A monetary policy prediction model based on deep learning

Applying neural network and error t-value test, this study trains and analyzes 28 interest rate changes of China’s macro-monetary policy and the mutual influences between reserve adjustments and financial markets for 51 times from 2000 to 2018 according to the data correlation between financial mark...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications Jg. 32; H. 10; S. 5649 - 5668
1. Verfasser: Lu, Minrong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer London 01.05.2020
Springer Nature B.V
Schlagworte:
ISSN:0941-0643, 1433-3058
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Applying neural network and error t-value test, this study trains and analyzes 28 interest rate changes of China’s macro-monetary policy and the mutual influences between reserve adjustments and financial markets for 51 times from 2000 to 2018 according to the data correlation between financial market and monetary policy. Through the principal component analysis, the bilateral financial risk system and data set are established, and the data set pre-process and dimensionality reduction are carried out to extract the most informative features. Six training cases are designed with processed features, and then the cases are input to each neural network model for combined prediction. Firstly, based on backpropagation neural network (BP), the forecasting model of monetary policy is established. Then, considering the importance characteristics of financial index data, expert weights based on BP, are introduced to propose weights backpropagation (WBP) model. On the basis of the timing characteristics of financial market, the WBP model is improved and the timing weights backpropagation (TWBP) model is proposed. Experiments show that different training cases bring out various effects. The accuracy rate of interest rate and reserve change value is lower than the original value after training. The mutation after data processing affects the learning of neural network. At the same time, the WBP and TWBP models improve according to the importance and timing characteristics of financial indicators have less errors in results, and the TWBP model has higher accuracy. When the number of hidden layers is 3, good results can be obtained, but in manifold training of the timing cycle, the efficiency of that is not as good as the WBP model.
AbstractList Applying neural network and error t-value test, this study trains and analyzes 28 interest rate changes of China’s macro-monetary policy and the mutual influences between reserve adjustments and financial markets for 51 times from 2000 to 2018 according to the data correlation between financial market and monetary policy. Through the principal component analysis, the bilateral financial risk system and data set are established, and the data set pre-process and dimensionality reduction are carried out to extract the most informative features. Six training cases are designed with processed features, and then the cases are input to each neural network model for combined prediction. Firstly, based on backpropagation neural network (BP), the forecasting model of monetary policy is established. Then, considering the importance characteristics of financial index data, expert weights based on BP, are introduced to propose weights backpropagation (WBP) model. On the basis of the timing characteristics of financial market, the WBP model is improved and the timing weights backpropagation (TWBP) model is proposed. Experiments show that different training cases bring out various effects. The accuracy rate of interest rate and reserve change value is lower than the original value after training. The mutation after data processing affects the learning of neural network. At the same time, the WBP and TWBP models improve according to the importance and timing characteristics of financial indicators have less errors in results, and the TWBP model has higher accuracy. When the number of hidden layers is 3, good results can be obtained, but in manifold training of the timing cycle, the efficiency of that is not as good as the WBP model.
