: 10.1109/IJCNN.2017.7966099
– volume: 345
  start-page: 668
  issue: 6197
  year: 2014
  ident: 10.1016/j.neunet.2018.03.019_b42
  article-title: A million spiking-neuron integrated circuit with a scalable communication network and interface
  publication-title: Science
  doi: 10.1126/science.1254642
– volume: 9
  start-page: 99
  year: 2015
  ident: 10.1016/j.neunet.2018.03.019_b11
  article-title: Unsupervised learning of digit recognition using spike-timing-dependent plasticity
  publication-title: Frontiers in Computational Neuroscience
  doi: 10.3389/fncom.2015.00099
– ident: 10.1016/j.neunet.2018.03.019_b52
– volume: 10
  start-page: 508
  year: 2016
  ident: 10.1016/j.neunet.2018.03.019_b37
  article-title: Training deep spiking neural networks using backpropagation
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2016.00508
– volume: 50
  start-page: 303
  year: 1999
  ident: 10.1016/j.neunet.2018.03.019_b1
  article-title: Lapicque’s introduction of the integrate-and-fire model neuron (1907)
  publication-title: Brain Research Bulletin
  doi: 10.1016/S0361-9230(99)00161-6
– start-page: 317
  year: 2014
  ident: 10.1016/j.neunet.2018.03.019_b16
  article-title: Neuromorphic processing: A new frontier in scaling computer architecture
– volume: 26
  start-page: 3137
  issue: 12
  year: 2015
  ident: 10.1016/j.neunet.2018.03.019_b57
  article-title: DL-ReSuMe: A delay learning-based remote supervised method for spiking neurons
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2015.2404938
– start-page: 149
  year: 2015
  ident: 10.1016/j.neunet.2018.03.019_b34
  article-title: Scalable digital CMOS Architecture for Spike based Supervised Learning
– volume: 102
  start-page: 699
  issue: 5
  year: 2014
  ident: 10.1016/j.neunet.2018.03.019_b4
  article-title: Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2014.2313565
– ident: 10.1016/j.neunet.2018.03.019_b12
  doi: 10.1109/IJCNN.2015.7280696
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.neunet.2018.03.019_b23
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Computation
  doi: 10.1162/neco.2006.18.7.1527
– volume: 192
  start-page: 777
  issue: 8
  year: 2006
  ident: 10.1016/j.neunet.2018.03.019_b55
  article-title: How silent is the brain: is there a “dark matter” problem in neuroscience?
  publication-title: Journal of Comparative Physiology A
  doi: 10.1007/s00359-006-0117-6
– volume: 3
  start-page: 1
  issue: 2
  year: 2007
  ident: 10.1016/j.neunet.2018.03.019_b41
  article-title: Unsupervised learning of visual features through spike timing dependent plasticity
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.0030031
– volume: 28
  start-page: 1411
  issue: 6
  year: 2017
  ident: 10.1016/j.neunet.2018.03.019_b67
  article-title: Efficient training of supervised spiking neural network via accurate synaptic-efficiency adjustment method
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2016.2541339
– ident: 10.1016/j.neunet.2018.03.019_b45
– volume: 19
  start-page: 2881
  issue: 11
  year: 2007
  ident: 10.1016/j.neunet.2018.03.019_b6
  article-title: Learning real-world stimuli in a neural network with spike-driven synaptic dynamics
  publication-title: Neural Computation
  doi: 10.1162/neco.2007.19.11.2881
– volume: 11
  start-page: 682
  year: 2017
  ident: 10.1016/j.neunet.2018.03.019_b53
  article-title: Conversion of continuous-valued deep networks to efficient event-driven networks for image classification
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2017.00682
– volume: 52
  start-page: 925
  year: 2003
  ident: 10.1016/j.neunet.2018.03.019_b54
  article-title: A new correlation-based measure of spike timing reliability
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(02)00838-X
– start-page: 259
  year: 2015
  ident: 10.1016/j.neunet.2018.03.019_b64
  article-title: SpikeComp: An evolving spiking neural network with adaptive compact structure for pattern classification
– volume: 9
  start-page: 222
  year: 2015
  ident: 10.1016/j.neunet.2018.03.019_b56
  article-title: Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware platforms
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2015.00222
– volume: 28
  start-page: 30
  year: 2017
  ident: 10.1016/j.neunet.2018.03.019_b65
  article-title: Spiketemp: An enhanced rank-order-based learning approach for spiking neural networks with adaptive structure
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2015.2501322
– volume: 48
  start-page: 17
  issue: 1
  year: 2002
  ident: 10.1016/j.neunet.2018.03.019_b5
  article-title: Error-backpropagation in temporally encoded networks of spiking neurons
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00658-0
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.neunet.2018.03.019_b36
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.726791
– ident: 10.1016/j.neunet.2018.03.019_b63
  doi: 10.1109/UKRICIS.2010.5898113
– volume: 10
  start-page: 333
  year: 2016
  ident: 10.1016/j.neunet.2018.03.019_b17
  article-title: Acceleration of deep neural network training with resistive cross-point devices: Design considerations
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2016.00333
– volume: vol. 28
  start-page: 1058
  year: 2013
  ident: 10.1016/j.neunet.2018.03.019_b62
  article-title: Regularization of Neural Networks using DropConnect
– volume: 10
  start-page: 1659
  issue: 9
  year: 1997
  ident: 10.1016/j.neunet.2018.03.019_b40
  article-title: Networks of spiking neurons: The third generation of neural network models
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(97)00011-7
– volume: 195
  start-page: 215
  issue: 1
  year: 1968
  ident: 10.1016/j.neunet.2018.03.019_b25
  article-title: Receptive fields and functional architecture of monkey striate cortex
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.1968.sp008455
– volume: vol. 28
  start-page: 1319
  year: 2013
  ident: 10.1016/j.neunet.2018.03.019_b20
  article-title: Maxout networks
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  ident: 10.1016/j.neunet.2018.03.019_b22
  article-title: Deep Neural networks for acoustic modeling in speech recognition: The shared views of four research groups
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2012.2205597
– ident: 10.1016/j.neunet.2018.03.019_b28
  doi: 10.1109/CVPR.2014.223
– volume: 8
  start-page: 1
  issue: 11
  year: 2013
  ident: 10.1016/j.neunet.2018.03.019_b68
  article-title: Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns
  publication-title: Plos One
  doi: 10.1371/journal.pone.0078318
– ident: 10.1016/j.neunet.2018.03.019_b59
  doi: 10.3389/fnins.2013.00153
– volume: 65
  start-page: 371
  year: 2005
  ident: 10.1016/j.neunet.2018.03.019_b10
  article-title: Energy-efficient interspike interval codes
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2004.10.031
– volume: 113
  start-page: 54
  issue: 1
  year: 2015
  ident: 10.1016/j.neunet.2018.03.019_b8
  article-title: Spiking deep convolutional neural networks for energy-efficient object recognition
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-014-0788-3
– ident: 10.1016/j.neunet.2018.03.019_b58
  doi: 10.1109/FSKD.2016.7603446
– start-page: 1097
  year: 2012
  ident: 10.1016/j.neunet.2018.03.019_b33
  article-title: ImageNet Classification with Deep Convolutional Neural Networks
– ident: 10.1016/j.neunet.2018.03.019_b19
– volume: 31
  start-page: 16217
  issue: 45
  year: 2011
  ident: 10.1016/j.neunet.2018.03.019_b50
  article-title: On the distribution of firing rates in networks of cortical neurons
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.1677-11.2011
– ident: 10.1016/j.neunet.2018.03.019_b7
– volume: 202
  start-page: 1267
  issue: 10
  year: 1999
  ident: 10.1016/j.neunet.2018.03.019_b15
  article-title: Encoding and processing of sensory information in neuronal spike trains
  publication-title: Journal of Fish Biology
– volume: 33
  start-page: 111
  issue: 3
  year: 2010
  ident: 10.1016/j.neunet.2018.03.019_b47
  article-title: Sensory neural codes using multiplexed temporal scales
  publication-title: Trends in Neurosciences
  doi: 10.1016/j.tins.2009.12.001
– volume: 9
  start-page: 420
  issue: 3
  year: 2006
  ident: 10.1016/j.neunet.2018.03.019_b21
  article-title: The tempotron: a neuron that learns spike timing-based decisions
  publication-title: Nature Neuroscience
  doi: 10.1038/nn1643
– volume: 239
  start-page: 153
  year: 2017
  ident: 10.1016/j.neunet.2018.03.019_b31
  article-title: Population coding for neuromorphic hardware
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.013
– volume: 28
  start-page: 900
  issue: 4
  year: 2017
  ident: 10.1016/j.neunet.2018.03.019_b51
  article-title: An online unsupervised structural plasticity algorithm for spiking neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2016.2582517
– volume: 9
  start-page: 141
  year: 2015
  ident: 10.1016/j.neunet.2018.03.019_b49
  article-title: A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128k synapses
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2015.00141
– volume: 28
  start-page: 849
  issue: 4
  year: 2017
  ident: 10.1016/j.neunet.2018.03.019_b38
  article-title: CONE: Convex-optimized-synaptic efficacies for temporally precise spike mapping
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2015.2509479
– volume: 22
  start-page: 467
  issue: 2
  year: 2010
  ident: 10.1016/j.neunet.2018.03.019_b48
  article-title: Supervised learning in spiking neural networks with ReSuMe: Sequence learning, classification, and spike shifting
  publication-title: Neural Computation
  doi: 10.1162/neco.2009.11-08-901
SSID ssj0006843
Score 2.5935333
Snippet We demonstrate supervised learning in Spiking Neural Networks (SNNs) for the problem of handwritten digit recognition using the spike triggered Normalized...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118
SubjectTerms Algorithms
Approximate computing
Databases, Factual - trends
Handwriting
Humans
Learning
Memory
Neural networks
Neural Networks (Computer)
Neuromorphic computing
Neurons
Pattern recognition
Pattern Recognition, Automated - methods
Pattern Recognition, Automated - trends
Spiking neurons
Supervised learning
Supervised Machine Learning - trends
Title Spiking neural networks for handwritten digit recognition—Supervised learning and network optimization
URI https://dx.doi.org/10.1016/j.neunet.2018.03.019
https://www.ncbi.nlm.nih.gov/pubmed/29674234
https://www.proquest.com/docview/2028966838
Volume 103
WOSCitedRecordID wos000432819400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbYLgcuvB_lsTISt8goiZPYPi5oESBUIe2CeotSx4aUbhqlKezPZxzbaVZLtXDgElVJPEn9fRmPx-MZhF6JRNFQRQWJM5mQRCWcLJJIEBlGWoVMcdH7O75-YrMZn8_FZ1dtdNOXE2B1zS8uRPNfoYZzALbZOvsPcA9C4QT8BtDhCLDD8a-AP20q4_4OTKZK6P_axnn3aRcC4yb_1VYdGMpBWX2rumAIIFrX5HTbGM2xARt05T0mxq_uRARrUC_nbt_m2KidXX7SbnVo9cNI6R2s31v4y8FoWWmp6rK13tc3pn722P0Q8SFUFUYPqzI5EyRm_LJODelIK0ZWxV7R1tZxsHwNHQKvaOLseJ9x1irREVbNeQ9WLDKzsJzsxq4hotBfOkCHMUsFn6DD4w8n84_DqJzxhPqtk31839WHmsTQTsw-K2XfLKS3Rs7uottuGoGPLfz30A1V30d3fIkO7DT2A6QdG7BlA_YYYWADHrEB92zAf2YD9mzA0MCLwGM2PERf3p2cvX1PXGkNIsFi6Yhgkoa6ZDLWXEcpi0utRViaYj8LyeIwLhSPdCQA1rSgAr5YKZhimYwYA6Nc00doUq9r9QThQjKxoKZSPcuSVMuiZGZin8I8FEZDtZgi6rsyly7vvCl_ssp9gOEyt1jkBos8pDlgMUVkaNXYvCvX3M88SrmzHa1NmAPZrmn50oOag2o162VFrdbbDdwUc5FlnPIpemzRHt7FE-Xp3ivP0K3d9_IcTbp2q16gm_JnV23aI3TA5vzIkfQ39mmj_w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spiking+neural+networks+for+handwritten+digit+recognition-Supervised+learning+and+network+optimization&rft.jtitle=Neural+networks&rft.au=Kulkarni%2C+Shruti+R&rft.au=Rajendran%2C+Bipin&rft.date=2018-07-01&rft.eissn=1879-2782&rft.volume=103&rft.spage=118&rft_id=info:doi/10.1016%2Fj.neunet.2018.03.019&rft_id=info%3Apmid%2F29674234&rft.externalDocID=29674234
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon