A novel fault classification feature extraction method for rolling bearing based on multi-sensor fusion technology and EB-1D-TP encoding algorithm

To improve the accuracy of bearing fault diagnosis in a multisensor monitoring environment, it is necessary to obtain more accurate and effective fault classification features for bearings. Accordingly, a bearing fault classification feature extraction method based on multisensor fusion technology a...

Full description

Saved in:
Bibliographic Details
Published in:ISA transactions Vol. 142; pp. 427 - 444
Main Authors: Pan, Zuozhou, Zhang, Zhengyuan, Meng, Zong, Wang, Yuebing
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 01.11.2023
Subjects:
ISSN:0019-0578, 1879-2022, 1879-2022
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To improve the accuracy of bearing fault diagnosis in a multisensor monitoring environment, it is necessary to obtain more accurate and effective fault classification features for bearings. Accordingly, a bearing fault classification feature extraction method based on multisensor fusion technology and an enhanced binary one-dimensional ternary pattern (EB-1D-TP) algorithm were proposed in this study. First, an optimal equalization weighting algorithm was established to realize high-precision fusion of bearing signals by introducing an optimal equalization factor and determining the theoretical optimal equalization factor value. Second, an enhanced binary encoding method similar to balanced ternary encoding was developed, which increases the difference between the different fault features of the bearing. Finally, the new sequence obtained after encoding was used as the input to a support vector machine to classify and diagnose the faults of the rolling bearing. The experimental results show that the algorithm can significantly improve the accuracy and speed of rolling-bearing fault classification. Combining fusion-encoding features with other intelligent classification methods, the classification results were improved. •An optimized equalization random weighting algorithm is proposed.•A “Zero Removal” enhancement processing technique is proposed.•A new encoding method more suitable for one-dimensional signal is constructed.
AbstractList To improve the accuracy of bearing fault diagnosis in a multisensor monitoring environment, it is necessary to obtain more accurate and effective fault classification features for bearings. Accordingly, a bearing fault classification feature extraction method based on multisensor fusion technology and an enhanced binary one-dimensional ternary pattern (EB-1D-TP) algorithm were proposed in this study. First, an optimal equalization weighting algorithm was established to realize high-precision fusion of bearing signals by introducing an optimal equalization factor and determining the theoretical optimal equalization factor value. Second, an enhanced binary encoding method similar to balanced ternary encoding was developed, which increases the difference between the different fault features of the bearing. Finally, the new sequence obtained after encoding was used as the input to a support vector machine to classify and diagnose the faults of the rolling bearing. The experimental results show that the algorithm can significantly improve the accuracy and speed of rolling-bearing fault classification. Combining fusion-encoding features with other intelligent classification methods, the classification results were improved.
To improve the accuracy of bearing fault diagnosis in a multisensor monitoring environment, it is necessary to obtain more accurate and effective fault classification features for bearings. Accordingly, a bearing fault classification feature extraction method based on multisensor fusion technology and an enhanced binary one-dimensional ternary pattern (EB-1D-TP) algorithm were proposed in this study. First, an optimal equalization weighting algorithm was established to realize high-precision fusion of bearing signals by introducing an optimal equalization factor and determining the theoretical optimal equalization factor value. Second, an enhanced binary encoding method similar to balanced ternary encoding was developed, which increases the difference between the different fault features of the bearing. Finally, the new sequence obtained after encoding was used as the input to a support vector machine to classify and diagnose the faults of the rolling bearing. The experimental results show that the algorithm can significantly improve the accuracy and speed of rolling-bearing fault classification. Combining fusion-encoding features with other intelligent classification methods, the classification results were improved.To improve the accuracy of bearing fault diagnosis in a multisensor monitoring environment, it is necessary to obtain more accurate and effective fault classification features for bearings. Accordingly, a bearing fault classification feature extraction method based on multisensor fusion technology and an enhanced binary one-dimensional ternary pattern (EB-1D-TP) algorithm were proposed in this study. First, an optimal equalization weighting algorithm was established to realize high-precision fusion of bearing signals by introducing an optimal equalization factor and determining the theoretical optimal equalization factor value. Second, an enhanced binary encoding method similar to balanced ternary encoding was developed, which increases the difference between the different fault features of the bearing. Finally, the new sequence obtained after encoding was used as the input to a support vector machine to classify and diagnose the faults of the rolling bearing. The experimental results show that the algorithm can significantly improve the accuracy and speed of rolling-bearing fault classification. Combining fusion-encoding features with other intelligent classification methods, the classification results were improved.
To improve the accuracy of bearing fault diagnosis in a multisensor monitoring environment, it is necessary to obtain more accurate and effective fault classification features for bearings. Accordingly, a bearing fault classification feature extraction method based on multisensor fusion technology and an enhanced binary one-dimensional ternary pattern (EB-1D-TP) algorithm were proposed in this study. First, an optimal equalization weighting algorithm was established to realize high-precision fusion of bearing signals by introducing an optimal equalization factor and determining the theoretical optimal equalization factor value. Second, an enhanced binary encoding method similar to balanced ternary encoding was developed, which increases the difference between the different fault features of the bearing. Finally, the new sequence obtained after encoding was used as the input to a support vector machine to classify and diagnose the faults of the rolling bearing. The experimental results show that the algorithm can significantly improve the accuracy and speed of rolling-bearing fault classification. Combining fusion-encoding features with other intelligent classification methods, the classification results were improved. •An optimized equalization random weighting algorithm is proposed.•A “Zero Removal” enhancement processing technique is proposed.•A new encoding method more suitable for one-dimensional signal is constructed.
Author Pan, Zuozhou
Wang, Yuebing
Zhang, Zhengyuan
Meng, Zong
Author_xml – sequence: 1
  givenname: Zuozhou
  surname: Pan
  fullname: Pan, Zuozhou
  organization: College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, PR China
– sequence: 2
  givenname: Zhengyuan
  surname: Zhang
  fullname: Zhang, Zhengyuan
  organization: College of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
– sequence: 3
  givenname: Zong
  orcidid: 0000-0002-8480-3235
  surname: Meng
  fullname: Meng, Zong
  email: mzysu@ysu.edu.cn
  organization: College of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, 066004, PR China
– sequence: 4
  givenname: Yuebing
  surname: Wang
  fullname: Wang, Yuebing
  email: wyb_1963@163.com
  organization: College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37573188$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAURi1URKeFN0DISzYJdpzEDguktpQfqRIsytpy7OsZj5y42E5FX4MnxpkpLFjA6kpX51zL33eGTuYwA0IvKakpof2bfe2SylHVDWlYTXhNaPcEbajgQ1VWzQnaEEKHinRcnKKzlPaEkKYbxDN0ynjHGRVig35e4Dncg8dWLT5j7VVKzjqtsgsztqDyEgHDj_KQPqwmyLtgsA0Rx-C9m7d4BBUPUyUweGXKKVclmFOh7JJWL4PezcGH7QNWs8HXlxV9X91-xTDrYFZb-W2ILu-m5-ipVT7Bi8d5jr59uL69-lTdfPn4-eriptKsb3Il2p5bLThpgXajMWoYmTbK9nbQXAsxGD2MfWuBKkaY0aI1ZuiZ6cq_e9JYdo5eH-_exfB9gZTl5JIG79UMYUmyER1hhLOGFfTVI7qMExh5F92k4oP8nWMB2iOgY0gpgv2DUCLXuuReHuuSa12ScFnqKtrbvzTt8iH6Qjr_P_ndUYYS0r2DKJN2JU4wLoLO0gT37wO_AFvote0
CitedBy_id crossref_primary_10_1016_j_compind_2024_104214
crossref_primary_10_1016_j_knosys_2023_110897
crossref_primary_10_1016_j_isatra_2024_12_046
crossref_primary_10_1016_j_engappai_2024_109358
crossref_primary_10_1016_j_measurement_2024_114823
crossref_primary_10_1016_j_aei_2024_102833
crossref_primary_10_32604_cmes_2024_046729
crossref_primary_10_1016_j_ymssp_2023_110726
crossref_primary_10_1109_TNNLS_2024_3383467
crossref_primary_10_3390_vibration7040054
crossref_primary_10_1088_1361_6501_adbd5d
crossref_primary_10_1088_1361_6501_ad78f1
crossref_primary_10_1016_j_ymssp_2025_112563
crossref_primary_10_1016_j_ress_2024_110746
crossref_primary_10_1016_j_measen_2024_101250
crossref_primary_10_1016_j_measurement_2024_115402
crossref_primary_10_3390_act12120468
crossref_primary_10_1002_eng2_12974
crossref_primary_10_1007_s11760_024_03171_8
crossref_primary_10_1109_TIP_2025_3526065
crossref_primary_10_1016_j_aei_2024_102366
crossref_primary_10_1109_ACCESS_2025_3572902
crossref_primary_10_1007_s12206_024_1010_3
crossref_primary_10_1088_1361_6501_adc028
crossref_primary_10_1177_14759217251350309
Cites_doi 10.1016/j.aei.2021.101445
10.1016/j.measurement.2021.110341
10.1016/j.ymssp.2017.09.018
10.1109/TII.2018.2864759
10.1016/j.ress.2021.108018
10.1016/j.neucom.2022.04.044
10.1016/j.asoc.2021.107563
10.1109/TIE.2016.2519325
10.1016/j.measurement.2021.110511
10.1016/j.isatra.2019.08.013
10.1016/j.ress.2021.108017
10.1016/j.ins.2013.11.031
10.1109/TIE.2017.2736510
10.1109/TIP.2010.2042645
10.1016/j.ress.2021.108179
10.1016/j.isatra.2022.02.015
10.1016/j.aei.2022.101844
10.1016/j.knosys.2021.107276
10.1016/j.ress.2020.107050
10.1016/j.isatra.2023.03.022
10.1016/j.tust.2019.103112
10.1109/TPAMI.2002.1017623
10.1016/j.ymssp.2021.108576
10.1016/j.knosys.2018.12.019
ContentType Journal Article
Copyright 2023 ISA
Copyright © 2023 ISA. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2023 ISA
– notice: Copyright © 2023 ISA. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.isatra.2023.07.015
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1879-2022
EndPage 444
ExternalDocumentID 37573188
10_1016_j_isatra_2023_07_015
S0019057823003221
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
6P2
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFDAS
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
T9H
TAE
TN5
UHS
UNMZH
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
NPM
7X8
ID FETCH-LOGICAL-c362t-8467fc8704e15bdda9b3cdaf6f9c7c889dc9b64fe1a303dc84dd963d5188602f3
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001111902300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0019-0578
1879-2022
IngestDate Sat Sep 27 20:01:05 EDT 2025
Wed Feb 19 02:22:39 EST 2025
Sat Nov 29 07:00:06 EST 2025
Tue Nov 18 22:42:16 EST 2025
Fri Feb 23 02:35:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Feature extraction
Multi-sensor fusion
EB-1D-TP encoding algorithm
Rolling bearing
Language English
License Copyright © 2023 ISA. Published by Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-8467fc8704e15bdda9b3cdaf6f9c7c889dc9b64fe1a303dc84dd963d5188602f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8480-3235
PMID 37573188
PQID 2850307323
PQPubID 23479
PageCount 18
ParticipantIDs proquest_miscellaneous_2850307323
pubmed_primary_37573188
crossref_primary_10_1016_j_isatra_2023_07_015
crossref_citationtrail_10_1016_j_isatra_2023_07_015
elsevier_sciencedirect_doi_10_1016_j_isatra_2023_07_015
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ISA transactions
PublicationTitleAlternate ISA Trans
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References He, Shao, Lin, Cheng, Yang (b3) 2020; 152
Zhao, Wang, Cai, Zhang, Wang (b1) 2022; 188
Zhang, Huang, Liao, Song, Shi, Jiang, Shen, Zhu (b7) 2022; 167
Chen, Chen, Xu, Zhang, Ma, Mao (b16) 2022; 187
Zhao, Liu, Du, Wang Z. Miao (b9) 2023; 55
Wang, Li, Yao, Cai, Lin, Zhang, Dong (b8) 2023
Wang, Xin, Xu, Qin, He (b12) 2022; 492
Shao, McAleer, Yan, Baldi (b31) 2019; 15
Qin (b4) 2018; 65
Wang, Zheng, Wang (b18) 2019; 94
Wang, Li, Yao, Qi, Zhang (b21) 2021; 228
Luo, Xie, Zhang, Li (b27) 2015
Yu, Fang (b6) 2022; 129
Li, Zhong, Shao, Han, Shen (b15) 2021; 216
Tran, Liu, Elsisi (b14) 2021
Jia, Zhao, Di, Li, Lee (b20) 2018; 102
Han, Liu, Yang, Jiang (b29) 2019; 165
Zhou, Li, Liu, Chen (b5) 2019; 97
Melih, Kaplan, Mehmet, Yilmaz, Metin (b24) 2019; 100
Wang, Shen, Xia, Wang, Zhu, Zhu (b2) 2020; 202
Lei, Jia, Lin, Xing, Ding (b19) 2016; 63
Pan, Xu, Zheng, Su, Tong (b28) 2022; 51
Guan, Meng, Sun, Liu F. Fan (b17) 2021; 216
Tan, Triggs (b23) 2010; 19
Fu, Cao, Chen, Ding (b26) 2022
Ye, Yan, Chen, Jia (b30) 2022; 202
Bigdeli, Pahlavani, Amirkolaee (b13) 2021; 110
Zhu, Wu, Wu, Liu (b10) 2022; 218
Ba-Alawi, Nam, Heo, Woo, Aamer, Yoo (b11) 2022; 452
Ojala, Pietikainen, Maenpaa (b22) 2002; 24
Gao, Zhong, Gu, Shirinzadeh (b25) 2014; 263
Gao (10.1016/j.isatra.2023.07.015_b25) 2014; 263
Ye (10.1016/j.isatra.2023.07.015_b30) 2022; 202
Guan (10.1016/j.isatra.2023.07.015_b17) 2021; 216
Chen (10.1016/j.isatra.2023.07.015_b16) 2022; 187
Ojala (10.1016/j.isatra.2023.07.015_b22) 2002; 24
Yu (10.1016/j.isatra.2023.07.015_b6) 2022; 129
Zhao (10.1016/j.isatra.2023.07.015_b1) 2022; 188
Luo (10.1016/j.isatra.2023.07.015_b27) 2015
Fu (10.1016/j.isatra.2023.07.015_b26) 2022
Pan (10.1016/j.isatra.2023.07.015_b28) 2022; 51
Han (10.1016/j.isatra.2023.07.015_b29) 2019; 165
Bigdeli (10.1016/j.isatra.2023.07.015_b13) 2021; 110
Wang (10.1016/j.isatra.2023.07.015_b2) 2020; 202
Shao (10.1016/j.isatra.2023.07.015_b31) 2019; 15
Li (10.1016/j.isatra.2023.07.015_b15) 2021; 216
Qin (10.1016/j.isatra.2023.07.015_b4) 2018; 65
Ba-Alawi (10.1016/j.isatra.2023.07.015_b11) 2022; 452
Wang (10.1016/j.isatra.2023.07.015_b18) 2019; 94
Zhou (10.1016/j.isatra.2023.07.015_b5) 2019; 97
Tan (10.1016/j.isatra.2023.07.015_b23) 2010; 19
Tran (10.1016/j.isatra.2023.07.015_b14) 2021
Wang (10.1016/j.isatra.2023.07.015_b12) 2022; 492
Zhu (10.1016/j.isatra.2023.07.015_b10) 2022; 218
Lei (10.1016/j.isatra.2023.07.015_b19) 2016; 63
Jia (10.1016/j.isatra.2023.07.015_b20) 2018; 102
Wang (10.1016/j.isatra.2023.07.015_b8) 2023
Wang (10.1016/j.isatra.2023.07.015_b21) 2021; 228
He (10.1016/j.isatra.2023.07.015_b3) 2020; 152
Zhang (10.1016/j.isatra.2023.07.015_b7) 2022; 167
Melih (10.1016/j.isatra.2023.07.015_b24) 2019; 100
Zhao (10.1016/j.isatra.2023.07.015_b9) 2023; 55
References_xml – volume: 202
  year: 2020
  ident: b2
  article-title: Multi-scale deep intra-class transfer learning for bearing fault diagnosis
  publication-title: Reliab Eng Syst Safe
– volume: 129
  start-page: 442
  year: 2022
  end-page: 458
  ident: b6
  article-title: Feature extraction of rolling bearing multiple faults based on correlation coefficient and hjorth parameter
  publication-title: ISA Trans
– volume: 55
  year: 2023
  ident: b9
  article-title: Deep branch attention network and extreme multi-scale entropy based single vibration signal-driven variable speed fault diagnosis scheme for rolling bearing
  publication-title: Adv Eng Inf
– volume: 110
  year: 2021
  ident: b13
  article-title: An ensemble deep learning method as data fusion system for remote sensing multisensor classification
  publication-title: Appl Soft Comput
– volume: 63
  start-page: 3137
  year: 2016
  end-page: 3147
  ident: b19
  article-title: An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data
  publication-title: IEEE Trans Ind Electron
– volume: 102
  start-page: 198
  year: 2018
  end-page: 213
  ident: b20
  article-title: Sparse filtering with the generalized lp/lq norm and its applications to the condition monitoring of rotating machinery
  publication-title: Mech Syst Signal Process
– volume: 216
  year: 2021
  ident: b17
  article-title: 2MNet: Multi-sensor and multi-scale model toward accurate fault diagnosis of rolling bearing
  publication-title: Reliab Eng Syst Safe
– volume: 19
  start-page: 1635
  year: 2010
  end-page: 1650
  ident: b23
  article-title: Enhanced local texture feature sets for face recognition under difficult-lighting conditions
  publication-title: IEEE Trans Image Process
– volume: 263
  start-page: 36
  year: 2014
  end-page: 42
  ident: b25
  article-title: Weak convergence for random weighting estimation of smoothed quantile processes
  publication-title: Inf Sci
– year: 2023
  ident: b8
  article-title: Intelligent fault detection scheme for constant-speed wind turbines based on improved multiscale fuzzy entropy and adaptive chaotic aquila optimization-based support vector machine
  publication-title: ISA Trans
– volume: 188
  year: 2022
  ident: b1
  article-title: Multiscale inverted residual convolutional neural network for intelligent diagnosis of bearings under variable load condition
  publication-title: Measurement
– volume: 51
  year: 2022
  ident: b28
  article-title: Multi-class fuzzy support matrix machine for classification in roller bearing fault diagnosis
  publication-title: Adv Eng Inform
– volume: 228
  year: 2021
  ident: b21
  article-title: Data-driven fault diagnosis for wind turbines using modified multiscale fluctuation dispersion entropy and cosine pairwise-constrained supervised manifold mapping
  publication-title: Knowl Based Syst
– volume: 165
  start-page: 474
  year: 2019
  end-page: 487
  ident: b29
  article-title: A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults
  publication-title: Knowl-Based Syst
– volume: 452
  year: 2022
  ident: b11
  article-title: Explainable multisensor fusion-based automatic reconciliation and imputation of faulty and missing data in membrane bioreactor plants for fouling alleviation and energy saving
  publication-title: Chem Eng J
– start-page: 938
  year: 2015
  end-page: 947
  ident: b27
  article-title: Support matrix machines
  publication-title: International conference on machine learning, Vol. 37
– volume: 202
  year: 2022
  ident: b30
  article-title: Intelligent fault diagnosis of rolling bearing using variational mode extraction and improved one-dimensional convolutional neural network
  publication-title: Appl Acoust
– volume: 218
  year: 2022
  ident: b10
  article-title: Dimensionality reduce-based for remaining useful life prediction of machining tools with multisensor fusion
  publication-title: Reliab Eng Syst Safe
– volume: 216
  year: 2021
  ident: b15
  article-title: Multi-sensor gearbox fault diagnosis by using feature-fusion covariance matrix and multi-Riemannian kernel ridge regression
  publication-title: Reliab Eng Syst Safe
– volume: 152
  year: 2020
  ident: b3
  article-title: Transfer fault diagnosis of bearing installed in different machines using enhanced deep auto-encoder
  publication-title: Measurement
– volume: 94
  year: 2019
  ident: b18
  article-title: Development and application of a goaf-safety monitoring system using multi-sensor information fusion
  publication-title: Tunn Undergr Sp Tech
– volume: 15
  start-page: 2446
  year: 2019
  end-page: 2455
  ident: b31
  article-title: Highly accurate machine fault diagnosis using deep transfer learning
  publication-title: IEEE Trans Ind Inform
– year: 2021
  ident: b14
  article-title: Effective multi-sensor data fusion for chatter detection in milling process
  publication-title: ISA Trans
– volume: 492
  start-page: 234
  year: 2022
  end-page: 244
  ident: b12
  article-title: Mix-VAEs: A novel multisensor information fusion model for intelligent fault diagnosis
  publication-title: Neurocomputing
– volume: 24
  start-page: 971
  year: 2002
  end-page: 987
  ident: b22
  article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
  publication-title: IEEE Trans Pattern Anal
– volume: 167
  year: 2022
  ident: b7
  article-title: Bearing fault diagnosis via generalized logarithm sparse regularization
  publication-title: Mech Syst Signal Process
– volume: 187
  year: 2022
  ident: b16
  article-title: Research on attitude monitoring method of advanced hydraulic support based on multi-sensor fusion
  publication-title: Measurement
– volume: 97
  start-page: 143
  year: 2019
  end-page: 154
  ident: b5
  article-title: A weak fault feature extraction of rolling element bearing based on attenuated cosine dictionaries and sparse feature sign search
  publication-title: ISA Trans
– volume: 65
  start-page: 2716
  year: 2018
  end-page: 2726
  ident: b4
  article-title: A new family of model-based impulsive wavelets and their sparse representation for rolling bearing fault diagnosis
  publication-title: IEEE Trans Ind Electron
– volume: 100
  start-page: 346
  year: 2019
  end-page: 357
  ident: b24
  article-title: A novel feature extraction method for bearing fault classification with one dimensional ternary patterns
  publication-title: ISA Trans
– year: 2022
  ident: b26
  article-title: Improved broad learning system for machinery intelligent fault diagnosis with increasing fault samples, fault modes, and running conditions
  publication-title: ISA Trans
– volume: 51
  year: 2022
  ident: 10.1016/j.isatra.2023.07.015_b28
  article-title: Multi-class fuzzy support matrix machine for classification in roller bearing fault diagnosis
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2021.101445
– volume: 100
  start-page: 346
  year: 2019
  ident: 10.1016/j.isatra.2023.07.015_b24
  article-title: A novel feature extraction method for bearing fault classification with one dimensional ternary patterns
  publication-title: ISA Trans
– volume: 187
  year: 2022
  ident: 10.1016/j.isatra.2023.07.015_b16
  article-title: Research on attitude monitoring method of advanced hydraulic support based on multi-sensor fusion
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110341
– volume: 102
  start-page: 198
  year: 2018
  ident: 10.1016/j.isatra.2023.07.015_b20
  article-title: Sparse filtering with the generalized lp/lq norm and its applications to the condition monitoring of rotating machinery
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.09.018
– volume: 452
  year: 2022
  ident: 10.1016/j.isatra.2023.07.015_b11
  article-title: Explainable multisensor fusion-based automatic reconciliation and imputation of faulty and missing data in membrane bioreactor plants for fouling alleviation and energy saving
  publication-title: Chem Eng J
– volume: 15
  start-page: 2446
  issue: 4
  year: 2019
  ident: 10.1016/j.isatra.2023.07.015_b31
  article-title: Highly accurate machine fault diagnosis using deep transfer learning
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2018.2864759
– volume: 216
  year: 2021
  ident: 10.1016/j.isatra.2023.07.015_b15
  article-title: Multi-sensor gearbox fault diagnosis by using feature-fusion covariance matrix and multi-Riemannian kernel ridge regression
  publication-title: Reliab Eng Syst Safe
  doi: 10.1016/j.ress.2021.108018
– year: 2021
  ident: 10.1016/j.isatra.2023.07.015_b14
  article-title: Effective multi-sensor data fusion for chatter detection in milling process
  publication-title: ISA Trans
– year: 2022
  ident: 10.1016/j.isatra.2023.07.015_b26
  article-title: Improved broad learning system for machinery intelligent fault diagnosis with increasing fault samples, fault modes, and running conditions
  publication-title: ISA Trans
– volume: 492
  start-page: 234
  year: 2022
  ident: 10.1016/j.isatra.2023.07.015_b12
  article-title: Mix-VAEs: A novel multisensor information fusion model for intelligent fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.04.044
– volume: 110
  year: 2021
  ident: 10.1016/j.isatra.2023.07.015_b13
  article-title: An ensemble deep learning method as data fusion system for remote sensing multisensor classification
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107563
– volume: 63
  start-page: 3137
  year: 2016
  ident: 10.1016/j.isatra.2023.07.015_b19
  article-title: An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2016.2519325
– volume: 202
  year: 2022
  ident: 10.1016/j.isatra.2023.07.015_b30
  article-title: Intelligent fault diagnosis of rolling bearing using variational mode extraction and improved one-dimensional convolutional neural network
  publication-title: Appl Acoust
– volume: 188
  year: 2022
  ident: 10.1016/j.isatra.2023.07.015_b1
  article-title: Multiscale inverted residual convolutional neural network for intelligent diagnosis of bearings under variable load condition
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110511
– volume: 97
  start-page: 143
  year: 2019
  ident: 10.1016/j.isatra.2023.07.015_b5
  article-title: A weak fault feature extraction of rolling element bearing based on attenuated cosine dictionaries and sparse feature sign search
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2019.08.013
– volume: 216
  year: 2021
  ident: 10.1016/j.isatra.2023.07.015_b17
  article-title: 2MNet: Multi-sensor and multi-scale model toward accurate fault diagnosis of rolling bearing
  publication-title: Reliab Eng Syst Safe
  doi: 10.1016/j.ress.2021.108017
– volume: 263
  start-page: 36
  year: 2014
  ident: 10.1016/j.isatra.2023.07.015_b25
  article-title: Weak convergence for random weighting estimation of smoothed quantile processes
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2013.11.031
– volume: 65
  start-page: 2716
  issue: 3
  year: 2018
  ident: 10.1016/j.isatra.2023.07.015_b4
  article-title: A new family of model-based impulsive wavelets and their sparse representation for rolling bearing fault diagnosis
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2017.2736510
– volume: 19
  start-page: 1635
  issue: 6
  year: 2010
  ident: 10.1016/j.isatra.2023.07.015_b23
  article-title: Enhanced local texture feature sets for face recognition under difficult-lighting conditions
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2010.2042645
– volume: 218
  year: 2022
  ident: 10.1016/j.isatra.2023.07.015_b10
  article-title: Dimensionality reduce-based for remaining useful life prediction of machining tools with multisensor fusion
  publication-title: Reliab Eng Syst Safe
  doi: 10.1016/j.ress.2021.108179
– volume: 152
  year: 2020
  ident: 10.1016/j.isatra.2023.07.015_b3
  article-title: Transfer fault diagnosis of bearing installed in different machines using enhanced deep auto-encoder
  publication-title: Measurement
– volume: 129
  start-page: 442
  year: 2022
  ident: 10.1016/j.isatra.2023.07.015_b6
  article-title: Feature extraction of rolling bearing multiple faults based on correlation coefficient and hjorth parameter
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2022.02.015
– volume: 55
  year: 2023
  ident: 10.1016/j.isatra.2023.07.015_b9
  article-title: Deep branch attention network and extreme multi-scale entropy based single vibration signal-driven variable speed fault diagnosis scheme for rolling bearing
  publication-title: Adv Eng Inf
  doi: 10.1016/j.aei.2022.101844
– volume: 228
  year: 2021
  ident: 10.1016/j.isatra.2023.07.015_b21
  article-title: Data-driven fault diagnosis for wind turbines using modified multiscale fluctuation dispersion entropy and cosine pairwise-constrained supervised manifold mapping
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2021.107276
– start-page: 938
  year: 2015
  ident: 10.1016/j.isatra.2023.07.015_b27
  article-title: Support matrix machines
– volume: 202
  year: 2020
  ident: 10.1016/j.isatra.2023.07.015_b2
  article-title: Multi-scale deep intra-class transfer learning for bearing fault diagnosis
  publication-title: Reliab Eng Syst Safe
  doi: 10.1016/j.ress.2020.107050
– year: 2023
  ident: 10.1016/j.isatra.2023.07.015_b8
  article-title: Intelligent fault detection scheme for constant-speed wind turbines based on improved multiscale fuzzy entropy and adaptive chaotic aquila optimization-based support vector machine
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2023.03.022
– volume: 94
  year: 2019
  ident: 10.1016/j.isatra.2023.07.015_b18
  article-title: Development and application of a goaf-safety monitoring system using multi-sensor information fusion
  publication-title: Tunn Undergr Sp Tech
  doi: 10.1016/j.tust.2019.103112
– volume: 24
  start-page: 971
  issue: 7
  year: 2002
  ident: 10.1016/j.isatra.2023.07.015_b22
  article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
  publication-title: IEEE Trans Pattern Anal
  doi: 10.1109/TPAMI.2002.1017623
– volume: 167
  year: 2022
  ident: 10.1016/j.isatra.2023.07.015_b7
  article-title: Bearing fault diagnosis via generalized logarithm sparse regularization
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2021.108576
– volume: 165
  start-page: 474
  year: 2019
  ident: 10.1016/j.isatra.2023.07.015_b29
  article-title: A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.12.019
SSID ssj0002598
Score 2.4659612
Snippet To improve the accuracy of bearing fault diagnosis in a multisensor monitoring environment, it is necessary to obtain more accurate and effective fault...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 427
SubjectTerms EB-1D-TP encoding algorithm
Feature extraction
Multi-sensor fusion
Rolling bearing
Title A novel fault classification feature extraction method for rolling bearing based on multi-sensor fusion technology and EB-1D-TP encoding algorithm
URI https://dx.doi.org/10.1016/j.isatra.2023.07.015
https://www.ncbi.nlm.nih.gov/pubmed/37573188
https://www.proquest.com/docview/2850307323
Volume 142
WOSCitedRecordID wos001111902300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2022
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002598
  issn: 0019-0578
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKxwM8IDZgbMBkJB5AUVDz7TwGKGIITZVWpLKXKLGddVOWTGlSDf4KxF_M-SstVNMAiZe0ch0n6f3iO5_vfofQizCnlDBBj-f4ru3ntLCJ7wc28ULuhV6WO1yy63-Kjo7IbBZPBoPvJhdmWUZVRa6u4sv_KmpoA2GL1Nm_EHc_KDTAdxA6HEHscPwjwSdWVS95aRVZV7YWFdaxCAfSQYVcEnlaMCU3ukq4qiEtww0bzdCdw38iP0HFMbGdIMMO7QUseaFX0QkPm9X2Tnm5ATF-Yzvv7OnEEsyYMlMmK0_r5qydX6wbwIfHiShLYWqU9xb9RDliT7r627zuNtzZJ3NenX7tVlAW0bjyh1qrXrkpoNq-dDw3Glk7NFxPZ_b1XjaTabMKa5Izt0i2ClS5n9dcTdYkikH0Kq95QxUor8S5jIpqBMOU60maVpU9-hvJ9rEYXwwPK7IRzHGwnt5yoyAmQ7SVHI5nH3vtDstFrd3V_Zh0TBkzuHmt68yd65Yz0qyZ3kf39HoEJwpH22jAqx10d42lcgdt6_l_gV9qkvJXD9CPBEuYYQkz_CvMsIYZXsEMK5hhgBnWMMMaZljCDIs-azDDCmZ4BTMMMMMGZtjADPcwe4g-vx9P336wdX0Pm4LZ1NrC9C0oKAyfO0HOWBbnHmVZERYxjSghMaNxHvoFdzIwtBglPmOgL5jgEAxHbuE9QsOqrvhjhEnsh5QxmhFCYTROKFhmzoj6rhNmpPD2kGfEkFJNfi9qsJSpiXI8T5XwUiG8dBSlILw9ZPdnXSrylxv6R0bCqTZglWGaAihvOPO5AUQK87vYtMsqXneL1CWB1MMuPMOuQkp_L14URKCTyf4_X_cJurN6BZ-iYdt0_Bm6TZft2aI5QLeiGTnQb8BPqUXcUQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+fault+classification+feature+extraction+method+for+rolling+bearing+based+on+multi-sensor+fusion+technology+and+EB-1D-TP+encoding+algorithm&rft.jtitle=ISA+transactions&rft.au=Pan%2C+Zuozhou&rft.au=Zhang%2C+Zhengyuan&rft.au=Meng%2C+Zong&rft.au=Wang%2C+Yuebing&rft.date=2023-11-01&rft.pub=Elsevier+Ltd&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016%2Fj.isatra.2023.07.015&rft.externalDocID=S0019057823003221
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-0578&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-0578&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-0578&client=summon