Author Lu, Minrong
Author_xml – sequence: 1
  givenname: Minrong
  orcidid: 0000-0002-8398-3641
  surname: Lu
  fullname: Lu, Minrong
  email: 1698030620181@fjjxu.edu.cn
  organization: School of Accounting, Fujian Jiangxia University
BookMark eNp9kE1rwzAMhs3oYGm3P7BTYOdstmU78bGUfUFhl-1sHEcuKWmS2elh_37uMhjs0IuEkB5J77ski37okZBbRu8ZpeVDpFRyVlCmCyogRXZBMiYACqCyWpCMapHaSsAVWca4p5QKVcmM6HV-SKsmG77ycehal1LApnVTO_Sp1WCX1zZik6eyQRzzDm3o2353TS697SLe_OYV-Xh6fN-8FNu359fNels4UHwqKpBOCOmhlFDX6LGCxpWlKrXX3ivH0TmmOZWlr53yHD2zwnJvUWlg4GFF7ua9Yxg-jxgnsx-OoU8nDQetZCWSqjTF5ykXhhgDejOG9pBUGUbNySIzW2SSRebHIsMSVP2DXDvZk_Ip2LY7j8KMxnSn32H4--oM9Q0KxXyH
CitedBy_id crossref_primary_10_1007_s10614_021_10229_z
crossref_primary_10_1155_2022_7352489
crossref_primary_10_1109_ACCESS_2024_3367228
crossref_primary_10_1016_j_jpolmod_2022_08_002
crossref_primary_10_1016_j_procs_2024_09_127
crossref_primary_10_1080_10971475_2024_2319412
crossref_primary_10_1155_2022_3062566
crossref_primary_10_1155_2022_1921463
Cites_doi 10.1109/TPDS.2018.2877359
10.1016/j.ins.2014.02.122
10.1109/TPDS.2014.2308221
10.1109/TPDS.2018.2871189
10.1109/TPDS.2019.2907537
10.1007/s10479-016-2113-8
10.1016/j.ijforecast.2010.02.015
10.1016/j.knosys.2012.05.003
10.1016/j.jfs.2013.01.004
10.1016/j.eneco.2016.11.016
10.1016/j.ins.2018.06.045
10.1162/089976699300016340
10.1109/TPDS.2013.270
10.3938/jkps.71.444
10.1109/TPDS.2016.2603511
10.1109/MSP.2017.2663138
10.1109/TEVC.2008.928176
10.1162/neco.2008.11-07-647
10.1016/j.camwa.2010.08.054
10.1111/j.1540-5915.1998.tb01582.x
10.1007/s10489-018-1308-x
10.1111/jofi.12521
10.1016/j.chaos.2018.01.008
10.1111/risa.12801
10.1016/j.neunet.2011.12.004
10.1109/TPDS.2014.2385698
10.1080/07350015.1990.10509779
10.1007/s11071-014-1455-5
10.1126/science.1248506
10.1038/nature14539
10.2307/3215342
10.1109/TFUZZ.2012.2226890
10.1109/INMIC.2005.334420
10.3390/su10103765
10.1016/j.knosys.2005.11.015
10.1016/j.jedc.2016.01.003
10.1016/j.ecolecon.2018.05.011
10.1109/TII.2019.2909473
10.1109/ICASSP.2013.6639346
10.1007/s00521-015-1848-5
10.1109/TCBB.2018.2868088
10.1057/palgrave.jors.2601415
10.1126/science.1243089
10.1007/s10489-006-0001-7
10.1016/j.ins.2014.09.038
10.1016/j.ins.2017.04.028
10.1016/j.neunet.2017.03.004
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2019
Springer-Verlag London Ltd., part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2019
– notice: Springer-Verlag London Ltd., part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-019-04319-1
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 5668
ExternalDocumentID 10_1007_s00521_019_04319_1
GrantInformation_xml – fundername: Project of Fujian Social Science Planning and Research
  grantid: JXY201801-08; JXY201801-05
– fundername: Major Project of Fujian Provincial Social Science
  grantid: FJ2018JDZ014
– fundername: Department of Education, Fujian Province
  grantid: JZ180190
  funderid: http://dx.doi.org/10.13039/501100003410
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c362t-835c445f3753bbefe83dc77679f9ff6c2ecc192057fbc6f2ef1a4a2fae69313f3
IEDL.DBID RSV
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000529745200029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Wed Nov 05 01:50:35 EST 2025
Tue Nov 18 21:09:26 EST 2025
Sat Nov 29 02:59:12 EST 2025
Fri Feb 21 02:35:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Monetary policy
Neural network
Financial risks
Time series
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-835c445f3753bbefe83dc77679f9ff6c2ecc192057fbc6f2ef1a4a2fae69313f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8398-3641
PQID 2396584643
PQPubID 2043988
PageCount 20
ParticipantIDs proquest_journals_2396584643
crossref_primary_10_1007_s00521_019_04319_1
crossref_citationtrail_10_1007_s00521_019_04319_1
springer_journals_10_1007_s00521_019_04319_1
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Chen, Li, Tang, Yu, Li (CR22) 2017; 28
Lazer, Kennedy, King (CR23) 2014; 343
Yu-Hui, Wei, Shou-Ning (CR42) 2010; 3
Kayalar, Küçüközmen, Selcuk-Kestel (CR10) 2017; 61
Zhang, Wang (CR18) 2017; 34
Yuming, Li, He, Zhang, Li (CR14) 2015; 26
Fratianni, Marchionne (CR35) 2013; 9
Li, Chiang (CR9) 2013; 21
CR33
CR30
Chiu, Pun, Wong (CR24) 2017; 37
Ebrahimpour, Nikoo, Masoudnia (CR27) 2011; 27
Jie, Wang (CR47) 2017; 90
Xiao, Li, Li (CR48) 2017; 405
Antipov, Meade (CR8) 2002; 53
Asadi, Hadavandi, Mehmanpazir (CR41) 2012; 35
Ganda (CR12) 2019; 5
Lecun, Bengio, Hinton (CR38) 2015; 521
Mandic, Chambers (CR56) 1999; 11
Chen, Li, Bilal, Zhou, Li, Yu (CR29) 2018; 30
CR43
Desai, Bharati (CR49) 2010; 29
Yu, Chen, Wang (CR26) 2009; 13
Li, Tang, Li (CR7) 2014; 25
Li, Yang, Li (CR21) 2015; 26
Qian, Rasheed (CR34) 2007; 26
Yuming, Li, Jingtong, Li (CR11) 2014; 270
CR15
CR13
Lin, Shang, Zhou (CR51) 2014; 78
CR54
CR53
CR52
Araújo (CR19) 2012; 28
CR50
Lin, Sun, Yu (CR3) 2018; 262
Song, Lee, Lee (CR39) 2018; 49
Wu, Lu (CR37) 2010; 60
Chung, Shin (CR20) 2010; 10
Lengnick, Wohltmann (CR4) 2016; 64
Chen, Chen (CR28) 2015; 294
Dafermos, Nikolaidi, Galanis (CR5) 2018; 152
Einav, Levin (CR17) 2014; 346
CR25
Patwary, Lee, Nobi (CR36) 2017; 71
Pang, Zhou, Pan (CR40) 2018; 1
Cao, Long, Chao (CR32) 2015; 26
Maknickiené, Maknickas (CR46) 2013; 14
O’Connor, Madden (CR44) 2006; 19
Platen, Rebolledo (CR6) 1996; 33
Bengio, Delalleau (CR31) 2009; 21
Black, Devereux, Lundborg (CR1) 2017; 72
Chen, Li, Yang, Xiao, Xie, Li (CR45) 2019; 30
Riccioni, Cerqueti (CR2) 2018; 107
Leshno, Lin, Pinkus (CR55) 1991; 6
Chen, Tiao (CR16) 1990; 8
EMH Lin (4319_CR3) 2018; 262
R Ebrahimpour (4319_CR27) 2011; 27
Kenli Li (4319_CR7) 2014; 25
L Yu (4319_CR26) 2009; 13
L Einav (4319_CR17) 2014; 346
Xu Yuming (4319_CR14) 2015; 26
4319_CR33
XPS Zhang (4319_CR18) 2017; 34
4319_CR30
Kenli Li (4319_CR21) 2015; 26
Yuedan Chen (4319_CR45) 2019; 30
VS Desai (4319_CR49) 2010; 29
M Lengnick (4319_CR4) 2016; 64
C Li (4319_CR9) 2013; 21
Y Dafermos (4319_CR5) 2018; 152
N Maknickiené (4319_CR46) 2013; 14
M Leshno (4319_CR55) 1991; 6
Jianguo Chen (4319_CR29) 2018; 30
4319_CR25
A Antipov (4319_CR8) 2002; 53
Y Bengio (4319_CR31) 2009; 21
MY Chen (4319_CR28) 2015; 294
RDA Araújo (4319_CR19) 2012; 28
Jianguo Chen (4319_CR22) 2017; 28
T Yu-Hui (4319_CR42) 2010; 3
N O’Connor (4319_CR44) 2006; 19
4319_CR50
SE Black (4319_CR1) 2017; 72
Y Lecun (4319_CR38) 2015; 521
4319_CR54
S Asadi (4319_CR41) 2012; 35
D Lazer (4319_CR23) 2014; 343
MC Chiu (4319_CR24) 2017; 37
4319_CR52
4319_CR53
DP Mandic (4319_CR56) 1999; 11
4319_CR15
Xu Yuming (4319_CR11) 2014; 270
4319_CR13
EU Patwary (4319_CR36) 2017; 71
Z Cao (4319_CR32) 2015; 26
E Platen (4319_CR6) 1996; 33
X Pang (4319_CR40) 2018; 1
DE Kayalar (4319_CR10) 2017; 61
Y Song (4319_CR39) 2018; 49
H Chung (4319_CR20) 2010; 10
Guoqing Xiao (4319_CR48) 2017; 405
X Wu (4319_CR37) 2010; 60
J Riccioni (4319_CR2) 2018; 107
4319_CR43
C Chen (4319_CR16) 1990; 8
B Qian (4319_CR34) 2007; 26
F Ganda (4319_CR12) 2019; 5
M Fratianni (4319_CR35) 2013; 9
W Jie (4319_CR47) 2017; 90
A Lin (4319_CR51) 2014; 78
References_xml – volume: 72
  start-page: 100
  issue: 5
  year: 2017
  end-page: 105
  ident: CR1
  article-title: On the origins of risk-taking in financial markets
  publication-title: J Financ
– volume: 343
  start-page: 1203
  issue: 6176
  year: 2014
  ident: CR23
  article-title: Big data. the parable of google flu: traps in big data analysis
  publication-title: Science
– volume: 30
  start-page: 965
  issue: 5
  year: 2018
  end-page: 976
  ident: CR29
  article-title: A bi-layered parallel training architecture for large-scale convolutional neural networks
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2018.2877359
– volume: 107
  start-page: 186
  year: 2018
  end-page: 194
  ident: CR2
  article-title: Regular paths in financial markets: investigating the benford’s law
  publication-title: Chaos Solitons Fractals
– volume: 11
  start-page: 1069
  issue: 5
  year: 1999
  end-page: 1077
  ident: CR56
  article-title: Relating the slope of the activation function and the learning rate within a recurrent neural network
  publication-title: Neural Comput
– volume: 34
  start-page: 14
  issue: 3
  year: 2017
  end-page: 35
  ident: CR18
  article-title: Signal processing for finance, economics, and marketing: concepts, framework, and big data applications
  publication-title: IEEE Signal Process Mag
– volume: 53
  start-page: 953
  issue: 9
  year: 2002
  end-page: 960
  ident: CR8
  article-title: Forecasting call frequency at a financial services call centre
  publication-title: J Oper Res Soc
– volume: 270
  start-page: 255
  year: 2014
  end-page: 287
  ident: CR11
  article-title: A genetic algorithm for task scheduling on heterogeneous computing systems using multiple priority queues
  publication-title: Inf Sci
– volume: 21
  start-page: 1601
  issue: 6
  year: 2009
  ident: CR31
  article-title: Justifying and generalizing contrastive divergence
  publication-title: Neural Comput
– ident: CR54
– volume: 33
  start-page: 601
  issue: 3
  year: 1996
  end-page: 613
  ident: CR6
  article-title: Principles for modelling financial markets
  publication-title: J Appl Probab
– volume: 3
  start-page: 442
  year: 2010
  end-page: 445
  ident: CR42
  article-title: Research on stock quotation based on improved rough lattice model
  publication-title: IEEE
– volume: 61
  start-page: 162
  year: 2017
  end-page: 173
  ident: CR10
  article-title: The impact of crude oil prices on financial market indicators: copula approach
  publication-title: Energy Econ
– ident: CR25
– volume: 6
  start-page: 861
  issue: 6
  year: 1991
  end-page: 867
  ident: CR55
  article-title: Original contribution: multilayer feedforward networks with a nonpolynomial activation function can approximate any function
  publication-title: Neural Comput
– volume: 35
  start-page: 245
  issue: 15
  year: 2012
  end-page: 258
  ident: CR41
  article-title: Hybridization of evolutionary levenberg-marquardt neural networks and data pre-processing for stock market prediction
  publication-title: Knowledge-Based Syst
– volume: 27
  start-page: 804
  issue: 3
  year: 2011
  end-page: 816
  ident: CR27
  article-title: Mixture of mlp-experts for trend forecasting of time series: a case study of the tehran stock exchange
  publication-title: Int J Forecast
– volume: 26
  start-page: 25
  issue: 1
  year: 2007
  end-page: 33
  ident: CR34
  article-title: Stock market prediction with multiple classifiers
  publication-title: Appl Intell
– ident: CR15
– volume: 78
  start-page: 485
  issue: 1
  year: 2014
  end-page: 494
  ident: CR51
  article-title: Cross-correlations and structures of stock markets based on multiscale MF-DXA and PCA
  publication-title: Nonlinear Dyn
– ident: CR50
– volume: 26
  start-page: 196
  issue: 1
  year: 2015
  end-page: 205
  ident: CR21
  article-title: Performance analysis and optimization for spmv on gpu using probabilistic modeling
  publication-title: IEEE Trans Parallel Distrib Syst
– volume: 26
  start-page: 1839
  issue: 8
  year: 2015
  end-page: 1847
  ident: CR32
  article-title: Spiking neural network-based target tracking control for autonomous mobile robots
  publication-title: Neural Comput Appl
– volume: 37
  start-page: 1532
  issue: 8
  year: 2017
  ident: CR24
  article-title: Big data challenges of high-dimensional continuous-time mean-variance portfolio selection and a remedy
  publication-title: Risk Analysis
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: CR38
  article-title: Deep learning
  publication-title: Nature
– volume: 1
  start-page: 1
  year: 2018
  end-page: 21
  ident: CR40
  article-title: An innovative neural network approach for stock market prediction
  publication-title: J Supercomput
– volume: 29
  start-page: 405
  issue: 2
  year: 2010
  end-page: 423
  ident: CR49
  article-title: The efficacy of neural networks in predicting returns on stock and bond indices
  publication-title: Decis Sci
– volume: 10
  start-page: 3765
  year: 2010
  ident: CR20
  article-title: Genetic algorithm-optimized long short-term memory network for stock market prediction
  publication-title: Sustainability
– volume: 28
  start-page: 919
  issue: 4
  year: 2017
  end-page: 933
  ident: CR22
  article-title: A parallel random forest algorithm for big data in spark cloud computing environment
  publication-title: IEEE Trans Parallel Distrib Syst
– ident: CR43
– volume: 9
  start-page: 69
  issue: 1
  year: 2013
  end-page: 89
  ident: CR35
  article-title: The fading stock market response to announcements of bank bailouts
  publication-title: J Financ Stabil
– volume: 21
  start-page: 567
  issue: 3
  year: 2013
  end-page: 584
  ident: CR9
  article-title: Complex neurofuzzy arima forecasting–a new approach using complex fuzzy sets
  publication-title: IEEE Trans Fuzzy Syst
– ident: CR53
– ident: CR30
– volume: 64
  start-page: 148
  year: 2016
  end-page: 165
  ident: CR4
  article-title: Optimal monetary policy in a new Keynesian model with animal spirits and financial markets
  publication-title: J Econ Dyn Control
– ident: CR33
– volume: 13
  start-page: 87
  issue: 1
  year: 2009
  end-page: 102
  ident: CR26
  article-title: Evolving least squares support vector machines for stock market trend mining
  publication-title: IEEE Trans Evol Comput
– volume: 8
  start-page: 83
  issue: 1
  year: 1990
  end-page: 97
  ident: CR16
  article-title: Random level-shift time series models, arima approximations, and level-shift detection
  publication-title: J Bus Econ Stat
– volume: 152
  start-page: 219
  year: 2018
  end-page: 234
  ident: CR5
  article-title: Climate change, financial stability and monetary policy
  publication-title: Ecol Econ
– volume: 71
  start-page: 444
  issue: 7
  year: 2017
  end-page: 451
  ident: CR36
  article-title: Changes of hierarchical network in local and world stock market
  publication-title: J Kor Phys Soc
– volume: 405
  start-page: 207
  year: 2017
  end-page: 226
  ident: CR48
  article-title: Reporting l most influential objects in uncertain databases based on probabilistic reverse top-k queries
  publication-title: Inf Sci
– volume: 26
  start-page: 3208
  issue: 12
  year: 2015
  end-page: 3222
  ident: CR14
  article-title: A hybrid chemical reaction optimization scheme for task scheduling on heterogeneous computing systems
  publication-title: IEEE Trans Parallel Distrib Syst
– volume: 14
  start-page: 403
  issue: 2
  year: 2013
  end-page: 413
  ident: CR46
  article-title: Financial market prediction system with evolino neural network and delphi method
  publication-title: Physiologia Plantarum
– volume: 60
  start-page: 2476
  issue: 8
  year: 2010
  end-page: 2487
  ident: CR37
  article-title: Exponential synchronization of weighted general delay coupled and non-delay coupled dynamical networks
  publication-title: Comput Math Appl
– volume: 28
  start-page: 61
  year: 2012
  end-page: 81
  ident: CR19
  article-title: A morphological perceptron with gradient-based learning for Brazilian stock market forecasting
  publication-title: Neural Netw
– volume: 5
  start-page: 11
  year: 2019
  end-page: 15
  ident: CR12
  article-title: The environmental impacts of financial development in oecd countries: a panel gmm approach
  publication-title: Environ Sci Pollut Res
– ident: CR52
– volume: 90
  start-page: 8
  year: 2017
  end-page: 20
  ident: CR47
  article-title: Forecasting stochastic neural network based on financial empirical mode decomposition
  publication-title: Neural Netw
– ident: CR13
– volume: 262
  start-page: 579
  issue: 2
  year: 2018
  end-page: 603
  ident: CR3
  article-title: Systemic risk, financial markets, and performance of financial institutions
  publication-title: Ann Oper Res
– volume: 294
  start-page: 227
  issue: 2
  year: 2015
  end-page: 241
  ident: CR28
  article-title: A hybrid fuzzy time series model based on granular computing for stock price forecasting
  publication-title: Inf Sci
– volume: 30
  start-page: 923
  issue: 4
  year: 2019
  end-page: 938
  ident: CR45
  article-title: Performance-aware model for sparse matrix-matrix multiplication on the sunway taihulight supercomputer
  publication-title: IEEE Trans Parallel Distrib Syst
– volume: 49
  start-page: 897
  year: 2018
  end-page: 911
  ident: CR39
  article-title: A study on novel filtering and relationship between input-features and target-vectors in a deep learning model for stock price prediction
  publication-title: Appl Intell
– volume: 19
  start-page: 371
  issue: 5
  year: 2006
  end-page: 378
  ident: CR44
  article-title: A neural network approach to predicting stock exchange movements using external factors
  publication-title: Knowledge-Based Syst
– volume: 346
  start-page: 124
  issue: 6210
  year: 2014
  end-page: 130
  ident: CR17
  article-title: Economics in the age of big data
  publication-title: Science
– volume: 25
  start-page: 2867
  issue: 11
  year: 2014
  end-page: 2876
  ident: CR7
  article-title: Energy-efficient stochastic task scheduling on heterogeneous computing systems
  publication-title: IEEE Trans Parallel Distrib Syst
– volume: 270
  start-page: 255
  year: 2014
  ident: 4319_CR11
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.02.122
– volume: 26
  start-page: 196
  issue: 1
  year: 2015
  ident: 4319_CR21
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2014.2308221
– volume: 1
  start-page: 1
  year: 2018
  ident: 4319_CR40
  publication-title: J Supercomput
– volume: 30
  start-page: 923
  issue: 4
  year: 2019
  ident: 4319_CR45
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2018.2871189
– ident: 4319_CR53
– ident: 4319_CR50
  doi: 10.1109/TPDS.2019.2907537
– volume: 262
  start-page: 579
  issue: 2
  year: 2018
  ident: 4319_CR3
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-016-2113-8
– volume: 27
  start-page: 804
  issue: 3
  year: 2011
  ident: 4319_CR27
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2010.02.015
– volume: 35
  start-page: 245
  issue: 15
  year: 2012
  ident: 4319_CR41
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2012.05.003
– volume: 30
  start-page: 965
  issue: 5
  year: 2018
  ident: 4319_CR29
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2018.2877359
– volume: 9
  start-page: 69
  issue: 1
  year: 2013
  ident: 4319_CR35
  publication-title: J Financ Stabil
  doi: 10.1016/j.jfs.2013.01.004
– volume: 61
  start-page: 162
  year: 2017
  ident: 4319_CR10
  publication-title: Energy Econ
  doi: 10.1016/j.eneco.2016.11.016
– ident: 4319_CR30
  doi: 10.1016/j.ins.2018.06.045
– volume: 11
  start-page: 1069
  issue: 5
  year: 1999
  ident: 4319_CR56
  publication-title: Neural Comput
  doi: 10.1162/089976699300016340
– volume: 25
  start-page: 2867
  issue: 11
  year: 2014
  ident: 4319_CR7
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2013.270
– volume: 71
  start-page: 444
  issue: 7
  year: 2017
  ident: 4319_CR36
  publication-title: J Kor Phys Soc
  doi: 10.3938/jkps.71.444
– volume: 28
  start-page: 919
  issue: 4
  year: 2017
  ident: 4319_CR22
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2016.2603511
– volume: 34
  start-page: 14
  issue: 3
  year: 2017
  ident: 4319_CR18
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2017.2663138
– volume: 13
  start-page: 87
  issue: 1
  year: 2009
  ident: 4319_CR26
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2008.928176
– volume: 21
  start-page: 1601
  issue: 6
  year: 2009
  ident: 4319_CR31
  publication-title: Neural Comput
  doi: 10.1162/neco.2008.11-07-647
– volume: 60
  start-page: 2476
  issue: 8
  year: 2010
  ident: 4319_CR37
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2010.08.054
– ident: 4319_CR54
– volume: 6
  start-page: 861
  issue: 6
  year: 1991
  ident: 4319_CR55
  publication-title: Neural Comput
– volume: 29
  start-page: 405
  issue: 2
  year: 2010
  ident: 4319_CR49
  publication-title: Decis Sci
  doi: 10.1111/j.1540-5915.1998.tb01582.x
– volume: 5
  start-page: 11
  year: 2019
  ident: 4319_CR12
  publication-title: Environ Sci Pollut Res
– volume: 49
  start-page: 897
  year: 2018
  ident: 4319_CR39
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-1308-x
– volume: 72
  start-page: 100
  issue: 5
  year: 2017
  ident: 4319_CR1
  publication-title: J Financ
  doi: 10.1111/jofi.12521
– volume: 107
  start-page: 186
  year: 2018
  ident: 4319_CR2
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2018.01.008
– volume: 37
  start-page: 1532
  issue: 8
  year: 2017
  ident: 4319_CR24
  publication-title: Risk Analysis
  doi: 10.1111/risa.12801
– volume: 28
  start-page: 61
  year: 2012
  ident: 4319_CR19
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2011.12.004
– volume: 26
  start-page: 3208
  issue: 12
  year: 2015
  ident: 4319_CR14
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2014.2385698
– volume: 8
  start-page: 83
  issue: 1
  year: 1990
  ident: 4319_CR16
  publication-title: J Bus Econ Stat
  doi: 10.1080/07350015.1990.10509779
– volume: 78
  start-page: 485
  issue: 1
  year: 2014
  ident: 4319_CR51
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-014-1455-5
– volume: 343
  start-page: 1203
  issue: 6176
  year: 2014
  ident: 4319_CR23
  publication-title: Science
  doi: 10.1126/science.1248506
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 4319_CR38
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 14
  start-page: 403
  issue: 2
  year: 2013
  ident: 4319_CR46
  publication-title: Physiologia Plantarum
– ident: 4319_CR13
– volume: 33
  start-page: 601
  issue: 3
  year: 1996
  ident: 4319_CR6
  publication-title: J Appl Probab
  doi: 10.2307/3215342
– volume: 21
  start-page: 567
  issue: 3
  year: 2013
  ident: 4319_CR9
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2012.2226890
– ident: 4319_CR43
  doi: 10.1109/INMIC.2005.334420
– volume: 10
  start-page: 3765
  year: 2010
  ident: 4319_CR20
  publication-title: Sustainability
  doi: 10.3390/su10103765
– volume: 19
  start-page: 371
  issue: 5
  year: 2006
  ident: 4319_CR44
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2005.11.015
– volume: 64
  start-page: 148
  year: 2016
  ident: 4319_CR4
  publication-title: J Econ Dyn Control
  doi: 10.1016/j.jedc.2016.01.003
– volume: 152
  start-page: 219
  year: 2018
  ident: 4319_CR5
  publication-title: Ecol Econ
  doi: 10.1016/j.ecolecon.2018.05.011
– ident: 4319_CR25
  doi: 10.1109/TII.2019.2909473
– ident: 4319_CR33
  doi: 10.1109/ICASSP.2013.6639346
– ident: 4319_CR52
– volume: 26
  start-page: 1839
  issue: 8
  year: 2015
  ident: 4319_CR32
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1848-5
– ident: 4319_CR15
  doi: 10.1109/TCBB.2018.2868088
– volume: 53
  start-page: 953
  issue: 9
  year: 2002
  ident: 4319_CR8
  publication-title: J Oper Res Soc
  doi: 10.1057/palgrave.jors.2601415
– volume: 3
  start-page: 442
  year: 2010
  ident: 4319_CR42
  publication-title: IEEE
– volume: 346
  start-page: 124
  issue: 6210
  year: 2014
  ident: 4319_CR17
  publication-title: Science
  doi: 10.1126/science.1243089
– volume: 26
  start-page: 25
  issue: 1
  year: 2007
  ident: 4319_CR34
  publication-title: Appl Intell
  doi: 10.1007/s10489-006-0001-7
– volume: 294
  start-page: 227
  issue: 2
  year: 2015
  ident: 4319_CR28
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.09.038
– volume: 405
  start-page: 207
  year: 2017
  ident: 4319_CR48
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.04.028
– volume: 90
  start-page: 8
  year: 2017
  ident: 4319_CR47
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2017.03.004
SSID ssj0004685
Score 2.276838
Snippet Applying neural network and error t-value test, this study trains and analyzes 28 interest rate changes of China’s macro-monetary policy and the mutual...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5649
SubjectTerms Advances in Parallel and Distributed Computing for Neural Computing
Artificial Intelligence
Back propagation
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data correlation
Data Mining and Knowledge Discovery
Data processing
Datasets
Deep learning
Error analysis
Feature extraction
Image Processing and Computer Vision
Interest rates
Model accuracy
Monetary policy
Mutation
Neural networks
Prediction models
Principal components analysis
Probability and Statistics in Computer Science
Securities markets
Training
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NSwMxEB20evBi_cRqlRy86WI3SbvJSYpYPEjpQaF4WbLZRASp2-0q-O_NpNlWBXvxuGQTQibJzGRm3gM4l4ImuUDSDE6TiOeMR07PqIhZnmU6FkpYD-J6nwyHYjyWo_DgNgtplfWd6C_q_E3jG_kVZdIrS86ui2mErFEYXQ0UGuuwgSgJSN0w6j59q4v0lJzOg8HsHs5C0YwvncP3UHSkMTSAhTzxT8W0tDZ_BUi93hk0_zvjHdgOFifpz7fILqyZyR40azYHEg73Psg-cT1MpcpPUni0YFKUGMZB0RHPmENQ5-XEfebGFCQwTjwfwOPg9uHmLgrECpF2-qqKnNWlOe9a5nyVLDPWCJZrhPWRVlrb09TJ1Vl-zpSzme5ZamysuKJWmZ5kMbPsEBoTN6MjIErJjhXdnFkpuHTGgxTKJq4_pe766KgWxPWqpjqgjiP5xWu6wEv2kkidJFIviTRuwcWiTzHH3Fj5d7te_jScv1m6XPsWXNYCXDb_Pdrx6tFOYIuiw-0zHtvQqMp3cwqb-qN6mZVnfvd9AY_j3V4
  priority: 102
  providerName: ProQuest
Title A monetary policy prediction model based on deep learning
URI https://link.springer.com/article/10.1007/s00521-019-04319-1
https://www.proquest.com/docview/2396584643
Volume 32
WOSCitedRecordID wos000529745200029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9088EX5ydO58iDb1pYk3RNHqdMfJAx_GL4UtI0EUFG6argf-8lazcVFfSxNAnhLsnd5XK_H8CxFDTOhCPN4DQOeMZ4gHZGBczyNNWhUMJ6ENereDQSk4kcV0Vhs_q1e52S9Cf1otjN3WC60Ndd5rvSG4x5mpGDQHIx-s39h2pIT8SJcYt708NZVSrz_RifzdHSx_ySFvXW5qL1v3luwkblXZLBfDlswYqZbkOrZm4g1UbeATkguPxMqYo3kntkYJIXLmXj1EQ8Ow5x9i0j-JkZk5OKXeJxF-4uhrfnl0FFohBotE1lgB6W5jyyDOOSNDXWCJZpB-EjrbS2rynqEL08dNtsqvuWGhsqrqhVpi9ZyCzbg8YUZ7QPRCnZsyLKmJWCS3QUpFA2xv6U4lHRU20Ia1kmukIYd0QXz8kCG9nLJkHZJF42SdiGk0WffI6v8WvrTq2ipNprs4Qy6d0oztpwWqtk-fvn0Q7-1vwQ1qkLtv1rxw40yuLFHMGafi2fZkUXmmfD0fi6C6vj6KHrV-Q7Bv_Vrw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LSwMxEB60CnrxLVar5qAnXewmaZscRIoPFGvpoULxsmaziQhS17Yq_il_o5N016pgbx48LrsJyX6TmUkmMx_AjhS0lghHmsFpLeAJ4wHaGRUwy-NYh0IJ64u4NmrNpuh0ZGsC3vNcGHetMteJXlEnj9qdkR9QJr2x5OwofQoca5SLruYUGkOxuDRvr7hl6x9enCC-u5SenbaPz4OMVSDQqKwHAbocmvOKZeiox7GxRrBEu5o20kprq5ripNDtQT_GxrpqqbGh4opaZaqShcwy7HcSpjhH-cL106rcfMnD9BSguGNyt4k4y5J0fKqeO391G3cXinCJQ-F3Qzjybn8EZL2dO5v_b39oAeYyj5rUh0tgESZMdwnmc7YKkimvZZB1giM0A9V7I6mvhkzSngtTOdEknhGIOJueEHxMjElJxqhxtwLXfzKBVSh0cURrQJSSZSsqCbNScInOkRTK1rA9pagey6oIYY5ipLOq6o7c4yH6rAftkY8Q-cgjH4VF2Ptskw5rioz9upTDHWX6pR-NsC7Cfi4wo9e_97Y-vrdtmDlvXzWixkXzcgNmqTtc8Lc7S1AY9J7NJkzrl8F9v7flJZ_A7V8L0gd0bDyV
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9kivji_MTp1Dz4pmVrkm3J41CH4hjDL_ZW0jQRQUbpquB_7yVrtykqiI-lSQh3l9xdkvv9AE6koJ1EONIMTjsBTxgP0M-ogFkexzoUSlgP4trvDAZiNJLDhSp-_9q9vJKc1jQ4lKZx3kgT25gVvrnTTJcGu4N9V4aD-c8yx0zG2fjt3eNCZaQn5cQcxr3v4awom_l-jM-uaR5vfrki9Z6nV_3_nDdgvYg6SXdqJpuwZMZbUC0ZHUixwLdBdgmapclV9k5SjxhM0sxd5Tj1Ec-aQ5zfSwh-JsakpGCdeNqBh97l_flVUJArBBp9Vh5g5KU5b1mG-UocG2sES7SD9pFWWtvWFHWL0R-GczbWbUuNDRVX1CrTlixklu1CZYwz2gOilGxa0UqYlYJLDCCkULaD_SnFLaSpahCWco10gTzuCDBeohlmspdNhLKJvGyisAansz7pFHfj19b1Ul1RsQYnEWXSh1ec1eCsVM_898-j7f-t-TGsDi96Uf96cHMAa9Tl4_5BZB0qefZqDmFFv-XPk-zIm-YH6P3e3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+monetary+policy+prediction+model+based+on+deep+learning&rft.jtitle=Neural+computing+%26+applications&rft.au=Lu%2C+Minrong&rft.date=2020-05-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=32&rft.issue=10&rft.spage=5649&rft.epage=5668&rft_id=info:doi/10.1007%2Fs00521-019-04319-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_019_04319_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon