Deep learning in neural networks: An overview

In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the d...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural networks Ročník 61; s. 85 - 117
Hlavní autor: Schmidhuber, Jürgen
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Ltd 01.01.2015
Témata:
ISSN:0893-6080, 1879-2782, 1879-2782
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.
AbstractList In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.
In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.
Author Schmidhuber, Jürgen
Author_xml – sequence: 1
  givenname: Jürgen
  surname: Schmidhuber
  fullname: Schmidhuber, Jürgen
  email: juergen@idsia.ch
  organization: The Swiss AI Lab IDSIA, Istituto Dalle Molle di Studi sull’Intelligenza Artificiale, University of Lugano & SUPSI, Galleria 2, 6928 Manno-Lugano, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25462637$$D View this record in MEDLINE/PubMed
BookMark eNqFkDtPwzAURi0EoqXwDxDKyJLgR-IHAxIqT6kSC8yW49wgl9QpdgLi3-OqwMAA013O-aR7DtCu7z0gdExwQTDhZ8vCw-hhKCgmZYFVgTHbQVMihcqpkHQXTbFULOdY4gk6iHGJMeayZPtoQquSU87EFOVXAOusAxO888-Z81laDaZLZ3jvw0s8zy591r9BeHPwfoj2WtNFOPq6M_R0c_04v8sXD7f388tFbhmnQy5s1QjJGqVaYUByyYlqLQFZ0VIoMC3hjNSGG1VJqAjnNREU16RqylYxZtgMnW5316F_HSEOeuWiha4zHvox6qTQMj0pqoSefKFjvYJGr4NbmfChv19MQLkFbOhjDND-IATrTUm91NuSelNSY6VTyaSd_9KsG8zgej8E47r_5IutDClSChd0tA68hcYFsINuevf3wCe6so8-
CitedBy_id crossref_primary_10_1109_JSEN_2020_3019668
crossref_primary_10_1007_s11548_020_02141_y
crossref_primary_10_1016_j_aitf_2025_100014
crossref_primary_10_1016_j_fluid_2022_113597
crossref_primary_10_1109_ACCESS_2020_2965769
crossref_primary_10_3390_aerospace10090758
crossref_primary_10_1016_j_physa_2022_127456
crossref_primary_10_1007_s00521_022_07313_2
crossref_primary_10_1016_j_cma_2024_117187
crossref_primary_10_1145_3729215
crossref_primary_10_1016_j_actaastro_2020_03_007
crossref_primary_10_1016_j_eswa_2020_113488
crossref_primary_10_1061__ASCE_WR_1943_5452_0001223
crossref_primary_10_1109_TAFFC_2018_2890471
crossref_primary_10_1371_journal_pone_0262708
crossref_primary_10_1088_2632_2153_ad9431
crossref_primary_10_1093_mnras_stz189
crossref_primary_10_12677_me_2024_123062
crossref_primary_10_1007_s11042_021_10857_5
crossref_primary_10_1109_TIT_2022_3229845
crossref_primary_10_1016_j_enggeo_2021_106198
crossref_primary_10_1093_jamia_ocae049
crossref_primary_10_3390_s22103863
crossref_primary_10_1016_j_advengsoft_2022_103370
crossref_primary_10_1016_j_mtcomm_2024_111221
crossref_primary_10_1016_j_jksuci_2022_11_008
crossref_primary_10_1038_s41570_020_0189_9
crossref_primary_10_1016_j_procir_2021_11_241
crossref_primary_10_1007_s11063_015_9478_6
crossref_primary_10_1109_TIP_2017_2691802
crossref_primary_10_1016_j_compind_2015_12_001
crossref_primary_10_3390_s19071502
crossref_primary_10_1007_s00500_020_04954_0
crossref_primary_10_1109_ACCESS_2022_3204041
crossref_primary_10_1016_j_mtcomm_2025_113705
crossref_primary_10_1007_s10489_016_0815_x
crossref_primary_10_3389_fenrg_2021_751066
crossref_primary_10_1007_s10107_021_01653_y
crossref_primary_10_1016_j_jiec_2022_12_022
crossref_primary_10_1109_TCSI_2023_3330323
crossref_primary_10_1038_s42256_019_0070_z
crossref_primary_10_1007_s13218_018_0559_3
crossref_primary_10_1016_j_acra_2018_02_018
crossref_primary_10_1109_TGRS_2018_2888485
crossref_primary_10_1109_TNNLS_2018_2839655
crossref_primary_10_56093_ijas_v90i2_98996
crossref_primary_10_1016_j_compbiolchem_2020_107377
crossref_primary_10_32604_cmc_2022_027475
crossref_primary_10_3389_fgene_2022_864724
crossref_primary_10_1007_s10699_022_09833_5
crossref_primary_10_1017_eds_2022_11
crossref_primary_10_3389_fbioe_2019_00102
crossref_primary_10_1038_s41598_025_85473_6
crossref_primary_10_3389_fcvm_2022_949454
crossref_primary_10_3390_electronics13234794
crossref_primary_10_1109_ACCESS_2023_3270562
crossref_primary_10_1016_j_renene_2019_07_100
crossref_primary_10_3389_fncom_2019_00005
crossref_primary_10_3389_fncom_2019_00006
crossref_primary_10_1109_MITP_2021_3073665
crossref_primary_10_3389_fcdhc_2025_1547689
crossref_primary_10_1016_j_amc_2023_127986
crossref_primary_10_1016_j_isatra_2018_01_013
crossref_primary_10_1109_TNNLS_2017_2741598
crossref_primary_10_1016_j_ijmecsci_2024_109141
crossref_primary_10_1175_WAF_D_18_0206_1
crossref_primary_10_1007_s40692_020_00166_5
crossref_primary_10_3390_ijms22116032
crossref_primary_10_1016_j_actamat_2017_05_014
crossref_primary_10_1002_adfm_202305261
crossref_primary_10_1093_bib_bbad442
crossref_primary_10_1016_j_jaut_2025_103457
crossref_primary_10_3390_electronics12112453
crossref_primary_10_3233_IDA_163196
crossref_primary_10_1016_j_najef_2023_101895
crossref_primary_10_1108_PAR_08_2022_0121
crossref_primary_10_1002_wat2_1495
crossref_primary_10_1080_17434440_2020_1813566
crossref_primary_10_5194_acp_20_3439_2020
crossref_primary_10_1007_s12206_018_0610_1
crossref_primary_10_3390_biom10091249
crossref_primary_10_3390_a11080112
crossref_primary_10_1016_j_snb_2025_138638
crossref_primary_10_1109_ACCESS_2019_2922973
crossref_primary_10_1016_j_renene_2025_123790
crossref_primary_10_1117_1_JRS_16_036512
crossref_primary_10_1016_j_cogsys_2018_04_011
crossref_primary_10_1007_s10586_017_1460_9
crossref_primary_10_3847_1538_3881_ac5ea2
crossref_primary_10_1108_OIR_10_2018_0332
crossref_primary_10_1007_s11465_021_0629_3
crossref_primary_10_1002_advs_202200630
crossref_primary_10_3389_fphar_2023_1182465
crossref_primary_10_1109_TITS_2023_3318417
crossref_primary_10_1038_srep44037
crossref_primary_10_1016_j_specom_2015_07_006
crossref_primary_10_1088_1361_6382_ac0455
crossref_primary_10_3390_ma12172745
crossref_primary_10_1016_j_cogsys_2018_04_006
crossref_primary_10_1016_j_compenvurbsys_2022_101757
crossref_primary_10_1016_j_neunet_2020_05_015
crossref_primary_10_1016_j_autcon_2019_102840
crossref_primary_10_1007_s11770_022_0976_9
crossref_primary_10_1016_j_isprsjprs_2025_07_005
crossref_primary_10_1007_s00521_019_04506_0
crossref_primary_10_1007_s11222_025_10712_9
crossref_primary_10_47880_inf2604_04
crossref_primary_10_1109_TNNLS_2018_2844173
crossref_primary_10_1109_ACCESS_2020_2987101
crossref_primary_10_1109_TNNLS_2018_2882456
crossref_primary_10_3390_en13205447
crossref_primary_10_1007_s10661_025_14322_w
crossref_primary_10_1016_j_neunet_2020_05_006
crossref_primary_10_1134_S0361768818060105
crossref_primary_10_1016_j_neunet_2020_05_008
crossref_primary_10_1007_s00371_024_03579_w
crossref_primary_10_3389_fenvs_2022_1054235
crossref_primary_10_1016_j_bej_2023_108990
crossref_primary_10_1007_s00138_020_01157_3
crossref_primary_10_1007_s42102_023_00113_9
crossref_primary_10_1080_10590501_2018_1537563
crossref_primary_10_3390_ijgi10070442
crossref_primary_10_1111_wej_12849
crossref_primary_10_2166_hydro_2022_055
crossref_primary_10_1186_s12903_021_01513_3
crossref_primary_10_1007_s40815_023_01544_8
crossref_primary_10_1016_j_enganabound_2024_03_006
crossref_primary_10_1016_j_eswa_2021_115966
crossref_primary_10_4018_IJTHI_293202
crossref_primary_10_17721_2519_481X_2025_86_08
crossref_primary_10_1016_j_bspc_2019_03_009
crossref_primary_10_1111_exsy_13754
crossref_primary_10_1038_s41467_021_26107_z
crossref_primary_10_3389_feart_2022_1026479
crossref_primary_10_1007_s00247_021_05057_0
crossref_primary_10_1007_s12559_022_10080_w
crossref_primary_10_1103_PhysRevApplied_20_054040
crossref_primary_10_1016_j_neuroimage_2020_116551
crossref_primary_10_1155_2019_3409525
crossref_primary_10_1016_j_cub_2019_02_034
crossref_primary_10_1016_j_solcom_2023_100061
crossref_primary_10_1109_ACCESS_2021_3077294
crossref_primary_10_1016_j_enganabound_2024_03_019
crossref_primary_10_1093_g3journal_jkab228
crossref_primary_10_4018_IJSI_289595
crossref_primary_10_1021_jasms_4c00318
crossref_primary_10_3390_math10132245
crossref_primary_10_1038_s41598_024_73357_0
crossref_primary_10_3390_sym12122018
crossref_primary_10_1007_s11432_018_9596_5
crossref_primary_10_1016_j_marpetgeo_2019_08_045
crossref_primary_10_1007_s11227_020_03200_6
crossref_primary_10_1007_s11831_021_09569_8
crossref_primary_10_1190_geo2019_0252_1
crossref_primary_10_1016_j_aej_2025_03_031
crossref_primary_10_1016_j_solener_2019_01_096
crossref_primary_10_3233_JIFS_233498
crossref_primary_10_3390_s20154064
crossref_primary_10_1007_s12190_024_02146_9
crossref_primary_10_1186_s41044_016_0002_4
crossref_primary_10_1016_j_knosys_2022_108174
crossref_primary_10_1121_10_0002656
crossref_primary_10_1007_s10598_023_09574_5
crossref_primary_10_1007_s44202_025_00425_5
crossref_primary_10_3390_app11041403
crossref_primary_10_1016_j_neucom_2023_126520
crossref_primary_10_3390_rs15194806
crossref_primary_10_1016_j_arcontrol_2019_07_003
crossref_primary_10_1002_cem_3194
crossref_primary_10_1109_ACCESS_2020_2994248
crossref_primary_10_1080_15376494_2019_1681037
crossref_primary_10_1016_j_jfranklin_2019_10_014
crossref_primary_10_1016_j_tust_2018_04_002
crossref_primary_10_1038_s42256_020_00255_1
crossref_primary_10_3390_s21155232
crossref_primary_10_1007_s00500_016_2468_4
crossref_primary_10_1002_minf_201501008
crossref_primary_10_1007_s00056_022_00421_7
crossref_primary_10_1016_j_ins_2021_01_064
crossref_primary_10_1103_PhysRevApplied_7_034013
crossref_primary_10_1007_s00285_024_02081_0
crossref_primary_10_1016_j_jclepro_2024_143781
crossref_primary_10_1016_j_jag_2021_102389
crossref_primary_10_1109_ACCESS_2018_2877687
crossref_primary_10_3390_math10152651
crossref_primary_10_1371_journal_pone_0279540
crossref_primary_10_1109_ACCESS_2020_3034849
crossref_primary_10_1016_j_compfluid_2024_106421
crossref_primary_10_3390_electronics9071120
crossref_primary_10_1155_2023_5499645
crossref_primary_10_3389_fncom_2019_00055
crossref_primary_10_1016_j_cobeha_2018_12_010
crossref_primary_10_3390_buildings14061613
crossref_primary_10_1016_j_cpsurg_2021_100987
crossref_primary_10_1016_j_cpsurg_2021_100986
crossref_primary_10_1016_j_nucengdes_2024_113655
crossref_primary_10_1007_s10489_021_02416_0
crossref_primary_10_1080_01443615_2023_2171778
crossref_primary_10_1016_j_cmpb_2023_107887
crossref_primary_10_1007_s10712_020_09609_1
crossref_primary_10_1016_j_media_2016_02_005
crossref_primary_10_1016_j_srs_2025_100257
crossref_primary_10_1121_10_0003959
crossref_primary_10_3390_ijms20112801
crossref_primary_10_1051_matecconf_201928304011
crossref_primary_10_1016_j_neunet_2020_05_034
crossref_primary_10_1103_PhysRevD_104_124057
crossref_primary_10_3390_rs13214467
crossref_primary_10_1088_2634_4386_ac734a
crossref_primary_10_1109_ACCESS_2020_2971586
crossref_primary_10_1007_s12517_022_09536_y
crossref_primary_10_1177_09544070251351665
crossref_primary_10_1109_ACCESS_2020_2983568
crossref_primary_10_3390_jimaging5030033
crossref_primary_10_1109_JIOT_2022_3194881
crossref_primary_10_1016_j_dajour_2023_100172
crossref_primary_10_1029_2018WR024463
crossref_primary_10_1109_ACCESS_2021_3136155
crossref_primary_10_1587_transinf_2020EDP7093
crossref_primary_10_2478_jagi_2018_0002
crossref_primary_10_1109_TNNLS_2020_3043196
crossref_primary_10_1007_s11069_021_05202_w
crossref_primary_10_1146_annurev_bioeng_071516_044442
crossref_primary_10_1016_j_enbuild_2020_109807
crossref_primary_10_1007_s42452_019_1044_9
crossref_primary_10_1016_j_ins_2021_01_037
crossref_primary_10_1016_j_measurement_2019_07_039
crossref_primary_10_1146_annurev_biophys_102622_084607
crossref_primary_10_1088_1361_648X_ad258b
crossref_primary_10_1016_j_trip_2024_101278
crossref_primary_10_1016_j_measurement_2022_110748
crossref_primary_10_1177_0959651821991361
crossref_primary_10_1016_j_ast_2020_106435
crossref_primary_10_1186_s12859_017_1859_6
crossref_primary_10_1016_j_bica_2016_11_002
crossref_primary_10_1177_21501319241245847
crossref_primary_10_1080_07391102_2023_2229444
crossref_primary_10_1016_j_compag_2017_12_037
crossref_primary_10_1111_bcpt_70104
crossref_primary_10_1016_j_eswa_2025_127453
crossref_primary_10_3390_math11224639
crossref_primary_10_1109_JIOT_2023_3296116
crossref_primary_10_1007_s00432_019_03098_5
crossref_primary_10_1007_s11340_021_00787_6
crossref_primary_10_3390_s20185273
crossref_primary_10_1109_ACCESS_2024_3356611
crossref_primary_10_1016_j_rser_2018_09_012
crossref_primary_10_1111_exsy_12494
crossref_primary_10_3390_fi11010024
crossref_primary_10_1186_s42408_022_00165_0
crossref_primary_10_1016_j_compind_2023_103874
crossref_primary_10_1109_TNNLS_2021_3071367
crossref_primary_10_3103_S0747923918010073
crossref_primary_10_1038_s41598_024_56609_x
crossref_primary_10_1109_TCDS_2018_2800167
crossref_primary_10_3390_geosciences13040115
crossref_primary_10_1002_adma_202208719
crossref_primary_10_1016_j_clinph_2018_06_024
crossref_primary_10_1134_S0005117923090047
crossref_primary_10_32604_cmes_2022_020583
crossref_primary_10_3389_fpls_2022_800161
crossref_primary_10_1016_j_knosys_2023_110333
crossref_primary_10_3389_fncom_2019_00011
crossref_primary_10_1007_s10570_021_03684_2
crossref_primary_10_1016_j_measurement_2019_07_058
crossref_primary_10_1016_j_rse_2025_114619
crossref_primary_10_3233_JIFS_222773
crossref_primary_10_3390_app10238450
crossref_primary_10_1016_j_autcon_2021_104116
crossref_primary_10_1016_j_petrol_2022_110338
crossref_primary_10_1371_journal_pone_0296070
crossref_primary_10_1016_j_commatsci_2020_109599
crossref_primary_10_3389_fdmed_2022_833191
crossref_primary_10_3389_fdata_2023_1243559
crossref_primary_10_1109_TGRS_2019_2918080
crossref_primary_10_1063_5_0235572
crossref_primary_10_36128_PRIW_VI53_1102
crossref_primary_10_1109_ACCESS_2022_3201878
crossref_primary_10_1109_ACCESS_2019_2893871
crossref_primary_10_3390_molecules28010175
crossref_primary_10_1016_j_scitotenv_2021_149508
crossref_primary_10_1145_3645088
crossref_primary_10_3103_S0146411619030052
crossref_primary_10_1109_TPEL_2018_2883947
crossref_primary_10_1016_j_jbi_2018_06_011
crossref_primary_10_1515_astro_2024_0010
crossref_primary_10_3389_fnagi_2019_00220
crossref_primary_10_3389_fpsyt_2020_00673
crossref_primary_10_1016_j_engappai_2024_109171
crossref_primary_10_1109_ACCESS_2025_3594735
crossref_primary_10_1186_s13638_023_02261_4
crossref_primary_10_1016_j_watres_2019_115350
crossref_primary_10_1016_j_jweia_2019_103983
crossref_primary_10_1016_j_physa_2024_129758
crossref_primary_10_1080_09540091_2021_1889975
crossref_primary_10_1109_ACCESS_2021_3061697
crossref_primary_10_1007_s11042_021_10809_z
crossref_primary_10_1140_epjp_s13360_024_05107_0
crossref_primary_10_1016_j_neucom_2019_11_083
crossref_primary_10_1016_j_eswa_2018_02_010
crossref_primary_10_1186_s41824_020_00094_8
crossref_primary_10_1088_1742_6596_1454_1_012004
crossref_primary_10_1587_transinf_2019ICI0001
crossref_primary_10_3390_jpm13101466
crossref_primary_10_1016_j_conb_2017_08_020
crossref_primary_10_1016_j_media_2016_11_001
crossref_primary_10_1016_j_compchemeng_2023_108169
crossref_primary_10_1080_02664763_2022_2108386
crossref_primary_10_1002_pssa_202200321
crossref_primary_10_15407_kvt206_04_005
crossref_primary_10_1016_j_energy_2025_138195
crossref_primary_10_1016_j_ecoinf_2019_02_007
crossref_primary_10_1016_j_oret_2022_02_015
crossref_primary_10_3788_LOP251332
crossref_primary_10_3390_batteries11010032
crossref_primary_10_1111_1755_0998_13861
crossref_primary_10_1007_s10472_018_9601_2
crossref_primary_10_1109_TNNLS_2018_2808470
crossref_primary_10_1051_matecconf_201821003009
crossref_primary_10_1155_2017_5218247
crossref_primary_10_1155_2021_4812979
crossref_primary_10_1016_j_addma_2020_101183
crossref_primary_10_3389_fphy_2021_738112
crossref_primary_10_1016_j_fsigen_2021_102659
crossref_primary_10_3390_ph14121277
crossref_primary_10_1109_ACCESS_2020_3016938
crossref_primary_10_1109_TNNLS_2021_3054867
crossref_primary_10_1016_j_ecoinf_2019_02_011
crossref_primary_10_1038_s41570_023_00516_8
crossref_primary_10_1016_j_swevo_2016_08_003
crossref_primary_10_1038_s41598_018_27707_4
crossref_primary_10_1051_itmconf_20257003007
crossref_primary_10_1016_j_jcbs_2024_100728
crossref_primary_10_1145_3737648
crossref_primary_10_1007_s41870_022_00900_5
crossref_primary_10_1002_anie_202104405
crossref_primary_10_1007_s00521_023_08806_4
crossref_primary_10_3390_w14142174
crossref_primary_10_1177_1063293X21988944
crossref_primary_10_3390_informatics8030059
crossref_primary_10_1007_s11227_016_1766_z
crossref_primary_10_1093_mnras_stac3009
crossref_primary_10_1145_3474841
crossref_primary_10_1016_j_procs_2016_08_166
crossref_primary_10_1016_j_ifacol_2020_12_582
crossref_primary_10_1088_1361_6528_ab967d
crossref_primary_10_1109_TSG_2018_2805723
crossref_primary_10_1002_adma_202208683
crossref_primary_10_1109_ACCESS_2020_3045424
crossref_primary_10_1016_j_envsoft_2023_105778
crossref_primary_10_1016_j_jallcom_2020_157709
crossref_primary_10_1002_cpe_5480
crossref_primary_10_1038_s41598_024_73140_1
crossref_primary_10_1016_j_knosys_2017_07_023
crossref_primary_10_1051_0004_6361_201731344
crossref_primary_10_1016_j_amjmed_2023_07_019
crossref_primary_10_3390_agriculture13071283
crossref_primary_10_3390_informatics8030053
crossref_primary_10_1016_j_trb_2018_10_020
crossref_primary_10_1016_j_infsof_2021_106542
crossref_primary_10_1177_0165551519865488
crossref_primary_10_1016_j_advwatres_2020_103715
crossref_primary_10_1631_FITEE_2200065
crossref_primary_10_1109_MVT_2018_2811185
crossref_primary_10_1016_j_neunet_2017_02_013
crossref_primary_10_1109_ACCESS_2019_2938410
crossref_primary_10_1016_j_snb_2022_132925
crossref_primary_10_1016_j_jece_2023_111849
crossref_primary_10_1038_s41467_022_35032_8
crossref_primary_10_1109_ACCESS_2021_3107687
crossref_primary_10_1177_0735633118757015
crossref_primary_10_1007_s00366_022_01736_0
crossref_primary_10_1109_JOE_2017_2767106
crossref_primary_10_1186_s13321_019_0341_z
crossref_primary_10_1109_TMM_2023_3258141
crossref_primary_10_3390_rs16030492
crossref_primary_10_2196_11966
crossref_primary_10_1016_j_compag_2020_105391
crossref_primary_10_1016_j_srs_2025_100206
crossref_primary_10_3103_S0147688221060113
crossref_primary_10_1109_TWC_2020_2979138
crossref_primary_10_3390_math10152764
crossref_primary_10_1029_2022WR032299
crossref_primary_10_1093_jge_gxae045
crossref_primary_10_1016_j_neunet_2023_07_046
crossref_primary_10_1016_j_jksuci_2024_102016
crossref_primary_10_1109_ACCESS_2019_2926426
crossref_primary_10_5194_tc_13_2421_2019
crossref_primary_10_3390_atoms12020010
crossref_primary_10_3390_math10152747
crossref_primary_10_3389_fchem_2019_00782
crossref_primary_10_3390_sym12040495
crossref_primary_10_1016_j_brainres_2019_146457
crossref_primary_10_1038_s41467_019_12920_0
crossref_primary_10_1016_j_cej_2021_132442
crossref_primary_10_1140_epjb_e2019_100100_8
crossref_primary_10_1016_j_buildenv_2021_108201
crossref_primary_10_1109_TMI_2017_2715285
crossref_primary_10_1016_j_neunet_2023_07_032
crossref_primary_10_1007_s11517_019_02029_3
crossref_primary_10_1007_s40789_023_00579_4
crossref_primary_10_1109_ACCESS_2018_2794765
crossref_primary_10_1007_s10462_024_10931_y
crossref_primary_10_1007_s12524_018_0891_y
crossref_primary_10_3390_agronomy13020342
crossref_primary_10_1016_j_jcmds_2025_100116
crossref_primary_10_1016_j_asoc_2021_107424
crossref_primary_10_1029_2022GC010453
crossref_primary_10_1007_s12145_021_00674_7
crossref_primary_10_1038_s41467_021_24904_0
crossref_primary_10_1080_16843703_2021_1992072
crossref_primary_10_3390_s23084028
crossref_primary_10_1016_j_imu_2021_100723
crossref_primary_10_1007_s13218_015_0381_0
crossref_primary_10_3390_s21010052
crossref_primary_10_1109_TCAD_2020_3019993
crossref_primary_10_1038_s42256_020_0217_y
crossref_primary_10_1371_journal_pone_0171410
crossref_primary_10_1109_TCYB_2017_2768570
crossref_primary_10_1007_s13351_016_6081_3
crossref_primary_10_3390_rs13173378
crossref_primary_10_1111_2041_210X_70074
crossref_primary_10_1109_TNNLS_2019_2919662
crossref_primary_10_1080_10095020_2017_1373955
crossref_primary_10_1016_j_chaos_2021_111446
crossref_primary_10_1109_ACCESS_2019_2946870
crossref_primary_10_1002_cpe_6764
crossref_primary_10_1080_09502386_2021_1895247
crossref_primary_10_11610_isij_4714
crossref_primary_10_1007_s10549_019_05281_1
crossref_primary_10_1016_j_nima_2021_166277
crossref_primary_10_1093_jge_gxy015
crossref_primary_10_1007_s11036_020_01586_4
crossref_primary_10_1016_j_ast_2022_107449
crossref_primary_10_1016_j_enconman_2024_118549
crossref_primary_10_1002_minf_202100247
crossref_primary_10_5194_amt_16_481_2023
crossref_primary_10_3389_fncom_2022_1017284
crossref_primary_10_1093_jge_gxy012
crossref_primary_10_1109_ACCESS_2019_2907261
crossref_primary_10_1109_ACCESS_2021_3090196
crossref_primary_10_1155_2018_3869106
crossref_primary_10_3847_1538_4357_abf7ba
crossref_primary_10_1109_TAC_2019_2919101
crossref_primary_10_1002_cpe_6767
crossref_primary_10_1109_ACCESS_2019_2945545
crossref_primary_10_3390_biomedicines10123205
crossref_primary_10_1080_2326263X_2017_1330611
crossref_primary_10_4018_IJSSCI_2020070102
crossref_primary_10_1088_1757_899X_1055_1_012120
crossref_primary_10_1097_SS_0000000000000180
crossref_primary_10_1109_TIM_2018_2813841
crossref_primary_10_1016_j_eswa_2020_113420
crossref_primary_10_1016_j_uclim_2021_100834
crossref_primary_10_1002_sam_11716
crossref_primary_10_1007_s10208_020_09461_0
crossref_primary_10_1016_j_advwatres_2020_103787
crossref_primary_10_1016_j_ins_2016_01_082
crossref_primary_10_3390_rs12233895
crossref_primary_10_1016_j_neunet_2021_02_011
crossref_primary_10_1287_ited_2021_0256
crossref_primary_10_3390_agriculture12101707
crossref_primary_10_3390_math11102234
crossref_primary_10_1007_s00216_020_02627_3
crossref_primary_10_5194_amt_10_3547_2017
crossref_primary_10_1109_TPEL_2020_3012136
crossref_primary_10_1038_s41467_020_19817_3
crossref_primary_10_3389_fonc_2024_1433196
crossref_primary_10_1080_02723646_2021_1928871
crossref_primary_10_1155_2020_1971945
crossref_primary_10_1016_j_jai_2022_100004
crossref_primary_10_1016_j_artint_2021_103546
crossref_primary_10_1038_s41598_017_07103_0
crossref_primary_10_3389_fpls_2023_1120189
crossref_primary_10_1007_s00521_025_11025_8
crossref_primary_10_1016_j_neunet_2021_02_026
crossref_primary_10_1016_j_neunet_2021_02_024
crossref_primary_10_1088_2634_4386_ac0a5b
crossref_primary_10_1088_1742_6596_2010_1_012155
crossref_primary_10_3390_soilsystems4020032
crossref_primary_10_3390_s21041139
crossref_primary_10_1016_j_compbiolchem_2024_108169
crossref_primary_10_1016_j_rineng_2025_106345
crossref_primary_10_3390_math11102241
crossref_primary_10_1007_s40684_022_00417_z
crossref_primary_10_1016_j_asr_2020_05_046
crossref_primary_10_1109_JSTARS_2016_2621011
crossref_primary_10_3390_rs12060953
crossref_primary_10_1002_aisy_202200105
crossref_primary_10_1088_1361_6463_ad8ce7
crossref_primary_10_1016_j_ergon_2017_02_004
crossref_primary_10_1093_mnras_stz272
crossref_primary_10_1109_ACCESS_2020_3044173
crossref_primary_10_1109_TAES_2020_2999163
crossref_primary_10_1109_ACCESS_2020_3001046
crossref_primary_10_1007_s00146_024_01891_6
crossref_primary_10_1016_j_compchemeng_2025_109068
crossref_primary_10_1371_journal_pone_0306094
crossref_primary_10_1016_j_neunet_2019_07_009
crossref_primary_10_3233_XST_230429
crossref_primary_10_3390_en14020413
crossref_primary_10_3390_en18154122
crossref_primary_10_3390_w13192664
crossref_primary_10_1007_s10064_022_02615_0
crossref_primary_10_1021_acs_jcim_5b00238
crossref_primary_10_1007_s00521_022_07910_1
crossref_primary_10_4018_IJGHPC_2018070101
crossref_primary_10_3390_app14177907
crossref_primary_10_1109_ACCESS_2019_2958895
crossref_primary_10_1109_TIP_2017_2696744
crossref_primary_10_3390_f16071180
crossref_primary_10_1016_j_clnu_2020_02_013
crossref_primary_10_3390_w11020200
crossref_primary_10_1007_s11135_020_01037_y
crossref_primary_10_1016_j_pmcj_2017_12_005
crossref_primary_10_1287_mksc_2021_1329
crossref_primary_10_1016_j_ophtha_2020_12_020
crossref_primary_10_1111_micc_12542
crossref_primary_10_1007_s11663_023_02753_0
crossref_primary_10_1038_s41467_023_40192_2
crossref_primary_10_1038_s41598_021_81786_4
crossref_primary_10_1109_ACCESS_2022_3204004
crossref_primary_10_4000_questionsdecommunication_11040
crossref_primary_10_1016_j_neunet_2019_07_021
crossref_primary_10_1007_s11042_020_09167_z
crossref_primary_10_1109_TCYB_2017_2712188
crossref_primary_10_3390_app12010256
crossref_primary_10_1016_j_compbiomed_2020_104115
crossref_primary_10_1016_j_rpor_2017_08_005
crossref_primary_10_1016_j_neucom_2021_08_062
crossref_primary_10_3390_cancers12102791
crossref_primary_10_3390_coatings9070429
crossref_primary_10_1111_wej_12787
crossref_primary_10_1007_s11042_024_18316_7
crossref_primary_10_1146_annurev_biodatasci_122120_113218
crossref_primary_10_1007_s00414_021_02660_6
crossref_primary_10_1109_TR_2021_3105531
crossref_primary_10_1007_s42107_025_01485_7
crossref_primary_10_1007_s11634_021_00455_6
crossref_primary_10_1109_JPROC_2019_2897076
crossref_primary_10_1007_s10973_019_08789_2
crossref_primary_10_1063_5_0139707
crossref_primary_10_1007_s11282_023_00669_8
crossref_primary_10_3390_healthcare10081494
crossref_primary_10_1016_j_matpr_2020_10_624
crossref_primary_10_3233_JIFS_221389
crossref_primary_10_1088_1741_2552_ab260c
crossref_primary_10_1016_j_scs_2021_103484
crossref_primary_10_1186_s13321_019_0391_2
crossref_primary_10_1016_j_camwa_2023_10_002
crossref_primary_10_1109_ACCESS_2020_2990607
crossref_primary_10_3390_rs16010068
crossref_primary_10_1016_j_enconman_2020_112700
crossref_primary_10_15754_jkpe_2017_39_1_005
crossref_primary_10_5194_hess_28_917_2024
crossref_primary_10_1109_TCYB_2022_3155646
crossref_primary_10_1051_e3sconf_202021601035
crossref_primary_10_1016_j_jmva_2019_06_005
crossref_primary_10_1038_srep21471
crossref_primary_10_1007_s00158_021_02861_y
crossref_primary_10_3390_drones8100534
crossref_primary_10_3390_catal7100306
crossref_primary_10_1146_annurev_statistics_032921_013738
crossref_primary_10_1016_j_neunet_2022_11_035
crossref_primary_10_1063_1_5142089
crossref_primary_10_3390_s21186273
crossref_primary_10_1016_j_neunet_2022_02_012
crossref_primary_10_1016_j_nima_2017_06_020
crossref_primary_10_1002_wcms_70016
crossref_primary_10_3390_en18174564
crossref_primary_10_1111_faf_12666
crossref_primary_10_1007_s40996_023_01156_0
crossref_primary_10_3390_agriculture11020131
crossref_primary_10_1016_j_fuel_2020_120006
crossref_primary_10_1109_JOE_2017_2752757
crossref_primary_10_1016_j_aei_2021_101289
crossref_primary_10_1016_j_eswa_2020_113386
crossref_primary_10_1016_j_pnucene_2024_105568
crossref_primary_10_1016_j_ebiom_2019_07_001
crossref_primary_10_1016_j_oceaneng_2021_108956
crossref_primary_10_3390_app13031639
crossref_primary_10_24171_j_phrp_2020_11_4_13
crossref_primary_10_1002_ett_4117
crossref_primary_10_1016_j_neubiorev_2022_104621
crossref_primary_10_1109_TII_2018_2822680
crossref_primary_10_1103_PhysRevResearch_2_023300
crossref_primary_10_1016_j_ifacol_2021_10_007
crossref_primary_10_1049_2023_1052063
crossref_primary_10_1155_2021_8893795
crossref_primary_10_1016_j_sigpro_2023_108977
crossref_primary_10_1080_17483107_2019_1673834
crossref_primary_10_1038_srep19133
crossref_primary_10_3390_s19071644
crossref_primary_10_2139_ssrn_5264276
crossref_primary_10_26634_jip_8_4_18394
crossref_primary_10_1016_j_compeleceng_2022_108279
crossref_primary_10_1109_ACCESS_2022_3152200
crossref_primary_10_1016_j_chaos_2023_113809
crossref_primary_10_26634_jic_8_1_17698
crossref_primary_10_1145_3453155
crossref_primary_10_1088_1361_6501_ab50f0
crossref_primary_10_3389_fmars_2021_637759
crossref_primary_10_3390_s20185322
crossref_primary_10_1007_s42452_020_03239_3
crossref_primary_10_1111_exsy_12525
crossref_primary_10_4018_IJAMC_292504
crossref_primary_10_1063_1_5143382
crossref_primary_10_1109_TGRS_2021_3072381
crossref_primary_10_1016_j_nucengdes_2024_113551
crossref_primary_10_1007_s00779_019_01261_w
crossref_primary_10_1016_j_cirpj_2022_11_004
crossref_primary_10_1109_ACCESS_2022_3217217
crossref_primary_10_1007_s43452_024_00922_9
crossref_primary_10_3390_s20102778
crossref_primary_10_1097_IAE_0000000000003535
crossref_primary_10_1109_ACCESS_2022_3178847
crossref_primary_10_1134_S0005117920070048
crossref_primary_10_3390_brainsci13010021
crossref_primary_10_3390_s18113960
crossref_primary_10_1111_opo_12909
crossref_primary_10_1016_j_jag_2023_103279
crossref_primary_10_1016_j_neunet_2018_07_010
crossref_primary_10_1007_s11222_024_10500_x
crossref_primary_10_1016_j_engstruct_2025_119621
crossref_primary_10_1016_j_bspc_2021_103094
crossref_primary_10_1016_j_neunet_2018_07_013
crossref_primary_10_1016_j_comcom_2021_07_014
crossref_primary_10_1063_5_0025881
crossref_primary_10_1007_s10660_019_09371_6
crossref_primary_10_1002_cite_202100051
crossref_primary_10_32604_cmc_2023_030818
crossref_primary_10_1007_s11661_020_06008_4
crossref_primary_10_1155_2019_1879746
crossref_primary_10_3390_s20061756
crossref_primary_10_1016_j_jnca_2019_02_009
crossref_primary_10_1016_j_renene_2023_119200
crossref_primary_10_1016_j_gassur_2024_08_024
crossref_primary_10_1016_j_artint_2021_103457
crossref_primary_10_1007_s00603_017_1197_z
crossref_primary_10_1093_bib_bbac202
crossref_primary_10_1109_TNSE_2021_3102667
crossref_primary_10_1002_adma_202201345
crossref_primary_10_1016_j_astropartphys_2019_03_001
crossref_primary_10_1016_j_eiar_2025_108130
crossref_primary_10_1002_aisy_202500147
crossref_primary_10_3390_su122310090
crossref_primary_10_1016_j_artmed_2020_101954
crossref_primary_10_12677_JISP_2018_74023
crossref_primary_10_1002_acm2_13001
crossref_primary_10_1016_j_resplu_2024_100829
crossref_primary_10_1177_1071181320641417
crossref_primary_10_1186_s13321_020_00454_3
crossref_primary_10_1016_j_scriptamat_2020_10_026
crossref_primary_10_1007_s41060_025_00822_y
crossref_primary_10_1002_prot_70005
crossref_primary_10_3390_pr9122166
crossref_primary_10_1016_j_sna_2023_115003
crossref_primary_10_3233_ICA_210652
crossref_primary_10_1186_s13635_020_00109_8
crossref_primary_10_1109_TSMC_2019_2920390
crossref_primary_10_1007_s11071_019_05430_7
crossref_primary_10_3390_en16155790
crossref_primary_10_1073_pnas_2201854119
crossref_primary_10_1002_nme_70034
crossref_primary_10_1016_j_enbuild_2019_109402
crossref_primary_10_1371_journal_pone_0212368
crossref_primary_10_1016_j_ijepes_2025_110793
crossref_primary_10_1016_j_commatsci_2021_110356
crossref_primary_10_1016_j_artmed_2020_101963
crossref_primary_10_1016_j_compchemeng_2022_108125
crossref_primary_10_1109_ACCESS_2020_3040780
crossref_primary_10_3390_electronics12071561
crossref_primary_10_3390_s21041330
crossref_primary_10_1016_j_measurement_2020_108809
crossref_primary_10_1016_j_physa_2025_130529
crossref_primary_10_1186_s12957_025_03874_3
crossref_primary_10_1016_j_neunet_2025_108127
crossref_primary_10_3390_hydrology10020050
crossref_primary_10_1016_j_conbuildmat_2022_129503
crossref_primary_10_1016_j_compfluid_2019_03_022
crossref_primary_10_1016_j_ijfatigue_2019_02_043
crossref_primary_10_1186_s40360_018_0282_6
crossref_primary_10_1016_j_jprocont_2023_103127
crossref_primary_10_1007_s10845_020_01581_2
crossref_primary_10_1016_j_oceaneng_2023_114536
crossref_primary_10_3390_s21072411
crossref_primary_10_1016_j_saa_2023_122355
crossref_primary_10_1016_j_jclepro_2019_06_084
crossref_primary_10_1016_j_jhydrol_2021_126586
crossref_primary_10_3389_frobt_2019_00153
crossref_primary_10_1007_s12145_025_01745_9
crossref_primary_10_1134_S0361768820080265
crossref_primary_10_3390_app122211502
crossref_primary_10_3390_s19071693
crossref_primary_10_1007_s00586_022_07176_0
crossref_primary_10_1007_s11042_020_08769_x
crossref_primary_10_1016_j_mineng_2023_108028
crossref_primary_10_1016_j_envsoft_2023_105854
crossref_primary_10_1109_LGRS_2021_3128965
crossref_primary_10_1016_j_matpr_2021_01_611
crossref_primary_10_1016_j_dsp_2017_07_023
crossref_primary_10_1016_j_ppnp_2023_104084
crossref_primary_10_1080_13675567_2017_1384451
crossref_primary_10_1364_JOCN_403056
crossref_primary_10_7759_cureus_41840
crossref_primary_10_1016_j_compbiomed_2017_03_024
crossref_primary_10_1007_s42979_023_02236_8
crossref_primary_10_1016_j_jml_2019_03_006
crossref_primary_10_1007_s12599_018_0544_2
crossref_primary_10_1080_13658816_2019_1599895
crossref_primary_10_1109_JIOT_2020_2993567
crossref_primary_10_1109_JSYST_2022_3232942
crossref_primary_10_3389_fnagi_2022_1027224
crossref_primary_10_3390_sym13101942
crossref_primary_10_1016_j_neunet_2019_04_005
crossref_primary_10_1016_j_oceaneng_2022_113395
crossref_primary_10_1109_ACCESS_2018_2846609
crossref_primary_10_1109_LGRS_2020_2972313
crossref_primary_10_1109_ACCESS_2015_2479620
crossref_primary_10_1016_j_ins_2022_10_022
crossref_primary_10_1016_j_neunet_2019_04_009
crossref_primary_10_1109_JSEN_2020_3006400
crossref_primary_10_1002_asi_24025
crossref_primary_10_1038_s41598_022_13984_7
crossref_primary_10_3390_app10041546
crossref_primary_10_1007_s10772_021_09859_3
crossref_primary_10_1016_j_eswa_2019_113090
crossref_primary_10_1038_s41598_018_20521_y
crossref_primary_10_3390_app11125541
crossref_primary_10_1007_s11684_019_0726_4
crossref_primary_10_1109_TGRS_2020_3015826
crossref_primary_10_1016_j_oceaneng_2023_114511
crossref_primary_10_1109_TGRS_2021_3119537
crossref_primary_10_3390_photonics10030271
crossref_primary_10_1016_j_neunet_2019_04_013
crossref_primary_10_3390_w17091263
crossref_primary_10_1016_j_neunet_2019_04_019
crossref_primary_10_1016_j_applthermaleng_2024_122870
crossref_primary_10_1088_1361_6501_ac856d
crossref_primary_10_1007_s11831_021_09557_y
crossref_primary_10_1109_JBHI_2021_3093649
crossref_primary_10_1109_JSEN_2019_2937740
crossref_primary_10_1109_LRA_2018_2850224
crossref_primary_10_1186_s12911_019_0988_4
crossref_primary_10_3390_app11209705
crossref_primary_10_3390_photonics9020069
crossref_primary_10_1016_j_compeleceng_2024_109290
crossref_primary_10_3390_photonics10030278
crossref_primary_10_1515_tjj_2018_0049
crossref_primary_10_3390_rs15174299
crossref_primary_10_1109_TITS_2020_2973736
crossref_primary_10_3390_e25020353
crossref_primary_10_1109_TMECH_2018_2834622
crossref_primary_10_1109_JSTARS_2018_2793849
crossref_primary_10_1016_j_neunet_2019_04_024
crossref_primary_10_1175_MWR_D_18_0391_1
crossref_primary_10_1007_s00138_021_01271_w
crossref_primary_10_1016_j_bspc_2022_104224
crossref_primary_10_3390_bdcc7010016
crossref_primary_10_1016_j_atech_2022_100091
crossref_primary_10_1038_s41540_024_00341_9
crossref_primary_10_3390_s20061771
crossref_primary_10_1016_j_cirpj_2020_02_004
crossref_primary_10_1016_j_swevo_2022_101120
crossref_primary_10_3390_app13020923
crossref_primary_10_3390_diagnostics6020024
crossref_primary_10_1002_ange_202008366
crossref_primary_10_1007_s11135_025_02114_w
crossref_primary_10_1515_revneuro_2024_0088
crossref_primary_10_1002_adom_202201959
crossref_primary_10_1016_j_patcog_2021_107936
crossref_primary_10_1177_2399808317710132
crossref_primary_10_1007_s11069_022_05356_1
crossref_primary_10_3389_fnins_2020_578126
crossref_primary_10_1016_j_irfa_2024_103769
crossref_primary_10_3390_rs13051011
crossref_primary_10_1016_j_neucom_2023_126438
crossref_primary_10_3390_rs13193976
crossref_primary_10_1109_TII_2017_2739340
crossref_primary_10_3390_act12030117
crossref_primary_10_1038_s41598_019_55861_w
crossref_primary_10_1146_annurev_vision_091718_014731
crossref_primary_10_1111_raq_12464
crossref_primary_10_1109_TII_2020_3044576
crossref_primary_10_3389_frwa_2021_786016
crossref_primary_10_1016_j_ymssp_2018_05_050
crossref_primary_10_1007_s11222_020_09989_9
crossref_primary_10_1007_s11277_022_09848_y
crossref_primary_10_1080_01431161_2025_2452313
crossref_primary_10_1016_j_engappai_2023_106975
crossref_primary_10_1109_TSC_2020_2975799
crossref_primary_10_1109_ACCESS_2019_2909807
crossref_primary_10_1007_s11042_023_17769_6
crossref_primary_10_1007_s13042_017_0736_y
crossref_primary_10_1002_fld_4911
crossref_primary_10_1109_ACCESS_2022_3170042
crossref_primary_10_1016_j_knosys_2016_07_019
crossref_primary_10_1109_COMST_2018_2844341
crossref_primary_10_1155_2024_9480522
crossref_primary_10_1007_s11517_022_02759_x
crossref_primary_10_1016_j_compbiomed_2022_105215
crossref_primary_10_1109_TCI_2022_3201390
crossref_primary_10_1093_comjnl_bxz062
crossref_primary_10_1016_j_irbm_2020_12_002
crossref_primary_10_1016_j_envres_2023_117601
crossref_primary_10_1146_annurev_vision_120522_031739
crossref_primary_10_3390_su10114312
crossref_primary_10_1002_mp_13264
crossref_primary_10_1007_s00220_025_05238_0
crossref_primary_10_1103_PhysRevB_106_035131
crossref_primary_10_1515_npprj_2022_0013
crossref_primary_10_3389_fsufs_2020_00051
crossref_primary_10_1109_COMST_2019_2943405
crossref_primary_10_2118_214681_PA
crossref_primary_10_1371_journal_pone_0197992
crossref_primary_10_3389_frai_2020_550890
crossref_primary_10_1007_s10799_021_00336_6
crossref_primary_10_1080_01431161_2021_1887539
crossref_primary_10_1016_j_matdes_2018_11_060
crossref_primary_10_1109_ACCESS_2021_3054468
crossref_primary_10_1007_s10494_019_00028_w
crossref_primary_10_1007_s42985_023_00231_5
crossref_primary_10_1016_j_atech_2022_100042
crossref_primary_10_1016_j_trc_2019_05_021
crossref_primary_10_1364_PRJ_411825
crossref_primary_10_1016_j_ebiom_2023_104820
crossref_primary_10_1002_qre_2797
crossref_primary_10_1093_iti_liad016
crossref_primary_10_1016_j_eswa_2024_123947
crossref_primary_10_3389_fninf_2020_575999
crossref_primary_10_1038_s41598_024_80286_5
crossref_primary_10_1016_j_ccr_2025_216460
crossref_primary_10_1016_j_patcog_2021_107978
crossref_primary_10_1109_TBME_2022_3141308
crossref_primary_10_1088_1475_7516_2025_02_004
crossref_primary_10_1007_s00530_022_00951_5
crossref_primary_10_3390_app13053097
crossref_primary_10_1007_s11663_021_02299_z
crossref_primary_10_1049_rsn2_12510
crossref_primary_10_1016_j_nucengdes_2023_112423
crossref_primary_10_1038_s41598_022_21451_6
crossref_primary_10_1145_3396949
crossref_primary_10_1016_j_neucom_2019_02_047
crossref_primary_10_1016_j_compchemeng_2020_107123
crossref_primary_10_1007_s00521_025_11039_2
crossref_primary_10_1109_ACCESS_2020_2972859
crossref_primary_10_1016_j_bspc_2019_101663
crossref_primary_10_1093_jas_skz092
crossref_primary_10_1109_TSM_2020_2994357
crossref_primary_10_1007_s00371_016_1220_5
crossref_primary_10_3390_axioms10030139
crossref_primary_10_1016_j_ifacol_2021_06_037
crossref_primary_10_1016_j_molcel_2020_04_020
crossref_primary_10_1109_ACCESS_2019_2916935
crossref_primary_10_1088_1361_6501_adda70
crossref_primary_10_3390_buildings15132291
crossref_primary_10_1016_j_eswa_2025_128583
crossref_primary_10_1080_15732479_2020_1811991
crossref_primary_10_1007_s11269_024_04069_3
crossref_primary_10_3390_socsci12070398
crossref_primary_10_1016_j_pnucene_2019_103133
crossref_primary_10_1109_TEM_2020_2978528
crossref_primary_10_1016_j_engappai_2024_109105
crossref_primary_10_1016_j_neucom_2019_02_051
crossref_primary_10_1007_s11936_020_00838_6
crossref_primary_10_1111_cgf_13536
crossref_primary_10_1002_arp_1763
crossref_primary_10_1038_s41528_025_00425_4
crossref_primary_10_1038_s41598_018_21758_3
crossref_primary_10_1016_j_ins_2018_09_029
crossref_primary_10_1016_j_buildenv_2021_108148
crossref_primary_10_3390_s17020414
crossref_primary_10_1016_j_applthermaleng_2017_12_063
crossref_primary_10_1002_aic_16489
crossref_primary_10_1007_s10462_020_09845_2
crossref_primary_10_3390_en11081988
crossref_primary_10_1016_j_ipm_2019_03_004
crossref_primary_10_1007_s00371_020_01799_4
crossref_primary_10_1038_s42003_021_01697_y
crossref_primary_10_1108_IDD_02_2020_0019
crossref_primary_10_1016_j_aei_2023_102337
crossref_primary_10_3390_math9192405
crossref_primary_10_3390_app9112331
crossref_primary_10_1063_5_0235654
crossref_primary_10_1002_aic_16473
crossref_primary_10_3390_s21155192
crossref_primary_10_1038_s41551_023_01045_x
crossref_primary_10_1016_j_petrol_2020_107159
crossref_primary_10_1186_s40537_018_0135_6
crossref_primary_10_1007_s00170_021_08369_5
crossref_primary_10_1016_j_rse_2021_112750
crossref_primary_10_3390_rs15010182
crossref_primary_10_1002_er_5429
crossref_primary_10_1016_j_pnucene_2019_103110
crossref_primary_10_1016_j_patrec_2017_08_023
crossref_primary_10_3389_fped_2023_1203289
crossref_primary_10_1016_j_chaos_2025_117131
crossref_primary_10_1002_cem_3318
crossref_primary_10_1007_s00500_016_2442_1
crossref_primary_10_1016_j_ins_2018_09_001
crossref_primary_10_1098_rsos_201886
crossref_primary_10_1016_j_heliyon_2022_e10567
crossref_primary_10_1016_j_eswa_2022_116977
crossref_primary_10_1186_s12859_022_04689_9
crossref_primary_10_1109_ACCESS_2023_3249108
crossref_primary_10_3389_fnins_2019_01275
crossref_primary_10_3389_fbioe_2020_562677
crossref_primary_10_1016_j_conbuildmat_2025_142080
crossref_primary_10_1016_j_ins_2018_09_059
crossref_primary_10_32604_cmc_2022_021271
crossref_primary_10_1016_j_jece_2025_117826
crossref_primary_10_1016_j_cosrev_2020_100288
crossref_primary_10_1162_netn_a_00082
crossref_primary_10_1016_j_ins_2017_01_013
crossref_primary_10_1016_j_compbiomed_2025_110788
crossref_primary_10_1109_TEM_2020_2977222
crossref_primary_10_1007_s11766_022_4319_7
crossref_primary_10_1016_j_engstruct_2023_116083
crossref_primary_10_1002_cpe_5595
crossref_primary_10_1080_10293523_2020_1870860
crossref_primary_10_1109_LPT_2017_2742553
crossref_primary_10_1111_ajae_12442
crossref_primary_10_1007_s12652_020_02172_y
crossref_primary_10_1016_j_ijnonlinmec_2022_104023
crossref_primary_10_1109_THMS_2019_2912447
crossref_primary_10_3390_encyclopedia3020049
crossref_primary_10_3390_mi15101258
crossref_primary_10_1089_jamp_2022_0051
crossref_primary_10_1021_jacs_1c08211
crossref_primary_10_3390_s19051112
crossref_primary_10_3233_JIFS_211944
crossref_primary_10_1534_g3_116_033654
crossref_primary_10_1088_2634_4386_accd8f
crossref_primary_10_1016_j_conb_2018_08_003
crossref_primary_10_1007_s12524_018_0892_x
crossref_primary_10_1016_j_jobe_2021_102536
crossref_primary_10_3390_computers12050091
crossref_primary_10_1088_2634_4386_ac4918
crossref_primary_10_1099_mgen_0_000317
crossref_primary_10_1016_j_cmpb_2019_03_019
crossref_primary_10_1109_TSMC_2023_3257416
crossref_primary_10_1190_geo2023_0742_1
crossref_primary_10_1007_s11036_019_01310_x
crossref_primary_10_1109_JSTARS_2021_3065569
crossref_primary_10_1016_j_elspec_2022_147243
crossref_primary_10_1088_1402_4896_acd4fa
crossref_primary_10_1016_j_jhydrol_2022_127656
crossref_primary_10_1016_j_cej_2023_145562
crossref_primary_10_3390_e24111539
crossref_primary_10_1364_JOSAB_573751
crossref_primary_10_3390_molecules27092982
crossref_primary_10_1016_j_optlaseng_2020_106245
crossref_primary_10_1109_LGRS_2019_2953754
crossref_primary_10_1093_mnras_stab3770
crossref_primary_10_1002_int_22982
crossref_primary_10_1190_geo2019_0468_1
crossref_primary_10_1016_j_neucom_2019_02_037
crossref_primary_10_1371_journal_pone_0157028
crossref_primary_10_1142_S021964922350003X
crossref_primary_10_1016_j_artmed_2024_102769
crossref_primary_10_3390_jsan6040026
crossref_primary_10_1016_j_enconman_2022_116026
crossref_primary_10_1016_j_crfs_2025_100986
crossref_primary_10_1016_j_matdes_2019_108411
crossref_primary_10_1016_j_ringps_2021_100015
crossref_primary_10_1007_s00170_021_08462_9
crossref_primary_10_1007_s12145_023_00950_8
crossref_primary_10_1088_1361_6463_ac6d24
crossref_primary_10_1177_1094342020953196
crossref_primary_10_1109_TBME_2018_2890167
crossref_primary_10_1038_s41598_025_04858_9
crossref_primary_10_3390_su16145940
crossref_primary_10_32604_cmes_2022_020601
crossref_primary_10_1007_s00521_022_07208_2
crossref_primary_10_1016_j_arcontrol_2021_05_002
crossref_primary_10_1038_s41598_025_92378_x
crossref_primary_10_1109_ACCESS_2019_2956170
crossref_primary_10_3390_w14182910
crossref_primary_10_4018_IJSESD_313966
crossref_primary_10_3390_electronics9010193
crossref_primary_10_1063_5_0131067
crossref_primary_10_3390_su11040997
crossref_primary_10_1016_j_trc_2017_08_001
crossref_primary_10_1177_03611981211018693
crossref_primary_10_1088_1361_6501_abc6e3
crossref_primary_10_1109_ACCESS_2022_3219832
crossref_primary_10_1007_s11042_020_09714_8
crossref_primary_10_1007_s11837_024_06408_6
crossref_primary_10_1063_1_5136251
crossref_primary_10_1007_s11023_019_09512_8
crossref_primary_10_3390_coatings12111619
crossref_primary_10_1016_j_rineng_2025_105104
crossref_primary_10_1016_j_asoc_2020_106181
crossref_primary_10_1038_s41598_023_33222_y
crossref_primary_10_1080_02773945_2024_2343264
crossref_primary_10_1109_TFUZZ_2018_2857725
crossref_primary_10_3390_electronics9010180
crossref_primary_10_1016_j_rpor_2020_03_015
crossref_primary_10_1016_j_asoc_2021_107314
crossref_primary_10_3390_jmse10030311
crossref_primary_10_1016_j_bspc_2023_105475
crossref_primary_10_1177_1420326X241244721
crossref_primary_10_1016_j_ecoinf_2021_101322
crossref_primary_10_1039_D0QO00946F
crossref_primary_10_1016_j_physrep_2022_04_001
crossref_primary_10_7717_peerj_6842
crossref_primary_10_3390_electronics9091514
crossref_primary_10_1088_1741_2552_ab0b82
crossref_primary_10_3390_rs16091562
crossref_primary_10_1080_00207721_2018_1552771
crossref_primary_10_1016_j_engstruct_2021_112735
crossref_primary_10_1016_j_optlaseng_2022_107298
crossref_primary_10_1016_j_ijpe_2018_06_010
crossref_primary_10_1161_JAHA_119_014717
crossref_primary_10_1088_1742_6596_1854_1_012047
crossref_primary_10_1038_nbt_4106
crossref_primary_10_1016_j_drudis_2020_06_001
crossref_primary_10_1109_TMI_2016_2532122
crossref_primary_10_3390_ijgi9110632
crossref_primary_10_1371_journal_pstr_0000182
crossref_primary_10_1093_bib_bbac191
crossref_primary_10_3390_en18030746
crossref_primary_10_1145_3450963
crossref_primary_10_1016_j_scitotenv_2023_169699
crossref_primary_10_3389_fnins_2023_1154252
crossref_primary_10_1177_1748006X19866546
crossref_primary_10_1016_j_aei_2021_101315
crossref_primary_10_1190_geo2019_0250_1
crossref_primary_10_2478_arsa_2023_0009
crossref_primary_10_3390_app10061994
crossref_primary_10_1109_TGRS_2022_3229362
crossref_primary_10_1016_j_isprsjprs_2021_08_017
crossref_primary_10_3390_rs13234868
crossref_primary_10_1109_JIOT_2022_3151667
crossref_primary_10_1017_S1431927619001041
crossref_primary_10_1016_j_procir_2018_02_010
crossref_primary_10_1007_s11042_022_12963_4
crossref_primary_10_1016_j_neucom_2018_11_079
crossref_primary_10_1155_2016_1010459
crossref_primary_10_1109_JIOT_2022_3161050
crossref_primary_10_1016_j_neuroscience_2020_07_040
crossref_primary_10_1007_s00009_022_02138_8
crossref_primary_10_1109_TASLP_2019_2913087
crossref_primary_10_1109_ACCESS_2019_2899990
crossref_primary_10_1109_ACCESS_2022_3177595
crossref_primary_10_1007_s10462_022_10237_x
crossref_primary_10_1515_eng_2018_0043
crossref_primary_10_1016_j_ddtec_2020_09_003
crossref_primary_10_1016_j_measurement_2020_107567
crossref_primary_10_1007_s10107_021_01629_y
crossref_primary_10_1016_j_ecoinf_2021_101353
crossref_primary_10_1007_s11831_022_09765_0
crossref_primary_10_1016_j_mser_2025_101085
crossref_primary_10_1007_s00521_021_06621_3
crossref_primary_10_1016_j_neuroimage_2017_04_061
crossref_primary_10_1109_TSE_2018_2792473
crossref_primary_10_1007_s11265_023_01894_4
crossref_primary_10_1109_TNNLS_2017_2782266
crossref_primary_10_1007_s10009_020_00560_5
crossref_primary_10_3390_en18154004
crossref_primary_10_1007_s11042_021_11135_0
crossref_primary_10_1016_j_fuel_2021_122538
crossref_primary_10_1080_16549716_2017_1337325
crossref_primary_10_1146_annurev_biodatasci_080917_013516
crossref_primary_10_1016_j_jmsy_2020_06_018
crossref_primary_10_1093_mnras_stz131
crossref_primary_10_1109_ACCESS_2019_2897327
crossref_primary_10_1049_rsn2_12536
crossref_primary_10_1016_j_ress_2023_109850
crossref_primary_10_1080_13675567_2025_2517639
crossref_primary_10_1016_j_aeue_2019_02_011
crossref_primary_10_1109_TNNLS_2018_2890787
crossref_primary_10_1134_S1063739725600347
crossref_primary_10_1016_j_csbj_2021_10_009
crossref_primary_10_1016_j_cmpb_2022_106874
crossref_primary_10_1088_1742_6596_1085_2_022002
crossref_primary_10_2147_IJN_S344208
crossref_primary_10_1016_j_cej_2022_137221
crossref_primary_10_1016_j_jedc_2020_103895
crossref_primary_10_3390_buildings14113509
crossref_primary_10_1111_epi_13907
crossref_primary_10_2135_tppj2019_03_0006
crossref_primary_10_1007_s11356_021_12658_7
crossref_primary_10_1016_j_renene_2018_02_081
crossref_primary_10_1371_journal_pone_0319476
crossref_primary_10_3390_ma18030714
crossref_primary_10_1029_2023EA003186
crossref_primary_10_1016_j_neuroimage_2017_04_041
crossref_primary_10_1109_TNNLS_2017_2726119
crossref_primary_10_1007_s13369_025_10257_z
crossref_primary_10_1016_j_engappai_2021_104610
crossref_primary_10_1016_j_jbiomech_2019_109490
crossref_primary_10_1016_j_biombioe_2025_108366
crossref_primary_10_3390_su11236755
crossref_primary_10_1016_j_eja_2019_01_004
crossref_primary_10_1016_j_engstruct_2022_113915
crossref_primary_10_1016_j_procs_2017_05_101
crossref_primary_10_1017_pasa_2023_32
crossref_primary_10_1016_j_conb_2015_12_001
crossref_primary_10_1109_TBME_2019_2945231
crossref_primary_10_1016_j_jcp_2018_08_036
crossref_primary_10_1109_JBHI_2018_2795545
crossref_primary_10_1007_s12613_023_2670_1
crossref_primary_10_1016_j_finel_2023_104068
crossref_primary_10_1175_JTECH_D_19_0146_1
crossref_primary_10_3390_su14074083
crossref_primary_10_1186_s40708_023_00188_6
crossref_primary_10_1016_j_optlastec_2022_108780
crossref_primary_10_1002_cam4_4042
crossref_primary_10_7554_eLife_59161
crossref_primary_10_1016_j_compag_2025_110761
crossref_primary_10_1016_j_drudis_2017_08_010
crossref_primary_10_3390_rs15081960
crossref_primary_10_1186_s42400_020_00053_7
crossref_primary_10_1007_s00146_021_01287_w
crossref_primary_10_1016_j_jappgeo_2022_104846
crossref_primary_10_1093_jme_tjz065
crossref_primary_10_1186_s13059_018_1459_4
crossref_primary_10_1093_mnras_stad141
crossref_primary_10_1016_j_neubiorev_2017_01_002
crossref_primary_10_3390_computers5040028
crossref_primary_10_1088_1674_4527_21_5_119
crossref_primary_10_1016_j_cie_2019_06_052
crossref_primary_10_1190_geo2020_0313_1
crossref_primary_10_1016_j_amc_2024_128910
crossref_primary_10_1109_JSTARS_2025_3557956
crossref_primary_10_1016_j_engappai_2025_111173
crossref_primary_10_1016_j_engappai_2025_111172
crossref_primary_10_1049_iet_rsn_2016_0632
crossref_primary_10_1051_itmconf_20224301020
crossref_primary_10_1016_j_eswa_2022_118254
crossref_primary_10_1016_j_jmva_2020_104696
crossref_primary_10_56294_dm2025994
crossref_primary_10_1007_s00521_018_03980_2
crossref_primary_10_1016_j_compchemeng_2025_109382
crossref_primary_10_1016_j_imu_2025_101659
crossref_primary_10_3390_buildings11090409
crossref_primary_10_3389_fdata_2021_642182
crossref_primary_10_1080_01691864_2017_1365009
crossref_primary_10_1007_s42979_025_03739_2
crossref_primary_10_5194_tc_15_1551_2021
crossref_primary_10_3389_fphy_2018_00051
crossref_primary_10_1007_s12145_023_01207_0
crossref_primary_10_1080_19393555_2021_1883777
crossref_primary_10_1016_j_pss_2022_105579
crossref_primary_10_3390_en13153987
crossref_primary_10_1140_epjp_s13360_025_06072_y
crossref_primary_10_1111_mice_13381
crossref_primary_10_1371_journal_pcbi_1005403
crossref_primary_10_1002_adpr_202300253
crossref_primary_10_1016_j_engappai_2025_111184
crossref_primary_10_1080_17486025_2021_1975048
crossref_primary_10_1088_1757_899X_768_7_072055
crossref_primary_10_1016_j_apsusc_2018_12_255
crossref_primary_10_3390_s22228739
crossref_primary_10_3390_s21186172
crossref_primary_10_1007_s40304_022_00329_z
crossref_primary_10_1007_s10973_018_7722_9
crossref_primary_10_3390_buildings11040165
crossref_primary_10_3390_bdcc5040060
crossref_primary_10_1038_s41598_025_02015_w
crossref_primary_10_1088_1757_899X_768_7_072040
crossref_primary_10_1016_j_joi_2017_12_004
crossref_primary_10_1371_journal_pone_0214866
crossref_primary_10_1007_s10462_022_10289_z
crossref_primary_10_1109_LSP_2020_2966888
crossref_primary_10_3390_electronics9101708
crossref_primary_10_1016_j_neunet_2017_07_015
crossref_primary_10_1016_j_jhydrol_2021_126877
crossref_primary_10_1109_TIFS_2019_2919950
crossref_primary_10_1016_j_procs_2025_04_642
crossref_primary_10_1109_ACCESS_2022_3206449
crossref_primary_10_1038_s41467_021_23087_y
crossref_primary_10_1088_2515_7620_ac371f
crossref_primary_10_1016_j_optcom_2024_131471
crossref_primary_10_1080_19648189_2022_2102081
crossref_primary_10_3389_fenrg_2020_00115
crossref_primary_10_1016_j_renene_2022_07_109
crossref_primary_10_1007_s10668_023_03212_1
crossref_primary_10_3390_signals3020025
crossref_primary_10_1016_j_image_2022_116710
crossref_primary_10_1093_ajhp_zxaa218
crossref_primary_10_1029_2022RG000788
crossref_primary_10_1016_j_vlsi_2020_01_003
crossref_primary_10_1016_j_buildenv_2019_04_029
crossref_primary_10_1007_s42401_021_00105_x
crossref_primary_10_1289_EHP8495
crossref_primary_10_1109_TBCAS_2016_2525823
crossref_primary_10_32604_cmc_2022_028570
crossref_primary_10_1007_s11612_018_0425_7
crossref_primary_10_3390_rs12142229
crossref_primary_10_1016_j_eswa_2020_113699
crossref_primary_10_1007_s42979_024_02851_z
crossref_primary_10_1016_j_eswa_2020_113696
crossref_primary_10_1088_1361_6463_abf61e
crossref_primary_10_1109_ACCESS_2019_2891073
crossref_primary_10_1371_journal_pone_0266042
crossref_primary_10_1007_s00706_023_03076_1
crossref_primary_10_3390_sym14051006
crossref_primary_10_1016_j_jbiomech_2019_109544
crossref_primary_10_1016_j_sysarc_2024_103112
crossref_primary_10_3390_electronics12173614
crossref_primary_10_1016_j_ijpharm_2023_123280
crossref_primary_10_3389_fenvs_2025_1573579
crossref_primary_10_1002_eom2_12330
crossref_primary_10_1007_s11042_023_17337_y
crossref_primary_10_1016_j_scitotenv_2023_169540
crossref_primary_10_3390_diagnostics11091672
crossref_primary_10_1007_s13369_016_2387_9
crossref_primary_10_1016_j_chempr_2018_06_011
crossref_primary_10_1137_20M1384154
crossref_primary_10_1016_j_oceaneng_2025_121723
crossref_primary_10_1053_j_gastro_2018_06_037
crossref_primary_10_1155_2021_7171816
crossref_primary_10_1021_acsenergylett_5c00411
crossref_primary_10_1029_2021SW002985
crossref_primary_10_3390_land11111905
crossref_primary_10_1007_s12652_020_01834_1
crossref_primary_10_1038_srep46479
crossref_primary_10_1007_s13202_021_01425_6
crossref_primary_10_1016_j_mechmachtheory_2018_11_005
crossref_primary_10_34133_adi_0089
crossref_primary_10_1038_s41586_018_0337_2
crossref_primary_10_1111_jbl_12198
crossref_primary_10_1016_j_asoc_2022_109779
crossref_primary_10_1142_S0219649222500174
crossref_primary_10_1109_ACCESS_2018_2873942
crossref_primary_10_1063_5_0267896
crossref_primary_10_1016_j_ascom_2021_100535
crossref_primary_10_32604_cmc_2023_039528
crossref_primary_10_3390_app14167148
crossref_primary_10_1088_1757_899X_768_7_072002
crossref_primary_10_1016_j_jksus_2020_101263
crossref_primary_10_1109_LGRS_2016_2517178
crossref_primary_10_1038_s41598_023_27986_6
crossref_primary_10_1109_MCAS_2020_3027222
crossref_primary_10_1186_s12911_019_0747_6
crossref_primary_10_3390_pr7030151
crossref_primary_10_1302_2046_3758_129_BJR_2023_0070_R2
crossref_primary_10_3390_agronomy12020356
crossref_primary_10_1016_j_compchemeng_2023_108306
crossref_primary_10_1007_s12583_022_1803_1
crossref_primary_10_1126_sciadv_adr2082
crossref_primary_10_1016_j_oceaneng_2022_113287
crossref_primary_10_1088_1742_6596_2171_1_012065
crossref_primary_10_3233_IA_210081
crossref_primary_10_1109_ACCESS_2020_3006143
crossref_primary_10_3390_rs9090951
crossref_primary_10_1080_00036811_2018_1466277
crossref_primary_10_1016_j_ocemod_2024_102386
crossref_primary_10_3389_fninf_2025_1553035
crossref_primary_10_1007_s41062_024_01385_w
crossref_primary_10_1016_j_patrec_2016_05_018
crossref_primary_10_1007_s00521_023_08474_4
crossref_primary_10_1109_TPAMI_2017_2756936
crossref_primary_10_1007_s11263_023_01784_z
crossref_primary_10_3389_frma_2018_00021
crossref_primary_10_1109_ACCESS_2018_2836917
crossref_primary_10_1016_j_ymssp_2020_106738
crossref_primary_10_1109_TC_2021_3119180
crossref_primary_10_1109_TII_2020_2969709
crossref_primary_10_2174_0115748936299646240625092734
crossref_primary_10_3389_fninf_2019_00018
crossref_primary_10_1109_TCDS_2017_2714170
crossref_primary_10_1007_s10489_018_1393_x
crossref_primary_10_1111_ocr_12520
crossref_primary_10_2514_1_J059600
crossref_primary_10_1109_TMI_2019_2913184
crossref_primary_10_1016_j_future_2019_02_013
crossref_primary_10_1371_journal_pone_0268658
crossref_primary_10_3390_electronics13132572
crossref_primary_10_1177_1748006X241252469
crossref_primary_10_1016_j_inffus_2024_102299
crossref_primary_10_3390_rs15174188
crossref_primary_10_2174_1574893617666220609114052
crossref_primary_10_1038_s41438_021_00560_9
crossref_primary_10_1016_j_ijggc_2025_104394
crossref_primary_10_1029_2024WR039764
crossref_primary_10_1016_j_jfoodeng_2023_111931
crossref_primary_10_3390_electronics8040411
crossref_primary_10_3390_molecules26226761
crossref_primary_10_1038_s41377_022_00844_2
crossref_primary_10_3233_JIFS_210503
crossref_primary_10_1155_2020_6535834
crossref_primary_10_5194_adgeo_45_13_2018
crossref_primary_10_3390_app12157711
crossref_primary_10_1016_j_compchemeng_2022_108038
crossref_primary_10_1109_ACCESS_2020_2971348
crossref_primary_10_1109_ACCESS_2019_2926234
crossref_primary_10_1016_j_compbiomed_2018_05_013
crossref_primary_10_1021_acs_iecr_7b01233
crossref_primary_10_3390_rs9090927
crossref_primary_10_1007_s12145_021_00624_3
crossref_primary_10_1088_1741_2552_aaaf82
crossref_primary_10_1093_bjps_axz003
crossref_primary_10_1007_s00521_020_04923_6
crossref_primary_10_1016_j_ymssp_2017_03_034
crossref_primary_10_1016_j_ifacol_2017_08_1217
crossref_primary_10_1017_pds_2021_573
crossref_primary_10_3390_app14114619
crossref_primary_10_1038_s41467_025_56345_4
crossref_primary_10_1109_ACCESS_2023_3257767
crossref_primary_10_1088_1402_4896_ad92ae
crossref_primary_10_1109_TEVC_2021_3137369
crossref_primary_10_1016_j_oceaneng_2019_106282
crossref_primary_10_1109_TCSS_2022_3223999
crossref_primary_10_3390_agriculture13030540
crossref_primary_10_1007_s10796_025_10581_7
crossref_primary_10_1002_vnl_22233
crossref_primary_10_1007_s11783_024_1814_5
crossref_primary_10_1016_j_jhydrol_2022_128958
crossref_primary_10_1073_pnas_2221704120
crossref_primary_10_1016_j_neunet_2017_07_002
crossref_primary_10_1007_s13753_019_00233_1
crossref_primary_10_1016_j_neucom_2016_12_089
crossref_primary_10_1016_j_media_2018_04_002
crossref_primary_10_1016_j_jmsy_2023_08_020
crossref_primary_10_3389_fcvm_2023_1185172
crossref_primary_10_3390_s20185051
crossref_primary_10_3390_app13020814
crossref_primary_10_3390_vehicles4020036
crossref_primary_10_1016_j_neucom_2019_07_100
crossref_primary_10_1155_2023_8585839
crossref_primary_10_1109_TNSE_2021_3107186
crossref_primary_10_1016_j_engfracmech_2024_110239
crossref_primary_10_1016_j_compstruc_2016_05_003
crossref_primary_10_1016_j_watres_2018_11_063
crossref_primary_10_1016_j_rse_2018_06_034
crossref_primary_10_1007_s11517_025_03295_0
crossref_primary_10_1016_j_crmeth_2023_100415
crossref_primary_10_1016_j_tics_2021_03_016
crossref_primary_10_1016_j_compbiomed_2022_105338
crossref_primary_10_1109_TLT_2019_2922356
crossref_primary_10_1016_j_crmeth_2023_100413
crossref_primary_10_1002_sam_11440
crossref_primary_10_3390_ai1040031
crossref_primary_10_1016_j_neucom_2018_08_093
crossref_primary_10_3390_s20185040
crossref_primary_10_1007_s10586_024_04830_8
crossref_primary_10_1088_2632_2153_abae76
crossref_primary_10_3390_s22197118
crossref_primary_10_1016_j_artmed_2023_102738
crossref_primary_10_3847_1538_4365_add0b8
crossref_primary_10_3390_w12030816
crossref_primary_10_1016_j_commatsci_2021_110623
crossref_primary_10_1007_s00500_019_03961_0
crossref_primary_10_1016_j_ecolind_2025_113684
crossref_primary_10_1038_s41567_020_0929_2
crossref_primary_10_1109_ACCESS_2020_3032411
crossref_primary_10_1155_2019_4683982
crossref_primary_10_1111_rssa_12813
crossref_primary_10_1108_IR_08_2023_0191
crossref_primary_10_1177_0361198119851085
crossref_primary_10_1038_s41467_025_60502_0
crossref_primary_10_3389_fpls_2020_558126
crossref_primary_10_3390_plants13010135
crossref_primary_10_3390_app9152980
crossref_primary_10_1007_s40725_021_00138_7
crossref_primary_10_1016_j_biosystemseng_2018_04_018
crossref_primary_10_1007_s13369_020_04758_2
crossref_primary_10_1016_j_automatica_2023_111092
crossref_primary_10_12688_f1000research_52026_2
crossref_primary_10_12688_f1000research_52026_1
crossref_primary_10_1016_j_apm_2025_116105
crossref_primary_10_1016_j_neucom_2017_05_016
crossref_primary_10_1109_MIS_2017_3121556
crossref_primary_10_1016_j_energy_2021_122949
crossref_primary_10_1007_s00115_018_0557_6
crossref_primary_10_1016_j_jksuci_2022_07_014
crossref_primary_10_1016_j_cherd_2022_12_001
crossref_primary_10_1016_j_mechmachtheory_2022_105090
crossref_primary_10_1016_j_enbuild_2020_110525
crossref_primary_10_3390_fi15050179
crossref_primary_10_1109_COMST_2020_2970550
crossref_primary_10_3390_forecast3030033
crossref_primary_10_1002_er_5331
crossref_primary_10_1007_s10489_025_06607_x
crossref_primary_10_3390_pr11020443
crossref_primary_10_1016_j_knosys_2019_04_013
crossref_primary_10_1007_s00521_021_05878_y
crossref_primary_10_1016_j_isprsjprs_2019_05_001
crossref_primary_10_1016_j_isprsjprs_2021_11_015
crossref_primary_10_1007_s12046_022_02027_6
crossref_primary_10_1016_j_bspc_2023_105192
crossref_primary_10_1093_ajhp_zxaf038
crossref_primary_10_3390_app8101943
crossref_primary_10_3389_fnagi_2021_632138
crossref_primary_10_1016_j_cose_2018_07_015
crossref_primary_10_3390_f15030482
crossref_primary_10_1002_widm_1363
crossref_primary_10_1155_2021_5595026
crossref_primary_10_3390_su12166574
crossref_primary_10_1186_s40708_021_00133_5
crossref_primary_10_1007_s11042_016_4342_x
crossref_primary_10_3390_prosthesis5040083
crossref_primary_10_1016_j_commatsci_2021_110709
crossref_primary_10_1080_10888438_2015_1104688
crossref_primary_10_1016_j_image_2022_116695
crossref_primary_10_1109_ACCESS_2019_2916833
crossref_primary_10_1007_s00521_024_10405_w
crossref_primary_10_1016_j_cosrev_2020_100339
crossref_primary_10_1002_widm_1394
crossref_primary_10_3390_s18082640
crossref_primary_10_1007_s11704_017_6518_6
crossref_primary_10_3389_fdata_2021_782902
crossref_primary_10_3390_app142210356
crossref_primary_10_1016_j_chemolab_2019_103850
crossref_primary_10_3390_rs11111325
crossref_primary_10_1088_2632_2153_acccd5
crossref_primary_10_1016_j_cropro_2023_106342
crossref_primary_10_1016_j_cej_2022_136064
crossref_primary_10_1016_j_engappai_2020_103700
crossref_primary_10_1016_j_bspc_2018_12_027
crossref_primary_10_1109_JSTARS_2016_2618891
crossref_primary_10_1007_s00170_018_03259_9
crossref_primary_10_1016_j_soildyn_2021_106656
crossref_primary_10_1002_mp_15988
crossref_primary_10_1016_j_engappai_2024_109498
crossref_primary_10_1016_j_pocean_2023_103190
crossref_primary_10_1109_ACCESS_2021_3071273
crossref_primary_10_1007_s00034_019_01141_x
crossref_primary_10_1007_s11192_018_2944_y
crossref_primary_10_1016_j_jallcom_2023_171891
crossref_primary_10_1016_j_scs_2024_105508
crossref_primary_10_1109_MIM_2021_9400952
crossref_primary_10_3390_antib9020012
crossref_primary_10_3389_fcell_2023_1124775
crossref_primary_10_1360_SSV_2023_0297
crossref_primary_10_1016_j_aquaeng_2025_102570
crossref_primary_10_1093_comjnl_bxy008
crossref_primary_10_1016_j_solener_2018_01_005
crossref_primary_10_1017_cts_2020_513
crossref_primary_10_1029_2022RS007548
crossref_primary_10_1155_2019_5296123
crossref_primary_10_1016_j_ins_2018_03_014
crossref_primary_10_1109_TGRS_2020_3046757
crossref_primary_10_1088_1742_6596_1544_1_012106
crossref_primary_10_1016_j_microc_2025_113605
crossref_primary_10_1080_09540091_2019_1674245
crossref_primary_10_3390_met11081289
crossref_primary_10_3847_1538_4357_aaae00
crossref_primary_10_1158_1078_0432_CCR_18_0385
crossref_primary_10_1016_j_ecoser_2018_04_004
crossref_primary_10_1080_10400435_2020_1743381
crossref_primary_10_1007_s12559_017_9514_0
crossref_primary_10_1109_ACCESS_2018_2865532
crossref_primary_10_1109_TCE_2022_3188806
crossref_primary_10_1038_s41598_023_33298_6
crossref_primary_10_1016_j_patrec_2019_05_001
crossref_primary_10_1016_j_resourpol_2019_101470
crossref_primary_10_1088_1741_2552_aaf12e
crossref_primary_10_1109_JIOT_2018_2842229
crossref_primary_10_1177_0309133318825284
crossref_primary_10_1016_j_neucom_2016_12_027
crossref_primary_10_1088_1367_2630_ab68fc
crossref_primary_10_1016_j_bspc_2020_102024
crossref_primary_10_1016_j_jvcir_2019_03_017
crossref_primary_10_1016_j_asoc_2018_05_023
crossref_primary_10_1016_j_expneurol_2021_113608
crossref_primary_10_3389_fmats_2021_816309
crossref_primary_10_1016_j_snb_2023_135230
crossref_primary_10_1109_TCBB_2022_3140873
crossref_primary_10_1016_j_aquaculture_2018_04_064
crossref_primary_10_1016_j_automatica_2021_110007
crossref_primary_10_1016_j_apr_2023_101980
crossref_primary_10_1371_journal_pone_0257901
crossref_primary_10_1016_j_neucom_2016_12_038
crossref_primary_10_1016_j_neunet_2023_02_017
crossref_primary_10_1002_cem_3006
crossref_primary_10_1088_1757_899X_272_1_012002
crossref_primary_10_3390_polym16233358
crossref_primary_10_1016_j_ejmech_2025_117432
crossref_primary_10_1109_TR_2018_2839718
crossref_primary_10_1088_1361_6560_ac3d15
crossref_primary_10_1016_j_anucene_2024_111151
crossref_primary_10_1080_09540091_2022_2067124
crossref_primary_10_1016_j_inffus_2019_02_010
crossref_primary_10_1088_1755_1315_945_1_012073
crossref_primary_10_1016_j_neucom_2021_12_107
crossref_primary_10_1007_s11760_023_02787_6
crossref_primary_10_1631_FITEE_2200253
crossref_primary_10_1016_j_elerap_2019_100879
crossref_primary_10_1016_j_fuel_2025_136736
crossref_primary_10_1109_TNNLS_2022_3175419
crossref_primary_10_1016_j_compchemeng_2021_107365
crossref_primary_10_1016_j_future_2018_07_006
crossref_primary_10_1186_s13059_020_01977_6
crossref_primary_10_1007_s42979_020_00345_2
crossref_primary_10_1111_mice_13448
crossref_primary_10_3390_en17143440
crossref_primary_10_1007_s12145_024_01355_x
crossref_primary_10_1093_bib_bbad153
crossref_primary_10_3390_s24185977
crossref_primary_10_1155_2024_3986400
crossref_primary_10_1007_s11269_022_03414_8
crossref_primary_10_1016_j_physa_2024_129909
crossref_primary_10_1371_journal_pcbi_1005350
crossref_primary_10_1016_j_conbuildmat_2023_133970
crossref_primary_10_1016_j_microrel_2021_114181
crossref_primary_10_1063_5_0160979
crossref_primary_10_3390_agriculture13010008
crossref_primary_10_1109_ACCESS_2020_3026540
crossref_primary_10_1007_s44196_025_00844_1
crossref_primary_10_1016_j_est_2023_109701
crossref_primary_10_1029_2023JD040418
crossref_primary_10_1190_geo2018_0699_1
crossref_primary_10_1016_j_engappai_2020_103761
crossref_primary_10_1137_22M1490831
crossref_primary_10_1098_rsta_2024_0228
crossref_primary_10_1016_j_eswa_2020_113657
crossref_primary_10_1002_smll_202102972
crossref_primary_10_1016_j_aei_2024_102367
crossref_primary_10_1016_j_aei_2024_102362
crossref_primary_10_1016_j_neunet_2024_106948
crossref_primary_10_1109_ACCESS_2024_3368423
crossref_primary_10_3390_s19245501
crossref_primary_10_1016_j_asoc_2021_107687
crossref_primary_10_3390_electronics13112188
crossref_primary_10_1016_j_asoc_2018_05_015
crossref_primary_10_1016_j_bjps_2022_01_037
crossref_primary_10_1109_MITS_2019_2907629
crossref_primary_10_1016_j_imavis_2017_06_003
crossref_primary_10_1134_S0005117919080095
crossref_primary_10_1177_09544097251367798
crossref_primary_10_1155_2018_7024309
crossref_primary_10_1371_journal_pone_0262448
crossref_primary_10_1016_j_autcon_2018_06_007
crossref_primary_10_1016_j_patrec_2020_06_016
crossref_primary_10_1002_qj_3978
crossref_primary_10_34133_plantphenomics_0153
crossref_primary_10_1016_j_conbuildmat_2023_132606
crossref_primary_10_5194_hess_22_5639_2018
crossref_primary_10_1016_j_nucengdes_2023_112711
crossref_primary_10_1093_mnras_stz3056
crossref_primary_10_3390_rs12142203
crossref_primary_10_1016_j_eswa_2020_113673
crossref_primary_10_1016_j_engappai_2020_103785
crossref_primary_10_1016_j_ress_2022_108528
crossref_primary_10_1061_JAEEEZ_ASENG_4576
crossref_primary_10_15252_msb_20156651
crossref_primary_10_1109_TEMC_2017_2784833
crossref_primary_10_1007_s42107_023_00748_5
crossref_primary_10_1109_ACCESS_2020_3026579
crossref_primary_10_1109_TIM_2022_3150592
crossref_primary_10_3390_su12166516
crossref_primary_10_1080_01431161_2020_1742946
crossref_primary_10_1109_TMI_2020_3027547
crossref_primary_10_1016_j_gsf_2019_10_004
crossref_primary_10_1364_AO_57_008258
crossref_primary_10_3233_JAE_210197
crossref_primary_10_1109_ACCESS_2019_2923993
crossref_primary_10_3389_fnins_2024_1331677
crossref_primary_10_1121_10_0005047
crossref_primary_10_3390_info15020082
crossref_primary_10_1007_s11053_023_10200_9
crossref_primary_10_1016_j_renene_2020_02_004
crossref_primary_10_1177_10742484221136758
crossref_primary_10_1016_j_engfracmech_2019_106642
crossref_primary_10_1016_j_neucom_2020_05_113
crossref_primary_10_1103_PhysRevApplied_22_024046
crossref_primary_10_1049_iet_ipr_2016_0526
crossref_primary_10_3390_s22041367
crossref_primary_10_1007_s00530_025_01886_3
crossref_primary_10_1016_j_compag_2020_105535
crossref_primary_10_1007_s40314_024_02660_3
crossref_primary_10_1109_JSEN_2022_3163664
crossref_primary_10_1088_1755_1315_352_1_012005
crossref_primary_10_1007_s13369_017_2907_2
crossref_primary_10_1016_j_ins_2025_121933
crossref_primary_10_1147_JRD_2017_2716598
crossref_primary_10_1109_ACCESS_2024_3351600
crossref_primary_10_1109_TNNLS_2018_2890658
crossref_primary_10_1002_widm_1312
crossref_primary_10_1259_bjr_20210527
crossref_primary_10_1007_s11280_018_0600_3
crossref_primary_10_1109_TIA_2022_3227137
crossref_primary_10_2118_204093_PA
crossref_primary_10_1016_j_asr_2024_09_007
crossref_primary_10_1007_s11042_022_11978_1
crossref_primary_10_1186_s40537_024_00898_6
crossref_primary_10_1016_j_jds_2023_10_025
crossref_primary_10_1016_j_ecolmodel_2023_110499
crossref_primary_10_1109_ACCESS_2022_3188111
crossref_primary_10_1155_2021_6644652
crossref_primary_10_1587_transfun_E99_A_1971
crossref_primary_10_3390_en11113029
crossref_primary_10_1080_2573234X_2018_1506687
crossref_primary_10_1016_j_inffus_2018_07_007
crossref_primary_10_1002_celc_202400024
crossref_primary_10_1016_j_procs_2021_03_021
crossref_primary_10_1016_j_knosys_2025_113751
crossref_primary_10_1093_jas_sky014
crossref_primary_10_1080_16864360_2016_1273580
crossref_primary_10_3390_land12040879
crossref_primary_10_1007_s11042_023_18032_8
crossref_primary_10_1155_2024_8899192
crossref_primary_10_1007_s12559_018_9596_3
crossref_primary_10_1088_1402_4896_ad8d17
crossref_primary_10_1177_00219983221134929
crossref_primary_10_3390_math8101784
crossref_primary_10_1177_2319510X221136682
crossref_primary_10_1007_s12540_023_01552_1
crossref_primary_10_1016_j_clnu_2021_11_027
crossref_primary_10_1038_s41598_019_46620_y
crossref_primary_10_1186_s12986_023_00746_z
crossref_primary_10_4018_IJISP_2020070104
crossref_primary_10_1007_s11804_024_00540_0
crossref_primary_10_1109_JIOT_2019_2954503
crossref_primary_10_1080_2150704X_2017_1420265
crossref_primary_10_1109_ACCESS_2019_2946657
crossref_primary_10_1016_j_mtcomm_2022_103193
crossref_primary_10_1049_iet_ipr_2019_1690
crossref_primary_10_3390_ijerph17020453
crossref_primary_10_1186_s12859_021_04466_0
crossref_primary_10_1016_j_neucom_2017_02_046
crossref_primary_10_1016_j_comcom_2019_01_004
crossref_primary_10_1016_j_egyr_2023_01_092
crossref_primary_10_1016_j_neunet_2021_08_020
crossref_primary_10_1088_1757_899X_884_1_012084
crossref_primary_10_1111_bjh_15780
crossref_primary_10_1016_j_eswa_2015_08_038
crossref_primary_10_1080_11663081_2023_2269432
crossref_primary_10_1016_j_envsoft_2018_10_004
crossref_primary_10_1109_TKDE_2019_2954510
crossref_primary_10_1016_j_pnucene_2025_105625
crossref_primary_10_3390_app11125727
crossref_primary_10_3390_robotics9010001
crossref_primary_10_1155_2020_8866406
crossref_primary_10_1080_19392699_2024_2341952
crossref_primary_10_3390_min12050566
crossref_primary_10_1016_j_epsr_2022_108598
crossref_primary_10_1109_ACCESS_2019_2914181
crossref_primary_10_1109_TNSRE_2020_2966290
crossref_primary_10_1016_j_cor_2020_104926
crossref_primary_10_1007_s42979_021_00540_9
crossref_primary_10_1136_postgradmedj_2020_139620
crossref_primary_10_3390_s22020693
crossref_primary_10_1016_j_neucom_2017_02_050
crossref_primary_10_3233_IDT_190035
crossref_primary_10_1007_s00521_020_04746_5
crossref_primary_10_1007_s10207_022_00579_6
crossref_primary_10_1016_j_apenergy_2017_03_064
crossref_primary_10_1103_PhysRevResearch_1_033063
crossref_primary_10_1007_s11042_019_07831_7
crossref_primary_10_1016_j_neucom_2017_11_073
crossref_primary_10_1080_01431161_2018_1508917
crossref_primary_10_1016_j_crme_2019_11_002
crossref_primary_10_3390_s22052065
crossref_primary_10_3390_rs16173241
crossref_primary_10_1109_TIFS_2020_3036242
crossref_primary_10_3390_rs12213654
crossref_primary_10_3390_agriengineering6030117
crossref_primary_10_1088_0004_637X_808_1_16
crossref_primary_10_1155_2018_3813029
crossref_primary_10_1016_j_artmed_2023_102654
crossref_primary_10_32604_csse_2023_046730
crossref_primary_10_3390_jsan12020021
crossref_primary_10_1109_ACCESS_2019_2953772
crossref_primary_10_4271_05_18_04_0028
crossref_primary_10_1155_2021_9952450
crossref_primary_10_1109_ACCESS_2020_2995276
crossref_primary_10_1166_jmihi_2021_3448
crossref_primary_10_1007_s40194_022_01349_7
crossref_primary_10_1016_j_iot_2025_101561
crossref_primary_10_1016_j_neucom_2017_11_062
crossref_primary_10_1109_TG_2018_2846639
crossref_primary_10_1007_s11071_019_04915_9
crossref_primary_10_1007_s40005_017_0332_x
crossref_primary_10_1016_j_neucom_2017_02_029
crossref_primary_10_1109_TETCI_2018_2829919
crossref_primary_10_3390_coatings12020225
crossref_primary_10_1109_TETC_2017_2681655
crossref_primary_10_1016_j_jnoncrysol_2022_121640
crossref_primary_10_1109_TIP_2017_2766358
crossref_primary_10_1109_JIOT_2023_3298633
crossref_primary_10_3390_rs16173215
crossref_primary_10_3390_w15132485
crossref_primary_10_1007_s13042_020_01097_4
crossref_primary_10_3389_fmats_2022_970970
crossref_primary_10_1016_j_omtn_2021_08_016
crossref_primary_10_1002_smll_202100491
crossref_primary_10_3389_fpls_2024_1410249
crossref_primary_10_1007_s41062_025_02050_6
crossref_primary_10_3390_math7060494
crossref_primary_10_1016_j_isatra_2019_03_017
crossref_primary_10_1109_TGRS_2023_3298020
crossref_primary_10_3390_atmos16080928
crossref_primary_10_1016_j_artmed_2019_03_005
crossref_primary_10_1016_j_jappgeo_2021_104434
crossref_primary_10_1631_FITEE_1700714
crossref_primary_10_3390_buildings12010015
crossref_primary_10_1016_j_bushor_2021_02_008
crossref_primary_10_3367_UFNr_2025_02_039872
crossref_primary_10_1007_s10994_019_05864_5
crossref_primary_10_1016_j_compeleceng_2025_110395
crossref_primary_10_3233_JIFS_221188
crossref_primary_10_1109_ACCESS_2019_2922617
crossref_primary_10_1007_s12574_020_00496_4
crossref_primary_10_1002_elps_70015
crossref_primary_10_1016_j_heliyon_2021_e06047
crossref_primary_10_1080_22797254_2022_2117650
crossref_primary_10_1007_s00500_021_05994_w
crossref_primary_10_1109_TCBB_2022_3201295
crossref_primary_10_1016_j_neunet_2019_10_014
crossref_primary_10_3390_molecules26185629
crossref_primary_10_1007_s10458_019_09421_1
crossref_primary_10_1016_j_worlddev_2019_104839
crossref_primary_10_1007_s10994_021_06050_2
crossref_primary_10_1016_j_health_2022_100054
crossref_primary_10_1007_s11269_021_03051_7
crossref_primary_10_1016_j_neucom_2021_03_110
crossref_primary_10_1016_j_isatra_2020_01_038
crossref_primary_10_1007_s12530_021_09401_5
crossref_primary_10_1016_j_eswa_2020_113570
crossref_primary_10_3390_en14112983
crossref_primary_10_3390_lubricants12110364
crossref_primary_10_1016_j_compbiomed_2021_105111
crossref_primary_10_1109_ACCESS_2017_2770178
crossref_primary_10_4103_digm_digm_16_18
crossref_primary_10_1016_j_neucom_2019_07_075
crossref_primary_10_3390_app12073641
crossref_primary_10_3390_s23073453
crossref_primary_10_1002_suco_202000029
crossref_primary_10_1016_j_ultramic_2018_03_004
crossref_primary_10_3390_s18051339
crossref_primary_10_1371_journal_pone_0300133
crossref_primary_10_1186_s13040_022_00311_z
crossref_primary_10_2118_198288_PA
crossref_primary_10_1016_j_petrol_2022_110296
crossref_primary_10_1016_j_jnca_2020_102852
crossref_primary_10_1002_aelm_201901255
crossref_primary_10_1007_s00521_023_08558_1
crossref_primary_10_1109_TCYB_2016_2536638
crossref_primary_10_1186_s13677_020_00162_1
crossref_primary_10_1016_S0893_6080_17_30270_8
crossref_primary_10_1007_s11042_018_5730_1
crossref_primary_10_1016_j_tics_2021_06_001
crossref_primary_10_1109_ACCESS_2018_2816605
crossref_primary_10_3390_en14123659
crossref_primary_10_1049_iet_cvi_2018_5590
crossref_primary_10_1093_bib_bby077
crossref_primary_10_1016_j_cjche_2020_10_044
crossref_primary_10_1155_2021_6659063
crossref_primary_10_1364_AO_476488
crossref_primary_10_1002_for_3057
crossref_primary_10_63345_sjaibt_v2_i3_104
crossref_primary_10_3390_electronics10040512
crossref_primary_10_1016_j_ifacol_2021_08_395
crossref_primary_10_1109_TSM_2019_2945482
crossref_primary_10_3390_s24051693
crossref_primary_10_1016_j_jbi_2020_103427
crossref_primary_10_1002_hbm_24428
crossref_primary_10_1186_s40537_024_00955_0
crossref_primary_10_3390_life12101504
crossref_primary_10_1016_j_healun_2020_04_009
crossref_primary_10_1016_j_neucom_2019_07_025
crossref_primary_10_3389_frai_2020_524339
crossref_primary_10_1109_ACCESS_2020_3007599
crossref_primary_10_1016_j_apradiso_2022_110311
crossref_primary_10_1214_20_AOS2034
crossref_primary_10_1109_TVLSI_2019_2923722
crossref_primary_10_12677_AAM_2023_126280
crossref_primary_10_1016_j_bspc_2019_101819
crossref_primary_10_1016_j_clineuro_2020_105892
crossref_primary_10_1016_j_tplants_2018_07_004
crossref_primary_10_1140_epje_s10189_024_00435_6
crossref_primary_10_1186_s41065_016_0012_2
crossref_primary_10_3390_agronomy14020363
crossref_primary_10_1002_ange_202104405
crossref_primary_10_1002_cepa_2004
crossref_primary_10_1016_j_neucom_2018_05_134
crossref_primary_10_1109_TG_2018_2799997
crossref_primary_10_1007_s12194_017_0433_2
crossref_primary_10_1016_j_acra_2022_05_015
crossref_primary_10_1109_TNSM_2023_3262246
crossref_primary_10_1007_s11063_021_10716_2
crossref_primary_10_1007_s00366_021_01584_4
crossref_primary_10_1177_0040517520935984
crossref_primary_10_1109_JSAC_2023_3322795
crossref_primary_10_3389_feart_2023_1136346
crossref_primary_10_1186_s40537_015_0031_2
crossref_primary_10_3390_rs12101667
crossref_primary_10_1016_j_neucom_2018_05_117
crossref_primary_10_71204_f1dbs667
crossref_primary_10_1016_j_neucom_2018_05_114
crossref_primary_10_1155_2019_9283584
crossref_primary_10_3390_w17010068
crossref_primary_10_1007_s40430_025_05681_z
crossref_primary_10_1109_ACCESS_2022_3214842
crossref_primary_10_3233_JIFS_192116
crossref_primary_10_3390_ma13071557
crossref_primary_10_3390_s18082484
crossref_primary_10_3390_app122211760
crossref_primary_10_1016_j_apenergy_2017_12_009
crossref_primary_10_3389_frwa_2023_1287357
crossref_primary_10_1063_5_0059010
crossref_primary_10_1155_2021_9614520
crossref_primary_10_1016_j_jqsrt_2018_07_011
crossref_primary_10_3390_app11167547
crossref_primary_10_1016_j_compag_2021_106454
crossref_primary_10_3390_app14114730
crossref_primary_10_3390_rs15041101
crossref_primary_10_3390_hydrology10070151
crossref_primary_10_1016_j_ast_2024_109760
crossref_primary_10_1016_j_scitotenv_2022_155324
crossref_primary_10_3390_s18093149
crossref_primary_10_3390_s20030812
crossref_primary_10_1109_ACCESS_2022_3185747
crossref_primary_10_1016_j_artmed_2018_08_008
crossref_primary_10_1109_TASE_2022_3183610
crossref_primary_10_3390_agronomy10121926
crossref_primary_10_1016_j_egyr_2023_09_175
crossref_primary_10_1016_j_jhydrol_2022_128835
crossref_primary_10_3390_pr9101848
crossref_primary_10_1007_s11063_016_9536_8
crossref_primary_10_1016_j_inffus_2025_103123
crossref_primary_10_1007_s10040_024_02770_6
crossref_primary_10_3390_rs9090878
crossref_primary_10_1038_s42004_024_01220_4
crossref_primary_10_1038_s42256_021_00418_8
crossref_primary_10_1007_s11042_020_09641_8
crossref_primary_10_1080_13658816_2025_2526041
crossref_primary_10_1016_j_clinph_2021_09_018
crossref_primary_10_1016_j_jad_2023_04_034
crossref_primary_10_1109_TIE_2017_2767540
crossref_primary_10_1016_j_compstruct_2020_112514
crossref_primary_10_1016_j_inffus_2022_08_010
crossref_primary_10_3389_fncom_2018_00052
crossref_primary_10_1109_ACCESS_2020_3033848
crossref_primary_10_1038_s42256_020_0158_5
crossref_primary_10_1109_LSENS_2018_2884735
crossref_primary_10_3389_fncom_2018_00056
crossref_primary_10_1109_ACCESS_2018_2890507
crossref_primary_10_1587_nolta_10_304
crossref_primary_10_1111_2041_210X_13992
crossref_primary_10_1016_j_heliyon_2023_e16812
crossref_primary_10_1080_21642583_2020_1836526
crossref_primary_10_1103_PhysRevApplied_11_064043
crossref_primary_10_3390_app14156540
crossref_primary_10_1016_j_apacoust_2023_109613
crossref_primary_10_1002_adfm_202302929
crossref_primary_10_1016_j_compag_2021_106478
crossref_primary_10_1007_s10559_021_00397_z
crossref_primary_10_3390_s24123832
crossref_primary_10_1007_s11042_019_7353_6
crossref_primary_10_1155_2021_4222881
crossref_primary_10_1007_s10207_022_00624_4
crossref_primary_10_1051_matecconf_201926704008
crossref_primary_10_1016_j_cemconcomp_2022_104725
crossref_primary_10_1016_j_compbiomed_2022_105458
crossref_primary_10_3233_JIFS_211784
crossref_primary_10_3390_electronics7100222
crossref_primary_10_1088_2632_2153_ad56fa
crossref_primary_10_1016_j_neucom_2017_11_034
crossref_primary_10_1016_j_matcom_2019_12_013
crossref_primary_10_3390_photonics11080702
crossref_primary_10_1038_s42256_022_00600_6
crossref_primary_10_1088_1361_665X_acee37
crossref_primary_10_1016_j_compag_2021_106480
crossref_primary_10_1016_j_psep_2022_05_055
crossref_primary_10_1080_19942060_2021_1966837
crossref_primary_10_3390_electronics13214225
crossref_primary_10_1109_TMI_2016_2570123
crossref_primary_10_1093_biomet_asaa033
crossref_primary_10_1007_s00521_020_04804_y
crossref_primary_10_3390_app13020710
crossref_primary_10_1007_s40808_020_00974_9
crossref_primary_10_3390_info15100656
crossref_primary_10_1002_stc_2943
crossref_primary_10_1007_s11063_018_9858_9
crossref_primary_10_1016_j_autcon_2018_09_001
crossref_primary_10_1016_j_jhydrol_2020_125164
crossref_primary_10_1007_s00521_024_10838_3
crossref_primary_10_1109_JIOT_2018_2872122
crossref_primary_10_3390_s18093109
crossref_primary_10_1109_JSEN_2020_3026647
crossref_primary_10_3390_s22228830
crossref_primary_10_3788_LOP241633
crossref_primary_10_1145_3629979
crossref_primary_10_1287_isre_2021_1072
crossref_primary_10_1111_exsy_12394
crossref_primary_10_3847_1538_3881_aaae05
crossref_primary_10_1186_s12864_025_11234_4
crossref_primary_10_3390_s23020902
crossref_primary_10_1016_j_bios_2019_111336
crossref_primary_10_1016_j_physa_2019_123510
crossref_primary_10_1017_S0263574719000985
crossref_primary_10_1088_1742_6596_1486_2_022024
crossref_primary_10_1016_j_media_2018_07_010
crossref_primary_10_1002_widm_1248
crossref_primary_10_1016_j_hlife_2025_03_005
crossref_primary_10_1109_TNSM_2021_3050955
crossref_primary_10_1016_j_advengsoft_2017_11_006
crossref_primary_10_1007_s00500_019_04061_9
crossref_primary_10_1002_widm_1255
crossref_primary_10_1038_srep14149
crossref_primary_10_1051_0004_6361_202452704
crossref_primary_10_1002_mp_12110
crossref_primary_10_1109_JPROC_2018_2871057
crossref_primary_10_3390_app14209470
crossref_primary_10_3390_info10040144
crossref_primary_10_1002_gamm_202100002
crossref_primary_10_1007_s10462_025_11136_7
crossref_primary_10_1016_j_jhydrol_2022_127440
crossref_primary_10_1088_1748_3190_aaa787
crossref_primary_10_5772_dmht_19
crossref_primary_10_1155_2021_8919320
crossref_primary_10_1121_10_0002911
crossref_primary_10_2196_27113
crossref_primary_10_1016_j_acvd_2024_08_008
crossref_primary_10_1016_j_eswa_2023_122498
crossref_primary_10_1016_j_sna_2025_116237
crossref_primary_10_1007_s11277_017_5069_3
crossref_primary_10_1016_j_icarus_2019_01_017
crossref_primary_10_1103_49t8_mh9k
crossref_primary_10_1038_s41534_019_0140_4
crossref_primary_10_3390_electronics12153256
crossref_primary_10_3390_s23042326
crossref_primary_10_1016_j_culher_2025_03_005
crossref_primary_10_1134_S1054661822010059
crossref_primary_10_1186_s40323_022_00234_8
crossref_primary_10_3390_s23042320
crossref_primary_10_1002_wcms_1564
crossref_primary_10_1016_j_neunet_2020_02_010
crossref_primary_10_1109_ACCESS_2019_2916717
crossref_primary_10_1016_j_neunet_2020_02_011
crossref_primary_10_3390_en15134602
crossref_primary_10_3389_fpubh_2022_924432
crossref_primary_10_3748_wjg_v28_i20_2152
crossref_primary_10_1016_j_eswa_2025_127032
crossref_primary_10_1080_03019233_2019_1699358
crossref_primary_10_1002_cjce_23750
crossref_primary_10_1016_j_commatsci_2022_111391
crossref_primary_10_1016_j_heliyon_2023_e22601
crossref_primary_10_1109_TCYB_2022_3161664
crossref_primary_10_1049_iet_rpg_2018_5520
crossref_primary_10_1371_journal_pone_0306385
crossref_primary_10_1002_widm_1257
crossref_primary_10_1016_j_neunet_2020_02_005
crossref_primary_10_1016_j_ejcon_2021_01_008
crossref_primary_10_1109_TIM_2022_3225035
crossref_primary_10_1080_0142159X_2024_2407129
crossref_primary_10_1016_j_jisa_2021_102949
crossref_primary_10_1097_MD_0000000000038478
crossref_primary_10_1109_JLT_2020_3016712
crossref_primary_10_3390_f13122041
crossref_primary_10_1016_j_ufug_2023_127943
crossref_primary_10_1002_rnc_6121
crossref_primary_10_1007_s10898_025_01505_5
crossref_primary_10_1007_s11242_019_01352_5
crossref_primary_10_1088_1742_6596_1126_1_012035
crossref_primary_10_1007_s41688_018_0025_2
crossref_primary_10_1080_02770903_2020_1742352
crossref_primary_10_3389_fonc_2022_894978
crossref_primary_10_1109_JSTSP_2020_2987728
crossref_primary_10_3390_electronics10243176
crossref_primary_10_1088_1478_3975_ab7731
crossref_primary_10_3103_S1060992X1704004X
crossref_primary_10_1038_s41598_021_91761_8
crossref_primary_10_1177_2399808319862571
crossref_primary_10_3390_genes11060614
crossref_primary_10_1002_wcms_1581
crossref_primary_10_1002_pssa_201700875
crossref_primary_10_1007_s10458_021_09534_6
crossref_primary_10_3390_diagnostics13010161
crossref_primary_10_3390_nu14214614
crossref_primary_10_3389_fphar_2022_844293
crossref_primary_10_1016_j_compeleceng_2024_110040
crossref_primary_10_1038_s41524_017_0028_9
crossref_primary_10_1016_j_ijggc_2024_104147
crossref_primary_10_1016_j_energy_2019_115873
crossref_primary_10_1109_TASE_2021_3077689
crossref_primary_10_1177_1747954119859683
crossref_primary_10_1007_s00521_021_06347_2
crossref_primary_10_1088_1361_665X_ad508e
crossref_primary_10_3389_fncom_2018_00102
crossref_primary_10_3390_app13116826
crossref_primary_10_1038_s41598_025_12719_8
crossref_primary_10_1016_j_physd_2021_133014
crossref_primary_10_1080_01614940_2024_2338131
crossref_primary_10_1002_cepa_2053
crossref_primary_10_1016_j_patcog_2025_112184
crossref_primary_10_1007_s00521_019_04663_2
crossref_primary_10_1016_j_bspc_2025_107640
crossref_primary_10_1016_j_jmsy_2023_05_026
crossref_primary_10_3390_math11061358
crossref_primary_10_1186_s13059_020_01978_5
crossref_primary_10_1016_j_solener_2024_112499
crossref_primary_10_1016_j_neucom_2018_08_003
crossref_primary_10_1109_TCC_2019_2950400
crossref_primary_10_1016_j_atmosenv_2022_119347
crossref_primary_10_3103_S1060992X24700061
crossref_primary_10_32708_uutfd_891274
crossref_primary_10_1016_j_egyr_2021_07_053
crossref_primary_10_1177_17085381231153216
crossref_primary_10_1007_s00521_020_05035_x
crossref_primary_10_1016_j_eswa_2023_121183
crossref_primary_10_1016_j_jcp_2019_02_002
crossref_primary_10_1063_1_5129306
crossref_primary_10_1109_ACCESS_2020_2971319
crossref_primary_10_1029_2018WR023333
crossref_primary_10_1080_10106049_2021_1939441
crossref_primary_10_1007_s11837_020_04361_8
crossref_primary_10_1016_j_jhydrol_2018_11_069
crossref_primary_10_1371_journal_pone_0195065
crossref_primary_10_3390_en14185871
crossref_primary_10_1016_j_scitotenv_2019_02_263
crossref_primary_10_1002_mco2_115
crossref_primary_10_1002_wcms_1593
crossref_primary_10_1016_j_jenvman_2021_111979
crossref_primary_10_1016_j_epsr_2023_109216
crossref_primary_10_1016_j_jmmm_2019_165434
crossref_primary_10_1016_j_isatra_2021_07_030
crossref_primary_10_1002_ep_14004
crossref_primary_10_1016_j_eswa_2020_113526
crossref_primary_10_1109_JIOT_2019_2916143
crossref_primary_10_3390_su15021122
crossref_primary_10_1051_matecconf_201822604042
crossref_primary_10_1016_j_conbuildmat_2023_131423
crossref_primary_10_1155_2022_5292134
crossref_primary_10_1016_j_apergo_2018_08_014
crossref_primary_10_1007_s11600_023_01207_0
crossref_primary_10_3390_fi10070056
crossref_primary_10_1016_j_conb_2019_02_004
crossref_primary_10_1080_13683500_2023_2300030
crossref_primary_10_3389_fcomp_2021_750428
crossref_primary_10_3390_ai6030046
crossref_primary_10_1088_1742_5468_ac9830
crossref_primary_10_1109_ACCESS_2020_3012037
crossref_primary_10_1162_neco_a_00990
crossref_primary_10_1080_01431161_2024_2368930
crossref_primary_10_1109_ACCESS_2020_2991767
crossref_primary_10_1080_14786451_2020_1803862
crossref_primary_10_1016_j_algal_2021_102256
crossref_primary_10_1016_j_engappai_2020_103647
crossref_primary_10_1080_10106049_2022_2068675
crossref_primary_10_3390_app132111966
crossref_primary_10_1038_s42005_025_02255_2
crossref_primary_10_1093_mnras_stad1767
crossref_primary_10_1109_TIE_2017_2774777
crossref_primary_10_3390_w17182735
crossref_primary_10_1016_j_neucom_2024_128791
crossref_primary_10_1051_e3sconf_202341201069
crossref_primary_10_1061__ASCE_CO_1943_7862_0002354
crossref_primary_10_1109_ACCESS_2019_2922554
crossref_primary_10_3390_s22041464
crossref_primary_10_3389_fphys_2021_683025
crossref_primary_10_1016_j_xphs_2021_01_032
crossref_primary_10_1162_neco_a_00984
crossref_primary_10_1093_bib_bbad299
crossref_primary_10_1016_j_watres_2019_115058
crossref_primary_10_1016_j_ejor_2017_11_054
crossref_primary_10_1016_j_neunet_2023_11_063
crossref_primary_10_1109_TNSE_2020_2966504
crossref_primary_10_1016_j_patcog_2022_108879
crossref_primary_10_1049_iet_cvi_2016_0355
crossref_primary_10_1186_s12862_022_01978_y
crossref_primary_10_1177_21925682241261342
crossref_primary_10_1016_j_apacoust_2021_108626
crossref_primary_10_1007_s11432_017_9405_6
crossref_primary_10_1177_01655515221111000
crossref_primary_10_1109_ACCESS_2019_2909579
crossref_primary_10_1109_TCSI_2023_3296602
crossref_primary_10_1109_ACCESS_2020_3012053
crossref_primary_10_1093_jge_gxz007
crossref_primary_10_1007_s42250_025_01239_7
crossref_primary_10_1109_ACCESS_2019_2909586
crossref_primary_10_1007_s10489_022_03219_7
crossref_primary_10_1080_17460441_2021_1918096
crossref_primary_10_1109_TEM_2022_3201434
crossref_primary_10_1007_s40808_018_0543_9
crossref_primary_10_1109_TMI_2020_3045295
crossref_primary_10_3390_rs14235950
crossref_primary_10_1007_s00521_021_06765_2
crossref_primary_10_1016_j_jestch_2020_07_001
crossref_primary_10_1007_JHEP07_2025_210
crossref_primary_10_1007_s10489_022_03624_y
crossref_primary_10_1007_s40808_020_01041_z
crossref_primary_10_1007_s10489_024_05541_8
crossref_primary_10_1007_s00138_021_01224_3
crossref_primary_10_1080_24725854_2022_2062627
crossref_primary_10_1002_widm_1211
crossref_primary_10_1016_j_langsci_2017_04_003
crossref_primary_10_1364_AO_504023
crossref_primary_10_3390_s21041027
crossref_primary_10_1016_j_commatsci_2022_111379
crossref_primary_10_1088_0256_307X_40_12_125201
crossref_primary_10_1016_j_patrec_2018_02_010
crossref_primary_10_1109_ACCESS_2024_3349418
crossref_primary_10_1007_s12555_018_0140_8
crossref_primary_10_1109_ACCESS_2022_3191643
crossref_primary_10_1016_j_ecolind_2023_110020
crossref_primary_10_1109_TPEL_2020_2980240
crossref_primary_10_1146_annurev_anchem_091520_091450
crossref_primary_10_1007_s42001_024_00340_0
crossref_primary_10_1016_j_giec_2022_12_001
crossref_primary_10_1002_widm_1200
crossref_primary_10_1016_j_compbiomed_2025_110937
crossref_primary_10_1016_j_compag_2019_105002
crossref_primary_10_1016_j_egyr_2023_01_108
crossref_primary_10_1109_TCDS_2017_2685338
crossref_primary_10_1007_s11063_023_11261_w
crossref_primary_10_1016_j_jallcom_2020_153880
crossref_primary_10_22581_muet1982_2003_19
crossref_primary_10_1145_3447523
crossref_primary_10_3390_jox14040101
crossref_primary_10_1007_s12665_022_10375_z
crossref_primary_10_1016_j_measurement_2019_107139
crossref_primary_10_3390_ijms24054557
crossref_primary_10_1016_j_coal_2020_103416
crossref_primary_10_3390_ijgi10100645
crossref_primary_10_1016_j_cherd_2022_03_022
crossref_primary_10_1038_s41467_020_20519_z
crossref_primary_10_1038_s42005_021_00549_9
crossref_primary_10_3390_info8040147
crossref_primary_10_1016_j_neuron_2015_03_031
crossref_primary_10_1007_s00371_018_1499_5
crossref_primary_10_1016_j_heliyon_2022_e11623
crossref_primary_10_1109_TSMC_2017_2754287
crossref_primary_10_1103_PhysRevApplied_17_024040
crossref_primary_10_1007_s00500_019_03901_y
crossref_primary_10_1007_s11538_020_00851_7
crossref_primary_10_5194_jm_39_183_2020
crossref_primary_10_1109_TNNLS_2018_2890550
crossref_primary_10_1109_TSMC_2017_2701797
crossref_primary_10_1109_ACCESS_2019_2947855
crossref_primary_10_1088_1748_3190_aaef1d
crossref_primary_10_1109_ACCESS_2019_2963092
crossref_primary_10_1016_j_measurement_2019_02_022
crossref_primary_10_3390_diagnostics12071564
crossref_primary_10_1055_s_0042_1742388
crossref_primary_10_1049_iet_ipr_2019_0241
crossref_primary_10_1177_2192568220973984
crossref_primary_10_1109_ACCESS_2019_2899721
crossref_primary_10_1109_ACCESS_2020_3025325
crossref_primary_10_1146_annurev_clinpsy_032816_044949
crossref_primary_10_1093_schbul_sbac173
crossref_primary_10_1109_MCAS_2019_2945210
crossref_primary_10_1016_j_neunet_2023_11_039
crossref_primary_10_1007_s10845_020_01543_8
crossref_primary_10_1016_j_asoc_2021_107587
crossref_primary_10_3390_s21041054
crossref_primary_10_1109_ACCESS_2018_2854918
crossref_primary_10_1186_s40359_025_03197_8
crossref_primary_10_1186_s12938_019_0714_6
crossref_primary_10_1007_s00521_022_07797_y
crossref_primary_10_3390_s21030973
crossref_primary_10_3390_s21030972
crossref_primary_10_3390_agriculture12071033
crossref_primary_10_1007_s13385_021_00271_4
crossref_primary_10_1016_j_eswa_2023_121956
crossref_primary_10_1016_j_elerap_2021_101058
crossref_primary_10_1016_j_ins_2017_12_022
crossref_primary_10_1016_j_patrec_2016_11_011
crossref_primary_10_3390_s22031237
crossref_primary_10_3390_plants10122643
crossref_primary_10_1109_JSTARS_2019_2956318
crossref_primary_10_1145_3057729
crossref_primary_10_1371_journal_pone_0202652
crossref_primary_10_1016_j_trc_2022_103706
crossref_primary_10_1109_JSAC_2021_3087259
crossref_primary_10_1016_j_egyr_2023_08_076
crossref_primary_10_1016_j_matdes_2024_112932
crossref_primary_10_3390_electronics11111754
crossref_primary_10_1109_TITS_2018_2836141
crossref_primary_10_1088_1674_1056_28_3_038701
crossref_primary_10_1063_5_0023540
crossref_primary_10_1016_j_patcog_2022_108586
crossref_primary_10_1109_TSC_2023_3323647
crossref_primary_10_3390_s18030769
crossref_primary_10_1016_j_engappai_2024_107844
crossref_primary_10_1016_j_jag_2025_104840
crossref_primary_10_1016_j_comcom_2020_05_040
crossref_primary_10_1109_TCSII_2023_3260248
crossref_primary_10_3390_jmse10111709
crossref_primary_10_1080_03461238_2019_1633394
crossref_primary_10_1016_j_apenergy_2024_122815
crossref_primary_10_1155_2023_1363639
crossref_primary_10_1016_j_neunet_2018_01_009
crossref_primary_10_1007_s11116_021_10214_3
crossref_primary_10_1109_MS_2017_79
crossref_primary_10_1016_j_procs_2024_04_121
crossref_primary_10_1016_j_jpdc_2017_06_006
crossref_primary_10_3389_fnins_2020_00779
crossref_primary_10_1007_s10479_025_06754_x
crossref_primary_10_1016_j_techsoc_2020_101396
crossref_primary_10_1109_TCCN_2022_3168725
crossref_primary_10_3390_rs12111729
crossref_primary_10_3103_S0027134924702291
crossref_primary_10_1109_COMST_2020_2965856
crossref_primary_10_2196_43154
crossref_primary_10_1016_j_catena_2024_108086
crossref_primary_10_1088_1755_1315_242_5_052044
crossref_primary_10_3389_fnbot_2021_784514
crossref_primary_10_1007_s12650_018_0519_x
crossref_primary_10_1137_18M1165748
crossref_primary_10_1016_j_procs_2019_08_236
crossref_primary_10_1016_j_procir_2024_10_063
crossref_primary_10_3390_rs13122288
crossref_primary_10_1080_10106049_2022_2136255
crossref_primary_10_3390_app11093952
crossref_primary_10_1088_1757_899X_1238_1_012065
crossref_primary_10_1002_rmb2_12284
crossref_primary_10_1186_s40537_025_01108_7
crossref_primary_10_1016_j_ejro_2023_100484
crossref_primary_10_1038_s41576_019_0122_6
crossref_primary_10_1111_aab_12927
crossref_primary_10_3390_s20092533
crossref_primary_10_1016_j_compbiomed_2021_104323
crossref_primary_10_1002_adfm_201601353
crossref_primary_10_1016_j_geoen_2023_211727
crossref_primary_10_1016_j_compbiomed_2023_107194
crossref_primary_10_1038_s41598_024_70341_6
crossref_primary_10_1155_2020_5735496
crossref_primary_10_1155_2019_4895891
crossref_primary_10_1016_j_biteb_2022_100976
crossref_primary_10_1002_bit_28503
crossref_primary_10_1016_j_compag_2020_105815
crossref_primary_10_1016_j_displa_2023_102454
crossref_primary_10_3389_fneur_2018_00989
crossref_primary_10_1186_s40537_024_00967_w
crossref_primary_10_3390_agronomy11040749
crossref_primary_10_1016_j_neucom_2018_12_084
crossref_primary_10_1016_j_neubiorev_2022_104921
crossref_primary_10_1111_peps_12529
crossref_primary_10_1109_TBME_2019_2895663
crossref_primary_10_1109_TGRS_2019_2928715
crossref_primary_10_1051_epjconf_201817301009
crossref_primary_10_32604_cmc_2024_057456
crossref_primary_10_1109_JIOT_2019_2952146
crossref_primary_10_1109_ACCESS_2020_3012196
crossref_primary_10_1007_s12668_020_00795_1
crossref_primary_10_1080_00140139_2024_2308705
crossref_primary_10_2478_amns_2023_2_00107
crossref_primary_10_3390_app13031313
crossref_primary_10_1371_journal_pone_0191473
crossref_primary_10_1002_rmb2_12266
crossref_primary_10_1017_asb_2025_10
crossref_primary_10_1016_j_procs_2020_05_079
crossref_primary_10_3390_atmos14121788
crossref_primary_10_1016_j_jenvman_2025_125158
crossref_primary_10_1145_3063593
crossref_primary_10_1140_epja_s10050_025_01661_y
crossref_primary_10_1186_s40537_023_00787_4
crossref_primary_10_1515_kern_2021_0034
crossref_primary_10_5194_acp_18_9597_2018
crossref_primary_10_1109_JSAC_2021_3087225
crossref_primary_10_1109_TFUZZ_2019_2911494
crossref_primary_10_1038_s42003_024_06214_5
crossref_primary_10_1016_j_jbi_2020_103565
crossref_primary_10_1038_s41598_023_42719_5
crossref_primary_10_32604_cmes_2023_030278
crossref_primary_10_1016_j_advengsoft_2021_103066
crossref_primary_10_1109_ACCESS_2019_2953698
crossref_primary_10_3390_su13095304
crossref_primary_10_1016_j_eswa_2023_120649
crossref_primary_10_1080_14697688_2022_2062431
crossref_primary_10_1109_LGRS_2018_2861218
crossref_primary_10_1186_s13635_021_00118_1
crossref_primary_10_1007_s42994_024_00169_1
crossref_primary_10_1007_s00500_017_2618_3
crossref_primary_10_1109_JIOT_2022_3158701
crossref_primary_10_1109_TCYB_2019_2897162
crossref_primary_10_1155_2021_8867776
crossref_primary_10_2166_wcc_2025_660
crossref_primary_10_1002_wics_1500
crossref_primary_10_1155_2021_6473833
crossref_primary_10_1088_2631_7990_ad35fe
crossref_primary_10_1289_EHP6076
crossref_primary_10_1109_ACCESS_2020_2966645
crossref_primary_10_3390_app13031332
crossref_primary_10_1016_j_compbiomed_2019_103565
crossref_primary_10_1029_2017SW001763
crossref_primary_10_2196_15992
crossref_primary_10_1109_TIM_2020_3018568
crossref_primary_10_1016_j_neucom_2020_02_113
crossref_primary_10_1016_j_neunet_2019_09_008
crossref_primary_10_1016_j_jag_2018_05_025
crossref_primary_10_1016_j_neunet_2019_09_007
crossref_primary_10_1155_2017_5705693
crossref_primary_10_3390_ijerph18189752
crossref_primary_10_1016_j_prosdent_2019_05_026
crossref_primary_10_3390_s23115255
crossref_primary_10_1016_j_ifacol_2020_12_937
crossref_primary_10_1109_TETCI_2018_2858761
crossref_primary_10_1016_j_csbj_2021_06_017
crossref_primary_10_1038_s41467_019_12750_0
crossref_primary_10_3390_rs12244075
crossref_primary_10_1016_j_epsr_2022_108887
crossref_primary_10_1155_2021_1563844
crossref_primary_10_1088_1751_8121_ac58d1
crossref_primary_10_1007_s11356_025_36405_4
crossref_primary_10_1016_j_jksuci_2021_07_011
crossref_primary_10_3390_s19092034
crossref_primary_10_1016_j_csbj_2022_03_035
crossref_primary_10_3389_frai_2022_871863
crossref_primary_10_3390_ijgi9010015
crossref_primary_10_1134_S102745102201013X
crossref_primary_10_1109_JPROC_2020_2989782
crossref_primary_10_1007_s11229_024_04702_z
crossref_primary_10_3390_w11071327
crossref_primary_10_1155_2022_6593850
crossref_primary_10_1007_s00521_019_04550_w
crossref_primary_10_1016_j_jestch_2025_102160
crossref_primary_10_1111_ijpo_12494
crossref_primary_10_3390_electronics11172749
crossref_primary_10_1109_ACCESS_2020_3044652
crossref_primary_10_1016_j_commatsci_2021_110881
crossref_primary_10_1109_TIE_2018_2875660
crossref_primary_10_1016_j_asoc_2019_105759
crossref_primary_10_3390_jimaging10040086
crossref_primary_10_3390_diagnostics12081850
crossref_primary_10_1145_3498333
crossref_primary_10_1016_j_cosrev_2021_100370
crossref_primary_10_1016_j_engappai_2021_104351
crossref_primary_10_1109_ACCESS_2021_3086586
crossref_primary_10_1016_j_cma_2022_114740
crossref_primary_10_1016_j_cosrev_2021_100374
crossref_primary_10_1109_ACCESS_2020_2985769
crossref_primary_10_1016_j_seppur_2022_123086
crossref_primary_10_17816_phf679547
crossref_primary_10_1007_s10915_020_01200_5
crossref_primary_10_1016_j_earscirev_2019_02_023
crossref_primary_10_3390_healthcare11192675
crossref_primary_10_3390_s23083963
crossref_primary_10_1155_2019_3823515
crossref_primary_10_1186_s12938_018_0496_2
crossref_primary_10_3390_en17184689
crossref_primary_10_1016_j_commatsci_2021_110899
crossref_primary_10_1109_ACCESS_2020_2972464
crossref_primary_10_3233_JIFS_212945
crossref_primary_10_5194_tc_17_4675_2023
crossref_primary_10_1016_j_procs_2016_07_455
crossref_primary_10_1109_TNNLS_2021_3098866
crossref_primary_10_1109_ACCESS_2019_2916648
crossref_primary_10_1007_s42452_020_2327_x
crossref_primary_10_1186_s40561_018_0057_y
crossref_primary_10_1007_s11042_017_4364_z
crossref_primary_10_1016_j_ast_2023_108283
crossref_primary_10_1016_j_compag_2019_104878
crossref_primary_10_1109_TCSII_2019_2924663
crossref_primary_10_1016_j_eswa_2021_115528
crossref_primary_10_1109_TII_2016_2601521
crossref_primary_10_1016_j_scitotenv_2021_147356
crossref_primary_10_1016_j_ces_2024_121165
crossref_primary_10_1145_3674839
crossref_primary_10_1108_EC_09_2024_0896
crossref_primary_10_1016_j_cmpb_2021_105940
crossref_primary_10_1016_j_rser_2023_113576
crossref_primary_10_1007_s12559_023_10113_y
crossref_primary_10_1007_s41062_025_02103_w
crossref_primary_10_3390_app13116819
crossref_primary_10_3390_ijms22073605
crossref_primary_10_1016_j_jobe_2021_103299
crossref_primary_10_1007_s00392_022_02012_3
crossref_primary_10_3390_jmse11010021
crossref_primary_10_1080_19401493_2025_2499689
crossref_primary_10_1177_15533506221139965
crossref_primary_10_3389_fmed_2022_935080
crossref_primary_10_1049_iet_com_2019_0243
crossref_primary_10_1016_j_knosys_2019_03_020
crossref_primary_10_3233_JIFS_182682
crossref_primary_10_1177_1550147719868669
crossref_primary_10_1016_j_techfore_2020_120323
crossref_primary_10_1109_TGRS_2021_3116154
crossref_primary_10_1016_j_actaastro_2020_05_027
crossref_primary_10_1016_j_knosys_2019_03_025
crossref_primary_10_1109_TMI_2017_2655486
crossref_primary_10_3390_s19040804
crossref_primary_10_3832_ifor3705_014
crossref_primary_10_3390_app12125881
crossref_primary_10_1016_j_enbuild_2019_06_034
crossref_primary_10_1016_j_jhydrol_2024_131219
crossref_primary_10_1007_s11276_025_03985_5
crossref_primary_10_2514_1_I011638
crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_014
crossref_primary_10_1016_j_jbi_2020_103500
crossref_primary_10_1088_1361_6560_ac6ebc
crossref_primary_10_1016_j_knosys_2019_03_018
crossref_primary_10_1016_j_patcog_2019_107024
crossref_primary_10_1016_j_rcim_2020_101991
crossref_primary_10_1016_j_neucom_2015_09_116
crossref_primary_10_1007_s11277_021_08207_7
crossref_primary_10_1016_j_neunet_2020_03_008
crossref_primary_10_1109_JIOT_2019_2961958
crossref_primary_10_1109_JLT_2020_2993271
crossref_primary_10_1016_j_jece_2023_109928
crossref_primary_10_3390_app12136517
crossref_primary_10_1016_j_jmst_2018_11_018
crossref_primary_10_3390_jmse9090999
crossref_primary_10_1016_j_patcog_2017_09_043
crossref_primary_10_1016_j_physa_2019_123288
crossref_primary_10_3390_computers13090229
crossref_primary_10_1016_j_neunet_2020_03_010
crossref_primary_10_1002_dac_4797
crossref_primary_10_1007_s11707_023_1089_3
crossref_primary_10_1176_appi_ajp_2016_16101169
crossref_primary_10_1177_1176934318821072
crossref_primary_10_3390_jmse12060922
crossref_primary_10_3390_f14050913
crossref_primary_10_1099_mgen_0_001231
crossref_primary_10_1109_TGRS_2017_2777868
crossref_primary_10_32604_phyton_2023_025343
crossref_primary_10_1038_s41598_020_65950_w
crossref_primary_10_1016_j_asoc_2023_110405
crossref_primary_10_1016_j_neunet_2020_03_016
crossref_primary_10_1038_s41568_020_00327_9
crossref_primary_10_1007_s42979_023_02246_6
crossref_primary_10_54392_irjmt24617
crossref_primary_10_1016_j_enbuild_2025_115440
crossref_primary_10_1164_rccm_201912_2436LE
crossref_primary_10_5802_crmeca_188
crossref_primary_10_3390_rs13122257
crossref_primary_10_1016_j_enganabound_2024_106054
crossref_primary_10_1016_j_optlastec_2022_109013
crossref_primary_10_1016_j_apmate_2025_100331
crossref_primary_10_3390_app12052408
crossref_primary_10_1016_j_diii_2023_06_011
crossref_primary_10_1016_j_ymssp_2018_03_025
crossref_primary_10_3390_s19092018
crossref_primary_10_1109_JIOT_2021_3070042
crossref_primary_10_1016_j_tsep_2025_104125
crossref_primary_10_1109_ACCESS_2023_3339561
crossref_primary_10_1109_ACCESS_2022_3222311
crossref_primary_10_4018_IJERTCS_2019100101
crossref_primary_10_2174_1574893613666181109130430
crossref_primary_10_1038_s41598_025_03607_2
crossref_primary_10_1016_j_cosrev_2021_100395
crossref_primary_10_3390_s21113819
crossref_primary_10_1016_j_ymssp_2018_03_011
crossref_primary_10_1186_s43067_023_00081_6
crossref_primary_10_1016_j_ymeth_2018_07_007
crossref_primary_10_3389_fmicb_2022_925454
crossref_primary_10_1109_TNNLS_2020_2966031
crossref_primary_10_3390_ma12060983
crossref_primary_10_4018_IJCCE_2017010102
crossref_primary_10_1016_j_ymssp_2023_110635
crossref_primary_10_3390_su11051262
crossref_primary_10_1186_s13007_024_01239_7
crossref_primary_10_3390_a14090272
crossref_primary_10_3390_su15108034
crossref_primary_10_1109_TKDE_2018_2828431
crossref_primary_10_3390_agronomy12061459
crossref_primary_10_1002_ima_23188
crossref_primary_10_1186_s41044_018_0029_9
crossref_primary_10_3390_app7060526
crossref_primary_10_1109_TGRS_2019_2911993
crossref_primary_10_1080_01431161_2021_1995074
crossref_primary_10_1080_01969722_2016_1276771
crossref_primary_10_1088_1742_6596_1994_1_012015
crossref_primary_10_1109_JSTARS_2020_3046053
crossref_primary_10_3390_en14113004
crossref_primary_10_1088_2632_2153_add3bc
crossref_primary_10_3390_s24113276
crossref_primary_10_1002_jmri_26658
crossref_primary_10_1088_1742_6596_1994_1_012021
crossref_primary_10_1111_ssqu_12629
crossref_primary_10_3389_fnins_2025_1577029
crossref_primary_10_3390_ma15155232
crossref_primary_10_1016_j_canrad_2021_08_020
crossref_primary_10_1109_TII_2021_3065930
crossref_primary_10_1007_s11042_020_08945_z
crossref_primary_10_1016_j_cosrev_2021_100413
crossref_primary_10_1016_j_psep_2021_09_033
crossref_primary_10_1109_ACCESS_2023_3236189
crossref_primary_10_1016_j_compmedimag_2020_101810
crossref_primary_10_1016_j_tics_2020_09_002
crossref_primary_10_1088_1361_6528_ac8109
crossref_primary_10_1007_s00521_019_04311_9
crossref_primary_10_1016_j_asoc_2023_110324
crossref_primary_10_1016_j_addma_2025_104888
crossref_primary_10_3389_fcell_2020_572195
crossref_primary_10_1007_s11063_018_9883_8
crossref_primary_10_1109_JIOT_2020_2972337
crossref_primary_10_1109_ACCESS_2019_2946479
crossref_primary_10_7717_peerj_cs_2590
crossref_primary_10_1016_j_chaos_2023_113359
crossref_primary_10_3390_agriculture11050388
crossref_primary_10_1016_j_future_2019_01_049
crossref_primary_10_1177_1475921720924320
crossref_primary_10_1016_j_cognition_2020_104365
crossref_primary_10_1109_ACCESS_2020_2989396
crossref_primary_10_3389_fimag_2024_1336829
crossref_primary_10_1016_j_jvcir_2019_02_001
crossref_primary_10_1016_j_mineng_2023_108400
crossref_primary_10_1007_s40687_022_00351_1
crossref_primary_10_1186_s12874_025_02463_y
crossref_primary_10_3390_ani13121916
crossref_primary_10_1007_s00068_020_01444_8
crossref_primary_10_1016_j_cej_2021_132893
crossref_primary_10_1177_09544070211036321
crossref_primary_10_1016_j_cmpb_2016_12_004
crossref_primary_10_3390_biom12040508
crossref_primary_10_1016_j_neucom_2024_128609
crossref_primary_10_1016_j_sedgeo_2020_105790
crossref_primary_10_1109_JTEHM_2019_2948604
crossref_primary_10_3390_rs15082135
crossref_primary_10_3390_w11091808
crossref_primary_10_3847_1538_4357_ad46fd
crossref_primary_10_1016_j_envadv_2025_100653
crossref_primary_10_1109_TVT_2020_3041521
crossref_primary_10_1002_er_4698
crossref_primary_10_1016_j_jag_2024_103707
crossref_primary_10_1016_j_compag_2023_108434
crossref_primary_10_1109_TMM_2019_2907052
crossref_primary_10_1016_j_cma_2019_112737
crossref_primary_10_1016_j_asoc_2019_105820
crossref_primary_10_1016_j_cma_2019_112739
crossref_primary_10_1109_MTS_2018_2876216
crossref_primary_10_1155_2019_1306039
crossref_primary_10_1016_j_applthermaleng_2024_123906
crossref_primary_10_1145_3648609
crossref_primary_10_1002_minf_202300327
crossref_primary_10_3389_fnins_2021_629000
crossref_primary_10_1016_j_imavis_2023_104812
crossref_primary_10_3390_electronics10131580
crossref_primary_10_3390_app9183876
crossref_primary_10_1007_s00530_023_01232_5
crossref_primary_10_1016_j_tree_2015_12_013
crossref_primary_10_1080_1062936X_2018_1497702
crossref_primary_10_1016_j_future_2020_03_042
crossref_primary_10_1109_TRO_2019_2959161
crossref_primary_10_1007_s00170_020_06289_4
crossref_primary_10_1007_s11831_021_09551_4
crossref_primary_10_1109_TAES_2021_3079571
crossref_primary_10_1007_s41066_017_0048_3
crossref_primary_10_1016_j_ijepes_2020_106054
crossref_primary_10_1109_TMI_2019_2910760
crossref_primary_10_7595_management_fon_2017_0023
crossref_primary_10_1007_s10845_021_01906_9
crossref_primary_10_1109_ACCESS_2021_3085216
crossref_primary_10_1016_j_apenergy_2018_09_160
crossref_primary_10_7759_s44389_025_04619_9
crossref_primary_10_1109_ACCESS_2022_3170685
crossref_primary_10_3390_app9030372
crossref_primary_10_1016_j_cogsys_2022_09_005
crossref_primary_10_1007_s13205_025_04518_9
crossref_primary_10_1016_j_cja_2023_09_024
crossref_primary_10_1016_j_cmpb_2018_01_011
crossref_primary_10_1016_j_eswa_2025_128279
crossref_primary_10_1016_j_ymssp_2018_12_009
crossref_primary_10_1109_ACCESS_2021_3109861
crossref_primary_10_3390_met8080612
crossref_primary_10_1007_s00521_021_06709_w
crossref_primary_10_1190_geo2019_0434_1
crossref_primary_10_1186_s12859_020_03688_y
crossref_primary_10_1016_j_arth_2018_02_067
crossref_primary_10_1007_s10509_019_3651_8
crossref_primary_10_1007_s11760_024_03483_9
crossref_primary_10_3390_s20236978
crossref_primary_10_34133_ehs_0259
crossref_primary_10_1109_TMC_2017_2757023
crossref_primary_10_1051_shsconf_202419802003
crossref_primary_10_1016_j_asoc_2019_105854
crossref_primary_10_1111_1748_5967_70034
crossref_primary_10_1007_s12559_020_09761_1
crossref_primary_10_1007_s41062_024_01620_4
crossref_primary_10_1016_j_chemolab_2019_04_008
crossref_primary_10_1007_s00521_020_05189_8
crossref_primary_10_3390_rs14081803
crossref_primary_10_1002_mp_14861
crossref_primary_10_2174_0123520965293198240418063311
crossref_primary_10_3390_electronics11172634
crossref_primary_10_1088_2632_2153_ad360d
crossref_primary_10_1109_ACCESS_2019_2897028
crossref_primary_10_3390_ijms24032026
crossref_primary_10_1016_j_fuel_2024_130985
crossref_primary_10_1016_j_neucom_2024_128650
crossref_primary_10_1016_j_csbj_2020_11_036
crossref_primary_10_3390_en12214035
crossref_primary_10_1016_j_measen_2022_100593
crossref_primary_10_1371_journal_pcbi_1009949
crossref_primary_10_1007_s00170_022_09916_4
crossref_primary_10_1109_TNNLS_2016_2582798
crossref_primary_10_3390_pr12040664
crossref_primary_10_1088_1742_6596_1105_1_012043
crossref_primary_10_1016_j_compag_2020_105739
crossref_primary_10_1016_j_cageo_2020_104484
crossref_primary_10_1016_j_jvcir_2021_103255
crossref_primary_10_1038_s41586_019_0912_1
crossref_primary_10_3390_app10010014
crossref_primary_10_1109_TGRS_2023_3247880
crossref_primary_10_1007_s10846_020_01227_8
crossref_primary_10_1016_j_isatra_2021_11_024
crossref_primary_10_1109_ACCESS_2019_2947714
crossref_primary_10_1007_s10815_021_02123_2
crossref_primary_10_3390_electronics10172081
crossref_primary_10_1093_erae_jbz033
crossref_primary_10_1038_s41378_022_00350_w
crossref_primary_10_1186_s40535_018_0052_y
crossref_primary_10_3389_fphy_2020_00200
crossref_primary_10_1016_j_healthplace_2021_102601
crossref_primary_10_1109_TIP_2020_2999211
crossref_primary_10_1007_s00603_020_02314_w
crossref_primary_10_1007_s41939_024_00672_4
crossref_primary_10_1038_s41598_020_69814_1
crossref_primary_10_1051_shsconf_202214706003
crossref_primary_10_1007_s42979_021_00856_6
crossref_primary_10_1016_j_optcom_2023_129451
crossref_primary_10_3390_math10234610
crossref_primary_10_1007_s42452_021_04579_4
crossref_primary_10_1109_JSTARS_2022_3216998
crossref_primary_10_1016_j_compind_2018_12_012
crossref_primary_10_1016_j_energy_2024_133028
crossref_primary_10_1007_s11042_025_20616_5
crossref_primary_10_1021_acsomega_5c03316
crossref_primary_10_1016_j_neunet_2019_09_035
crossref_primary_10_1007_s10389_025_02444_x
crossref_primary_10_1287_ijoc_2022_0136
crossref_primary_10_1111_jgh_15415
crossref_primary_10_1371_journal_pone_0288836
crossref_primary_10_1016_j_is_2019_03_005
crossref_primary_10_3847_1538_3881_aac16d
crossref_primary_10_1016_j_jfranklin_2023_12_026
crossref_primary_10_1016_j_snb_2021_129872
crossref_primary_10_1016_j_compind_2018_12_005
crossref_primary_10_1016_j_jstrokecerebrovasdis_2019_104441
crossref_primary_10_1145_3224421
crossref_primary_10_1109_MSP_2018_2884869
crossref_primary_10_1049_iet_rsn_2018_0003
crossref_primary_10_1109_ACCESS_2020_2979999
crossref_primary_10_3390_ijerph19159754
crossref_primary_10_1109_TNNLS_2021_3089134
crossref_primary_10_1007_s42107_022_00495_z
crossref_primary_10_1016_j_pnpbp_2021_110405
crossref_primary_10_1016_j_neunet_2018_10_002
crossref_primary_10_1016_j_apenergy_2017_08_014
crossref_primary_10_1016_j_comnet_2020_107784
crossref_primary_10_3389_fpsyt_2020_551299
crossref_primary_10_1016_j_jsames_2024_104815
crossref_primary_10_1007_s00500_022_07528_4
crossref_primary_10_1063_1_5042040
crossref_primary_10_1007_s00521_022_07353_8
crossref_primary_10_1140_epja_s10050_025_01555_z
crossref_primary_10_1088_2399_6528_aca45e
crossref_primary_10_1109_LWC_2023_3309479
crossref_primary_10_1109_LGRS_2022_3204747
crossref_primary_10_1016_j_fuel_2023_128756
crossref_primary_10_1080_01431161_2018_1468106
crossref_primary_10_1108_IR_12_2018_0248
crossref_primary_10_1016_j_ymssp_2017_06_027
crossref_primary_10_3389_fbuil_2022_1049616
crossref_primary_10_1080_09540091_2022_2133082
crossref_primary_10_3390_s19020344
crossref_primary_10_3390_s23115209
crossref_primary_10_1371_journal_pone_0192726
crossref_primary_10_1111_iej_14014
crossref_primary_10_1016_j_apenergy_2025_126157
crossref_primary_10_1007_s10853_024_09866_0
crossref_primary_10_1016_j_cag_2018_12_003
crossref_primary_10_1088_2634_4386_ac0242
crossref_primary_10_1155_2018_8125126
crossref_primary_10_2478_ebtj_2018_0012
crossref_primary_10_1016_j_jqsrt_2018_03_004
crossref_primary_10_1038_srep42703
crossref_primary_10_1088_1361_6463_aae223
crossref_primary_10_1088_1748_9326_ab1b7d
crossref_primary_10_1155_2019_7230194
crossref_primary_10_3390_s19020350
crossref_primary_10_1016_j_econmod_2019_09_009
crossref_primary_10_1016_j_compbiomed_2023_107253
crossref_primary_10_1038_s41591_022_02010_y
crossref_primary_10_1177_1470785320972526
crossref_primary_10_3390_sym13112140
crossref_primary_10_1155_2018_8954878
crossref_primary_10_1109_JPHOT_2019_2936426
crossref_primary_10_1007_s10489_019_01526_0
crossref_primary_10_1007_s10710_019_09354_4
crossref_primary_10_1016_j_jpdc_2020_01_003
crossref_primary_10_3390_info12090374
crossref_primary_10_3390_math9040322
crossref_primary_10_3390_s22124370
crossref_primary_10_1038_s41598_022_11210_y
crossref_primary_10_1002_hbm_25013
crossref_primary_10_1007_s12652_021_03210_z
crossref_primary_10_1007_s00500_020_04754_6
crossref_primary_10_1177_0278364917690592
crossref_primary_10_3390_encyclopedia2030102
crossref_primary_10_3390_s18010302
crossref_primary_10_3390_sym13112157
crossref_primary_10_1016_j_ijsolstr_2024_112692
crossref_primary_10_1016_j_nanoen_2023_108656
crossref_primary_10_1007_s42786_018_00007_1
crossref_primary_10_1016_j_neucom_2021_06_007
crossref_primary_10_1016_j_neunet_2023_05_044
crossref_primary_10_1016_j_isprsjprs_2019_04_015
crossref_primary_10_1007_s11042_020_09056_5
crossref_primary_10_1109_COMST_2019_2926625
crossref_primary_10_1145_3190618
crossref_primary_10_1109_TSM_2017_2750719
crossref_primary_10_1007_s11548_019_01979_1
crossref_primary_10_1186_s12872_024_04374_0
crossref_primary_10_1007_s40333_016_0049_0
crossref_primary_10_3389_fnins_2021_654003
crossref_primary_10_3390_app10196685
crossref_primary_10_1016_j_apenergy_2021_116652
crossref_primary_10_1088_1361_6501_acc602
crossref_primary_10_1080_23249676_2020_1831976
crossref_primary_10_1016_j_media_2016_07_007
crossref_primary_10_2196_27806
crossref_primary_10_1016_j_neucom_2022_06_089
crossref_primary_10_1007_s41324_022_00458_1
crossref_primary_10_1051_matecconf_201816401015
crossref_primary_10_3390_ijerph191912358
crossref_primary_10_1016_j_eswa_2020_114226
crossref_primary_10_3389_fnins_2023_1301214
crossref_primary_10_3390_s22020450
crossref_primary_10_1007_s00521_017_3039_z
crossref_primary_10_1016_j_cose_2022_102662
crossref_primary_10_3390_app13085012
crossref_primary_10_1016_j_istruc_2025_108988
crossref_primary_10_1007_s11042_022_13155_w
crossref_primary_10_1109_ACCESS_2019_2892083
crossref_primary_10_1016_j_compbiomed_2021_104460
crossref_primary_10_1088_2631_8695_adbc48
crossref_primary_10_1109_TPDS_2020_3011893
crossref_primary_10_59389_modular_1550067
crossref_primary_10_1016_j_cedpsych_2024_102323
crossref_primary_10_1038_s41598_018_27033_9
crossref_primary_10_15407_kvt194_04_041
crossref_primary_10_1016_j_compenvurbsys_2023_101967
crossref_primary_10_1016_j_jobe_2025_113903
crossref_primary_10_1016_j_asoc_2018_08_030
crossref_primary_10_1007_s00521_022_06972_5
crossref_primary_10_1109_ACCESS_2020_3007776
crossref_primary_10_1016_j_jclepro_2024_144589
crossref_primary_10_1088_1741_2552_ab7c8d
crossref_primary_10_1145_3444691
crossref_primary_10_1016_j_isprsjprs_2021_06_010
crossref_primary_10_1287_mnsc_2022_01448
crossref_primary_10_1038_s41598_024_80647_0
crossref_primary_10_1155_2020_9868017
crossref_primary_10_1145_3544014
crossref_primary_10_1109_TVLSI_2023_3336804
crossref_primary_10_1145_3380940
crossref_primary_10_1016_j_physa_2018_09_136
crossref_primary_10_3390_s21144845
crossref_primary_10_1016_j_ergon_2025_103752
crossref_primary_10_1109_TAES_2020_3046315
crossref_primary_10_1109_TIFS_2023_3293959
crossref_primary_10_3389_fonc_2022_908873
crossref_primary_10_1109_TMI_2016_2546227
crossref_primary_10_1016_j_heliyon_2023_e23374
crossref_primary_10_1080_17460441_2017_1280024
crossref_primary_10_1145_3503509
crossref_primary_10_1016_j_neucom_2022_06_055
crossref_primary_10_1108_MAEM_05_2023_0005
crossref_primary_10_1002_adfm_202214271
crossref_primary_10_1016_j_jcp_2023_112624
crossref_primary_10_1002_tpg2_20554
crossref_primary_10_1002_prs_12122
crossref_primary_10_1007_s11042_022_12793_4
crossref_primary_10_1109_LSP_2019_2941368
crossref_primary_10_1016_j_combustflame_2019_08_014
crossref_primary_10_1109_TAES_2018_2874139
crossref_primary_10_1007_s12145_020_00508_y
crossref_primary_10_4018_IJCVIP_2017040101
crossref_primary_10_1088_1757_899X_435_1_012056
crossref_primary_10_1109_ACCESS_2022_3164676
crossref_primary_10_1016_j_cose_2022_102695
crossref_primary_10_1109_TVLSI_2019_2940943
crossref_primary_10_5194_acp_23_13413_2023
crossref_primary_10_1016_j_ymssp_2016_02_007
crossref_primary_10_1109_TCBB_2016_2616469
crossref_primary_10_3390_s18030693
crossref_primary_10_12677_bp_2025_151004
crossref_primary_10_1016_j_eswa_2023_120541
crossref_primary_10_1007_s13202_021_01087_4
crossref_primary_10_1109_JSTARS_2022_3198475
crossref_primary_10_1007_s10462_019_09719_2
crossref_primary_10_3389_fnins_2023_1124089
crossref_primary_10_1016_j_cmpb_2020_105316
crossref_primary_10_1080_24751839_2023_2239617
crossref_primary_10_1002_aisy_202000219
crossref_primary_10_1016_j_petrol_2017_09_020
crossref_primary_10_3934_bdia_2017014
crossref_primary_10_1371_journal_pone_0192684
crossref_primary_10_1007_s11245_023_09919_0
crossref_primary_10_1186_s13007_019_0457_1
crossref_primary_10_1109_TETCI_2019_2928344
crossref_primary_10_1109_ACCESS_2020_2995087
crossref_primary_10_1109_COMST_2020_2986024
crossref_primary_10_1002_kin_21759
crossref_primary_10_1109_ACCESS_2020_3007727
crossref_primary_10_1007_s11263_016_0932_3
crossref_primary_10_1016_j_compbiomed_2018_09_009
crossref_primary_10_1016_j_engappai_2019_07_018
crossref_primary_10_3390_pr11051527
crossref_primary_10_1063_5_0276455
crossref_primary_10_3390_bdcc9050115
crossref_primary_10_1007_s12530_018_9227_y
crossref_primary_10_14778_3415478_3415482
crossref_primary_10_1007_s42979_021_00640_6
crossref_primary_10_1007_s11069_020_04041_5
crossref_primary_10_4018_IJSKD_2020040104
crossref_primary_10_3390_textiles1020013
crossref_primary_10_1016_j_engappai_2021_104208
crossref_primary_10_1017_S0021859618000436
crossref_primary_10_3390_make4020020
crossref_primary_10_1016_j_atech_2025_101406
crossref_primary_10_3389_fnsys_2021_697129
crossref_primary_10_1038_s41598_017_05300_5
crossref_primary_10_1016_j_marpetgeo_2024_106706
crossref_primary_10_1145_3326338
crossref_primary_10_1371_journal_pcbi_1012012
crossref_primary_10_3390_app12136699
crossref_primary_10_3390_bdcc9050127
crossref_primary_10_1145_3568020
crossref_primary_10_3389_fphar_2019_00042
crossref_primary_10_5194_acp_24_6477_2024
crossref_primary_10_1007_s10015_020_00602_w
crossref_primary_10_1002_dac_5944
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121075
crossref_primary_10_1016_j_jterra_2023_03_002
crossref_primary_10_1016_j_matcom_2023_01_002
crossref_primary_10_1016_j_str_2022_03_011
crossref_primary_10_1007_s42102_024_00122_2
crossref_primary_10_1088_1741_2552_acec14
crossref_primary_10_1016_j_cortex_2017_09_019
crossref_primary_10_1016_j_pmatsci_2025_101495
crossref_primary_10_3390_su12114471
crossref_primary_10_1016_j_ijmedinf_2025_105888
crossref_primary_10_1016_j_sysarc_2025_103555
crossref_primary_10_1140_epjc_s10052_020_8030_7
crossref_primary_10_1093_police_paz035
crossref_primary_10_1007_s42486_020_00045_z
crossref_primary_10_1016_j_enggeo_2021_106489
crossref_primary_10_1371_journal_pone_0203897
crossref_primary_10_3389_fncom_2021_627357
crossref_primary_10_1007_s00500_019_03916_5
crossref_primary_10_1016_j_jvs_2025_03_198
crossref_primary_10_1038_s41598_025_93465_9
crossref_primary_10_3390_e19070299
crossref_primary_10_3390_diagnostics9030104
crossref_primary_10_1007_s11468_025_03061_w
crossref_primary_10_1016_j_specom_2017_06_006
crossref_primary_10_1108_RPJ_02_2024_0102
crossref_primary_10_17221_74_2024_PPS
crossref_primary_10_1038_s41573_019_0050_3
crossref_primary_10_1007_s11192_020_03797_8
crossref_primary_10_1016_j_knosys_2020_106314
crossref_primary_10_1109_TAMD_2015_2496248
crossref_primary_10_1016_j_measurement_2021_109548
crossref_primary_10_7717_peerj_cs_745
crossref_primary_10_1109_ACCESS_2020_3029139
crossref_primary_10_1080_0952813X_2015_1042534
crossref_primary_10_1016_j_rse_2019_111425
crossref_primary_10_1109_TGRS_2021_3106681
crossref_primary_10_1186_s13244_023_01541_3
crossref_primary_10_1109_ACCESS_2023_3302179
crossref_primary_10_1016_j_compag_2018_06_006
crossref_primary_10_1109_TCOMM_2021_3070892
crossref_primary_10_1016_j_atmosres_2020_105269
crossref_primary_10_1145_3485133
crossref_primary_10_1109_TITS_2019_2897341
crossref_primary_10_1016_j_physa_2019_123360
crossref_primary_10_1007_s10343_022_00764_6
crossref_primary_10_1007_s00146_022_01515_x
crossref_primary_10_1108_K_04_2023_0637
crossref_primary_10_1109_TCCN_2017_2755007
crossref_primary_10_1016_j_compag_2022_107453
crossref_primary_10_1061__ASCE_IS_1943_555X_0000545
crossref_primary_10_1016_j_compag_2018_06_039
crossref_primary_10_1109_ACCESS_2019_2916557
crossref_primary_10_3390_app9050843
crossref_primary_10_1109_TCDS_2022_3150019
crossref_primary_10_1001_jamanetworkopen_2018_1018
crossref_primary_10_3233_JIFS_212814
crossref_primary_10_1097_RCT_0000000000000928
crossref_primary_10_1177_15353702211000310
crossref_primary_10_1016_j_jvcir_2017_01_001
crossref_primary_10_1016_j_commatsci_2021_110784
crossref_primary_10_1109_TCYB_2019_2904742
crossref_primary_10_3390_s19092173
crossref_primary_10_1109_TETCI_2019_2910243
crossref_primary_10_1038_s41598_020_66505_9
crossref_primary_10_1145_3197978
crossref_primary_10_1016_j_ecolind_2021_108287
crossref_primary_10_1016_j_ipm_2019_01_002
crossref_primary_10_3390_en12040660
crossref_primary_10_1080_01431161_2022_2133579
crossref_primary_10_3758_s13421_025_01755_4
crossref_primary_10_3390_electronics10202495
crossref_primary_10_1016_j_jwpe_2020_101389
crossref_primary_10_1007_s12652_021_03129_5
crossref_primary_10_1016_j_jcp_2025_114161
crossref_primary_10_1016_j_energy_2018_04_192
crossref_primary_10_1016_j_jbi_2020_103627
crossref_primary_10_1007_s10812_025_01862_9
crossref_primary_10_1007_s13218_015_0366_z
crossref_primary_10_1016_j_daach_2025_e00453
crossref_primary_10_1007_s00521_022_06910_5
crossref_primary_10_3390_s19153434
crossref_primary_10_1016_j_wfumbo_2023_100013
crossref_primary_10_1155_2024_9981657
crossref_primary_10_3390_agriculture15121257
crossref_primary_10_3390_jmse11112194
crossref_primary_10_1016_j_neunet_2018_09_012
crossref_primary_10_1016_j_compchemeng_2019_106580
crossref_primary_10_1093_comnet_cnz044
crossref_primary_10_3389_fpls_2021_616689
crossref_primary_10_1109_TCYB_2019_2898553
crossref_primary_10_3390_pr8111480
crossref_primary_10_1007_s11042_022_13097_3
crossref_primary_10_1108_JSFE_07_2016_0011
crossref_primary_10_1371_journal_pone_0231055
crossref_primary_10_1007_s10291_021_01154_7
crossref_primary_10_1109_ACCESS_2020_2972372
crossref_primary_10_3390_e20030198
crossref_primary_10_1155_2017_9512370
crossref_primary_10_1016_j_jvcir_2019_102585
crossref_primary_10_3390_s19153424
crossref_primary_10_1049_rpg2_12336
crossref_primary_10_3390_app15062877
crossref_primary_10_1016_j_compchemeng_2019_106575
crossref_primary_10_3390_s21227767
crossref_primary_10_1016_j_neunet_2018_09_009
crossref_primary_10_1016_j_ymssp_2023_110535
crossref_primary_10_3390_app9224813
crossref_primary_10_3390_data3040063
crossref_primary_10_1016_j_scs_2022_103716
crossref_primary_10_3390_info14100537
crossref_primary_10_1007_s11548_021_02492_0
crossref_primary_10_3390_rs13122375
crossref_primary_10_1007_s11042_019_08252_2
crossref_primary_10_3233_JIFS_182587
crossref_primary_10_1002_prot_25868
crossref_primary_10_1016_j_compag_2022_107411
crossref_primary_10_1111_aor_13004
crossref_primary_10_1016_j_oceaneng_2023_115402
crossref_primary_10_1111_mice_13061
crossref_primary_10_3390_app122010468
crossref_primary_10_1016_j_heliyon_2023_e23324
crossref_primary_10_1111_tgis_12317
crossref_primary_10_1097_IAE_0000000000002621
crossref_primary_10_1002_advs_201801339
crossref_primary_10_1007_s11227_019_03050_x
crossref_primary_10_7467_KSAE_2025_33_3_185
crossref_primary_10_1177_2399808319892599
crossref_primary_10_1016_j_icheatmasstransfer_2019_104368
crossref_primary_10_1016_S0893_6080_16_30179_4
crossref_primary_10_1103_PhysRevE_110_064116
crossref_primary_10_3389_fonc_2023_1117420
crossref_primary_10_3389_fpubh_2020_587937
crossref_primary_10_1016_j_engappai_2021_104295
crossref_primary_10_1093_comnet_cnz018
crossref_primary_10_1007_s00521_019_04695_8
crossref_primary_10_1016_j_scitotenv_2021_149861
crossref_primary_10_1109_ACCESS_2020_3006499
crossref_primary_10_1109_ACCESS_2021_3067302
crossref_primary_10_1177_20552076221149529
crossref_primary_10_1007_s11831_021_09686_4
crossref_primary_10_1109_TCDS_2019_2894561
crossref_primary_10_1016_j_isatra_2017_03_017
crossref_primary_10_1016_j_jpainsymman_2019_12_374
crossref_primary_10_1016_j_jvs_2023_05_024
crossref_primary_10_3390_app12094384
crossref_primary_10_5194_hess_26_1727_2022
crossref_primary_10_1109_ACCESS_2020_3031438
crossref_primary_10_3390_rs14215345
crossref_primary_10_1007_s00521_023_08577_y
crossref_primary_10_3390_s18124147
crossref_primary_10_1109_ACCESS_2020_2973704
crossref_primary_10_3390_rs9111106
crossref_primary_10_1007_s11548_018_1860_1
crossref_primary_10_1016_j_sigpro_2018_02_010
crossref_primary_10_1007_s11760_019_01510_8
crossref_primary_10_1109_ACCESS_2017_2678990
crossref_primary_10_3389_fncom_2021_670489
crossref_primary_10_1007_s00170_018_2869_x
crossref_primary_10_3390_rs14215334
crossref_primary_10_1007_s00500_022_07037_4
crossref_primary_10_1016_j_measurement_2019_05_074
crossref_primary_10_1177_0959651820965447
crossref_primary_10_1002_cjce_23507
crossref_primary_10_1038_s41598_020_64466_7
crossref_primary_10_1109_TITS_2017_2706963
crossref_primary_10_1177_16878132231156789
crossref_primary_10_4103_jomfp_JOMFP_215_19
crossref_primary_10_4103_mgr_MEDGASRES_D_24_00113
crossref_primary_10_1007_s11063_022_11055_6
crossref_primary_10_1145_3526194
crossref_primary_10_1109_ACCESS_2018_2886343
crossref_primary_10_1002_prot_25824
crossref_primary_10_1007_s00466_022_02252_0
crossref_primary_10_1007_s10660_019_09389_w
crossref_primary_10_2118_203951_PA
crossref_primary_10_1109_TSMC_2021_3113823
crossref_primary_10_3390_en10111830
crossref_primary_10_1016_j_dsp_2021_103014
crossref_primary_10_1007_s10825_020_01538_x
crossref_primary_10_1007_s13762_017_1591_9
crossref_primary_10_1186_s13638_021_01896_5
crossref_primary_10_3390_ma13225227
crossref_primary_10_3389_finsc_2023_1016277
crossref_primary_10_1002_lpor_202000348
crossref_primary_10_1186_s12859_020_03783_0
crossref_primary_10_1186_s12911_023_02268_3
crossref_primary_10_20965_jaciii_2020_p0568
crossref_primary_10_1016_j_electacta_2025_146503
crossref_primary_10_1016_j_bspc_2023_105052
crossref_primary_10_12677_AAM_2023_127329
crossref_primary_10_1515_nanoph_2022_0109
crossref_primary_10_3390_sym11070892
crossref_primary_10_3390_app9204475
crossref_primary_10_1007_s12652_021_03284_9
crossref_primary_10_1016_j_fuel_2022_124622
crossref_primary_10_1007_s42757_024_0214_1
crossref_primary_10_3389_fpls_2021_682230
crossref_primary_10_1016_j_drudis_2019_07_006
crossref_primary_10_1016_j_jvolgeores_2022_107615
crossref_primary_10_1016_j_mineng_2023_108508
crossref_primary_10_1109_TSP_2020_2985303
crossref_primary_10_26634_jpr_9_1_18858
crossref_primary_10_1109_JSEN_2018_2876411
crossref_primary_10_3390_s25144473
crossref_primary_10_1088_1741_2552_ab3471
crossref_primary_10_1109_TBME_2018_2849502
crossref_primary_10_3233_JIFS_230692
crossref_primary_10_1093_comjnl_bxy126
crossref_primary_10_3389_fneur_2025_1661049
crossref_primary_10_1007_s11063_022_10948_w
crossref_primary_10_3390_rs13142799
crossref_primary_10_1002_int_22504
crossref_primary_10_1186_s12859_017_1663_3
crossref_primary_10_1007_s11282_020_00497_0
crossref_primary_10_1109_TMI_2016_2553401
crossref_primary_10_1088_2634_4386_add293
crossref_primary_10_7759_cureus_44591
crossref_primary_10_1016_j_mechmat_2022_104309
crossref_primary_10_3390_molecules27144568
crossref_primary_10_1007_s00500_021_06067_8
crossref_primary_10_1038_s41578_022_00434_z
crossref_primary_10_3390_s22041656
crossref_primary_10_1177_0142331218778324
crossref_primary_10_3390_s23218711
crossref_primary_10_1016_j_jmsy_2020_08_009
crossref_primary_10_1007_s10559_020_00240_x
crossref_primary_10_1007_s11517_017_1638_6
crossref_primary_10_1007_s13748_020_00225_z
crossref_primary_10_1109_ACCESS_2020_3017089
crossref_primary_10_2514_1_G002357
crossref_primary_10_1016_j_asoc_2021_107760
crossref_primary_10_1145_3677034
crossref_primary_10_3390_s18010292
crossref_primary_10_1080_10298436_2023_2180641
crossref_primary_10_3390_diagnostics13183007
crossref_primary_10_1371_journal_pone_0219302
crossref_primary_10_1080_15472450_2020_1746909
crossref_primary_10_1007_s12065_023_00829_z
crossref_primary_10_1038_s41467_019_12954_4
crossref_primary_10_1016_j_optlastec_2025_113597
crossref_primary_10_1109_ACCESS_2018_2888978
crossref_primary_10_3390_en15239072
crossref_primary_10_1016_j_compchemeng_2019_106519
crossref_primary_10_1088_1757_899X_998_1_012065
crossref_primary_10_1109_JLT_2023_3269957
crossref_primary_10_1016_j_physa_2019_123344
crossref_primary_10_1109_ACCESS_2019_2921096
crossref_primary_10_1090_mcom_3781
crossref_primary_10_2478_otmcj_2020_0002
crossref_primary_10_1016_j_jhydrol_2024_131047
crossref_primary_10_1371_journal_pone_0276767
crossref_primary_10_1007_s00034_023_02562_5
crossref_primary_10_1016_j_rser_2021_110992
crossref_primary_10_1088_1361_6501_abb7a0
crossref_primary_10_1016_j_compgeo_2022_105120
crossref_primary_10_1016_j_measurement_2021_110622
crossref_primary_10_1002_mp_13649
crossref_primary_10_1109_ACCESS_2019_2898238
crossref_primary_10_1016_j_addma_2025_104782
crossref_primary_10_1080_02648725_2023_2196476
crossref_primary_10_1007_s12596_024_02325_8
crossref_primary_10_1016_j_cma_2024_117462
crossref_primary_10_1016_j_jcp_2020_109309
crossref_primary_10_1088_1742_6596_1828_1_012042
crossref_primary_10_1093_pnasnexus_pgae456
crossref_primary_10_1029_2020GL091236
crossref_primary_10_1016_j_future_2019_09_018
crossref_primary_10_1016_j_rcsop_2023_100317
crossref_primary_10_1016_j_neunet_2022_04_004
crossref_primary_10_1038_s41598_023_38163_0
crossref_primary_10_1016_j_optcom_2019_03_013
crossref_primary_10_1007_s00779_022_01684_y
crossref_primary_10_1080_0952813X_2023_2165721
crossref_primary_10_1007_s00521_017_3240_0
crossref_primary_10_1016_j_compbiomed_2019_103584
crossref_primary_10_1103_PhysRevApplied_17_014016
crossref_primary_10_1007_s11571_023_09977_5
crossref_primary_10_1016_j_procs_2020_02_247
crossref_primary_10_1016_j_jmst_2025_04_050
crossref_primary_10_1088_2040_8986_ad4801
crossref_primary_10_1186_s43088_024_00537_2
crossref_primary_10_1002_ente_202201033
crossref_primary_10_1007_s11030_021_10237_z
crossref_primary_10_1016_j_phrs_2023_106706
crossref_primary_10_1016_j_future_2019_09_021
crossref_primary_10_3389_fphar_2020_572372
crossref_primary_10_1080_01431161_2018_1553322
crossref_primary_10_1016_j_eswa_2018_12_031
crossref_primary_10_1016_j_ijengsci_2020_103376
crossref_primary_10_1109_ACCESS_2017_2784096
crossref_primary_10_1155_2023_6098519
crossref_primary_10_1631_jzus_A2300273
crossref_primary_10_3389_fninf_2021_715131
crossref_primary_10_1016_j_neunet_2022_04_028
crossref_primary_10_1016_j_nanoen_2025_111261
crossref_primary_10_1111_iej_14127
crossref_primary_10_1177_1475921719873112
crossref_primary_10_1080_13467581_2024_2328634
crossref_primary_10_1109_ACCESS_2019_2953490
crossref_primary_10_3233_AIS_200546
crossref_primary_10_1016_j_ijinfomgt_2018_10_010
crossref_primary_10_3390_diagnostics12122943
crossref_primary_10_1007_s41939_025_00942_9
crossref_primary_10_3233_JIFS_169530
crossref_primary_10_1007_s00521_019_04349_9
crossref_primary_10_3390_toxins17040171
crossref_primary_10_2196_13139
crossref_primary_10_1016_j_enbuild_2020_110232
crossref_primary_10_1016_j_smrv_2019_07_007
crossref_primary_10_1109_LWC_2019_2909893
crossref_primary_10_1007_s13198_025_02975_2
crossref_primary_10_1523_JNEUROSCI_1503_22_2022
crossref_primary_10_1038_s41597_024_03249_5
crossref_primary_10_1016_j_saa_2024_125692
crossref_primary_10_1007_s42461_023_00768_4
crossref_primary_10_2516_stet_2024063
crossref_primary_10_1007_s00226_020_01245_7
crossref_primary_10_1016_j_eswa_2018_12_055
crossref_primary_10_1029_2020WR028095
crossref_primary_10_1002_nsg_70000
crossref_primary_10_1109_TIFS_2020_3005304
crossref_primary_10_1016_j_compag_2020_105868
crossref_primary_10_1186_s13321_021_00533_z
crossref_primary_10_3390_s23146294
crossref_primary_10_1016_j_micpro_2020_103333
crossref_primary_10_3934_publichealth_2024004
crossref_primary_10_1016_j_commatsci_2019_04_051
crossref_primary_10_1111_exsy_12927
crossref_primary_10_1016_j_knosys_2021_107446
crossref_primary_10_1109_TED_2022_3182282
crossref_primary_10_3390_met10070904
crossref_primary_10_1007_s10706_018_0511_1
crossref_primary_10_1007_s12652_017_0614_1
crossref_primary_10_1016_j_ymeth_2020_06_016
crossref_primary_10_1002_jbio_202000013
crossref_primary_10_1016_j_bspc_2020_102326
crossref_primary_10_1109_ACCESS_2020_2965284
crossref_primary_10_1109_TNNLS_2019_2920964
crossref_primary_10_3390_s18010209
crossref_primary_10_1016_j_dsp_2020_102742
crossref_primary_10_1088_1748_0221_15_06_P06008
crossref_primary_10_1007_s12532_024_00266_8
crossref_primary_10_1016_j_indcrop_2025_121308
crossref_primary_10_1016_j_jgsce_2023_205104
crossref_primary_10_1061__ASCE_CP_1943_5487_0000797
crossref_primary_10_3390_jcm11195772
crossref_primary_10_1016_j_jhydrol_2020_125734
crossref_primary_10_1080_15376494_2021_1880677
crossref_primary_10_1007_s41870_019_00362_2
crossref_primary_10_1016_j_vehcom_2019_100184
crossref_primary_10_1088_1402_4896_ad538e
crossref_primary_10_1007_s12206_020_1002_x
crossref_primary_10_1088_1742_6596_1902_1_012112
crossref_primary_10_3389_fncom_2020_583350
crossref_primary_10_1007_s11023_022_09596_9
crossref_primary_10_1002_advs_202503138
crossref_primary_10_1088_2632_2153_ac9a9d
crossref_primary_10_1177_0003702818791939
crossref_primary_10_1145_2856820
crossref_primary_10_1002_iis2_13201
crossref_primary_10_1038_s44276_025_00135_4
crossref_primary_10_3390_rs14081791
crossref_primary_10_3390_s18092955
crossref_primary_10_1016_j_ijmst_2019_06_009
crossref_primary_10_1016_j_asoc_2020_107066
crossref_primary_10_1002_jbio_202200308
crossref_primary_10_3390_healthcare10101842
crossref_primary_10_3389_fphy_2025_1594819
crossref_primary_10_1186_s12859_022_04698_8
crossref_primary_10_1016_j_jobe_2025_112696
crossref_primary_10_1093_bib_bbad014
crossref_primary_10_4274_anatoljmed_2025_21939
crossref_primary_10_1038_s41598_017_13923_x
crossref_primary_10_1088_1361_6633_aa8a02
crossref_primary_10_1088_1742_6596_1986_1_012099
crossref_primary_10_1007_s42979_024_03552_3
crossref_primary_10_1016_j_energy_2020_119321
crossref_primary_10_1038_s41524_019_0263_3
crossref_primary_10_1007_s11227_022_04661_7
crossref_primary_10_1016_j_advengsoft_2025_104037
crossref_primary_10_1080_15592324_2021_1970448
crossref_primary_10_1016_j_csbj_2020_02_006
crossref_primary_10_1016_j_cie_2019_106024
crossref_primary_10_1016_j_ultramic_2019_03_017
crossref_primary_10_32604_cmc_2020_013458
crossref_primary_10_1109_TNNLS_2016_2551748
crossref_primary_10_3390_app9183907
crossref_primary_10_1007_s11042_024_19674_y
crossref_primary_10_1016_j_hpb_2024_05_006
crossref_primary_10_3847_1538_4357_ab07b4
crossref_primary_10_3389_fenvs_2016_00003
crossref_primary_10_2478_jaiscr_2018_0029
crossref_primary_10_1097_MD_0000000000042764
crossref_primary_10_1109_TGRS_2018_2812619
crossref_primary_10_3390_rs14081770
crossref_primary_10_1016_j_prosdent_2025_03_009
crossref_primary_10_1109_ACCESS_2022_3183803
crossref_primary_10_1017_ehs_2020_52
crossref_primary_10_1016_j_isprsjprs_2019_10_011
crossref_primary_10_1007_s11042_021_11838_4
crossref_primary_10_1155_2021_9927151
crossref_primary_10_1007_s11042_022_13143_0
crossref_primary_10_1038_s41598_019_39206_1
crossref_primary_10_1515_bmt_2020_0038
crossref_primary_10_1016_j_ast_2023_108425
crossref_primary_10_1007_s00521_022_07773_6
crossref_primary_10_1038_s41598_020_67178_0
crossref_primary_10_1088_1572_9494_ace17d
crossref_primary_10_1088_1748_0221_11_12_C12004
crossref_primary_10_3390_en12091735
crossref_primary_10_1021_jacs_4c16325
crossref_primary_10_1007_s10664_020_09898_5
crossref_primary_10_1007_s00521_019_04481_6
crossref_primary_10_1109_TCYB_2018_2884315
crossref_primary_10_1109_ACCESS_2021_3121288
crossref_primary_10_1146_annurev_polisci_090216_023229
crossref_primary_10_1140_epja_s10050_022_00839_y
crossref_primary_10_1007_s10452_022_09988_0
crossref_primary_10_1088_1361_6471_abcd1c
crossref_primary_10_3390_s21030748
crossref_primary_10_1016_j_ijforecast_2017_09_008
crossref_primary_10_26599_OCEAN_2025_9470005
crossref_primary_10_1016_j_apradiso_2017_09_023
crossref_primary_10_1007_s11571_022_09845_8
crossref_primary_10_1109_LGRS_2019_2923540
crossref_primary_10_1016_j_biortech_2021_126276
crossref_primary_10_1109_JTEHM_2020_2999725
crossref_primary_10_1007_s40593_023_00375_w
crossref_primary_10_3390_computers14070254
crossref_primary_10_3390_s20195670
crossref_primary_10_1029_2018EA000423
crossref_primary_10_1109_ACCESS_2024_3376441
crossref_primary_10_1007_s11682_022_00631_y
crossref_primary_10_1007_s12517_021_08628_5
crossref_primary_10_1155_2024_6446405
crossref_primary_10_1007_s10494_022_00330_0
crossref_primary_10_1007_s10270_021_00893_y
crossref_primary_10_1109_TPAMI_2019_2917685
crossref_primary_10_1016_j_camwa_2021_06_003
crossref_primary_10_1038_s41598_023_38351_y
crossref_primary_10_1145_3110218
crossref_primary_10_1007_s11831_023_09948_3
crossref_primary_10_1007_JHEP04_2021_139
crossref_primary_10_1109_ACCESS_2018_2804930
crossref_primary_10_1007_s11042_023_15933_6
crossref_primary_10_1007_s00894_024_06177_8
crossref_primary_10_1109_ACCESS_2019_2927169
crossref_primary_10_1109_TII_2020_2990741
crossref_primary_10_1080_21580103_2022_2115561
crossref_primary_10_1007_s10921_022_00845_6
crossref_primary_10_1177_10775463231158739
crossref_primary_10_1088_1741_2552_abde8a
crossref_primary_10_1016_j_gie_2020_04_039
crossref_primary_10_1016_j_eswa_2020_113275
crossref_primary_10_3390_app10165640
crossref_primary_10_3390_rs13204036
crossref_primary_10_3390_s24072056
crossref_primary_10_1145_3309706
crossref_primary_10_1109_ACCESS_2020_3029202
crossref_primary_10_1063_1_5134125
crossref_primary_10_1063_5_0253696
crossref_primary_10_1016_j_ejmp_2024_104498
crossref_primary_10_3390_sym12091430
crossref_primary_10_1109_TDSC_2021_3101311
crossref_primary_10_1016_j_humov_2019_06_008
crossref_primary_10_1088_1757_899X_873_1_012019
crossref_primary_10_1007_s10499_024_01697_9
crossref_primary_10_1007_s10916_018_0977_7
crossref_primary_10_1111_exsy_12644
crossref_primary_10_1103_PhysRevC_104_034608
crossref_primary_10_1186_s12859_021_04445_5
crossref_primary_10_1002_acm2_13337
crossref_primary_10_1038_s41598_019_51503_3
crossref_primary_10_1016_j_comcom_2022_09_012
crossref_primary_10_1137_18M1231559
crossref_primary_10_1016_j_compstruct_2023_117136
crossref_primary_10_1007_s10462_021_09967_1
crossref_primary_10_1088_2632_2153_abffe8
crossref_primary_10_1007_s00261_018_1517_0
crossref_primary_10_1016_j_chb_2024_108406
crossref_primary_10_3390_rs15204985
crossref_primary_10_4018_IJDWM_2020070107
crossref_primary_10_1177_0361198119838508
crossref_primary_10_3847_1538_3881_add46d
crossref_primary_10_3390_rs11222651
crossref_primary_10_3389_fbioe_2020_00429
crossref_primary_10_1080_08839514_2020_1713454
crossref_primary_10_1007_s12564_021_09697_7
crossref_primary_10_1177_1748006X19867776
crossref_primary_10_1016_j_enggeo_2021_106381
crossref_primary_10_1109_TITS_2019_2909571
crossref_primary_10_1155_2019_3737265
crossref_primary_10_1007_s11042_021_10637_1
crossref_primary_10_1016_j_eswa_2023_120439
crossref_primary_10_3390_brainsci10020084
crossref_primary_10_3390_app13127272
crossref_primary_10_14361_dcs_2018_0110
crossref_primary_10_1007_s00773_022_00914_5
crossref_primary_10_1029_2018EA000466
crossref_primary_10_1007_s13042_020_01152_0
crossref_primary_10_1007_s10994_022_06286_6
crossref_primary_10_3390_rs15204997
crossref_primary_10_3390_technologies11040082
crossref_primary_10_2174_1874447802014010186
crossref_primary_10_1155_2017_3583610
crossref_primary_10_1007_s10489_021_02471_7
crossref_primary_10_3389_fonc_2022_1003639
crossref_primary_10_1016_j_icheatmasstransfer_2025_109506
crossref_primary_10_1016_j_neucom_2018_06_080
crossref_primary_10_1109_ACCESS_2022_3163247
crossref_primary_10_3390_rs15163924
crossref_primary_10_1109_TIFS_2019_2904413
crossref_primary_10_17694_bajece_1415025
crossref_primary_10_1017_qrd_2022_12
crossref_primary_10_1007_s11831_019_09368_2
crossref_primary_10_1016_j_neunet_2022_09_012
crossref_primary_10_1111_jerd_12844
crossref_primary_10_1016_j_neunet_2022_09_015
crossref_primary_10_1109_TITS_2020_3011700
crossref_primary_10_1088_1361_6579_aad948
crossref_primary_10_1007_s11042_017_4989_y
crossref_primary_10_1016_j_gie_2020_04_071
crossref_primary_10_1038_s41598_023_32514_7
crossref_primary_10_3390_s19173784
crossref_primary_10_1631_FITEE_1700404
crossref_primary_10_1109_JSAC_2018_2864373
crossref_primary_10_1016_j_ejmp_2020_11_012
crossref_primary_10_1049_iet_rpg_2018_6257
crossref_primary_10_1007_s13246_020_00964_2
crossref_primary_10_1016_j_neucom_2018_06_078
crossref_primary_10_1121_10_0005535
crossref_primary_10_1016_j_rineng_2025_105178
crossref_primary_10_1016_j_sna_2021_112978
crossref_primary_10_1103_PhysRevResearch_5_033086
crossref_primary_10_1155_2023_3668689
crossref_primary_10_1186_s13638_017_0965_5
crossref_primary_10_1109_ACCESS_2022_3144078
crossref_primary_10_1145_2957754
crossref_primary_10_1016_j_ultramic_2024_114047
crossref_primary_10_1139_cgj_2020_0422
crossref_primary_10_1109_JIOT_2021_3101447
crossref_primary_10_1177_1475921720976941
crossref_primary_10_1109_ACCESS_2019_2930713
crossref_primary_10_3390_idr14060090
crossref_primary_10_1109_ACCESS_2017_2647851
crossref_primary_10_1016_j_bdr_2017_01_005
crossref_primary_10_1177_20539517211020775
crossref_primary_10_1007_s10462_024_10799_y
crossref_primary_10_1121_10_0010045
crossref_primary_10_1117_1_JMI_10_5_055501
crossref_primary_10_1016_j_neucom_2017_07_037
crossref_primary_10_3390_agronomy11081480
crossref_primary_10_1109_JIOT_2022_3168317
crossref_primary_10_3389_fpubh_2022_933665
crossref_primary_10_1109_TNNLS_2020_3017434
crossref_primary_10_1007_s40747_021_00637_x
crossref_primary_10_1111_raq_12559
crossref_primary_10_1016_j_oceaneng_2022_111094
crossref_primary_10_1016_j_tre_2023_103367
crossref_primary_10_1145_3520129
crossref_primary_10_3389_fenrg_2021_693252
crossref_primary_10_3390_cancers11010053
crossref_primary_10_1186_s40854_024_00629_z
crossref_primary_10_1016_j_buildenv_2021_108428
crossref_primary_10_1371_journal_pone_0304017
crossref_primary_10_1007_s11042_019_08491_3
crossref_primary_10_1016_j_aei_2019_100980
crossref_primary_10_1016_j_jcp_2020_110085
crossref_primary_10_3390_s22197552
crossref_primary_10_3390_en16186745
crossref_primary_10_1061__ASCE_WR_1943_5452_0000992
crossref_primary_10_1016_j_cjche_2020_06_015
crossref_primary_10_1016_j_petrol_2019_04_016
crossref_primary_10_3390_math11092136
crossref_primary_10_1088_1361_6382_aab793
crossref_primary_10_1016_j_biosystemseng_2018_11_018
crossref_primary_10_3390_cancers17183003
crossref_primary_10_1007_s11356_022_24880_y
crossref_primary_10_3390_s20061642
crossref_primary_10_1016_j_physa_2025_130835
crossref_primary_10_1002_agj2_21473
crossref_primary_10_1007_s10958_023_06519_6
crossref_primary_10_1016_j_eswa_2018_01_039
crossref_primary_10_3390_en16010495
crossref_primary_10_1016_j_jcp_2020_110074
crossref_primary_10_1061__ASCE_WR_1943_5452_0000983
crossref_primary_10_1007_s11431_023_2629_2
crossref_primary_10_1063_5_0246495
crossref_primary_10_1016_j_neucom_2018_06_038
crossref_primary_10_1038_s41596_020_0329_1
crossref_primary_10_1007_s12559_023_10124_9
crossref_primary_10_1016_j_neucom_2018_06_037
crossref_primary_10_1134_S0361768820010065
crossref_primary_10_3390_math12223483
crossref_primary_10_1016_j_compstruct_2022_116354
crossref_primary_10_1016_j_ejor_2019_11_007
crossref_primary_10_3390_electronics13030559
crossref_primary_10_1111_tgis_12620
crossref_primary_10_3390_app9081707
crossref_primary_10_1007_s11042_017_4749_z
crossref_primary_10_1080_17445302_2020_1735844
crossref_primary_10_1007_s11548_019_01950_0
crossref_primary_10_1016_j_isprsjprs_2019_07_002
crossref_primary_10_3390_cancers16223879
crossref_primary_10_1007_s12369_021_00775_9
crossref_primary_10_1016_j_neucom_2017_07_069
crossref_primary_10_3390_risks6020041
crossref_primary_10_1007_s10044_019_00857_5
crossref_primary_10_1186_s12911_025_03115_3
crossref_primary_10_3390_agronomy12081786
crossref_primary_10_3390_s22197578
crossref_primary_10_1016_j_ifacol_2020_12_740
crossref_primary_10_1016_j_neucom_2018_06_025
crossref_primary_10_1371_journal_pone_0250093
crossref_primary_10_3390_jmse10070942
crossref_primary_10_3390_ijms22073425
crossref_primary_10_1016_j_knosys_2022_110220
crossref_primary_10_1080_09544828_2015_1135236
crossref_primary_10_3390_jmse11010200
crossref_primary_10_1109_ACCESS_2020_2973580
crossref_primary_10_1016_j_micpro_2023_104792
crossref_primary_10_1093_bib_bbx044
crossref_primary_10_1177_0959651820958208
crossref_primary_10_3390_s22166304
crossref_primary_10_1080_00986445_2020_1815715
crossref_primary_10_3390_mca26010017
crossref_primary_10_3389_fmolb_2022_869601
crossref_primary_10_1016_j_pce_2022_103284
crossref_primary_10_3390_app15073898
crossref_primary_10_1007_s12021_022_09617_z
crossref_primary_10_1007_s11030_020_10165_4
crossref_primary_10_3390_s20164599
crossref_primary_10_3390_app13052877
crossref_primary_10_1002_lpor_202301367
crossref_primary_10_1016_j_chaos_2020_109838
crossref_primary_10_1177_14759217221098569
crossref_primary_10_1038_s41440_020_0498_x
crossref_primary_10_1016_j_rineng_2023_101077
crossref_primary_10_1109_TCAD_2018_2858358
crossref_primary_10_1007_s40820_024_01489_z
crossref_primary_10_1061__ASCE_MT_1943_5533_0003525
crossref_primary_10_1109_ACCESS_2023_3349132
crossref_primary_10_1155_2022_7123079
crossref_primary_10_1016_j_anucene_2021_108855
crossref_primary_10_3390_ma17184523
crossref_primary_10_3390_biom13081192
crossref_primary_10_1016_j_cmpb_2023_107683
crossref_primary_10_1109_TIP_2017_2725584
crossref_primary_10_1007_s10115_021_01649_2
crossref_primary_10_1007_s42484_024_00215_7
crossref_primary_10_1016_j_energy_2021_121271
crossref_primary_10_3390_app14020603
crossref_primary_10_1190_geo2019_0267_1
crossref_primary_10_1016_j_ymssp_2025_113259
crossref_primary_10_1088_1755_1315_774_1_012136
crossref_primary_10_1007_s11837_023_06042_8
crossref_primary_10_1016_j_future_2019_04_013
crossref_primary_10_1080_2150704X_2020_1807647
crossref_primary_10_3390_s19214768
crossref_primary_10_1213_ANE_0000000000006679
crossref_primary_10_3390_fi14020043
crossref_primary_10_1016_j_chemosphere_2024_142223
crossref_primary_10_1155_2021_1682163
crossref_primary_10_1109_ACCESS_2020_3005286
crossref_primary_10_1007_s11042_022_13085_7
crossref_primary_10_7717_peerj_cs_620
crossref_primary_10_1007_s11042_021_10935_8
crossref_primary_10_1186_s12916_025_03962_x
crossref_primary_10_1007_s11063_017_9745_9
crossref_primary_10_3390_electronics9081188
crossref_primary_10_1016_j_catena_2021_105585
crossref_primary_10_1038_s41598_020_63662_9
crossref_primary_10_1109_ACCESS_2021_3079639
crossref_primary_10_1186_s12859_022_04860_2
crossref_primary_10_1080_19942060_2018_1448896
crossref_primary_10_3389_fmats_2021_754089
crossref_primary_10_1007_s00025_024_02222_3
crossref_primary_10_1109_TCCN_2022_3147203
crossref_primary_10_1029_2021GL094772
crossref_primary_10_1016_j_aap_2021_106322
crossref_primary_10_1109_TASE_2020_2967093
crossref_primary_10_1007_s11548_019_01928_y
crossref_primary_10_1109_ACCESS_2021_3138167
crossref_primary_10_1016_j_cjca_2018_04_032
crossref_primary_10_1109_TVT_2021_3120267
crossref_primary_10_1016_j_ress_2022_108954
crossref_primary_10_1016_j_procs_2024_09_194
crossref_primary_10_1007_s00704_023_04439_8
crossref_primary_10_1371_journal_pone_0210829
crossref_primary_10_1080_24725854_2024_2443592
crossref_primary_10_1051_epjconf_202022602020
crossref_primary_10_1016_j_ijplas_2020_102867
crossref_primary_10_1016_j_cmpb_2023_107717
crossref_primary_10_1016_j_jmapro_2021_06_076
crossref_primary_10_1109_JBHI_2021_3092396
crossref_primary_10_3389_fenrg_2021_796528
crossref_primary_10_1109_TMI_2016_2528120
crossref_primary_10_1088_1742_5468_ab3985
crossref_primary_10_1155_2019_2970408
crossref_primary_10_1007_s11042_020_08716_w
crossref_primary_10_3389_fimmu_2023_1105399
crossref_primary_10_3390_app14135913
crossref_primary_10_3390_jrfm17040132
crossref_primary_10_3390_s21113678
crossref_primary_10_1371_journal_pone_0249071
crossref_primary_10_1016_j_psep_2022_12_070
crossref_primary_10_1016_j_neunet_2019_06_004
crossref_primary_10_1061_JCCEE5_CPENG_6195
crossref_primary_10_1155_2022_4390413
crossref_primary_10_1016_j_ejmech_2024_116262
crossref_primary_10_1016_j_ymssp_2017_09_026
crossref_primary_10_1016_j_measurement_2020_108586
crossref_primary_10_1016_j_rser_2021_111902
crossref_primary_10_1016_j_istruc_2023_02_042
crossref_primary_10_1016_j_robot_2021_103731
crossref_primary_10_1016_j_jhydrol_2022_128420
crossref_primary_10_1109_TNNLS_2017_2762720
crossref_primary_10_3390_electronics10080920
crossref_primary_10_3389_fbioe_2023_1302911
crossref_primary_10_3389_fpls_2021_770916
crossref_primary_10_1007_s00449_022_02716_w
crossref_primary_10_2174_0115701638314252241016165345
crossref_primary_10_3390_su16051925
crossref_primary_10_3390_e23040410
crossref_primary_10_1109_ACCESS_2019_2909295
crossref_primary_10_1016_j_neunet_2019_06_012
crossref_primary_10_1111_tgis_12598
crossref_primary_10_1016_j_jag_2024_103938
crossref_primary_10_3389_fnins_2022_857513
crossref_primary_10_1016_j_psep_2022_12_055
crossref_primary_10_3390_su12020625
crossref_primary_10_1109_ACCESS_2022_3170425
crossref_primary_10_1016_j_amc_2024_128577
crossref_primary_10_1029_2025JB031756
crossref_primary_10_1109_ACCESS_2020_2974903
crossref_primary_10_1007_s41060_025_00740_z
crossref_primary_10_1111_jcmm_17889
crossref_primary_10_1016_j_mri_2019_05_037
crossref_primary_10_1186_s13742_016_0117_6
crossref_primary_10_1186_s12889_024_18221_6
crossref_primary_10_3390_app14073129
crossref_primary_10_1088_1757_899X_1022_1_012089
crossref_primary_10_1016_j_physrep_2019_09_005
crossref_primary_10_3390_agriculture15101077
crossref_primary_10_3390_rs15030731
crossref_primary_10_1109_ACCESS_2021_3102176
crossref_primary_10_1016_j_cma_2021_113763
crossref_primary_10_1049_cit2_12180
crossref_primary_10_1515_ijnes_2020_0068
crossref_primary_10_1103_PhysRevResearch_3_023051
crossref_primary_10_1145_3677374
crossref_primary_10_3390_pr12092009
crossref_primary_10_1016_j_compag_2018_12_028
crossref_primary_10_1016_j_imlet_2022_03_006
crossref_primary_10_1140_epjp_s13360_024_05412_8
crossref_primary_10_3390_math11244894
crossref_primary_10_3103_S105261882010009X
crossref_primary_10_3390_app11136136
crossref_primary_10_3390_s23135850
crossref_primary_10_1007_s10681_022_02992_3
crossref_primary_10_1016_j_stueduc_2020_100872
crossref_primary_10_1007_s11104_024_06866_6
crossref_primary_10_1016_j_sna_2024_115195
crossref_primary_10_1080_09540091_2018_1443317
crossref_primary_10_3390_math10020181
crossref_primary_10_3390_pr13092700
crossref_primary_10_1155_2020_9657372
crossref_primary_10_1016_j_future_2018_05_050
crossref_primary_10_1016_j_cej_2021_130011
crossref_primary_10_1088_1742_6596_1405_1_012001
crossref_primary_10_1109_ACCESS_2021_3115494
crossref_primary_10_1007_s10772_018_09577_3
crossref_primary_10_1016_j_ultrasmedbio_2024_12_010
crossref_primary_10_1016_j_trgeo_2024_101359
crossref_primary_10_1155_adce_7678622
crossref_primary_10_1016_j_ndteint_2018_09_010
crossref_primary_10_1016_j_talanta_2025_128742
crossref_primary_10_3390_math11092166
crossref_primary_10_1016_j_scitotenv_2023_166960
crossref_primary_10_3390_electronics12040985
crossref_primary_10_1007_s41324_022_00482_1
crossref_primary_10_1038_s42003_019_0437_z
crossref_primary_10_1007_s13198_017_0649_x
crossref_primary_10_3390_su13010104
crossref_primary_10_1109_TITS_2018_2829165
crossref_primary_10_1146_annurev_nucl_101917_021019
crossref_primary_10_1016_j_eswa_2016_05_033
crossref_primary_10_1016_j_jrmge_2024_11_003
crossref_primary_10_3389_fcomm_2023_1129082
crossref_primary_10_3390_app10196856
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120112
crossref_primary_10_1088_1741_2552_ac7976
crossref_primary_10_1038_s41598_021_02387_9
crossref_primary_10_3390_ijms222312882
crossref_primary_10_3390_rs12081289
crossref_primary_10_1017_asb_2019_33
crossref_primary_10_1016_j_atech_2025_101093
crossref_primary_10_1080_01431161_2024_2440135
crossref_primary_10_1080_01691864_2019_1586760
crossref_primary_10_1002_ana_27229
crossref_primary_10_1007_s00170_024_12950_z
crossref_primary_10_1109_TAI_2021_3067574
crossref_primary_10_1016_j_patcog_2019_04_007
crossref_primary_10_1162_neco_a_01742
crossref_primary_10_1016_j_patcog_2019_04_009
crossref_primary_10_1103_PhysRevApplied_10_054001
crossref_primary_10_3389_fmats_2021_786502
crossref_primary_10_1007_s11390_021_1048_y
crossref_primary_10_3390_app13105843
crossref_primary_10_1080_10696679_2020_1860683
crossref_primary_10_1049_iet_ipr_2018_5442
crossref_primary_10_3389_fpsyg_2022_839619
crossref_primary_10_3390_app11136101
crossref_primary_10_1155_2020_8846589
crossref_primary_10_1109_TCBB_2022_3231466
crossref_primary_10_1016_j_engappai_2019_103312
crossref_primary_10_1109_LCOMM_2021_3093451
crossref_primary_10_1365_s40702_022_00919_z
crossref_primary_10_3390_ijgi10050279
crossref_primary_10_1007_s10489_021_02555_4
crossref_primary_10_1016_j_chemolab_2024_105242
crossref_primary_10_1016_j_cor_2023_106264
crossref_primary_10_1177_09544089211064464
crossref_primary_10_1016_j_foodcont_2020_107184
crossref_primary_10_23919_JSEE_2023_000142
crossref_primary_10_3390_pr13092711
crossref_primary_10_1103_PhysRevE_103_022404
crossref_primary_10_1007_s40808_024_01988_3
crossref_primary_10_1371_journal_pone_0184059
crossref_primary_10_1109_TGRS_2019_2913095
crossref_primary_10_3233_IDT_220063
crossref_primary_10_3390_su13137131
crossref_primary_10_1016_j_neunet_2020_08_022
crossref_primary_10_1016_j_engappai_2017_01_013
crossref_primary_10_1109_LAWP_2021_3069713
crossref_primary_10_1016_j_aei_2021_101427
crossref_primary_10_1080_23738871_2019_1701693
crossref_primary_10_3390_robotics7020025
crossref_primary_10_1016_j_rser_2021_111977
crossref_primary_10_1007_s12469_019_00213_0
crossref_primary_10_1587_transinf_2019EDP7188
crossref_primary_10_1049_cit2_12114
crossref_primary_10_1007_s00521_019_04196_8
crossref_primary_10_3233_JIFS_169438
crossref_primary_10_1038_s41563_019_0338_z
crossref_primary_10_1016_j_psychres_2018_12_026
crossref_primary_10_1016_j_jcp_2024_113486
crossref_primary_10_1063_5_0222403
crossref_primary_10_1088_2632_2153_ab5639
crossref_primary_10_5194_amt_17_6485_2024
crossref_primary_10_3390_s23042051
crossref_primary_10_1109_TMC_2019_2959772
crossref_primary_10_1002_advs_202203899
crossref_primary_10_1109_JSTARS_2020_2977655
crossref_primary_10_1016_j_knosys_2021_107134
crossref_primary_10_1038_s10038_020_00832_7
crossref_primary_10_3390_s21010280
crossref_primary_10_1016_j_neucom_2020_07_154
crossref_primary_10_1088_1361_6579_abe524
crossref_primary_10_1109_TIM_2022_3184357
crossref_primary_10_3390_e24070878
crossref_primary_10_1007_s11947_025_03822_9
crossref_primary_10_1016_j_pnmrs_2025_101561
crossref_primary_10_1139_er_2018_0034
crossref_primary_10_1016_j_ins_2020_10_023
crossref_primary_10_1089_cmb_2024_0491
crossref_primary_10_1109_ACCESS_2023_3273317
crossref_primary_10_1016_j_micpro_2023_104804
crossref_primary_10_1039_C9SC02452B
crossref_primary_10_1016_j_measurement_2022_112346
crossref_primary_10_3390_app7111141
crossref_primary_10_1016_j_advwatres_2020_103545
crossref_primary_10_1016_j_aei_2021_101448
crossref_primary_10_1016_j_envsoft_2021_104992
crossref_primary_10_1016_j_talanta_2024_126693
crossref_primary_10_1007_s13369_020_04839_2
crossref_primary_10_3390_rs15204923
crossref_primary_10_1016_j_ijfatigue_2019_105458
crossref_primary_10_1007_s11042_017_4798_3
crossref_primary_10_1080_0952813X_2025_2519324
crossref_primary_10_1016_j_neucom_2021_09_071
crossref_primary_10_1111_mafi_12413
crossref_primary_10_1016_j_neucom_2021_09_072
crossref_primary_10_1109_JSTARS_2020_2988324
crossref_primary_10_3389_fsens_2021_654357
crossref_primary_10_1109_TPDS_2020_3003307
crossref_primary_10_1109_TSTE_2018_2888548
crossref_primary_10_1145_3466171
crossref_primary_10_1177_17562848221093873
crossref_primary_10_1016_j_device_2025_100907
crossref_primary_10_1016_j_envres_2021_112207
crossref_primary_10_1140_epjs_s11734_021_00207_9
crossref_primary_10_1007_s12024_017_9906_1
crossref_primary_10_1029_2018GL078202
crossref_primary_10_3390_w12051369
crossref_primary_10_1038_s41598_025_94173_0
crossref_primary_10_3389_fnsys_2021_784404
crossref_primary_10_1016_j_trc_2022_103566
crossref_primary_10_3934_math_2025283
crossref_primary_10_1007_s11227_019_03026_x
crossref_primary_10_1016_j_neucom_2020_11_055
crossref_primary_10_1080_23270012_2019_1570365
crossref_primary_10_3390_su152015029
crossref_primary_10_1016_j_jobe_2023_107605
crossref_primary_10_1007_s11042_024_20230_x
crossref_primary_10_3389_fchem_2021_787194
crossref_primary_10_1002_hbm_26561
crossref_primary_10_1093_sysbio_syz014
crossref_primary_10_1109_ACCESS_2019_2912896
crossref_primary_10_3390_s21092987
crossref_primary_10_3390_app15126546
crossref_primary_10_1016_j_eehl_2022_06_001
crossref_primary_10_1016_j_mtcomm_2025_113863
crossref_primary_10_1038_s41529_018_0058_x
crossref_primary_10_1016_j_paerosci_2021_100725
crossref_primary_10_1134_S0005117917050083
crossref_primary_10_3390_life13091878
crossref_primary_10_1016_j_neucom_2015_06_008
crossref_primary_10_1109_COMST_2020_2988293
crossref_primary_10_1049_el_2016_3060
crossref_primary_10_1155_2022_8951961
crossref_primary_10_3390_rs10050719
crossref_primary_10_1007_s13042_021_01306_8
crossref_primary_10_4018_IJSSMET_2020040103
crossref_primary_10_1016_j_cogsys_2016_06_002
crossref_primary_10_1007_s11053_025_10473_2
crossref_primary_10_1007_s10291_025_01821_z
crossref_primary_10_3390_sym14020251
crossref_primary_10_1109_LGRS_2017_2766840
crossref_primary_10_1016_j_measurement_2022_112384
crossref_primary_10_3233_ICA_180580
crossref_primary_10_1016_j_measurement_2017_07_017
crossref_primary_10_1017_jfm_2022_1020
crossref_primary_10_3390_s21010220
crossref_primary_10_1007_s42243_024_01197_3
crossref_primary_10_3390_cells10112924
crossref_primary_10_1016_j_camwa_2025_05_004
crossref_primary_10_1016_j_compbiomed_2023_107024
crossref_primary_10_3390_pr13072298
crossref_primary_10_1007_s41939_023_00335_w
crossref_primary_10_32604_cmc_2022_030490
crossref_primary_10_1093_jge_gxac009
crossref_primary_10_3390_w14030466
crossref_primary_10_1002_qj_4882
crossref_primary_10_3390_electronics13010004
crossref_primary_10_1016_j_anucene_2018_05_054
crossref_primary_10_1109_ACCESS_2021_3061440
crossref_primary_10_3390_app12105217
crossref_primary_10_1038_s41598_025_85440_1
crossref_primary_10_1016_j_icheatmasstransfer_2018_07_001
crossref_primary_10_1007_s00365_023_09620_w
crossref_primary_10_1016_j_rser_2018_04_013
crossref_primary_10_3847_1538_4365_accd6a
crossref_primary_10_1109_LGRS_2019_2909312
crossref_primary_10_1371_journal_pone_0294460
crossref_primary_10_1016_j_geosus_2025_100375
crossref_primary_10_1080_09603123_2020_1793918
crossref_primary_10_1049_cit2_12144
crossref_primary_10_1002_anie_201804736
crossref_primary_10_1049_iet_smt_2017_0528
crossref_primary_10_2478_picbe_2025_0133
crossref_primary_10_3389_fgene_2019_00166
crossref_primary_10_3390_s20216350
crossref_primary_10_1002_aqc_3189
crossref_primary_10_1016_j_neucom_2020_02_067
crossref_primary_10_1145_3569576
crossref_primary_10_1016_j_neucom_2020_02_065
crossref_primary_10_3389_fncom_2020_00014
crossref_primary_10_3390_a10040117
crossref_primary_10_1007_s10278_025_01482_x
crossref_primary_10_1007_s00170_019_03817_9
crossref_primary_10_1002_ps_8473
crossref_primary_10_1007_s10664_024_10521_0
crossref_primary_10_1109_ACCESS_2020_3020978
crossref_primary_10_1007_s11277_022_09513_4
crossref_primary_10_1109_TNNLS_2020_2979670
crossref_primary_10_1016_j_epidem_2019_05_004
crossref_primary_10_4000_brussels_1522
crossref_primary_10_4000_brussels_1523
crossref_primary_10_1016_j_jpdc_2019_10_004
crossref_primary_10_1016_j_icheatmasstransfer_2025_109440
crossref_primary_10_1016_j_jhtm_2019_11_003
crossref_primary_10_1109_ACCESS_2019_2931990
crossref_primary_10_1021_jasms_0c00035
crossref_primary_10_1016_j_neucom_2020_02_053
crossref_primary_10_1016_j_neucom_2020_02_052
crossref_primary_10_2174_1574893618666230406085947
crossref_primary_10_1039_D3MH00039G
crossref_primary_10_1080_01431161_2021_1947540
crossref_primary_10_3390_pr10112348
crossref_primary_10_7595_management_fon_2020_0002
crossref_primary_10_1186_s40069_025_00815_y
crossref_primary_10_1109_COMST_2019_2938259
crossref_primary_10_1016_j_patcog_2019_07_006
crossref_primary_10_3390_rs13081568
crossref_primary_10_1016_j_eswa_2022_117272
crossref_primary_10_1109_LGRS_2019_2922326
crossref_primary_10_1063_5_0266874
crossref_primary_10_1186_s13677_024_00682_0
crossref_primary_10_1016_j_neunet_2022_10_013
crossref_primary_10_1016_j_neunet_2019_03_005
crossref_primary_10_1038_s42256_023_00785_4
crossref_primary_10_1016_j_psep_2023_02_081
crossref_primary_10_1016_j_neunet_2019_03_006
crossref_primary_10_1038_s43586_023_00198_y
crossref_primary_10_1371_journal_pone_0306701
crossref_primary_10_1016_j_optlastec_2025_113828
crossref_primary_10_1002_ece3_11605
crossref_primary_10_3390_nano11102672
crossref_primary_10_1007_s11432_019_3018_6
crossref_primary_10_1177_14613484241287620
crossref_primary_10_1002_hyp_13807
crossref_primary_10_1016_j_envpol_2017_10_040
crossref_primary_10_1007_s12525_021_00475_2
crossref_primary_10_1016_j_neunet_2022_10_023
crossref_primary_10_3390_s23104692
crossref_primary_10_1007_s00521_020_05679_9
crossref_primary_10_1016_j_jher_2021_01_006
crossref_primary_10_1111_nrm_12248
crossref_primary_10_3390_en16083567
crossref_primary_10_3390_app12147125
crossref_primary_10_1146_annurev_biodatasci_080917_013343
crossref_primary_10_1109_ACCESS_2021_3121366
crossref_primary_10_1002_jhm_13295
crossref_primary_10_1016_j_livsci_2022_104935
crossref_primary_10_1007_s44163_024_00188_3
crossref_primary_10_1109_ACCESS_2022_3217457
crossref_primary_10_1007_s40857_021_00259_w
crossref_primary_10_3390_a17060243
crossref_primary_10_1016_j_anucene_2023_110113
crossref_primary_10_3390_math9222921
crossref_primary_10_3233_JIFS_210043
crossref_primary_10_1017_eds_2023_41
crossref_primary_10_1371_journal_pone_0202337
crossref_primary_10_1007_s42979_021_00651_3
crossref_primary_10_1109_ACCESS_2020_3019933
crossref_primary_10_1016_j_neunet_2019_12_022
crossref_primary_10_1016_j_isprsjprs_2022_02_002
crossref_primary_10_2118_223950_PA
crossref_primary_10_4103_jpi_jpi_24_19
crossref_primary_10_1155_2019_3956749
crossref_primary_10_1177_01423312231157118
crossref_primary_10_1016_j_indmarman_2023_09_012
crossref_primary_10_1155_2020_3701067
crossref_primary_10_1002_adom_202300215
crossref_primary_10_3390_s25133904
crossref_primary_10_1007_s11517_020_02275_w
crossref_primary_10_1016_j_asoc_2019_02_006
crossref_primary_10_1155_2019_6509357
crossref_primary_10_1016_j_future_2018_11_011
crossref_primary_10_1016_j_optlaseng_2022_107161
crossref_primary_10_1016_j_iot_2022_100620
crossref_primary_10_1007_s11709_024_1124_9
crossref_primary_10_3389_fmars_2024_1341191
crossref_primary_10_1287_inte_2022_1144
crossref_primary_10_1038_s41377_024_01394_5
crossref_primary_10_1093_jamia_ocae136
crossref_primary_10_1109_ACCESS_2022_3164440
crossref_primary_10_1007_s44186_025_00355_9
crossref_primary_10_1002_tee_23452
crossref_primary_10_3390_ijerph19031470
crossref_primary_10_4000_brussels_1519
crossref_primary_10_1016_j_jhydrol_2023_129116
crossref_primary_10_1177_00368504221086362
crossref_primary_10_1016_j_jappgeo_2025_105688
crossref_primary_10_1109_ACCESS_2019_2955995
crossref_primary_10_1007_s00521_022_06889_z
crossref_primary_10_1016_j_cma_2020_112989
crossref_primary_10_1016_j_matdes_2022_111397
crossref_primary_10_3390_s23031185
crossref_primary_10_1109_TPDS_2020_3047638
crossref_primary_10_1371_journal_pone_0228928
crossref_primary_10_1109_ACCESS_2017_2784352
crossref_primary_10_1016_j_ccr_2024_216329
crossref_primary_10_1007_s41870_024_01853_7
crossref_primary_10_1007_s40030_018_0291_x
crossref_primary_10_1007_s11431_021_1964_0
crossref_primary_10_5194_amt_15_1829_2022
crossref_primary_10_1007_s00521_021_06361_4
crossref_primary_10_1080_01605682_2019_1582588
crossref_primary_10_1109_TWC_2019_2945951
crossref_primary_10_3390_s21175774
crossref_primary_10_1016_j_neucom_2015_03_110
crossref_primary_10_1007_s00521_022_07894_y
crossref_primary_10_1016_j_jngse_2022_104807
crossref_primary_10_1016_j_conbuildmat_2020_120371
crossref_primary_10_1016_j_isprsjprs_2018_05_005
crossref_primary_10_1007_s10462_021_10058_4
crossref_primary_10_32604_cmc_2023_043013
crossref_primary_10_1007_s12559_019_09691_7
crossref_primary_10_1177_00220221231196321
crossref_primary_10_1016_j_cscm_2023_e02800
crossref_primary_10_1016_j_ipm_2024_103656
crossref_primary_10_1145_3459082
crossref_primary_10_1155_2022_1068554
crossref_primary_10_1109_TCAD_2022_3213211
crossref_primary_10_1016_j_neucom_2017_04_044
crossref_primary_10_1145_3007787_3001178
crossref_primary_10_1109_TDSC_2019_2946250
crossref_primary_10_1038_s41598_020_71926_7
crossref_primary_10_1007_s11023_018_9480_7
crossref_primary_10_1016_j_pnucene_2022_104542
crossref_primary_10_1007_s00521_025_11313_3
crossref_primary_10_1109_LWC_2022_3207348
crossref_primary_10_7717_peerj_cs_515
crossref_primary_10_1016_j_ejmp_2017_07_024
crossref_primary_10_3390_s16111858
crossref_primary_10_1080_08839514_2018_1526704
crossref_primary_10_1016_j_ifacol_2018_11_660
crossref_primary_10_1038_s41433_023_02914_0
crossref_primary_10_1007_s00425_025_04797_9
crossref_primary_10_1016_j_ces_2020_115956
crossref_primary_10_3389_frwa_2021_740044
crossref_primary_10_3390_diagnostics13233506
crossref_primary_10_3390_biom11121793
crossref_primary_10_1016_j_cma_2022_115741
crossref_primary_10_1007_s00521_020_05008_0
crossref_primary_10_3390_sym11091066
crossref_primary_10_1038_s41598_019_56527_3
crossref_primary_10_1002_jbmr_4879
crossref_primary_10_1016_j_image_2021_116139
crossref_primary_10_1002_adfm_202009602
crossref_primary_10_1007_s10396_021_01116_z
crossref_primary_10_3390_s21144686
crossref_primary_10_1016_j_ifacol_2016_11_099
crossref_primary_10_32604_cmc_2023_044366
crossref_primary_10_1007_s00436_022_07752_9
crossref_primary_10_1016_j_cie_2025_111102
crossref_primary_10_1364_JOCN_10_0000D1
crossref_primary_10_1007_s11229_018_01949_1
crossref_primary_10_1016_j_apradiso_2020_109221
crossref_primary_10_1109_LCSYS_2021_3086672
crossref_primary_10_2478_ijssis_2024_0027
crossref_primary_10_3390_bioengineering12050453
crossref_primary_10_1007_s00521_020_04790_1
crossref_primary_10_1016_j_istruc_2020_11_056
crossref_primary_10_1038_s43588_023_00428_z
crossref_primary_10_1126_scirobotics_aav3150
crossref_primary_10_1109_TIT_2022_3146620
crossref_primary_10_1016_j_future_2024_107655
crossref_primary_10_1002_rnc_5304
crossref_primary_10_3390_land11010004
crossref_primary_10_1016_j_bspc_2018_01_011
crossref_primary_10_25300_MISQ_2024_18340
crossref_primary_10_1109_ACCESS_2017_2772334
crossref_primary_10_5194_hess_22_6005_2018
crossref_primary_10_5194_amt_15_6521_2022
crossref_primary_10_1016_j_cities_2021_103393
crossref_primary_10_1016_j_patcog_2017_06_009
crossref_primary_10_1109_TCDS_2022_3176888
crossref_primary_10_1109_TNNLS_2019_2910073
crossref_primary_10_1109_TIM_2019_2894044
crossref_primary_10_1016_j_jksuci_2023_03_017
crossref_primary_10_1049_iet_stg_2019_0258
crossref_primary_10_1016_j_compfluid_2020_104665
crossref_primary_10_3390_math10060993
crossref_primary_10_1134_S1995080220120343
crossref_primary_10_1007_s12524_019_01063_w
crossref_primary_10_1016_j_ijforecast_2020_10_004
crossref_primary_10_1016_j_eswa_2021_115227
crossref_primary_10_1038_s44172_025_00437_y
crossref_primary_10_1007_s10489_024_06128_z
crossref_primary_10_1016_j_matpr_2021_02_626
crossref_primary_10_1109_ACCESS_2019_2930634
crossref_primary_10_2514_1_J059905
crossref_primary_10_1007_s10694_023_01457_w
crossref_primary_10_1186_s13040_019_0200_5
crossref_primary_10_1002_ecj_12224
crossref_primary_10_1038_s41746_023_00811_0
crossref_primary_10_1016_j_jneumeth_2021_109400
crossref_primary_10_1016_j_asoc_2017_01_015
crossref_primary_10_1155_2022_1911345
crossref_primary_10_1109_TGRS_2017_2692281
crossref_primary_10_1080_00207543_2025_2454329
crossref_primary_10_1016_j_chb_2024_108381
crossref_primary_10_1016_j_irbm_2020_06_001
crossref_primary_10_1038_s41467_025_62602_3
crossref_primary_10_1007_s13369_024_09035_0
crossref_primary_10_3390_s22155786
crossref_primary_10_3390_rs13061055
crossref_primary_10_1016_j_compbiomed_2017_04_006
crossref_primary_10_3389_fncom_2020_00063
crossref_primary_10_1016_j_physrep_2021_08_002
crossref_primary_10_1016_j_cortex_2019_02_022
crossref_primary_10_1016_j_strusafe_2019_101906
crossref_primary_10_1146_annurev_control_061920_103228
crossref_primary_10_1109_TETC_2020_2983007
crossref_primary_10_1016_j_compbiomed_2024_109174
crossref_primary_10_3390_su12020658
crossref_primary_10_1002_mrm_27198
crossref_primary_10_1016_j_jag_2021_102456
crossref_primary_10_1088_1742_6596_2070_1_012001
crossref_primary_10_1155_2021_2553199
crossref_primary_10_3390_rs14102406
crossref_primary_10_1109_ACCESS_2022_3194260
crossref_primary_10_3389_fdgth_2021_648190
crossref_primary_10_7717_peerj_cs_2669
crossref_primary_10_3847_1538_4365_ad434f
crossref_primary_10_1016_j_cma_2020_112906
crossref_primary_10_1007_s00521_021_05950_7
crossref_primary_10_3390_app132112004
crossref_primary_10_1016_j_eswa_2023_121692
crossref_primary_10_1016_j_neucom_2021_01_106
crossref_primary_10_3389_frobt_2015_00036
crossref_primary_10_1007_s00701_020_04447_x
crossref_primary_10_1016_j_ast_2024_109320
crossref_primary_10_1088_1361_6560_aab000
crossref_primary_10_1109_TPDS_2021_3090328
crossref_primary_10_11004_kosacs_2024_15_6_048
crossref_primary_10_3389_frobt_2015_00039
crossref_primary_10_3390_electronics10192407
crossref_primary_10_1007_s11430_020_9793_5
crossref_primary_10_1016_j_advnut_2025_100398
crossref_primary_10_3390_inventions8030076
crossref_primary_10_1002_aelm_202100465
crossref_primary_10_1016_j_engstruct_2023_115723
crossref_primary_10_1016_j_renene_2019_07_033
crossref_primary_10_3390_medicina56070364
crossref_primary_10_1007_s00521_022_07129_0
crossref_primary_10_1080_24725838_2025_2469076
crossref_primary_10_1109_TCDS_2016_2543839
crossref_primary_10_1007_s13369_020_05117_x
crossref_primary_10_1016_j_actamat_2021_117341
crossref_primary_10_1016_j_ces_2020_115935
crossref_primary_10_1029_2021JB023830
crossref_primary_10_1109_TIP_2019_2948286
crossref_primary_10_1109_ACCESS_2019_2924798
crossref_primary_10_1177_1550147717707896
crossref_primary_10_1007_s00500_016_2039_8
crossref_primary_10_1002_cphc_202200657
crossref_primary_10_1365_s40702_020_00586_y
crossref_primary_10_1007_s13347_020_00393_9
crossref_primary_10_1016_j_plantsci_2019_03_020
crossref_primary_10_1016_j_acags_2025_100285
crossref_primary_10_3390_electronics14132718
crossref_primary_10_1016_j_apenergy_2020_114879
crossref_primary_10_3390_rs13061139
crossref_primary_10_1038_s41598_020_64455_w
crossref_primary_10_1371_journal_pone_0276562
crossref_primary_10_1016_j_techfore_2024_123542
crossref_primary_10_1109_JOE_2020_2967108
crossref_primary_10_1186_s43067_023_00108_y
crossref_primary_10_1016_j_ecoenv_2022_113400
crossref_primary_10_1002_ecj_12142
crossref_primary_10_1109_TSP_2019_2918992
crossref_primary_10_3390_e25091274
crossref_primary_10_3390_s19214702
crossref_primary_10_1371_journal_pone_0264586
crossref_primary_10_1108_IJICC_06_2017_0066
crossref_primary_10_1016_j_eswa_2024_124933
crossref_primary_10_1016_j_apenergy_2018_07_011
crossref_primary_10_3390_w12071942
crossref_primary_10_1007_s12517_024_12142_9
crossref_primary_10_3390_en11102623
crossref_primary_10_1007_s00170_022_08811_2
crossref_primary_10_3390_cells10020472
crossref_primary_10_1016_j_tust_2020_103677
crossref_primary_10_1109_ACCESS_2020_2989052
crossref_primary_10_3390_s21124205
crossref_primary_10_1017_jfm_2019_62
crossref_primary_10_1029_2020JD032759
crossref_primary_10_3390_su12062570
crossref_primary_10_1016_j_asoc_2021_107920
crossref_primary_10_3390_s22155834
crossref_primary_10_1016_j_geogeo_2025_100361
crossref_primary_10_1016_j_measurement_2025_117314
crossref_primary_10_1016_j_is_2016_03_011
crossref_primary_10_1109_ACCESS_2022_3196920
crossref_primary_10_1016_j_ultras_2022_106743
crossref_primary_10_1016_j_asoc_2025_113378
crossref_primary_10_1007_s42417_025_01943_1
crossref_primary_10_1016_j_jhydrol_2019_124482
crossref_primary_10_1080_13658816_2020_1805116
crossref_primary_10_1093_comnet_cny012
crossref_primary_10_1145_3563330
crossref_primary_10_1007_s10479_021_04505_2
crossref_primary_10_1016_j_ress_2022_108813
crossref_primary_10_1109_ACCESS_2019_2935463
crossref_primary_10_1007_s11423_018_09644_1
crossref_primary_10_1016_j_ymssp_2023_110306
crossref_primary_10_1016_j_neucom_2023_02_001
crossref_primary_10_1111_jfpp_14955
crossref_primary_10_1089_hs_2019_0122
crossref_primary_10_1016_j_cogsys_2019_09_027
crossref_primary_10_1109_TCSS_2019_2910599
crossref_primary_10_1155_2022_6460838
crossref_primary_10_1002_int_22785
crossref_primary_10_3390_encyclopedia3010024
crossref_primary_10_1007_s11023_020_09538_3
crossref_primary_10_1155_2021_5587756
crossref_primary_10_1109_JPROC_2021_3060483
crossref_primary_10_1016_j_asoc_2023_110463
crossref_primary_10_1016_j_psep_2025_107783
crossref_primary_10_1063_5_0042662
crossref_primary_10_1109_ACCESS_2022_3183606
crossref_primary_10_1016_j_neunet_2018_04_016
crossref_primary_10_1007_s11042_022_12316_1
crossref_primary_10_1109_TGRS_2017_2776357
crossref_primary_10_1093_ppmgov_gvz014
crossref_primary_10_1016_j_cor_2018_04_007
crossref_primary_10_1109_TSUSC_2018_2809665
crossref_primary_10_1080_00207543_2021_1962558
crossref_primary_10_1186_s13636_017_0109_1
crossref_primary_10_3390_s22155814
crossref_primary_10_1007_s00521_025_11433_w
crossref_primary_10_1016_j_measurement_2023_113218
crossref_primary_10_1007_s00227_018_3318_y
crossref_primary_10_1007_s00466_020_01868_4
crossref_primary_10_3390_rs14081950
crossref_primary_10_1155_2020_6380486
crossref_primary_10_1109_ACCESS_2015_2513822
crossref_primary_10_1016_j_spl_2018_02_017
crossref_primary_10_1016_j_ijfatigue_2023_107997
crossref_primary_10_3390_s21061951
crossref_primary_10_1007_s00521_022_07428_6
crossref_primary_10_1109_ACCESS_2019_2898028
crossref_primary_10_1016_j_aftran_2025_100028
crossref_primary_10_1080_23311916_2021_2018791
crossref_primary_10_1007_s00521_021_06565_8
crossref_primary_10_1007_s00521_018_3415_3
crossref_primary_10_1007_s11427_018_9342_2
crossref_primary_10_3390_app14177880
crossref_primary_10_1016_j_comcom_2018_04_010
crossref_primary_10_23919_JSEE_2023_000032
crossref_primary_10_1109_TGRS_2019_2963262
crossref_primary_10_1186_s12911_023_02159_7
crossref_primary_10_3390_ani13010165
crossref_primary_10_1371_journal_pone_0276503
crossref_primary_10_3390_vetsci9110620
crossref_primary_10_3389_fnins_2022_1031732
crossref_primary_10_2196_77890
crossref_primary_10_1007_s11242_025_02190_4
crossref_primary_10_1016_j_cose_2023_103168
crossref_primary_10_1515_teme_2019_0024
crossref_primary_10_1016_j_neucom_2016_11_100
crossref_primary_10_1007_s11277_019_06410_1
crossref_primary_10_1016_j_neucom_2025_130122
crossref_primary_10_1016_j_est_2022_106052
crossref_primary_10_1111_raq_12726
crossref_primary_10_1007_s12559_020_09773_x
crossref_primary_10_1088_1742_6596_803_1_012177
crossref_primary_10_1002_aisy_201900084
crossref_primary_10_1016_j_jnca_2021_103107
crossref_primary_10_1109_TSUSC_2023_3303422
crossref_primary_10_1016_j_imu_2022_101123
crossref_primary_10_1007_JHEP01_2017_110
crossref_primary_10_1186_s12911_021_01462_5
crossref_primary_10_3390_app13052815
crossref_primary_10_3390_s20236854
crossref_primary_10_1142_S0129055X24300115
crossref_primary_10_1016_j_matlet_2023_134663
crossref_primary_10_1109_TIT_2022_3189760
crossref_primary_10_1007_s11063_019_09986_8
crossref_primary_10_1007_s10489_022_03539_8
crossref_primary_10_1088_1475_7516_2024_08_031
crossref_primary_10_1007_s00521_022_07953_4
crossref_primary_10_1177_00405175221130773
crossref_primary_10_1016_j_autcon_2017_05_001
crossref_primary_10_1109_TSMC_2019_2951789
crossref_primary_10_1016_j_compchemeng_2022_107956
crossref_primary_10_1007_s00500_020_04877_w
crossref_primary_10_1016_j_infsof_2023_107307
crossref_primary_10_1049_iet_ipr_2018_5351
crossref_primary_10_3390_ma15186269
crossref_primary_10_1016_j_ress_2024_110089
crossref_primary_10_1080_10920277_2022_2123361
crossref_primary_10_3390_rs12040625
crossref_primary_10_1016_j_biortech_2022_128445
crossref_primary_10_1089_bioe_2021_0030
crossref_primary_10_1002_cem_3503
crossref_primary_10_1016_j_ins_2016_07_007
crossref_primary_10_1016_j_cllc_2021_02_004
crossref_primary_10_1016_j_eswa_2022_118548
crossref_primary_10_1007_s10489_021_02770_z
crossref_primary_10_3390_ma16030932
crossref_primary_10_1016_j_neucom_2019_11_119
crossref_primary_10_1007_s11042_020_09244_3
crossref_primary_10_1017_S0140525X16001837
crossref_primary_10_1016_j_heliyon_2024_e26888
crossref_primary_10_3390_diagnostics14100995
crossref_primary_10_3390_pr10091716
crossref_primary_10_1109_JPROC_2021_3054628
crossref_primary_10_1109_ACCESS_2022_3151170
crossref_primary_10_1016_j_neucom_2019_05_082
crossref_primary_10_1016_j_cad_2020_102947
crossref_primary_10_1080_21681163_2017_1344933
crossref_primary_10_1016_j_neucom_2019_11_113
crossref_primary_10_1016_j_ijthermalsci_2023_108573
crossref_primary_10_1109_TEVC_2017_2682274
crossref_primary_10_1007_s40135_019_00218_9
crossref_primary_10_1016_j_energy_2018_01_177
crossref_primary_10_1109_TAP_2018_2874430
crossref_primary_10_1016_j_neuroimage_2025_121380
crossref_primary_10_1007_s13218_021_00705_x
crossref_primary_10_1016_j_apsb_2018_09_010
crossref_primary_10_1016_j_neunet_2019_12_005
crossref_primary_10_1109_TCBB_2020_3025579
crossref_primary_10_1016_j_neunet_2019_12_004
crossref_primary_10_1016_j_watres_2022_118908
crossref_primary_10_1016_j_buildenv_2019_106535
crossref_primary_10_1016_j_jvs_2023_08_121
crossref_primary_10_1016_j_swevo_2018_03_011
crossref_primary_10_1109_TITS_2022_3149268
crossref_primary_10_1016_j_aci_2018_06_002
crossref_primary_10_1049_cmu2_12800
crossref_primary_10_1016_j_compstruct_2023_117073
crossref_primary_10_1016_j_sbi_2018_02_004
crossref_primary_10_1016_j_neunet_2019_12_003
crossref_primary_10_1145_3624775
crossref_primary_10_3390_ijerph192114300
crossref_primary_10_1186_s13550_025_01238_2
crossref_primary_10_1109_TNNLS_2021_3056762
crossref_primary_10_1002_adom_202203104
crossref_primary_10_1016_j_msea_2022_142738
crossref_primary_10_1109_ACCESS_2020_2968982
crossref_primary_10_3389_fncom_2022_1001803
crossref_primary_10_1016_j_measurement_2020_108603
crossref_primary_10_1155_2022_9962972
crossref_primary_10_1007_s10115_025_02499_y
crossref_primary_10_1007_s12553_020_00495_6
crossref_primary_10_1016_j_commatsci_2022_111783
crossref_primary_10_1016_j_neunet_2019_12_014
crossref_primary_10_1115_1_4068679
crossref_primary_10_3390_rs13081506
crossref_primary_10_1038_s41562_023_01559_z
crossref_primary_10_1007_s00500_015_1599_3
crossref_primary_10_1007_s12559_023_10209_5
crossref_primary_10_1007_s11042_024_20507_1
crossref_primary_10_1016_j_powtec_2022_117939
crossref_primary_10_1259_bjr_20170545
crossref_primary_10_29026_oea_2025_250021
crossref_primary_10_3847_1538_4357_aba95d
crossref_primary_10_3389_frwa_2023_1217946
crossref_primary_10_1002_aisy_202200228
crossref_primary_10_1002_inc2_12013
crossref_primary_10_1155_2021_5575722
crossref_primary_10_1088_1361_6579_aa614e
crossref_primary_10_1111_risa_70103
crossref_primary_10_3390_su14159056
crossref_primary_10_1016_j_neucom_2023_02_026
crossref_primary_10_1080_10584587_2020_1819042
crossref_primary_10_1016_j_neucom_2019_05_052
crossref_primary_10_1007_s10278_018_0107_6
crossref_primary_10_1007_s11306_018_1370_8
crossref_primary_10_1109_ACCESS_2019_2923417
crossref_primary_10_3389_fonc_2023_1213045
crossref_primary_10_1002_qj_3410
crossref_primary_10_3390_computers14070291
crossref_primary_10_1007_s10098_023_02477_4
crossref_primary_10_1007_s10994_019_05856_5
crossref_primary_10_1016_j_fluid_2024_114116
crossref_primary_10_1016_j_snb_2021_130915
crossref_primary_10_1007_s10278_018_0084_9
crossref_primary_10_1038_s41597_023_02695_x
crossref_primary_10_1016_j_asoc_2024_111286
crossref_primary_10_1109_TCAD_2022_3197512
crossref_primary_10_1007_s42524_019_0040_5
crossref_primary_10_1007_s12206_021_1105_z
crossref_primary_10_3390_sym14020372
crossref_primary_10_1080_0952813X_2022_2067249
crossref_primary_10_3847_1538_4357_ac5f43
crossref_primary_10_1080_10095020_2025_2522154
crossref_primary_10_1016_j_anucene_2022_109668
crossref_primary_10_1016_j_conengprac_2019_04_007
crossref_primary_10_1016_j_neucom_2023_02_040
crossref_primary_10_1177_02666669241276427
crossref_primary_10_1016_j_optlaseng_2019_04_020
crossref_primary_10_1007_s11517_018_1933_x
crossref_primary_10_1016_j_colsurfb_2024_114041
crossref_primary_10_1016_j_cogsys_2017_08_004
crossref_primary_10_3390_app11136079
crossref_primary_10_1016_j_measurement_2020_108634
crossref_primary_10_1016_j_knosys_2018_07_044
crossref_primary_10_1109_JSYST_2020_3009403
crossref_primary_10_1109_ACCESS_2018_2793966
crossref_primary_10_1109_TCBB_2019_2937862
crossref_primary_10_1016_j_iot_2022_100674
crossref_primary_10_1016_j_watres_2024_122798
crossref_primary_10_1007_s00138_020_01060_x
crossref_primary_10_3390_s20041070
crossref_primary_10_1038_s41598_018_27169_8
crossref_primary_10_1109_ACCESS_2019_2935416
crossref_primary_10_3847_1538_4365_acc248
crossref_primary_10_1016_j_eswa_2022_117222
crossref_primary_10_1371_journal_pone_0265808
crossref_primary_10_1016_j_istruc_2023_02_102
crossref_primary_10_1016_j_asoc_2024_111259
crossref_primary_10_1016_j_patrec_2021_06_004
crossref_primary_10_1007_s11229_019_02167_z
crossref_primary_10_3390_en13123074
crossref_primary_10_3389_fncom_2022_859874
crossref_primary_10_1007_s10044_023_01182_8
crossref_primary_10_1089_brain_2019_0701
crossref_primary_10_3389_fgene_2019_00286
crossref_primary_10_1016_j_compeleceng_2020_106640
crossref_primary_10_3390_rs15020331
crossref_primary_10_3390_s25010251
crossref_primary_10_1007_s42452_022_05211_9
crossref_primary_10_3390_rs14153690
crossref_primary_10_1109_TCYB_2022_3176475
crossref_primary_10_1016_j_energy_2023_129580
crossref_primary_10_1016_j_engappai_2024_108704
crossref_primary_10_3390_su16020518
crossref_primary_10_1007_s11661_020_06099_z
crossref_primary_10_1016_j_autcon_2021_103634
crossref_primary_10_1016_j_ces_2023_119425
crossref_primary_10_1051_epjconf_201817116005
crossref_primary_10_1016_j_jcp_2018_04_029
crossref_primary_10_1145_3072959_3073601
crossref_primary_10_1016_j_jaap_2024_106512
crossref_primary_10_1016_j_media_2018_03_006
crossref_primary_10_1186_s12859_018_2286_z
crossref_primary_10_3390_su14031583
crossref_primary_10_3390_fi12110188
crossref_primary_10_1080_22797254_2018_1465361
crossref_primary_10_1109_TKDE_2018_2883613
crossref_primary_10_1016_j_jobe_2022_104023
crossref_primary_10_1016_j_jdent_2022_104115
crossref_primary_10_1049_enc2_12015
crossref_primary_10_1016_j_cose_2019_101655
crossref_primary_10_1016_j_future_2019_03_001
crossref_primary_10_1080_17460441_2021_1909567
crossref_primary_10_1016_j_measurement_2021_109020
crossref_primary_10_1016_j_procir_2020_01_135
crossref_primary_10_3390_nano12040633
crossref_primary_10_3390_en16134922
crossref_primary_10_1088_1361_6463_aac8a5
crossref_primary_10_2478_picbe_2025_0273
crossref_primary_10_3390_e25030427
crossref_primary_10_1016_j_envsoft_2024_106059
crossref_primary_10_1080_10618600_2019_1637747
crossref_primary_10_1108_AFR_08_2023_0105
crossref_primary_10_1016_j_ymssp_2021_108153
crossref_primary_10_1109_ACCESS_2023_3314660
crossref_primary_10_1016_j_comnet_2023_109662
crossref_primary_10_1016_j_ijfatigue_2022_106840
crossref_primary_10_1016_j_trc_2021_103432
crossref_primary_10_3390_s17010016
crossref_primary_10_1186_s42162_019_0082_2
crossref_primary_10_1109_ACCESS_2020_3031762
crossref_primary_10_1007_s00025_018_0790_0
crossref_primary_10_1109_LCOMM_2023_3245807
crossref_primary_10_1007_s13246_022_01139_x
crossref_primary_10_1155_2023_4399512
crossref_primary_10_1016_j_ailsci_2022_100055
crossref_primary_10_3390_math10142489
crossref_primary_10_3389_fnins_2019_00692
crossref_primary_10_1051_e3sconf_202125302015
crossref_primary_10_1007_s13762_021_03565_y
crossref_primary_10_1007_s12517_020_06241_6
crossref_primary_10_3390_app11135853
crossref_primary_10_1016_j_yofte_2019_101960
crossref_primary_10_1057_s41310_025_00295_2
crossref_primary_10_1007_s10015_020_00638_y
crossref_primary_10_1016_j_neucom_2018_09_103
crossref_primary_10_1109_JSEN_2022_3219594
crossref_primary_10_1360_SSI_2024_0351
crossref_primary_10_1007_s00500_023_08069_0
crossref_primary_10_1016_j_nlp_2022_100001
crossref_primary_10_1038_s41598_020_76154_7
crossref_primary_10_1016_j_neucom_2024_128173
crossref_primary_10_1186_s40537_022_00626_y
crossref_primary_10_1371_journal_pone_0168606
crossref_primary_10_1016_j_jbi_2021_103863
crossref_primary_10_3389_ftox_2023_1340860
crossref_primary_10_3390_s25061809
crossref_primary_10_3390_machines12120905
crossref_primary_10_1016_j_fuel_2022_126696
crossref_primary_10_1089_space_2017_0017
crossref_primary_10_1007_s00521_022_08017_3
crossref_primary_10_1016_j_comnet_2023_109681
crossref_primary_10_1063_5_0072913
crossref_primary_10_3390_rs14225876
crossref_primary_10_1002_jcc_27388
crossref_primary_10_1016_j_ijpsycho_2017_11_017
crossref_primary_10_1093_bib_bbaa356
crossref_primary_10_1109_ACCESS_2021_3105830
crossref_primary_10_3390_en15228629
crossref_primary_10_1016_j_jrmge_2025_02_023
crossref_primary_10_1016_j_semcancer_2020_08_006
crossref_primary_10_1038_s41598_019_38966_0
crossref_primary_10_1007_s00761_021_00917_8
crossref_primary_10_3233_JIFS_224565
crossref_primary_10_1016_j_cosrev_2023_100576
crossref_primary_10_7232_JKIIE_2015_41_5_439
crossref_primary_10_1186_s13173_017_0058_7
crossref_primary_10_1155_2017_3296874
crossref_primary_10_7717_peerj_cs_436
crossref_primary_10_1088_1475_7516_2022_01_045
crossref_primary_10_1093_logcom_exab005
crossref_primary_10_1094_MPMI_08_18_0221_FI
crossref_primary_10_3390_app11031251
crossref_primary_10_1109_ACCESS_2018_2866197
crossref_primary_10_31083_j_jin_2018_04_0416
crossref_primary_10_1007_s11831_022_09807_7
crossref_primary_10_1080_09205071_2018_1553689
crossref_primary_10_1007_s10596_019_09929_1
crossref_primary_10_1016_j_engstruct_2024_119084
crossref_primary_10_1007_s11269_024_04074_6
crossref_primary_10_1016_j_cageo_2024_105593
crossref_primary_10_1007_s12652_019_01639_x
crossref_primary_10_1016_j_neunet_2017_06_016
crossref_primary_10_1109_ACCESS_2021_3068343
crossref_primary_10_3390_agronomy12123051
crossref_primary_10_3390_cancers17071092
crossref_primary_10_1007_s12215_025_01245_1
crossref_primary_10_1007_s10586_023_04069_9
crossref_primary_10_1186_s13638_022_02153_z
crossref_primary_10_3390_mi14040826
crossref_primary_10_5814_j_issn_1674_764x_2024_01_019
crossref_primary_10_1016_j_flowmeasinst_2022_102124
crossref_primary_10_1109_TVT_2019_2913988
crossref_primary_10_1155_2019_6565379
crossref_primary_10_3390_electronics14122378
crossref_primary_10_1016_j_measurement_2021_110073
crossref_primary_10_1080_14685248_2020_1757685
crossref_primary_10_1016_j_asej_2025_103525
crossref_primary_10_1088_1742_6596_1914_1_012051
crossref_primary_10_1109_JSEN_2024_3357512
crossref_primary_10_3390_systems11050256
crossref_primary_10_1007_s12546_024_09348_9
crossref_primary_10_1016_j_measurement_2021_109088
crossref_primary_10_1016_j_bica_2015_09_003
crossref_primary_10_3389_fnins_2019_00650
crossref_primary_10_1093_bib_bbaa374
crossref_primary_10_3390_app9194180
crossref_primary_10_1186_s13007_017_0265_4
crossref_primary_10_1016_j_media_2019_101534
crossref_primary_10_3389_fpsyg_2018_00345
crossref_primary_10_1108_DTA_06_2023_0230
crossref_primary_10_3390_hydrology12030060
crossref_primary_10_32604_cmc_2022_020866
crossref_primary_10_1016_j_porgcoat_2024_108279
crossref_primary_10_3390_nano13192720
crossref_primary_10_1016_j_compbiomed_2025_110064
crossref_primary_10_1016_j_compind_2018_01_021
crossref_primary_10_1016_j_knosys_2016_12_017
crossref_primary_10_3390_e26030262
crossref_primary_10_3390_jimaging4020041
crossref_primary_10_1016_j_knosys_2016_12_011
crossref_primary_10_1109_ACCESS_2018_2855437
crossref_primary_10_1080_00102202_2015_1102905
crossref_primary_10_1007_s11431_020_1726_5
crossref_primary_10_1186_s12859_021_04376_1
crossref_primary_10_1080_01430750_2022_2127889
crossref_primary_10_1007_s11277_023_10500_6
crossref_primary_10_1016_j_engappai_2023_107507
crossref_primary_10_3390_s23041764
crossref_primary_10_5572_KOSAE_2019_35_2_214
crossref_primary_10_1016_j_ajo_2019_02_028
crossref_primary_10_3390_s21093222
crossref_primary_10_1038_s41372_023_01719_z
crossref_primary_10_1016_S2095_3119_17_61762_3
crossref_primary_10_1080_10255842_2020_1791836
crossref_primary_10_1186_s10033_021_00565_4
crossref_primary_10_1109_TPAMI_2021_3058891
crossref_primary_10_1109_JSTARS_2020_3039235
crossref_primary_10_1364_PRJ_432919
crossref_primary_10_1017_S1473550418000046
crossref_primary_10_1002_advs_201900808
crossref_primary_10_1016_j_culher_2017_11_008
crossref_primary_10_1016_j_inffus_2020_10_017
crossref_primary_10_1063_1_5049137
crossref_primary_10_32604_cmc_2022_025692
crossref_primary_10_1016_j_apradiso_2023_110973
crossref_primary_10_1007_s00228_025_03874_y
crossref_primary_10_3390_su14020834
crossref_primary_10_1016_j_envsoft_2021_105159
crossref_primary_10_1016_j_compind_2018_01_005
crossref_primary_10_4018_IJMHCI_2019070104
crossref_primary_10_1145_3200904
crossref_primary_10_3390_app11188324
crossref_primary_10_1007_s00521_023_08957_4
crossref_primary_10_1080_10400419_2024_2361217
crossref_primary_10_1109_JSAC_2021_3126080
crossref_primary_10_1016_j_mtcomm_2024_108477
crossref_primary_10_1155_2021_2938386
crossref_primary_10_1016_j_inffus_2020_10_002
crossref_primary_10_1109_ACCESS_2020_3028185
crossref_primary_10_1016_j_knosys_2025_114484
crossref_primary_10_1038_s41598_018_33321_1
crossref_primary_10_1016_j_mtcomm_2024_108471
crossref_primary_10_1016_j_cma_2022_115616
crossref_primary_10_1016_j_measen_2025_101828
crossref_primary_10_3390_rs16224196
crossref_primary_10_1093_jamia_ocac222
crossref_primary_10_1016_j_cageo_2019_104312
crossref_primary_10_1016_j_molliq_2018_03_086
crossref_primary_10_1016_j_actbio_2023_08_047
crossref_primary_10_1016_j_csbj_2021_08_044
crossref_primary_10_1109_ACCESS_2021_3127211
crossref_primary_10_3390_rs10071066
crossref_primary_10_1016_j_isprsjprs_2021_01_016
crossref_primary_10_1109_TNSE_2022_3168533
crossref_primary_10_1109_TIP_2017_2783627
crossref_primary_10_4018_IJMDEM_2018070101
crossref_primary_10_3390_nano15161245
crossref_primary_10_1088_2515_7620_ac6657
crossref_primary_10_1016_j_cageo_2024_105531
crossref_primary_10_7232_JKIIE_2021_47_2_144
crossref_primary_10_1016_j_procs_2020_04_206
crossref_primary_10_1016_j_eswa_2021_115109
crossref_primary_10_3389_fnsys_2019_00025
crossref_primary_10_3389_fonc_2023_1103369
crossref_primary_10_1109_ACCESS_2019_2917545
crossref_primary_10_1109_TSMC_2021_3071880
crossref_primary_10_1007_s42979_024_02715_6
crossref_primary_10_1109_TPAMI_2016_2537340
crossref_primary_10_1109_ACCESS_2022_3187839
crossref_primary_10_1155_2022_4121956
crossref_primary_10_1016_j_cageo_2024_105535
crossref_primary_10_3390_rs11242898
crossref_primary_10_1007_s11277_021_09210_8
crossref_primary_10_1155_2022_7451152
crossref_primary_10_15446_dyna_v84n203_65267
crossref_primary_10_1007_s00521_019_04212_x
crossref_primary_10_1080_01431161_2016_1171928
crossref_primary_10_1007_s42107_024_01198_3
crossref_primary_10_3390_sym12050774
crossref_primary_10_1007_s10707_021_00454_x
crossref_primary_10_1007_s40747_023_01044_0
crossref_primary_10_1109_TNNLS_2021_3121248
crossref_primary_10_1007_s42979_022_01131_y
crossref_primary_10_1109_TEMC_2017_2787769
crossref_primary_10_1038_s41598_025_15894_w
crossref_primary_10_18617_liinc_v16i2_5536
crossref_primary_10_1007_s00330_023_09573_5
crossref_primary_10_1007_s00170_019_03557_w
crossref_primary_10_1016_j_engfracmech_2022_108835
crossref_primary_10_1061__ASCE_ST_1943_541X_0003392
crossref_primary_10_1016_j_cscm_2024_e03084
crossref_primary_10_1109_TITS_2019_2896375
crossref_primary_10_1061__ASCE_ST_1943_541X_0003399
crossref_primary_10_1016_j_ecoinf_2017_10_008
crossref_primary_10_1109_TIV_2018_2886687
crossref_primary_10_1016_j_measen_2025_101866
crossref_primary_10_1016_j_ijepes_2023_109020
crossref_primary_10_3390_polym13091427
crossref_primary_10_3389_fgene_2019_00214
crossref_primary_10_1038_s41598_025_92396_9
crossref_primary_10_1080_09715010_2022_2050311
crossref_primary_10_1016_j_compag_2025_110117
crossref_primary_10_1016_j_ejmp_2022_06_016
crossref_primary_10_1177_1550147718805718
crossref_primary_10_1016_j_compag_2025_110115
crossref_primary_10_1007_s12204_021_2264_x
crossref_primary_10_1016_j_energy_2022_124830
crossref_primary_10_1016_j_envsoft_2021_105112
crossref_primary_10_3390_rs15051451
crossref_primary_10_3390_su14020870
crossref_primary_10_1007_s12559_020_09716_6
crossref_primary_10_1016_j_jhydrol_2024_131680
crossref_primary_10_1371_journal_pntd_0010509
crossref_primary_10_15388_Amed_2023_30_1_2
crossref_primary_10_1007_s11227_020_03568_5
crossref_primary_10_1016_j_biosystems_2023_104936
crossref_primary_10_3390_fi16010014
crossref_primary_10_3390_mi13111800
crossref_primary_10_1039_C9SC06145B
crossref_primary_10_1109_ACCESS_2019_2937993
crossref_primary_10_1016_j_ast_2019_105539
crossref_primary_10_1016_j_jnca_2021_103009
crossref_primary_10_1016_j_engappai_2025_110980
crossref_primary_10_1109_TGRS_2019_2952062
crossref_primary_10_1088_1361_6633_abb4c7
crossref_primary_10_1002_jrs_6224
crossref_primary_10_3390_electronics11193172
crossref_primary_10_1007_s10928_021_09785_6
crossref_primary_10_1109_TCYB_2020_3013251
crossref_primary_10_3389_fcomp_2020_00036
crossref_primary_10_1002_agj2_21733
crossref_primary_10_3390_molecules30051146
crossref_primary_10_1016_j_jmapro_2023_10_081
crossref_primary_10_1109_TCSII_2022_3181132
crossref_primary_10_1155_2022_2590940
crossref_primary_10_1016_j_anucene_2017_11_005
crossref_primary_10_1002_we_2379
crossref_primary_10_1016_j_oceaneng_2021_110456
crossref_primary_10_1061__ASCE_GM_1943_5622_0002024
crossref_primary_10_1111_1754_9485_13612
crossref_primary_10_1007_s00521_022_07834_w
crossref_primary_10_1016_j_iswa_2023_200317
crossref_primary_10_3934_bdia_2022001
crossref_primary_10_3390_en14010228
crossref_primary_10_1016_j_scitotenv_2024_173720
crossref_primary_10_1007_s00371_023_02784_3
crossref_primary_10_1007_s11269_023_03524_x
crossref_primary_10_1016_j_jobe_2025_113467
crossref_primary_10_1016_j_ultras_2022_106863
crossref_primary_10_1109_ACCESS_2019_2934018
crossref_primary_10_1016_j_nbt_2023_07_003
crossref_primary_10_1016_j_pce_2025_103876
crossref_primary_10_1109_ACCESS_2019_2937975
crossref_primary_10_1007_s10499_021_00747_w
crossref_primary_10_1088_1361_6544_ac5463
crossref_primary_10_3390_s23052486
crossref_primary_10_1016_j_neunet_2018_12_005
crossref_primary_10_1109_TKDE_2022_3188497
crossref_primary_10_1007_s11694_021_00990_y
crossref_primary_10_1080_15389588_2021_1900569
crossref_primary_10_1080_14783363_2018_1520597
crossref_primary_10_1016_j_ejrad_2022_110247
crossref_primary_10_1109_TCBB_2017_2677907
crossref_primary_10_1016_j_chemosphere_2024_141958
crossref_primary_10_1007_s00034_019_01041_0
crossref_primary_10_1088_1742_6596_1682_1_012042
crossref_primary_10_3390_app10082962
crossref_primary_10_1016_j_neunet_2018_12_002
crossref_primary_10_3390_math10162999
crossref_primary_10_1111_coin_12427
crossref_primary_10_3390_e21040432
crossref_primary_10_1109_JSTARS_2017_2672736
crossref_primary_10_1016_j_heliyon_2023_e19790
crossref_primary_10_1155_2022_7242667
crossref_primary_10_1007_s00521_022_07701_8
crossref_primary_10_3390_su132212384
crossref_primary_10_1007_s11063_021_10676_7
crossref_primary_10_1097_JHM_D_21_00149
crossref_primary_10_1109_ACCESS_2019_2909068
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122701
crossref_primary_10_1016_j_asoc_2017_10_010
crossref_primary_10_1007_s00371_020_01996_1
crossref_primary_10_1002_ima_22291
crossref_primary_10_3390_ma17153685
crossref_primary_10_2139_ssrn_3777526
crossref_primary_10_1109_ACCESS_2019_2946021
crossref_primary_10_1007_s13534_024_00391_2
crossref_primary_10_1007_s00521_017_3239_6
crossref_primary_10_3390_s21248237
crossref_primary_10_1109_MC_2015_367
crossref_primary_10_1515_amcs_2017_0046
crossref_primary_10_3390_math13010129
crossref_primary_10_1016_j_ins_2025_122623
crossref_primary_10_1016_j_optlastec_2023_110384
crossref_primary_10_1016_j_knosys_2021_107717
crossref_primary_10_1007_s11663_021_02363_8
crossref_primary_10_1007_s40687_020_00215_6
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120381
crossref_primary_10_3390_electronics13020427
crossref_primary_10_1016_j_istruc_2025_108388
crossref_primary_10_1016_j_patrec_2018_09_006
crossref_primary_10_1016_j_eswa_2021_115055
crossref_primary_10_1007_s00500_024_09789_7
crossref_primary_10_1007_s11063_022_10958_8
crossref_primary_10_1016_j_talanta_2025_127650
crossref_primary_10_1080_2326263X_2019_1651570
crossref_primary_10_1515_jisys_2016_0101
crossref_primary_10_1109_JEDS_2025_3561075
crossref_primary_10_1007_s12652_023_04536_6
crossref_primary_10_1016_j_neucom_2018_01_041
crossref_primary_10_1007_s00502_017_0516_0
crossref_primary_10_1016_j_neubiorev_2020_12_021
crossref_primary_10_1155_2017_2061827
crossref_primary_10_1007_s11548_018_1794_7
crossref_primary_10_3390_s23041794
crossref_primary_10_1007_s10462_019_09744_1
crossref_primary_10_1007_s10462_018_9626_2
crossref_primary_10_1155_2018_6972481
crossref_primary_10_1016_j_cell_2018_04_003
crossref_primary_10_3389_fmed_2025_1492709
crossref_primary_10_1016_j_jjcc_2023_04_020
crossref_primary_10_1016_j_eswa_2022_118848
crossref_primary_10_1186_s40708_025_00252_3
crossref_primary_10_1055_s_0044_1779317
crossref_primary_10_1111_risa_13425
crossref_primary_10_1016_j_ogla_2020_08_002
crossref_primary_10_1038_s41598_024_59625_z
crossref_primary_10_1016_j_compind_2020_103359
crossref_primary_10_3390_diagnostics13020288
crossref_primary_10_1016_j_asoc_2018_09_010
crossref_primary_10_1016_j_asoc_2018_09_013
crossref_primary_10_3390_bioengineering6040104
crossref_primary_10_1016_j_imu_2022_101018
crossref_primary_10_1007_s11227_020_03186_1
crossref_primary_10_1007_s11042_023_17571_4
crossref_primary_10_1016_j_eswa_2016_04_018
crossref_primary_10_1016_j_conb_2019_10_008
crossref_primary_10_1103_PhysRevApplied_21_064025
crossref_primary_10_1049_sil2_12156
crossref_primary_10_1002_cnm_2920
crossref_primary_10_1109_ACCESS_2021_3082557
crossref_primary_10_3390_app14104107
crossref_primary_10_1038_s41591_018_0177_5
crossref_primary_10_13005_bpj_2042
crossref_primary_10_1007_s11042_018_6912_6
crossref_primary_10_1016_j_ecoinf_2018_09_007
crossref_primary_10_3390_fi11110243
crossref_primary_10_1016_j_techsoc_2022_102062
crossref_primary_10_1109_TIFS_2017_2779446
crossref_primary_10_3389_fmed_2021_629080
crossref_primary_10_1016_j_eswa_2024_124411
crossref_primary_10_3390_math13071057
crossref_primary_10_1109_ACCESS_2022_3149625
crossref_primary_10_1109_ACCESS_2020_3006711
crossref_primary_10_1007_s00146_020_01069_w
crossref_primary_10_1016_j_solener_2020_03_104
crossref_primary_10_1007_s00500_021_05770_w
crossref_primary_10_1016_j_actaastro_2019_09_023
crossref_primary_10_1016_j_sigpro_2021_108231
crossref_primary_10_1016_j_jclepro_2024_140715
crossref_primary_10_1016_j_neunet_2023_03_030
crossref_primary_10_1088_2632_2153_abe6d7
crossref_primary_10_1016_j_acha_2023_04_004
crossref_primary_10_1016_j_icte_2021_03_003
crossref_primary_10_1021_acsestair_4c00365
crossref_primary_10_1088_2632_2153_ac4f69
crossref_primary_10_1140_epjc_s10052_025_13892_w
crossref_primary_10_1016_j_powtec_2018_03_032
crossref_primary_10_1109_TITS_2019_2929020
crossref_primary_10_1007_s10462_023_10466_8
crossref_primary_10_3390_data8020035
crossref_primary_10_1016_j_asoc_2018_09_040
crossref_primary_10_3892_ol_2018_7762
crossref_primary_10_5194_ms_13_485_2022
crossref_primary_10_3390_electronics13204070
crossref_primary_10_1017_wsc_2018_66
crossref_primary_10_1016_j_techsoc_2022_102040
crossref_primary_10_1016_j_respol_2022_104604
crossref_primary_10_1016_j_jnucmat_2024_155573
crossref_primary_10_1080_03610926_2023_2280522
crossref_primary_10_3390_s21217108
crossref_primary_10_1007_s41871_023_00206_5
crossref_primary_10_3390_atmos11080870
crossref_primary_10_1007_s11265_017_1288_9
crossref_primary_10_1016_j_heliyon_2024_e26789
crossref_primary_10_3389_fncom_2023_1113381
crossref_primary_10_1109_COMST_2019_2904897
crossref_primary_10_1002_cnm_2956
crossref_primary_10_1002_ece3_7656
crossref_primary_10_1109_TMM_2019_2919431
crossref_primary_10_3390_sym16020248
crossref_primary_10_1016_j_igie_2023_11_007
crossref_primary_10_1109_ACCESS_2019_2913953
crossref_primary_10_1016_j_eswa_2022_117549
crossref_primary_10_1016_j_mser_2024_100880
crossref_primary_10_1186_s40317_021_00247_x
crossref_primary_10_5194_amt_17_2539_2024
crossref_primary_10_1080_01431161_2021_1975845
crossref_primary_10_1016_j_measurement_2025_118380
crossref_primary_10_1016_j_neucom_2015_07_061
crossref_primary_10_1016_j_cherd_2020_07_019
crossref_primary_10_1007_s11548_021_02333_0
crossref_primary_10_1364_AO_519402
crossref_primary_10_1016_j_mio_2016_04_002
crossref_primary_10_3389_fpubh_2021_727274
crossref_primary_10_3390_make3040044
crossref_primary_10_1109_ACCESS_2020_3047205
crossref_primary_10_3233_IDT_210058
crossref_primary_10_1016_j_artint_2018_03_002
crossref_primary_10_1016_j_asoc_2018_06_003
crossref_primary_10_1007_s40687_018_0160_2
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127163
crossref_primary_10_3390_forecast3020021
crossref_primary_10_3390_forecast3020024
crossref_primary_10_1007_s12559_024_10329_6
crossref_primary_10_3390_e26110984
crossref_primary_10_1007_s00034_018_0757_0
crossref_primary_10_1155_2020_1949863
crossref_primary_10_3390_app10051827
crossref_primary_10_3390_s20195523
crossref_primary_10_1016_j_hpj_2025_08_004
crossref_primary_10_1049_sil2_12125
crossref_primary_10_3389_fnins_2021_611300
crossref_primary_10_1007_s13198_022_01777_0
crossref_primary_10_1016_j_molliq_2024_124134
crossref_primary_10_3390_s19183897
crossref_primary_10_1016_j_catena_2022_106190
crossref_primary_10_1016_j_future_2020_01_055
crossref_primary_10_1016_j_agrformet_2025_110692
crossref_primary_10_1287_inte_2020_1038
crossref_primary_10_1016_j_patrec_2020_04_018
crossref_primary_10_1016_j_solener_2021_03_002
crossref_primary_10_1007_s11831_020_09506_1
crossref_primary_10_1016_j_amar_2021_100157
crossref_primary_10_1007_s00521_021_06557_8
crossref_primary_10_1109_TIP_2016_2558825
crossref_primary_10_1016_j_media_2023_102879
crossref_primary_10_1017_S143192761700558X
crossref_primary_10_1109_TRPMS_2020_3030611
crossref_primary_10_1016_j_ascom_2024_100802
crossref_primary_10_7717_peerj_13470
crossref_primary_10_1109_LAWP_2021_3075370
crossref_primary_10_1063_5_0147316
crossref_primary_10_1109_MDAT_2020_3031857
crossref_primary_10_1016_j_asoc_2025_113607
crossref_primary_10_1155_2022_9505229
crossref_primary_10_1109_JSTARS_2022_3155967
crossref_primary_10_1007_s11235_025_01312_z
crossref_primary_10_1587_transinf_2021EDL8054
crossref_primary_10_1002_biot_201400857
crossref_primary_10_1162_jocn_a_02285
crossref_primary_10_1080_19392699_2024_2353128
crossref_primary_10_1038_s41524_020_00438_9
crossref_primary_10_1109_TITS_2020_3018054
crossref_primary_10_1007_s11063_017_9707_2
crossref_primary_10_1109_TCBB_2020_3025007
crossref_primary_10_4236_health_2025_173012
crossref_primary_10_1007_s11042_022_12085_x
crossref_primary_10_3390_rs14225821
crossref_primary_10_1007_s11042_023_15890_0
crossref_primary_10_1007_s11831_020_09496_0
crossref_primary_10_3390_atoms11100126
crossref_primary_10_1007_s10722_024_02042_y
crossref_primary_10_3390_info11020095
crossref_primary_10_1093_sleep_zsac254
crossref_primary_10_1016_j_datak_2024_102364
crossref_primary_10_3390_ijerph15051032
crossref_primary_10_1007_s44163_024_00164_x
crossref_primary_10_1088_2058_9565_ad5866
crossref_primary_10_1186_s41039_022_00202_1
crossref_primary_10_1016_j_trpro_2020_02_069
crossref_primary_10_1016_j_jcp_2020_109824
crossref_primary_10_1016_j_tej_2024_107449
crossref_primary_10_7717_peerj_cs_356
crossref_primary_10_1016_j_compag_2024_109370
crossref_primary_10_1080_17460441_2020_1758664
crossref_primary_10_1088_1748_9326_ac0eb0
crossref_primary_10_1088_1361_6501_ab8df9
crossref_primary_10_1007_s00266_024_04639_1
crossref_primary_10_1016_j_autcon_2017_11_002
crossref_primary_10_1002_smm2_1233
crossref_primary_10_1007_s11227_025_07752_3
crossref_primary_10_1088_1674_1056_ac9b32
crossref_primary_10_1016_j_envsoft_2024_106165
crossref_primary_10_3390_s22062099
crossref_primary_10_1080_00102202_2020_1822826
crossref_primary_10_1016_j_engappai_2023_107468
crossref_primary_10_1109_ACCESS_2019_2918784
crossref_primary_10_1016_j_asoc_2019_105487
crossref_primary_10_1016_j_ijfatigue_2022_106975
crossref_primary_10_3389_frai_2021_689398
crossref_primary_10_1007_s11518_019_5452_6
crossref_primary_10_1109_ACCESS_2020_2973270
crossref_primary_10_1175_JHM_D_19_0169_1
crossref_primary_10_1016_j_knosys_2024_112057
crossref_primary_10_1186_s13058_022_01509_z
crossref_primary_10_1016_j_engappai_2024_108604
crossref_primary_10_1016_j_ucl_2020_09_004
crossref_primary_10_1142_S2591728525500069
crossref_primary_10_1063_5_0134198
crossref_primary_10_1016_j_neucom_2020_07_103
crossref_primary_10_3390_pr12091824
crossref_primary_10_1016_j_eswa_2023_120967
crossref_primary_10_1146_annurev_vision_082114_035447
crossref_primary_10_1016_j_jag_2022_102926
crossref_primary_10_1016_j_fertnstert_2023_06_009
crossref_primary_10_1016_j_neucom_2020_07_101
crossref_primary_10_1002_lpor_202200357
crossref_primary_10_1007_s12194_017_0394_5
crossref_primary_10_1016_j_ejmp_2018_03_012
crossref_primary_10_1109_ACCESS_2021_3070511
crossref_primary_10_1016_j_geoen_2025_214001
crossref_primary_10_1016_j_buildenv_2021_107601
crossref_primary_10_1016_j_trc_2021_103303
crossref_primary_10_1177_0361198118794057
crossref_primary_10_1109_TWC_2020_3039180
crossref_primary_10_1007_s11042_015_3117_0
crossref_primary_10_3390_rs11192193
crossref_primary_10_1097_MLR_0000000000001147
crossref_primary_10_1364_AO_394280
crossref_primary_10_3390_rs11192191
crossref_primary_10_1029_2020GL092032
crossref_primary_10_1109_TCDS_2021_3098743
crossref_primary_10_1007_s11042_024_19558_1
crossref_primary_10_1016_j_measurement_2021_110146
crossref_primary_10_1007_s11119_019_09666_6
crossref_primary_10_1109_ACCESS_2020_3029562
crossref_primary_10_3390_ma18092081
crossref_primary_10_3390_rs14092059
crossref_primary_10_3390_aerospace8120383
crossref_primary_10_3390_app9061163
crossref_primary_10_3390_rs13183771
crossref_primary_10_3389_fenvs_2015_00085
crossref_primary_10_1016_j_scriptamat_2021_114478
crossref_primary_10_1038_s41598_017_17876_z
crossref_primary_10_3390_math13091414
crossref_primary_10_3389_fenvs_2015_00080
crossref_primary_10_3390_e23060711
crossref_primary_10_1007_s10915_020_01282_1
crossref_primary_10_1016_j_aquaeng_2021_102178
crossref_primary_10_1109_ACCESS_2021_3110473
crossref_primary_10_1016_j_fcr_2019_02_022
crossref_primary_10_3390_s21051592
crossref_primary_10_1016_j_chemosphere_2023_140926
crossref_primary_10_1016_j_neucom_2019_06_029
crossref_primary_10_1016_j_swevo_2021_100863
crossref_primary_10_1016_j_ssci_2019_01_007
crossref_primary_10_1088_1757_899X_1151_1_012041
crossref_primary_10_1002_solr_202300650
crossref_primary_10_1007_s10472_019_09665_3
crossref_primary_10_1016_j_chemer_2024_126190
crossref_primary_10_1016_j_fusengdes_2018_02_027
crossref_primary_10_1016_j_commatsci_2024_113056
crossref_primary_10_1016_j_ijmedinf_2019_05_022
crossref_primary_10_1029_2020SW002707
crossref_primary_10_1016_j_jclepro_2020_124206
crossref_primary_10_1007_s11869_023_01322_3
crossref_primary_10_1016_j_cma_2025_117799
crossref_primary_10_3389_frai_2021_667780
crossref_primary_10_1007_s12559_022_10026_2
crossref_primary_10_1109_JSTARS_2021_3051873
crossref_primary_10_7554_eLife_64812
crossref_primary_10_1016_j_neucom_2020_07_109
crossref_primary_10_3390_sym10090387
crossref_primary_10_3390_mti2030047
crossref_primary_10_1109_ACCESS_2018_2880563
crossref_primary_10_1007_s40687_022_00339_x
crossref_primary_10_1007_s42484_023_00114_3
crossref_primary_10_3390_s20216134
crossref_primary_10_1016_j_ins_2018_05_057
crossref_primary_10_3389_fpls_2019_01176
crossref_primary_10_1016_j_conengprac_2019_07_016
crossref_primary_10_1088_2632_2153_aca6cd
crossref_primary_10_3390_diagnostics15081037
crossref_primary_10_3389_fcvm_2022_1009131
crossref_primary_10_1016_j_neucom_2017_10_066
crossref_primary_10_1039_D0MH01451F
crossref_primary_10_3390_app14146115
crossref_primary_10_1109_ACCESS_2018_2878254
crossref_primary_10_1109_JIOT_2021_3114420
crossref_primary_10_1007_s11269_021_02825_3
crossref_primary_10_1039_C8SC04175J
crossref_primary_10_1088_1361_6501_ac4d5f
crossref_primary_10_1016_j_compchemeng_2024_108715
crossref_primary_10_1109_ACCESS_2020_2985280
crossref_primary_10_3390_molecules25061375
crossref_primary_10_3390_pr11082275
crossref_primary_10_1016_j_fuel_2024_131026
crossref_primary_10_1007_s40747_022_00733_6
crossref_primary_10_1007_s40010_017_0431_0
crossref_primary_10_1016_j_neucom_2018_09_012
crossref_primary_10_3389_fneur_2025_1603536
crossref_primary_10_1088_1757_899X_352_1_012024
crossref_primary_10_3390_s22207754
crossref_primary_10_3390_app11157148
crossref_primary_10_1016_j_neucom_2021_10_126
crossref_primary_10_3354_meps14842
crossref_primary_10_1017_wet_2024_7
crossref_primary_10_1007_s13198_021_01484_2
crossref_primary_10_1016_j_enganabound_2024_105933
crossref_primary_10_1061_JTEPBS_TEENG_8277
crossref_primary_10_1016_j_ijleo_2018_04_092
crossref_primary_10_3892_mco_2019_1932
crossref_primary_10_1016_j_jobe_2022_105444
crossref_primary_10_1016_j_neucom_2018_09_025
crossref_primary_10_1007_s13042_019_01054_w
crossref_primary_10_1016_j_neucom_2018_09_027
crossref_primary_10_1007_s10772_019_09645_2
crossref_primary_10_1109_TFUZZ_2019_2892348
crossref_primary_10_1007_s11831_020_09446_w
crossref_primary_10_1007_s11548_017_1567_8
crossref_primary_10_1016_j_eswa_2019_03_050
crossref_primary_10_3390_electronics8050554
crossref_primary_10_1109_TIM_2022_3144211
crossref_primary_10_3390_aerospace7090132
crossref_primary_10_1109_ACCESS_2021_3104668
crossref_primary_10_1088_1742_6596_1661_1_012017
crossref_primary_10_1016_j_displa_2024_102895
crossref_primary_10_1016_j_glohj_2020_04_002
crossref_primary_10_1016_j_neucom_2018_09_038
crossref_primary_10_1016_j_procir_2023_06_184
crossref_primary_10_1109_TASLP_2017_2672398
crossref_primary_10_1109_TAFFC_2017_2751469
crossref_primary_10_1109_ACCESS_2020_3012701
crossref_primary_10_1109_TPDS_2021_3116865
crossref_primary_10_1007_s00158_024_03835_6
crossref_primary_10_1016_j_mehy_2019_109472
crossref_primary_10_1016_j_cie_2023_109714
crossref_primary_10_1016_j_enconman_2019_111793
crossref_primary_10_3390_life12081267
crossref_primary_10_1007_s11425_020_1865_1
crossref_primary_10_1016_j_procs_2023_01_163
crossref_primary_10_1038_s41598_023_39156_9
crossref_primary_10_3389_frvir_2024_1197547
crossref_primary_10_1080_08839514_2021_1922847
crossref_primary_10_1038_s41467_018_04482_4
crossref_primary_10_1007_s41064_018_0060_5
crossref_primary_10_1016_j_engstruct_2022_114311
crossref_primary_10_1109_ACCESS_2020_2974527
crossref_primary_10_1007_s11042_021_10707_4
crossref_primary_10_3847_1538_4357_ac7f9e
crossref_primary_10_1109_TPEL_2020_3008194
crossref_primary_10_1007_s13042_018_0811_z
crossref_primary_10_1016_j_scitotenv_2020_140317
crossref_primary_10_1016_j_renene_2025_124381
crossref_primary_10_3390_s21248214
crossref_primary_10_1007_s10462_018_09679_z
crossref_primary_10_1007_s12530_024_09630_4
crossref_primary_10_1109_ACCESS_2019_2959238
crossref_primary_10_1016_j_knosys_2019_05_009
crossref_primary_10_1017_S1473550417000180
crossref_primary_10_2174_1574893618666230320103421
crossref_primary_10_1007_s42044_020_00065_z
crossref_primary_10_1016_j_asoc_2019_03_015
crossref_primary_10_1016_j_cmpb_2018_02_001
crossref_primary_10_1016_j_forsciint_2020_110179
crossref_primary_10_1016_j_neuroimage_2015_12_036
crossref_primary_10_1007_s00761_021_00916_9
crossref_primary_10_1103_rzjx_9zz1
crossref_primary_10_1007_s10489_019_01552_y
crossref_primary_10_1016_j_net_2025_103474
crossref_primary_10_1016_j_knosys_2020_105479
crossref_primary_10_1109_TMM_2019_2912124
crossref_primary_10_3390_app11219997
crossref_primary_10_1016_j_compstruct_2023_116770
crossref_primary_10_1016_j_neucom_2022_04_066
crossref_primary_10_3389_fmed_2022_846024
crossref_primary_10_1186_s13638_020_01706_4
crossref_primary_10_1016_j_rse_2022_113059
crossref_primary_10_1109_COMST_2019_2935810
crossref_primary_10_1016_j_jksuci_2023_101853
crossref_primary_10_1109_TCDS_2019_2934643
crossref_primary_10_1109_ACCESS_2020_2986546
crossref_primary_10_1109_MIM_2020_9126068
crossref_primary_10_1007_s00170_018_2420_0
crossref_primary_10_1016_j_knosys_2019_05_020
crossref_primary_10_1002_aelm_202300865
crossref_primary_10_1016_j_procs_2023_01_109
crossref_primary_10_1038_s41598_021_95128_x
crossref_primary_10_1007_s12046_024_02657_y
crossref_primary_10_1109_JPROC_2023_3321433
crossref_primary_10_1016_j_landurbplan_2023_104683
crossref_primary_10_1016_j_compbiomed_2018_07_001
crossref_primary_10_3390_mi14040789
crossref_primary_10_1109_TCBB_2018_2821127
crossref_primary_10_1109_TKDE_2018_2839599
crossref_primary_10_1007_s00784_023_05475_4
crossref_primary_10_1016_j_chemer_2024_126125
crossref_primary_10_1007_s00784_023_05355_x
crossref_primary_10_1002_nag_3688
crossref_primary_10_1109_LWC_2017_2757490
crossref_primary_10_1016_j_esr_2020_100544
crossref_primary_10_1007_s12145_021_00658_7
crossref_primary_10_1093_bib_bbw068
crossref_primary_10_2166_hydro_2023_146
crossref_primary_10_1016_j_optcom_2021_127479
crossref_primary_10_1109_ACCESS_2018_2867564
crossref_primary_10_3390_rs12132140
crossref_primary_10_1038_s42256_019_0123_3
crossref_primary_10_1088_1402_4896_aca3da
crossref_primary_10_1016_j_patcog_2017_07_008
crossref_primary_10_3233_JIFS_201717
crossref_primary_10_1093_bib_bbaa420
crossref_primary_10_1016_j_jhazmat_2023_133196
crossref_primary_10_1007_s10710_021_09401_z
crossref_primary_10_1088_2632_2153_abd614
crossref_primary_10_3390_s20164493
crossref_primary_10_3390_s23156972
crossref_primary_10_1016_j_rineng_2024_103421
crossref_primary_10_1016_j_neunet_2025_107685
crossref_primary_10_3390_s19122712
crossref_primary_10_1016_j_oceaneng_2020_108234
crossref_primary_10_1016_j_compbiomed_2024_108093
crossref_primary_10_2478_acee_2025_0026
crossref_primary_10_3390_math10142547
crossref_primary_10_1016_j_dwt_2024_100059
crossref_primary_10_1016_j_jhydrol_2025_132719
crossref_primary_10_1007_s10489_021_02733_4
crossref_primary_10_1186_s40537_020_00361_2
crossref_primary_10_1109_ACCESS_2018_2867546
crossref_primary_10_1109_ACCESS_2020_2999829
crossref_primary_10_1007_s12652_021_02924_4
crossref_primary_10_3390_su15086647
crossref_primary_10_1016_j_jacadv_2024_101180
crossref_primary_10_1088_1742_6596_2236_1_012004
crossref_primary_10_1016_j_cej_2022_139099
crossref_primary_10_1109_COMST_2020_3008362
crossref_primary_10_2196_66100
crossref_primary_10_1002_hbm_23730
crossref_primary_10_1007_s10462_023_10513_4
crossref_primary_10_1587_nolta_9_24
crossref_primary_10_1038_s41562_021_01194_6
crossref_primary_10_1093_cercor_bhab232
crossref_primary_10_1016_j_applthermaleng_2025_128020
crossref_primary_10_1016_j_asoc_2022_109023
crossref_primary_10_1016_j_procir_2021_01_138
crossref_primary_10_3389_fncom_2025_1565660
crossref_primary_10_1520_JTE20190801
crossref_primary_10_1038_s41598_023_40528_4
crossref_primary_10_1016_j_actamat_2024_119877
crossref_primary_10_1109_TGRS_2023_3296520
crossref_primary_10_3390_ijerph16101688
crossref_primary_10_1177_23409444251341326
crossref_primary_10_3233_JIFS_169151
crossref_primary_10_1109_MGRS_2022_3218801
crossref_primary_10_3389_fmed_2022_830515
crossref_primary_10_1109_TEM_2019_2957842
crossref_primary_10_1002_cpe_7331
crossref_primary_10_1016_j_pmpp_2025_102940
crossref_primary_10_1049_cvi2_12028
crossref_primary_10_1109_ACCESS_2020_2963912
crossref_primary_10_3390_su9122309
crossref_primary_10_1007_s11432_020_2871_2
crossref_primary_10_3390_electronics11193057
crossref_primary_10_2466_10_IT_4_7
crossref_primary_10_3390_agronomy13041120
crossref_primary_10_3390_app9081526
crossref_primary_10_7717_peerj_17080
crossref_primary_10_3390_rs13163284
crossref_primary_10_1007_s11831_021_09587_6
crossref_primary_10_1007_s00332_018_9513_7
crossref_primary_10_1016_j_eswa_2018_10_003
crossref_primary_10_3390_cancers13040738
crossref_primary_10_1007_s10278_020_00332_2
crossref_primary_10_1109_ACCESS_2020_2992451
crossref_primary_10_3390_app9081523
crossref_primary_10_1016_j_jbusres_2022_04_012
crossref_primary_10_3390_s19122750
crossref_primary_10_4018_IJSWIS_359985
crossref_primary_10_1029_2020JB021473
crossref_primary_10_1016_j_agrformet_2024_109955
crossref_primary_10_1080_19368623_2020_1765226
crossref_primary_10_3390_math11132841
crossref_primary_10_1109_ACCESS_2022_3179356
crossref_primary_10_3389_fnbot_2023_1267561
crossref_primary_10_3390_ijgi10060388
crossref_primary_10_1016_j_enbuild_2018_03_065
crossref_primary_10_3390_hydrology10120230
crossref_primary_10_1016_j_neucom_2022_10_047
crossref_primary_10_3233_JIFS_169131
crossref_primary_10_1038_s41566_020_0604_2
crossref_primary_10_1002_jrs_6365
crossref_primary_10_1016_j_envpol_2022_119208
crossref_primary_10_1016_j_jhydrol_2018_10_054
crossref_primary_10_1177_10775463221074478
crossref_primary_10_1016_j_csbj_2022_05_057
crossref_primary_10_1016_j_ast_2019_105403
crossref_primary_10_3390_s22093275
crossref_primary_10_1016_j_procs_2021_01_345
crossref_primary_10_1109_TNNLS_2019_2927106
crossref_primary_10_1109_ACCESS_2019_2936536
crossref_primary_10_1016_j_neunet_2024_106408
crossref_primary_10_1007_s12520_021_01424_y
crossref_primary_10_1016_j_compeleceng_2022_107741
crossref_primary_10_1002_minf_201600029
crossref_primary_10_1016_j_chempr_2020_08_008
crossref_primary_10_3390_rs15040888
crossref_primary_10_1093_aje_kwab271
crossref_primary_10_1109_TITS_2019_2962338
crossref_primary_10_1007_s10854_021_07623_6
crossref_primary_10_1007_s42835_019_00115_y
crossref_primary_10_1016_j_media_2020_101891
crossref_primary_10_3390_app9102116
crossref_primary_10_1007_s41109_019_0134_3
crossref_primary_10_3390_electronics13183617
crossref_primary_10_3390_agronomy11091890
crossref_primary_10_1007_s10614_021_10116_7
crossref_primary_10_1016_j_media_2018_06_005
crossref_primary_10_1051_0004_6361_202346983
crossref_primary_10_1049_htl_2017_0020
crossref_primary_10_1109_ACCESS_2021_3139334
crossref_primary_10_1137_18M1222399
crossref_primary_10_3389_fnhum_2022_875201
crossref_primary_10_1007_s42979_023_02480_y
crossref_primary_10_1002_ps_6804
crossref_primary_10_3389_fnins_2018_00774
crossref_primary_10_3390_jmse9111252
crossref_primary_10_1016_j_oceaneng_2024_118701
crossref_primary_10_3390_app11104660
crossref_primary_10_1016_j_ijer_2023_102275
crossref_primary_10_1016_j_ymssp_2023_110124
crossref_primary_10_1109_ACCESS_2020_3037922
crossref_primary_10_1177_0309324718798222
crossref_primary_10_1155_2019_7410701
crossref_primary_10_46604_aiti_2022_8308
crossref_primary_10_3390_sym17040523
crossref_primary_10_1016_j_bspc_2021_102677
crossref_primary_10_3390_electronics8121417
crossref_primary_10_1016_j_semradonc_2022_06_007
crossref_primary_10_1080_15252019_2022_2126337
crossref_primary_10_1364_AO_400563
crossref_primary_10_1109_ACCESS_2019_2924584
crossref_primary_10_3390_en11051253
crossref_primary_10_1109_TNNLS_2020_3009047
crossref_primary_10_1103_PhysRevResearch_2_013050
crossref_primary_10_1007_s11831_025_10378_6
crossref_primary_10_1109_TWC_2022_3160517
crossref_primary_10_1109_LGRS_2019_2961374
crossref_primary_10_1111_jfpe_13005
crossref_primary_10_1007_s00376_024_3380_y
crossref_primary_10_1088_1757_899X_1043_3_032020
crossref_primary_10_3390_app122412744
crossref_primary_10_1016_j_neunet_2017_12_007
crossref_primary_10_1016_j_neunet_2018_03_004
crossref_primary_10_1016_j_neunet_2018_03_005
crossref_primary_10_3390_sym17040539
crossref_primary_10_1016_j_physleta_2020_126442
crossref_primary_10_1016_j_cobeha_2019_04_006
crossref_primary_10_1016_j_procs_2023_01_068
crossref_primary_10_3390_s20051495
crossref_primary_10_1016_j_oceaneng_2021_110321
crossref_primary_10_1049_rpg2_12875
crossref_primary_10_1145_3374748
crossref_primary_10_3390_su16177514
crossref_primary_10_3390_ijerph182413409
crossref_primary_10_1186_s12911_019_1007_5
crossref_primary_10_1371_journal_pcbi_1011950
crossref_primary_10_1007_s42405_019_00222_0
crossref_primary_10_1038_s41467_021_22332_8
crossref_primary_10_1093_mnras_stx2052
crossref_primary_10_1109_TNNLS_2017_2766168
crossref_primary_10_3390_en11071740
crossref_primary_10_1002_jrs_6335
crossref_primary_10_7717_peerj_cs_2014
crossref_primary_10_1080_2150704X_2023_2258460
crossref_primary_10_1016_j_tafmec_2023_103999
crossref_primary_10_1007_s00799_018_0242_1
crossref_primary_10_1109_TSM_2016_2628865
crossref_primary_10_1088_1742_6596_1969_1_012045
crossref_primary_10_1016_j_jmsy_2017_02_013
crossref_primary_10_3390_s20195609
crossref_primary_10_1016_j_neucom_2023_01_015
crossref_primary_10_1016_j_neucom_2020_07_049
crossref_primary_10_1038_s41467_023_43127_z
crossref_primary_10_1109_JSEN_2023_3247728
crossref_primary_10_3390_cryst11111399
crossref_primary_10_3390_molecules26072065
crossref_primary_10_1016_j_rse_2020_112093
crossref_primary_10_3390_s21217024
crossref_primary_10_1016_j_media_2019_03_006
crossref_primary_10_1109_JIOT_2022_3224239
crossref_primary_10_1109_TIM_2020_3007292
crossref_primary_10_1007_s00371_024_03381_8
crossref_primary_10_1007_s12559_021_09974_y
crossref_primary_10_1080_00207543_2022_2079012
crossref_primary_10_1109_TNSRE_2021_3112167
crossref_primary_10_1063_5_0206287
crossref_primary_10_1103_PhysRevX_12_031010
crossref_primary_10_1109_ACCESS_2021_3111898
crossref_primary_10_3390_foods13193025
crossref_primary_10_1259_dmfr_20200185
crossref_primary_10_1016_j_neunet_2021_09_003
crossref_primary_10_3389_feart_2021_728643
crossref_primary_10_1016_j_ins_2019_02_041
crossref_primary_10_3233_JIFS_189503
crossref_primary_10_3390_sym10120738
crossref_primary_10_3389_fnins_2020_00259
crossref_primary_10_3390_sym12030358
crossref_primary_10_1016_j_jmgm_2017_07_015
crossref_primary_10_1002_cnm_2827
crossref_primary_10_1111_jmi_13007
crossref_primary_10_1146_annurev_biodatasci_022020_021940
crossref_primary_10_1016_j_neunet_2021_09_013
crossref_primary_10_1007_s42979_020_00444_0
crossref_primary_10_1016_j_aei_2018_06_004
crossref_primary_10_1111_coin_12392
crossref_primary_10_1155_int_9674462
crossref_primary_10_1016_j_cmpb_2017_11_003
crossref_primary_10_3390_a17050187
crossref_primary_10_1016_j_csl_2019_101057
crossref_primary_10_34133_icomputing_0123
crossref_primary_10_1016_j_neunet_2021_09_018
crossref_primary_10_1038_s41598_020_79452_2
crossref_primary_10_3390_s21062187
crossref_primary_10_1007_s11219_023_09642_4
crossref_primary_10_1177_0361198120947421
crossref_primary_10_3390_molecules30051092
crossref_primary_10_1007_s11063_023_11361_7
crossref_primary_10_1109_ACCESS_2019_2954353
crossref_primary_10_1007_s11063_019_10062_4
crossref_primary_10_1242_jeb_245409
crossref_primary_10_1007_s11694_025_03193_x
crossref_primary_10_3233_JHS_180594
crossref_primary_10_1016_j_neucom_2020_07_053
crossref_primary_10_1038_s42005_020_00428_9
crossref_primary_10_1088_1755_1315_143_1_012025
crossref_primary_10_1007_s11101_024_10006_4
crossref_primary_10_1109_ACCESS_2020_3011374
crossref_primary_10_1109_JSYST_2019_2905565
crossref_primary_10_3390_app12126028
crossref_primary_10_1109_TITS_2019_2961060
crossref_primary_10_1007_s12559_017_9472_6
crossref_primary_10_1027_1015_5759_a000608
crossref_primary_10_1016_j_neucom_2017_01_032
crossref_primary_10_1016_j_neunet_2015_09_011
crossref_primary_10_1109_TVCG_2020_3027069
crossref_primary_10_3390_s20071956
crossref_primary_10_1007_s11571_021_09698_7
crossref_primary_10_1016_j_specom_2021_05_010
crossref_primary_10_1061_JCEMD4_COENG_12542
crossref_primary_10_1155_2021_4547030
crossref_primary_10_1109_ACCESS_2020_2978112
crossref_primary_10_1016_j_enbuild_2022_112188
crossref_primary_10_1109_ACCESS_2020_3035347
crossref_primary_10_1016_j_coisb_2017_08_009
crossref_primary_10_1134_S1061830922060109
crossref_primary_10_1016_j_ige_2024_10_001
crossref_primary_10_1109_ACCESS_2022_3227427
crossref_primary_10_1109_TNNLS_2016_2574840
crossref_primary_10_3390_diagnostics12092262
crossref_primary_10_3389_fspor_2021_809898
crossref_primary_10_1007_s12539_018_0313_4
crossref_primary_10_1016_j_jweia_2024_105752
crossref_primary_10_1016_j_gsd_2023_101062
crossref_primary_10_1016_j_engappai_2024_108616
crossref_primary_10_1016_j_memsci_2024_123256
crossref_primary_10_3390_s22229019
crossref_primary_10_3390_s18072080
crossref_primary_10_1364_JOCN_11_000C48
crossref_primary_10_2478_ausi_2018_0002
crossref_primary_10_3390_s20195633
crossref_primary_10_1016_j_enbuild_2022_112197
crossref_primary_10_1177_20503121241274197
crossref_primary_10_1007_s11831_022_09841_5
crossref_primary_10_1016_j_jcp_2019_109119
crossref_primary_10_3390_s22218337
crossref_primary_10_1155_2019_8325218
crossref_primary_10_1109_ACCESS_2020_3023376
crossref_primary_10_1016_j_neucom_2023_01_032
crossref_primary_10_1145_3234150
crossref_primary_10_3390_app112110264
crossref_primary_10_3233_JIFS_190548
crossref_primary_10_1038_s41598_021_95978_5
crossref_primary_10_1016_j_jormas_2022_08_007
crossref_primary_10_1029_2018WR022643
crossref_primary_10_1155_2020_5491963
crossref_primary_10_3390_ijgi10060358
crossref_primary_10_1002_admt_202101108
crossref_primary_10_1007_s10278_019_00254_8
crossref_primary_10_1007_s00371_021_02316_x
crossref_primary_10_1109_TCDS_2016_2636291
crossref_primary_10_1177_14613484211032758
crossref_primary_10_3390_pharmaceutics15071916
crossref_primary_10_1038_s41598_024_74778_7
crossref_primary_10_1109_TDSC_2018_2816656
crossref_primary_10_1007_s10472_022_09786_2
crossref_primary_10_1016_j_ins_2016_08_055
crossref_primary_10_1371_journal_pone_0296760
crossref_primary_10_1016_j_comnet_2025_111723
crossref_primary_10_1016_j_biortech_2024_132028
crossref_primary_10_1016_j_patcog_2016_02_001
crossref_primary_10_1002_adma_202006201
crossref_primary_10_1007_s40314_019_0946_x
crossref_primary_10_1016_j_autcon_2021_103883
crossref_primary_10_1016_j_compag_2024_109494
crossref_primary_10_1080_13588265_2022_2131262
crossref_primary_10_1007_s10661_022_10813_2
crossref_primary_10_1109_ACCESS_2018_2881561
crossref_primary_10_2118_212870_PA
crossref_primary_10_1063_5_0148469
crossref_primary_10_1080_21681163_2024_2330524
crossref_primary_10_1007_s10463_022_00828_4
crossref_primary_10_1016_j_conbuildmat_2020_120647
crossref_primary_10_1016_j_infrared_2018_12_011
crossref_primary_10_1016_j_neunet_2020_06_003
crossref_primary_10_1016_j_asoc_2021_108129
crossref_primary_10_3389_fonc_2023_1278180
crossref_primary_10_1007_s00521_019_04383_7
crossref_primary_10_1016_j_iot_2024_101192
crossref_primary_10_1088_1742_6596_2739_1_012054
crossref_primary_10_1016_j_envsoft_2024_106289
crossref_primary_10_1016_j_jnucmat_2025_155692
crossref_primary_10_1155_2020_8403262
crossref_primary_10_1109_TGRS_2022_3162833
crossref_primary_10_2118_205015_PA
crossref_primary_10_1007_s12652_022_03868_z
crossref_primary_10_1007_s42979_020_00435_1
crossref_primary_10_1038_s41377_024_01547_6
crossref_primary_10_1016_j_ast_2025_110075
crossref_primary_10_1016_j_diin_2018_04_024
crossref_primary_10_1155_2017_1895897
crossref_primary_10_1002_adma_202510239
crossref_primary_10_3390_brainsci12070834
crossref_primary_10_1088_1402_4896_ad61a0
crossref_primary_10_1016_j_isprsjprs_2019_09_009
crossref_primary_10_1080_00330124_2021_2009888
crossref_primary_10_1109_ACCESS_2022_3186323
crossref_primary_10_1016_j_physa_2024_130166
crossref_primary_10_3390_agriculture13020352
crossref_primary_10_1088_1742_6596_1750_1_012048
crossref_primary_10_1002_stc_2230
crossref_primary_10_1039_C9NR05912A
crossref_primary_10_1155_2021_5868501
crossref_primary_10_1016_j_bspc_2023_104653
crossref_primary_10_1016_j_neucom_2018_04_030
crossref_primary_10_1080_02286203_2024_2371682
crossref_primary_10_1186_s40537_018_0150_7
crossref_primary_10_1016_j_swevo_2024_101616
crossref_primary_10_1016_j_ifacol_2024_07_254
crossref_primary_10_1016_j_isprsjprs_2019_09_006
crossref_primary_10_1155_2022_8013640
crossref_primary_10_1093_schbul_sby171
crossref_primary_10_1016_j_neucom_2020_01_126
crossref_primary_10_1007_s11227_020_03300_3
crossref_primary_10_1117_1_JRS_16_038503
crossref_primary_10_1007_s10994_022_06135_6
crossref_primary_10_1109_JSYST_2020_3043827
crossref_primary_10_1016_j_ajp_2022_103021
crossref_primary_10_1007_s11467_021_1150_1
crossref_primary_10_1109_TG_2019_2896986
crossref_primary_10_1016_j_pmcj_2024_101920
crossref_primary_10_1002_asmb_2607
crossref_primary_10_1016_j_jksuci_2022_12_010
crossref_primary_10_1016_j_ins_2020_03_018
crossref_primary_10_1016_j_ins_2022_08_074
crossref_primary_10_3389_fsurg_2023_1102711
crossref_primary_10_1002_cjce_25562
crossref_primary_10_1186_s40537_022_00602_6
crossref_primary_10_1007_s40333_025_0009_7
crossref_primary_10_3389_fbioe_2020_00898
crossref_primary_10_3390_math11173648
crossref_primary_10_1016_j_neucom_2019_12_137
crossref_primary_10_1016_j_patcog_2018_07_025
crossref_primary_10_1007_s00500_021_05760_y
crossref_primary_10_1016_j_robot_2019_03_005
crossref_primary_10_3390_foods12061242
crossref_primary_10_1007_s10706_020_01544_7
crossref_primary_10_1016_j_ins_2020_12_019
crossref_primary_10_1007_s12652_018_0878_0
crossref_primary_10_1088_1742_6596_1684_1_012059
crossref_primary_10_3233_IDA_194961
crossref_primary_10_1007_s12553_020_00509_3
crossref_primary_10_1109_ACCESS_2020_3005664
crossref_primary_10_1016_j_epsr_2024_111185
crossref_primary_10_1088_1742_6596_3027_1_012012
crossref_primary_10_1155_2020_8851475
crossref_primary_10_1088_1742_6596_3027_1_012013
crossref_primary_10_3390_ijerph192215395
crossref_primary_10_1007_s11063_020_10335_3
crossref_primary_10_1016_j_brat_2025_104752
crossref_primary_10_1016_j_neunet_2021_10_026
crossref_primary_10_1016_j_enbuild_2024_114491
crossref_primary_10_1002_eqe_3415
crossref_primary_10_3390_app10051657
crossref_primary_10_1016_j_bspc_2023_104693
crossref_primary_10_1109_ACCESS_2018_2879221
crossref_primary_10_3390_molecules23082055
crossref_primary_10_1016_j_neucom_2019_12_118
crossref_primary_10_1016_j_ultras_2018_12_001
crossref_primary_10_1016_j_scs_2024_106057
crossref_primary_10_1287_mksc_2022_1378
crossref_primary_10_1016_j_aca_2019_06_012
crossref_primary_10_3390_s22207877
crossref_primary_10_1111_2041_210X_13256
crossref_primary_10_1038_s41598_022_13919_2
crossref_primary_10_1190_geo2017_0666_1
crossref_primary_10_1007_s11663_022_02571_w
crossref_primary_10_3233_JIFS_201679
crossref_primary_10_1177_0967033518762617
crossref_primary_10_3390_s21093087
crossref_primary_10_1002_dac_4972
crossref_primary_10_1016_j_cities_2022_103925
crossref_primary_10_1007_s10462_024_10818_y
crossref_primary_10_1016_j_jobe_2021_103098
crossref_primary_10_3233_IDA_194940
crossref_primary_10_1088_2632_072X_acacdf
crossref_primary_10_1109_TII_2017_2774242
crossref_primary_10_1109_COMST_2021_3053118
crossref_primary_10_1016_j_enbuild_2024_114474
crossref_primary_10_7769_gesec_v16i6_4991
crossref_primary_10_1371_journal_pone_0233166
crossref_primary_10_1093_bib_bbaa125
crossref_primary_10_1007_s42484_021_00041_1
crossref_primary_10_1287_opre_2021_2217
crossref_primary_10_1002_prot_26694
crossref_primary_10_1016_j_epsr_2020_106788
crossref_primary_10_1038_s41386_020_0767_z
crossref_primary_10_1016_j_csda_2022_107447
crossref_primary_10_1109_TC_2020_3044142
crossref_primary_10_3390_nu17162651
crossref_primary_10_1007_s00500_023_08619_6
crossref_primary_10_3390_s20144017
crossref_primary_10_1007_s00009_021_01717_5
crossref_primary_10_1016_j_techfore_2020_120555
crossref_primary_10_3390_s23115094
crossref_primary_10_1016_j_arcontrol_2022_03_005
crossref_primary_10_1111_mice_12903
crossref_primary_10_3390_rs14225673
crossref_primary_10_1109_ACCESS_2021_3130605
crossref_primary_10_1145_3042064
crossref_primary_10_1109_TSP_2021_3099630
crossref_primary_10_1007_s10055_024_01044_6
crossref_primary_10_3390_diagnostics11081402
crossref_primary_10_1016_j_specom_2022_02_006
crossref_primary_10_1002_advs_202003097
crossref_primary_10_1093_tse_tdac050
crossref_primary_10_1680_jenes_19_00023
crossref_primary_10_1016_j_birob_2024_100145
crossref_primary_10_1016_j_future_2019_06_030
crossref_primary_10_1016_j_jobe_2020_101827
crossref_primary_10_1016_j_radphyschem_2021_109539
crossref_primary_10_1002_cite_201800089
crossref_primary_10_1109_JOE_2021_3073931
crossref_primary_10_3847_1538_4365_ab26b6
crossref_primary_10_1007_s00330_020_06986_4
crossref_primary_10_1016_j_ijheatmasstransfer_2018_02_115
crossref_primary_10_1080_21691401_2025_2533361
crossref_primary_10_1287_mnsc_2020_3696
crossref_primary_10_1002_adfm_202108044
crossref_primary_10_3390_app12052646
crossref_primary_10_2166_wcc_2022_106
crossref_primary_10_1016_j_jenvman_2023_119714
crossref_primary_10_1088_1742_6596_2653_1_012032
crossref_primary_10_1007_s10712_021_09670_4
crossref_primary_10_1007_s13246_018_0691_2
crossref_primary_10_1016_j_neunet_2021_10_016
crossref_primary_10_1038_srep32672
crossref_primary_10_1016_j_jastp_2019_105062
crossref_primary_10_3389_fnbot_2019_00095
crossref_primary_10_5194_jsss_14_119_2025
crossref_primary_10_1155_2022_8500272
crossref_primary_10_1016_j_procs_2019_06_021
crossref_primary_10_1109_ACCESS_2019_2960113
crossref_primary_10_1016_j_autcon_2023_104901
crossref_primary_10_1080_15325008_2023_2168091
crossref_primary_10_1016_j_jvcir_2018_11_011
crossref_primary_10_1038_s41598_022_17013_5
crossref_primary_10_1007_s11042_018_7142_7
crossref_primary_10_1016_j_jbusres_2021_07_024
crossref_primary_10_3846_jcem_2021_14649
crossref_primary_10_1016_j_mseb_2024_117536
crossref_primary_10_1088_1742_6596_880_1_012018
crossref_primary_10_1016_j_oregeorev_2021_104300
crossref_primary_10_1111_exsy_70140
crossref_primary_10_1016_j_physa_2023_129308
crossref_primary_10_1093_bib_bbab420
crossref_primary_10_3390_electronics12183830
crossref_primary_10_1007_s11063_019_10036_6
crossref_primary_10_1016_j_knosys_2020_105596
crossref_primary_10_1016_j_cose_2020_101994
crossref_primary_10_1109_TII_2019_2910524
crossref_primary_10_1016_j_renene_2022_03_088
crossref_primary_10_1007_s00521_021_06137_w
crossref_primary_10_1109_TII_2019_2908211
crossref_primary_10_1186_s43074_024_00139_2
crossref_primary_10_1002_mrm_28117
crossref_primary_10_1016_j_compstruc_2021_106484
crossref_primary_10_3390_en13246654
crossref_primary_10_1016_j_jqsrt_2021_107841
crossref_primary_10_1007_s11042_021_11413_x
crossref_primary_10_1016_j_matdes_2021_110078
crossref_primary_10_3390_biomedicines11020356
crossref_primary_10_1049_ipr2_12134
crossref_primary_10_3103_S000510551903004X
crossref_primary_10_1016_j_nucengdes_2024_112982
crossref_primary_10_1007_s13738_018_1397_9
crossref_primary_10_1186_s42492_019_0023_8
crossref_primary_10_1109_ACCESS_2017_2762418
crossref_primary_10_3390_ijerph192215301
crossref_primary_10_1016_j_compeleceng_2019_02_015
crossref_primary_10_1093_condor_duy004
crossref_primary_10_1088_1742_6596_1804_1_012120
crossref_primary_10_1016_j_enconman_2019_02_032
crossref_primary_10_1109_ACCESS_2019_2906645
crossref_primary_10_3390_jcm7090277
crossref_primary_10_1007_s00521_023_08398_z
crossref_primary_10_1162_neco_a_01367
crossref_primary_10_1016_j_uclim_2024_102039
crossref_primary_10_1080_01431161_2017_1399472
crossref_primary_10_1088_2040_8986_ab8b7f
crossref_primary_10_1016_j_cej_2025_163749
crossref_primary_10_1016_j_trc_2018_10_017
crossref_primary_10_1007_s10489_020_02154_9
crossref_primary_10_1007_s00500_019_04101_4
crossref_primary_10_1109_ACCESS_2020_3027044
crossref_primary_10_1109_ACCESS_2021_3056516
crossref_primary_10_1109_ACCESS_2019_2906654
crossref_primary_10_3390_electronics8121499
crossref_primary_10_1016_j_renene_2022_10_066
crossref_primary_10_1007_s10846_021_01398_y
crossref_primary_10_3138_cjccj_2020_0011
crossref_primary_10_1080_0013791X_2019_1620391
crossref_primary_10_3390_math11071680
crossref_primary_10_1002_mrm_29498
crossref_primary_10_1002_ppap_70057
crossref_primary_10_1016_j_measurement_2020_108086
crossref_primary_10_32604_cmes_2025_059414
crossref_primary_10_3389_fmats_2022_851085
crossref_primary_10_3389_frsen_2025_1578841
crossref_primary_10_1016_j_biotechadv_2021_107739
crossref_primary_10_1109_TGRS_2018_2874950
crossref_primary_10_1155_2024_6750409
crossref_primary_10_3390_computation10100186
crossref_primary_10_1016_j_jobe_2021_103014
crossref_primary_10_1109_TIE_2022_3206696
crossref_primary_10_1016_j_neunet_2024_106154
crossref_primary_10_1109_ACCESS_2021_3085085
crossref_primary_10_1126_science_abe2629
crossref_primary_10_1016_j_frl_2021_102209
crossref_primary_10_1007_s00521_022_07511_y
crossref_primary_10_3389_fphy_2024_1369099
crossref_primary_10_1121_1_5036725
crossref_primary_10_1007_s00340_021_07596_8
crossref_primary_10_3390_mi15040430
crossref_primary_10_1016_j_compind_2021_103498
crossref_primary_10_1109_TCDS_2017_2785332
crossref_primary_10_1109_ACCESS_2019_2917311
crossref_primary_10_1002_mp_16405
crossref_primary_10_1109_ACCESS_2021_3073090
crossref_primary_10_1186_s40537_020_0286_0
crossref_primary_10_1016_j_cose_2020_101943
crossref_primary_10_1016_j_engstruct_2021_113064
crossref_primary_10_1016_j_jvcir_2018_11_041
crossref_primary_10_1155_je_5604741
crossref_primary_10_1016_j_pdisas_2024_100347
crossref_primary_10_3390_pr12010062
crossref_primary_10_1016_j_artmed_2021_102156
crossref_primary_10_1016_j_artmed_2021_102157
crossref_primary_10_1016_j_rse_2019_111599
crossref_primary_10_1007_s00287_022_01438_3
crossref_primary_10_1002_rob_22013
crossref_primary_10_61790_vt_2025_17681
crossref_primary_10_1080_00207179_2023_2201644
crossref_primary_10_1007_s40313_021_00719_8
crossref_primary_10_1016_j_cageo_2023_105450
crossref_primary_10_3390_healthcare10010010
crossref_primary_10_2514_1_J061075
crossref_primary_10_1016_j_neucom_2023_127207
crossref_primary_10_1111_mice_12995
crossref_primary_10_1177_1687814019864465
crossref_primary_10_1007_s10033_017_0150_0
crossref_primary_10_1515_cppm_2020_0070
crossref_primary_10_1016_j_ins_2024_120367
crossref_primary_10_1109_ACCESS_2023_3318486
crossref_primary_10_1016_j_annals_2021_103255
crossref_primary_10_1016_j_conb_2015_04_003
crossref_primary_10_3390_s19235300
crossref_primary_10_1002_admt_202000262
crossref_primary_10_1016_j_rineng_2025_105629
crossref_primary_10_1177_1475921720916923
crossref_primary_10_1089_big_2020_0159
crossref_primary_10_1016_j_heliyon_2024_e25276
crossref_primary_10_1016_j_csbj_2020_08_003
crossref_primary_10_1016_j_procs_2017_09_066
crossref_primary_10_1007_s10844_024_00908_2
crossref_primary_10_1016_j_bbe_2019_12_004
crossref_primary_10_3390_s24175752
crossref_primary_10_1109_TSMC_2019_2919940
crossref_primary_10_1016_j_engappai_2025_110755
crossref_primary_10_1016_j_eswa_2018_03_056
crossref_primary_10_1371_journal_pone_0264219
crossref_primary_10_1109_TNNLS_2021_3049281
crossref_primary_10_1007_s00366_020_01272_9
crossref_primary_10_1088_1742_6596_1883_1_012141
crossref_primary_10_1016_j_comcom_2022_12_010
crossref_primary_10_1016_j_mineng_2018_12_004
crossref_primary_10_1007_s11042_023_14940_x
crossref_primary_10_1016_j_oceaneng_2016_04_030
crossref_primary_10_1080_0952813X_2018_1544283
crossref_primary_10_1155_2018_6401645
crossref_primary_10_1080_0305215X_2021_1988587
crossref_primary_10_3390_s18061745
crossref_primary_10_1016_j_ifacol_2023_10_1248
crossref_primary_10_1080_07038992_2020_1865141
crossref_primary_10_3389_fnins_2023_1160899
crossref_primary_10_1088_1741_2552_aae5d8
crossref_primary_10_1063_5_0065634
crossref_primary_10_1186_s40537_021_00512_z
crossref_primary_10_4137_BECB_S31601
crossref_primary_10_1007_s11063_020_10263_2
crossref_primary_10_1007_s11069_023_05856_8
crossref_primary_10_1007_s11063_019_10130_9
crossref_primary_10_1007_s00238_023_02152_3
crossref_primary_10_3390_app13137891
crossref_primary_10_1038_s41467_021_23831_4
crossref_primary_10_1080_13658816_2020_1768260
crossref_primary_10_3390_s25072262
crossref_primary_10_1080_10298436_2021_1877704
crossref_primary_10_1016_j_biosystemseng_2021_12_005
crossref_primary_10_1007_s11042_019_07814_8
crossref_primary_10_1016_j_mtcomm_2024_109904
crossref_primary_10_1109_JPROC_2015_2444094
crossref_primary_10_1016_j_segan_2024_101353
crossref_primary_10_1002_lpor_202000249
crossref_primary_10_1016_j_cossms_2017_01_003
crossref_primary_10_1186_s40537_018_0127_6
crossref_primary_10_1016_j_autcon_2018_02_018
crossref_primary_10_1177_18724981241305875
crossref_primary_10_1007_s12065_021_00634_6
crossref_primary_10_3390_metrology5030040
crossref_primary_10_35784_jcsi_2634
crossref_primary_10_1051_epjconf_202022501004
crossref_primary_10_1007_s00500_020_05348_y
crossref_primary_10_1007_s00521_020_04905_8
crossref_primary_10_1007_s11042_022_12502_1
crossref_primary_10_3390_app10031142
crossref_primary_10_1080_10106049_2021_1975832
crossref_primary_10_1177_1946756719897402
crossref_primary_10_1109_ACCESS_2024_3408948
crossref_primary_10_3390_s21196432
crossref_primary_10_1007_s00521_022_08067_7
crossref_primary_10_3846_aviation_2018_2048
crossref_primary_10_3390_sym12111923
crossref_primary_10_1177_0263276420966386
crossref_primary_10_1109_TGRS_2021_3116349
crossref_primary_10_1088_1361_6528_aa8334
crossref_primary_10_1088_1361_6560_ab9066
crossref_primary_10_1631_FITEE_1800743
crossref_primary_10_1177_20552076221102766
crossref_primary_10_1109_ACCESS_2019_2962734
crossref_primary_10_1016_j_eswa_2021_116104
crossref_primary_10_1103_PhysRevResearch_3_013200
crossref_primary_10_1016_j_buildenv_2019_106216
crossref_primary_10_1109_ACCESS_2019_2924492
crossref_primary_10_1051_matecconf_202030905007
crossref_primary_10_3390_jcm14103380
crossref_primary_10_1109_ACCESS_2020_3011438
crossref_primary_10_3390_s18061703
crossref_primary_10_1007_s10664_020_09881_0
crossref_primary_10_1038_s41598_021_00018_x
crossref_primary_10_5194_hess_28_3051_2024
crossref_primary_10_1155_2022_8931035
crossref_primary_10_3389_fpsyg_2016_00925
crossref_primary_10_1016_j_media_2020_101733
crossref_primary_10_1007_s10483_025_3240_7
crossref_primary_10_1097_RMR_0000000000000290
crossref_primary_10_1002_sim_7915
crossref_primary_10_1186_s12874_024_02183_9
crossref_primary_10_1080_01694243_2021_1996795
crossref_primary_10_1098_rsif_2017_0387
crossref_primary_10_1007_s00521_025_11125_5
crossref_primary_10_3390_bdcc3040051
crossref_primary_10_7717_peerj_cs_1048
crossref_primary_10_1016_j_cie_2025_111532
crossref_primary_10_1007_s10825_019_01350_2
crossref_primary_10_1016_j_psep_2024_06_052
crossref_primary_10_1007_s10462_022_10293_3
crossref_primary_10_1093_ckj_sfad153
crossref_primary_10_1007_s11664_022_09635_2
crossref_primary_10_1016_j_optcom_2023_129634
crossref_primary_10_7717_peerj_cs_2371
crossref_primary_10_1002_srin_202100078
crossref_primary_10_1002_ima_22490
crossref_primary_10_1016_j_inffus_2017_10_006
crossref_primary_10_1016_j_compmedimag_2019_101645
crossref_primary_10_1016_j_jprocont_2021_06_004
crossref_primary_10_1007_s11356_022_24065_7
crossref_primary_10_1007_s00530_024_01645_w
crossref_primary_10_3390_jcm9072146
crossref_primary_10_1016_j_memsci_2022_120981
crossref_primary_10_1007_s00521_020_04788_9
crossref_primary_10_1002_aisy_202000247
crossref_primary_10_1088_1748_0221_14_10_P10034
crossref_primary_10_1007_s11042_023_14655_z
crossref_primary_10_1016_j_cej_2024_148652
crossref_primary_10_1080_15440478_2020_1727817
crossref_primary_10_1016_j_jbi_2017_08_014
crossref_primary_10_3390_math11051245
crossref_primary_10_1007_s12206_025_0128_2
crossref_primary_10_1109_TIFS_2022_3176191
crossref_primary_10_1016_j_compmedimag_2019_101658
crossref_primary_10_1145_3296957_3173212
crossref_primary_10_3390_inventions3030041
crossref_primary_10_1007_s12145_024_01671_2
crossref_primary_10_1155_2022_3710968
crossref_primary_10_1002_joc_7932
crossref_primary_10_1038_s41583_023_00705_w
crossref_primary_10_1016_j_enconman_2021_114315
crossref_primary_10_1016_j_optcom_2020_125272
crossref_primary_10_1109_TSG_2021_3107908
crossref_primary_10_1155_2022_8952849
crossref_primary_10_1109_ACCESS_2021_3093461
crossref_primary_10_1155_2019_6212759
crossref_primary_10_1016_j_patrec_2024_10_005
crossref_primary_10_1038_s41524_020_00423_2
crossref_primary_10_1155_2016_9306205
crossref_primary_10_1016_j_trc_2018_07_022
crossref_primary_10_1016_j_neunet_2023_06_036
crossref_primary_10_1109_LAWP_2019_2916369
crossref_primary_10_1109_TMM_2022_3164798
crossref_primary_10_1109_TITS_2022_3177647
crossref_primary_10_3390_min12081012
crossref_primary_10_1109_ACCESS_2019_2955555
crossref_primary_10_3390_s24010226
crossref_primary_10_1007_s11630_022_1703_9
crossref_primary_10_3390_electronics8030292
crossref_primary_10_2514_1_C038235
crossref_primary_10_1016_j_neunet_2019_08_024
crossref_primary_10_1587_nolta_16_13
crossref_primary_10_1155_2020_8888811
crossref_primary_10_1109_ACCESS_2019_2891914
crossref_primary_10_1007_s10462_021_09989_9
crossref_primary_10_1016_j_apenergy_2023_121519
crossref_primary_10_3390_ani10122241
crossref_primary_10_1007_s11227_020_03388_7
crossref_primary_10_1007_s00500_021_06193_3
crossref_primary_10_1016_j_talanta_2022_124057
crossref_primary_10_1017_eds_2024_24
crossref_primary_10_1016_j_metrad_2025_100151
crossref_primary_10_1016_j_neunet_2019_08_019
crossref_primary_10_1155_2018_6142724
crossref_primary_10_3390_en13123221
crossref_primary_10_1371_journal_pone_0254841
crossref_primary_10_1016_j_image_2018_05_015
crossref_primary_10_17221_45_2021_VETMED
crossref_primary_10_1016_j_neunet_2019_08_015
crossref_primary_10_1016_j_knosys_2017_06_018
crossref_primary_10_1186_s12903_022_02466_x
crossref_primary_10_1109_JSTQE_2019_2921376
crossref_primary_10_1109_JSTQE_2019_2946655
crossref_primary_10_1007_s12652_021_03398_0
crossref_primary_10_1016_j_neucom_2025_129440
crossref_primary_10_1007_s13278_024_01338_2
crossref_primary_10_1007_s10342_021_01431_7
crossref_primary_10_1016_j_neucom_2019_12_094
crossref_primary_10_1051_0004_6361_202243461
crossref_primary_10_1155_2022_7020979
crossref_primary_10_1007_s00432_023_05339_0
crossref_primary_10_1016_j_optlastec_2017_10_011
crossref_primary_10_1186_s12877_018_0915_z
crossref_primary_10_1080_0952813X_2018_1509897
crossref_primary_10_1109_TNNLS_2017_2764960
crossref_primary_10_3389_fncom_2022_900885
crossref_primary_10_1097_ICU_0000000000000791
crossref_primary_10_1063_5_0088304
crossref_primary_10_1016_j_autcon_2021_103961
crossref_primary_10_1007_s11831_024_10169_5
crossref_primary_10_1016_j_compeleceng_2024_109836
crossref_primary_10_1016_j_ces_2024_120568
crossref_primary_10_1371_journal_pone_0204596
crossref_primary_10_1140_epjs_s11734_021_00162_5
crossref_primary_10_2478_forma_2022_0002
crossref_primary_10_1109_TCSS_2018_2857473
crossref_primary_10_3390_computers13060145
crossref_primary_10_1016_j_jhazmat_2021_126425
crossref_primary_10_1038_s41586_022_05340_6
crossref_primary_10_31857_S0005231023090039
crossref_primary_10_3389_fenvs_2022_1039249
crossref_primary_10_4018_IJTHI_319358
crossref_primary_10_1038_s41398_024_02992_y
crossref_primary_10_1088_1361_6528_ad2c52
crossref_primary_10_1016_j_asoc_2024_112249
crossref_primary_10_1155_2021_6690539
crossref_primary_10_1016_j_jestch_2019_12_004
crossref_primary_10_1016_j_metrad_2025_100134
crossref_primary_10_1016_j_rse_2018_02_045
crossref_primary_10_1038_s41598_020_71549_y
crossref_primary_10_1016_j_neucom_2021_07_010
crossref_primary_10_1007_s00138_015_0706_x
crossref_primary_10_1002_int_22451
crossref_primary_10_1016_j_esd_2023_04_004
crossref_primary_10_12688_wellcomeopenres_17148_2
crossref_primary_10_3389_fchem_2021_820417
crossref_primary_10_1080_20964471_2024_2386091
crossref_primary_10_3233_ISU_190060
crossref_primary_10_12688_wellcomeopenres_17148_1
crossref_primary_10_1109_JSTARS_2018_2880783
crossref_primary_10_1126_science_aaa8415
crossref_primary_10_1007_s11227_017_2022_x
crossref_primary_10_1016_j_marpol_2025_106704
crossref_primary_10_1016_j_procs_2020_09_203
crossref_primary_10_1007_s11063_024_11655_4
crossref_primary_10_1007_s42405_020_00254_x
crossref_primary_10_1109_TCSVT_2018_2822773
crossref_primary_10_3390_info13020076
crossref_primary_10_1038_s41598_018_28999_2
crossref_primary_10_1109_ACCESS_2020_3023495
crossref_primary_10_1016_j_engappai_2023_107365
crossref_primary_10_1007_s11837_023_06212_8
crossref_primary_10_1038_s41467_021_25427_4
crossref_primary_10_1039_D2RE00008C
crossref_primary_10_3390_s24113454
crossref_primary_10_3390_rs16244793
crossref_primary_10_1109_ACCESS_2021_3127084
crossref_primary_10_3390_rs13163313
crossref_primary_10_1109_ACCESS_2022_3228647
crossref_primary_10_3390_app11177931
crossref_primary_10_1109_ACCESS_2020_3034141
crossref_primary_10_1109_JETCAS_2019_2911537
crossref_primary_10_1186_s41018_016_0013_9
crossref_primary_10_1007_s00779_020_01467_3
crossref_primary_10_1016_j_asoc_2024_112232
crossref_primary_10_1016_j_chemolab_2021_104329
crossref_primary_10_3390_ijerph18020752
crossref_primary_10_1016_j_neucom_2018_04_085
crossref_primary_10_1002_nbm_4626
crossref_primary_10_1088_1361_6560_ac6e24
crossref_primary_10_3233_JIFS_189430
crossref_primary_10_1016_j_neucom_2017_09_005
crossref_primary_10_5194_bg_18_1941_2021
crossref_primary_10_1016_j_buildenv_2020_106805
crossref_primary_10_1109_ACCESS_2018_2866049
crossref_primary_10_1007_s00404_022_06865_x
crossref_primary_10_1007_s11042_018_6062_x
crossref_primary_10_1088_1742_6596_1950_1_012071
crossref_primary_10_1007_s10339_018_0888_z
crossref_primary_10_1089_big_2017_0020
crossref_primary_10_1002_aisy_202300703
crossref_primary_10_1177_29498732251340187
crossref_primary_10_1016_j_jcp_2019_06_039
crossref_primary_10_1109_TNNLS_2021_3070584
crossref_primary_10_1016_j_eswa_2023_120747
crossref_primary_10_1016_j_watres_2020_116103
crossref_primary_10_1007_s40860_017_0053_y
crossref_primary_10_1109_JSTARS_2021_3113163
crossref_primary_10_1111_phc3_12625
crossref_primary_10_1016_j_jclepro_2023_137300
crossref_primary_10_1007_s11192_021_04027_5
crossref_primary_10_1016_j_nucengdes_2022_111863
crossref_primary_10_1155_2018_9649643
crossref_primary_10_1016_j_jconhyd_2021_103798
crossref_primary_10_1016_j_jcp_2019_06_042
crossref_primary_10_1109_JIOT_2023_3294259
crossref_primary_10_1093_bib_bbaa272
crossref_primary_10_1109_TGRS_2021_3063216
crossref_primary_10_1088_1742_6596_1948_1_012023
crossref_primary_10_1109_TSMC_2023_3309709
crossref_primary_10_1007_s40558_023_00247_y
crossref_primary_10_1007_s12652_020_02010_1
crossref_primary_10_1148_radiol_2019182304
crossref_primary_10_1007_s00158_020_02648_7
crossref_primary_10_1038_s41540_023_00272_x
crossref_primary_10_3390_s18072287
crossref_primary_10_1007_s00603_023_03698_1
crossref_primary_10_26634_jip_7_2_17034
crossref_primary_10_1007_s42484_023_00112_5
crossref_primary_10_3389_frobt_2016_00054
crossref_primary_10_1016_j_csbj_2020_05_017
crossref_primary_10_1016_j_csbr_2024_100005
crossref_primary_10_1016_j_aei_2018_12_005
crossref_primary_10_1016_j_jmmm_2024_172726
crossref_primary_10_1016_j_diin_2016_07_001
crossref_primary_10_1631_FITEE_1900193
crossref_primary_10_1016_j_jmsy_2023_10_014
crossref_primary_10_3389_fnbot_2020_578675
crossref_primary_10_1145_3418172
crossref_primary_10_1103_PhysRevResearch_2_033338
crossref_primary_10_1109_TR_2022_3159784
crossref_primary_10_1016_j_apacoust_2020_107854
crossref_primary_10_1016_j_nucengdes_2022_111825
crossref_primary_10_3390_electronics10010017
crossref_primary_10_1007_s40996_025_02028_5
crossref_primary_10_1371_journal_pone_0305857
crossref_primary_10_1088_1361_665X_ad9fbf
crossref_primary_10_1155_2022_4511510
crossref_primary_10_1109_MCI_2019_2954643
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126142
crossref_primary_10_1038_s42256_020_0176_3
crossref_primary_10_1109_TNNLS_2018_2790388
crossref_primary_10_1016_j_anucene_2021_108521
crossref_primary_10_3390_rs13152867
crossref_primary_10_1109_MRA_2019_2918125
crossref_primary_10_1016_j_ifacol_2024_07_141
crossref_primary_10_1016_j_knosys_2024_112272
crossref_primary_10_1186_s42162_025_00565_x
crossref_primary_10_1038_s41598_022_23499_w
crossref_primary_10_1088_1361_6463_ab1f3f
crossref_primary_10_1109_TSP_2018_2872006
crossref_primary_10_1016_j_apenergy_2016_08_079
crossref_primary_10_1109_ACCESS_2019_2920885
crossref_primary_10_1109_ACCESS_2020_3030787
crossref_primary_10_1109_TSP_2016_2546221
crossref_primary_10_1155_2020_8863388
crossref_primary_10_3389_frai_2024_1424012
crossref_primary_10_1007_s00530_022_00992_w
crossref_primary_10_3390_rs11010002
crossref_primary_10_1016_j_neucom_2019_12_011
crossref_primary_10_3390_rs16163002
crossref_primary_10_1016_j_earscirev_2024_104887
crossref_primary_10_1016_j_iot_2024_101260
crossref_primary_10_1016_j_neucom_2019_12_014
crossref_primary_10_1109_TNSRE_2019_2915621
crossref_primary_10_1002_mp_15269
crossref_primary_10_1088_1742_6596_1294_4_042009
crossref_primary_10_3390_rs12203416
crossref_primary_10_4018_IJIDE_349724
crossref_primary_10_1016_j_compbiolchem_2025_108532
crossref_primary_10_1016_j_compbiolchem_2025_108530
crossref_primary_10_3390_s19235180
crossref_primary_10_3389_fphy_2025_1496778
crossref_primary_10_1109_MCOM_2017_1600699CM
crossref_primary_10_1016_j_cherd_2024_04_045
crossref_primary_10_1016_j_engappai_2022_105188
crossref_primary_10_1016_j_ijepes_2022_108005
crossref_primary_10_1088_1741_4326_ab201e
crossref_primary_10_1016_j_measurement_2022_111543
crossref_primary_10_1007_s00170_022_10709_y
crossref_primary_10_1007_s10796_023_10402_9
crossref_primary_10_1186_s13662_019_2008_5
crossref_primary_10_3390_s24102991
crossref_primary_10_1007_s12525_022_00537_z
crossref_primary_10_1017_S1743921317000552
crossref_primary_10_1016_j_jsr_2024_11_011
crossref_primary_10_1161_JAHA_123_033194
crossref_primary_10_1049_sil2_12085
crossref_primary_10_1016_j_energy_2023_129405
crossref_primary_10_1016_j_neucom_2016_07_059
crossref_primary_10_1155_2020_8865983
crossref_primary_10_3389_fpls_2016_01419
crossref_primary_10_1038_s41467_021_26568_2
crossref_primary_10_1016_j_ecoinf_2018_10_002
crossref_primary_10_1109_ACCESS_2021_3081442
crossref_primary_10_1109_ACCESS_2024_3354706
crossref_primary_10_1109_JIOT_2021_3081694
crossref_primary_10_2478_rem_2019_0013
crossref_primary_10_3390_electronics12143099
crossref_primary_10_1109_ACCESS_2021_3081449
crossref_primary_10_3390_app10186249
crossref_primary_10_1007_s13399_021_01651_2
crossref_primary_10_1016_j_neucom_2020_10_075
crossref_primary_10_3390_rs16111822
crossref_primary_10_1016_j_energy_2019_116278
crossref_primary_10_3390_electronics10101149
crossref_primary_10_1002_fsn3_4300
crossref_primary_10_3389_fonc_2023_1089998
crossref_primary_10_1016_j_cjph_2025_08_038
crossref_primary_10_1038_s41374_020_00477_2
crossref_primary_10_1016_j_icte_2020_01_002
crossref_primary_10_1371_journal_pone_0245026
crossref_primary_10_1007_s11665_023_07827_3
crossref_primary_10_1016_j_fss_2021_02_022
crossref_primary_10_1029_2021GL093096
crossref_primary_10_1016_j_compbiomed_2024_108258
crossref_primary_10_1016_j_neucom_2019_12_005
crossref_primary_10_1016_j_neucom_2020_10_065
crossref_primary_10_1109_TITS_2021_3070111
crossref_primary_10_3389_fpls_2022_729097
crossref_primary_10_1016_j_mtcomm_2025_111625
crossref_primary_10_1186_s13638_018_1133_2
crossref_primary_10_1016_j_flowmeasinst_2022_102233
crossref_primary_10_1016_j_flowmeasinst_2022_102234
crossref_primary_10_3847_1538_4357_ab8a47
crossref_primary_10_1186_s13007_018_0332_5
crossref_primary_10_5594_JMI_2021_3059344
crossref_primary_10_3390_en18020250
crossref_primary_10_1109_ACCESS_2019_2948367
crossref_primary_10_1007_s10462_019_09743_2
crossref_primary_10_1016_j_compag_2022_107234
crossref_primary_10_1063_1_4945368
crossref_primary_10_1109_TASE_2019_2936645
crossref_primary_10_3390_ijms17081313
crossref_primary_10_1124_pr_119_017921
crossref_primary_10_3390_electronics13224447
crossref_primary_10_1109_JSEN_2023_3300123
crossref_primary_10_1108_IJPCC_02_2021_0037
crossref_primary_10_1109_ACCESS_2019_2919806
crossref_primary_10_3390_rs13030364
crossref_primary_10_1080_17452007_2023_2244949
crossref_primary_10_1007_s10694_020_00986_y
crossref_primary_10_1007_s10588_018_9265_9
crossref_primary_10_1145_3231740
crossref_primary_10_1109_TKDE_2019_2913376
crossref_primary_10_1016_j_engappai_2019_08_014
crossref_primary_10_1080_0952813X_2017_1354081
crossref_primary_10_3390_math9070766
crossref_primary_10_1259_dmfr_20230284
crossref_primary_10_1016_j_procir_2021_09_045
crossref_primary_10_3390_molecules26247551
crossref_primary_10_1007_s10143_025_03512_2
crossref_primary_10_1145_3708496
crossref_primary_10_1016_j_icte_2019_08_004
crossref_primary_10_3390_brainsci11050615
crossref_primary_10_1007_s41403_022_00338_y
crossref_primary_10_1016_j_phycom_2025_102628
crossref_primary_10_1109_ACCESS_2021_3050296
crossref_primary_10_3389_fceng_2022_899941
crossref_primary_10_1007_s13042_022_01541_7
crossref_primary_10_3390_app12178769
crossref_primary_10_1007_s12539_016_0196_1
crossref_primary_10_1109_TCBB_2019_2936186
crossref_primary_10_1145_3386569_3392409
crossref_primary_10_1016_j_egypro_2018_09_220
crossref_primary_10_1016_j_scitotenv_2020_140562
crossref_primary_10_1136_oemed_2019_106386
crossref_primary_10_1007_s00521_020_05626_8
crossref_primary_10_1111_anae_14535
crossref_primary_10_1007_s12369_021_00819_0
crossref_primary_10_1016_j_molliq_2021_118418
crossref_primary_10_1007_s11071_023_08360_7
crossref_primary_10_1016_j_matdes_2021_110181
crossref_primary_10_1002_minf_202300262
crossref_primary_10_1016_j_ndteint_2019_102147
crossref_primary_10_1007_s12206_022_0102_1
crossref_primary_10_1109_TSUSC_2017_2710178
crossref_primary_10_1109_TCYB_2017_2668395
crossref_primary_10_1016_j_neunet_2022_12_017
crossref_primary_10_1016_j_procs_2018_01_104
crossref_primary_10_1016_j_wneu_2024_01_035
crossref_primary_10_1109_TKDE_2020_3028943
crossref_primary_10_1016_j_isci_2025_112062
crossref_primary_10_3390_app13084781
crossref_primary_10_1093_ijl_ecy011
crossref_primary_10_1177_0954407019861245
crossref_primary_10_1080_08839514_2020_1804228
crossref_primary_10_1002_aisy_202300797
crossref_primary_10_1002_aenm_202100931
crossref_primary_10_1038_s41598_024_81523_7
crossref_primary_10_32604_sdhm_2024_049298
crossref_primary_10_1109_JPROC_2023_3273520
crossref_primary_10_1523_JNEUROSCI_1338_21_2021
crossref_primary_10_4103_1673_5374_355982
crossref_primary_10_1016_j_neunet_2022_12_011
crossref_primary_10_1109_ACCESS_2022_3180051
crossref_primary_10_1146_annurev_bioeng_110220_030247
crossref_primary_10_3390_asi8010018
crossref_primary_10_1088_2515_7620_adac32
crossref_primary_10_1364_JOSAB_545930
crossref_primary_10_1103_PhysRevA_106_032611
crossref_primary_10_3233_IDA_226750
crossref_primary_10_1007_s00466_019_01716_0
crossref_primary_10_1186_s13007_018_0287_6
crossref_primary_10_3390_data7050058
crossref_primary_10_3233_JIFS_231387
crossref_primary_10_1016_j_isprsjprs_2022_04_026
crossref_primary_10_47164_ijngc_v14i1_1052
crossref_primary_10_3390_app13095491
crossref_primary_10_1038_s41467_017_02726_3
crossref_primary_10_1016_j_cmpb_2018_05_032
crossref_primary_10_1007_s00332_022_09820_x
crossref_primary_10_1039_D5TC00499C
crossref_primary_10_1016_j_jid_2019_12_029
crossref_primary_10_1016_j_talanta_2020_121926
crossref_primary_10_3390_app112411728
crossref_primary_10_3390_en13082102
crossref_primary_10_2196_44597
crossref_primary_10_1007_s11042_023_15961_2
crossref_primary_10_1016_j_energy_2021_122210
crossref_primary_10_1016_j_eswa_2017_09_045
crossref_primary_10_1016_j_rsase_2020_100356
crossref_primary_10_1007_s10922_024_09882_0
crossref_primary_10_1007_s41742_025_00752_4
crossref_primary_10_1109_ACCESS_2019_2948388
crossref_primary_10_1016_j_jwpe_2025_107923
crossref_primary_10_1051_e3sconf_201911302010
crossref_primary_10_3390_e25101470
crossref_primary_10_1038_s41746_023_00859_y
crossref_primary_10_1109_TAFFC_2016_2634527
crossref_primary_10_4218_etrij_2017_0327
crossref_primary_10_3389_fnins_2022_920820
crossref_primary_10_1016_j_ijepes_2022_108092
crossref_primary_10_1038_s41598_020_60632_z
crossref_primary_10_3390_su152215941
crossref_primary_10_1080_15440478_2021_1932669
crossref_primary_10_1208_s12248_018_0210_0
crossref_primary_10_1109_ACCESS_2019_2947069
crossref_primary_10_3390_app10155135
crossref_primary_10_1002_1873_3468_12307
crossref_primary_10_3389_frobt_2016_00026
crossref_primary_10_1109_TIV_2023_3235732
crossref_primary_10_1155_2022_7453653
crossref_primary_10_1144_petgeo2022_032
crossref_primary_10_3748_wjg_v26_i46_7287
crossref_primary_10_3389_fnins_2018_00941
crossref_primary_10_3390_en13143643
crossref_primary_10_1002_mrm_28038
crossref_primary_10_1016_j_artmed_2021_102039
crossref_primary_10_1155_2018_7130146
crossref_primary_10_1155_2021_2267635
crossref_primary_10_1109_ACCESS_2018_2886573
crossref_primary_10_1109_TNNLS_2022_3185742
crossref_primary_10_1162_neco_a_01454
crossref_primary_10_1007_s42979_024_03626_2
crossref_primary_10_1162_neco_a_01458
crossref_primary_10_1088_1742_6596_1187_2_022038
crossref_primary_10_1080_01431161_2024_2365811
crossref_primary_10_1007_s10796_022_10314_0
crossref_primary_10_1016_j_eswa_2021_116003
crossref_primary_10_1016_j_jpdc_2017_09_006
crossref_primary_10_1007_s12046_018_0794_1
crossref_primary_10_1080_08839514_2018_1501910
crossref_primary_10_1016_j_neucom_2019_03_081
crossref_primary_10_3390_jmse9020169
crossref_primary_10_1016_j_neucom_2019_03_084
crossref_primary_10_1109_JIOT_2019_2902376
crossref_primary_10_3390_cancers13092162
crossref_primary_10_1109_ACCESS_2020_3034218
crossref_primary_10_1007_s11663_025_03674_w
crossref_primary_10_1093_forestry_cpac002
crossref_primary_10_1080_09500340_2020_1810347
crossref_primary_10_3390_machines13080666
crossref_primary_10_4018_JGIM_298992
crossref_primary_10_1016_j_measurement_2020_108227
crossref_primary_10_1002_isaf_1487
crossref_primary_10_1038_s41598_019_47564_z
crossref_primary_10_1109_ACCESS_2020_2979256
crossref_primary_10_1016_j_artmed_2019_07_008
crossref_primary_10_3389_fncom_2016_00094
crossref_primary_10_3389_fmicb_2019_03097
crossref_primary_10_3389_fncom_2016_00092
crossref_primary_10_1016_j_neucom_2019_03_096
crossref_primary_10_1109_ACCESS_2021_3076820
crossref_primary_10_1109_TII_2020_2990397
crossref_primary_10_1016_j_neurol_2025_02_007
crossref_primary_10_1016_j_psep_2023_04_008
crossref_primary_10_1111_coin_12557
crossref_primary_10_4103_jrms_JRMS_268_20
crossref_primary_10_1109_MCI_2016_2627670
crossref_primary_10_3390_a18070399
crossref_primary_10_1016_j_cognition_2020_104243
crossref_primary_10_1109_JAS_2022_105737
crossref_primary_10_3390_electronics10030342
crossref_primary_10_1007_s41252_022_00309_y
crossref_primary_10_1007_s00107_022_01826_2
crossref_primary_10_1016_j_cie_2022_108859
crossref_primary_10_1088_1475_7516_2025_01_014
crossref_primary_10_1109_TCDS_2019_2963476
crossref_primary_10_1016_j_anucene_2019_107111
crossref_primary_10_3390_en12142758
crossref_primary_10_1108_RPJ_05_2020_0097
crossref_primary_10_3390_e20020043
crossref_primary_10_1109_TIM_2022_3206762
crossref_primary_10_1016_j_earscirev_2023_104509
crossref_primary_10_1109_ACCESS_2021_3051557
crossref_primary_10_1016_j_ifacol_2023_10_1367
crossref_primary_10_1080_07038992_2022_2054405
crossref_primary_10_1111_aos_15071
crossref_primary_10_1109_TMM_2021_3124080
crossref_primary_10_1016_j_future_2021_06_045
crossref_primary_10_3390_su15032644
crossref_primary_10_1016_j_isatra_2019_07_004
crossref_primary_10_1111_coin_12554
crossref_primary_10_1063_5_0051132
crossref_primary_10_1016_j_est_2024_112907
crossref_primary_10_1016_j_jhydrol_2021_127167
crossref_primary_10_1016_j_jspi_2024_106195
crossref_primary_10_3390_en12142764
crossref_primary_10_1016_j_neucom_2022_09_088
crossref_primary_10_1016_j_eswa_2021_116038
crossref_primary_10_3233_SW_180300
crossref_primary_10_3389_frai_2020_00004
crossref_primary_10_1007_s00530_024_01396_8
crossref_primary_10_1007_s10182_022_00467_3
crossref_primary_10_1016_j_ejor_2022_01_034
crossref_primary_10_1016_j_dsm_2024_09_004
crossref_primary_10_1016_j_ecoenv_2023_115066
crossref_primary_10_1137_18M1181249
crossref_primary_10_3390_jmse12071099
crossref_primary_10_1016_j_ins_2016_05_033
crossref_primary_10_1016_j_jspi_2024_106188
crossref_primary_10_3390_sym13020308
crossref_primary_10_1007_s44202_022_00027_5
crossref_primary_10_1109_MSP_2017_2739299
crossref_primary_10_1162_neco_a_01410
crossref_primary_10_1016_j_cie_2021_107227
crossref_primary_10_1016_j_rser_2025_115573
crossref_primary_10_1109_ACCESS_2020_2980285
crossref_primary_10_1007_s40808_024_02070_8
crossref_primary_10_1016_j_mineng_2020_106443
crossref_primary_10_1109_TSM_2017_2676245
crossref_primary_10_1109_MSP_2022_3199595
crossref_primary_10_3390_jtaer17030048
crossref_primary_10_1109_ACCESS_2021_3074219
crossref_primary_10_1038_s41598_020_57549_y
crossref_primary_10_1007_s10064_023_03498_5
crossref_primary_10_1051_0004_6361_202038787
crossref_primary_10_1016_j_bbe_2018_01_001
crossref_primary_10_1016_j_future_2019_06_008
crossref_primary_10_1016_j_yexcr_2022_113278
crossref_primary_10_1016_j_mtener_2024_101621
crossref_primary_10_1016_j_neunet_2024_106215
crossref_primary_10_1177_03611981241257512
crossref_primary_10_3233_JIFS_161860
crossref_primary_10_3390_bioengineering10101120
crossref_primary_10_1016_j_physrep_2019_03_001
crossref_primary_10_3390_s22062330
crossref_primary_10_1016_j_measen_2023_100784
crossref_primary_10_1007_s43621_024_00745_x
crossref_primary_10_1162_neco_a_01407
crossref_primary_10_3390_machines12040214
crossref_primary_10_1111_aos_15040
crossref_primary_10_1016_j_ifacol_2023_10_1378
crossref_primary_10_1190_geo2020_0726_1
crossref_primary_10_1109_TIA_2020_3004294
crossref_primary_10_1038_s41598_020_62724_2
crossref_primary_10_1055_a_2039_3773
crossref_primary_10_1049_ote2_12113
crossref_primary_10_1016_j_cja_2023_11_001
crossref_primary_10_1007_s13042_023_01794_w
crossref_primary_10_1002_isaf_1459
crossref_primary_10_1080_19648189_2024_2393881
crossref_primary_10_1016_j_nxener_2023_100078
crossref_primary_10_1007_s41064_023_00233_3
crossref_primary_10_1007_s11042_019_07813_9
crossref_primary_10_1016_j_mtcomm_2022_103901
crossref_primary_10_3390_land11101796
crossref_primary_10_1371_journal_pone_0168392
crossref_primary_10_1016_j_neucom_2020_04_057
crossref_primary_10_1177_08465371231222229
crossref_primary_10_1016_j_engappai_2025_111937
crossref_primary_10_1088_1741_2552_abf28e
crossref_primary_10_1007_s00170_021_07774_0
crossref_primary_10_1016_j_jafrearsci_2025_105561
crossref_primary_10_1093_bib_bbaf023
crossref_primary_10_1109_TVT_2021_3099797
crossref_primary_10_1007_s10462_022_10315_0
crossref_primary_10_1016_j_apacoust_2022_108951
crossref_primary_10_1371_journal_pone_0239141
crossref_primary_10_1007_s11760_022_02393_y
crossref_primary_10_1016_j_asoc_2019_105740
crossref_primary_10_1109_JLT_2020_3025616
crossref_primary_10_1109_ACCESS_2024_3510656
crossref_primary_10_1007_s13369_020_05112_2
crossref_primary_10_1103_PhysRevApplied_12_014059
crossref_primary_10_1007_s12599_018_0551_3
crossref_primary_10_3390_en14010125
crossref_primary_10_1080_13658816_2019_1599122
crossref_primary_10_1016_j_engappai_2025_110613
crossref_primary_10_1016_j_compbiomed_2019_103350
crossref_primary_10_1080_23311916_2020_1727168
crossref_primary_10_1016_j_compbiomed_2019_103352
crossref_primary_10_1007_s11042_015_2702_6
crossref_primary_10_1109_TNNLS_2020_2966745
crossref_primary_10_3390_su14010013
crossref_primary_10_1088_1361_6420_ab460a
crossref_primary_10_3390_atmos15030271
crossref_primary_10_3390_genes10110906
crossref_primary_10_1038_s41467_018_05169_6
crossref_primary_10_1515_scid_2019_0020
crossref_primary_10_1016_j_oceaneng_2024_119833
crossref_primary_10_1016_j_apenergy_2022_119005
crossref_primary_10_1038_s41524_019_0189_9
crossref_primary_10_1007_s00500_019_04306_7
crossref_primary_10_1038_s41395_018_0268_4
crossref_primary_10_1038_s41598_017_16316_2
crossref_primary_10_1002_isaf_1404
crossref_primary_10_1007_s12181_021_00511_7
crossref_primary_10_1016_j_measurement_2022_111581
crossref_primary_10_1042_BCJ20210535
crossref_primary_10_1002_isaf_1408
crossref_primary_10_1016_j_compbiomed_2019_103346
crossref_primary_10_1016_j_neucom_2019_03_019
crossref_primary_10_1109_JPROC_2021_3052449
crossref_primary_10_1109_ACCESS_2022_3216574
crossref_primary_10_1109_JPROC_2020_2968184
crossref_primary_10_1109_ACCESS_2021_3067043
crossref_primary_10_1093_comjnl_bxaa042
crossref_primary_10_1007_s12652_020_01938_8
crossref_primary_10_1016_j_est_2023_106784
crossref_primary_10_1007_s11837_016_2226_1
crossref_primary_10_1007_s11128_020_02657_x
crossref_primary_10_1051_epjconf_202430217009
crossref_primary_10_1177_0959651820939345
crossref_primary_10_1016_j_compbiomed_2018_10_033
crossref_primary_10_3390_jrfm17070295
crossref_primary_10_1016_j_jmmm_2023_170624
crossref_primary_10_1016_j_neures_2023_01_007
crossref_primary_10_1049_gtd2_12925
crossref_primary_10_3233_IDA_194739
crossref_primary_10_1007_s10596_019_09918_4
crossref_primary_10_1364_AO_551276
crossref_primary_10_1109_JBHI_2018_2878945
crossref_primary_10_3390_app112110064
crossref_primary_10_3390_diagnostics12061344
crossref_primary_10_1109_TITS_2019_2906038
crossref_primary_10_1016_j_scitotenv_2021_152018
crossref_primary_10_1007_s11042_022_13714_1
crossref_primary_10_1016_j_ins_2020_06_044
crossref_primary_10_1038_s42256_018_0006_z
crossref_primary_10_14361_dcs_2018_040109
crossref_primary_10_1016_j_jhydrol_2020_124670
crossref_primary_10_1038_s41467_022_29491_2
crossref_primary_10_1016_j_conbuildmat_2020_119703
crossref_primary_10_1016_j_ocemod_2025_102510
crossref_primary_10_1016_j_neucom_2022_09_003
crossref_primary_10_1038_s41598_020_70159_y
crossref_primary_10_1017_jpr_2022_96
crossref_primary_10_3390_ma16227213
crossref_primary_10_1137_20M1344263
crossref_primary_10_1617_s11527_022_01933_9
crossref_primary_10_1016_j_parco_2019_03_005
crossref_primary_10_1007_s00289_023_04929_9
crossref_primary_10_1016_j_jksuci_2020_09_008
crossref_primary_10_3390_cryst11040324
crossref_primary_10_1073_pnas_2009821117
crossref_primary_10_1007_s40194_021_01145_9
crossref_primary_10_1002_stc_2054
crossref_primary_10_1016_j_jsr_2022_08_013
crossref_primary_10_1109_ACCESS_2018_2807700
crossref_primary_10_1016_j_engappai_2023_107261
crossref_primary_10_1177_0047287520921244
crossref_primary_10_1038_s41598_019_53989_3
crossref_primary_10_1109_MNET_2018_1800101
crossref_primary_10_1109_TCDS_2018_2796940
crossref_primary_10_1007_s00521_020_05137_6
crossref_primary_10_3389_fdata_2022_688496
crossref_primary_10_1002_adma_202210484
crossref_primary_10_1016_j_jksuci_2019_08_001
crossref_primary_10_1038_s41598_022_05709_7
crossref_primary_10_1007_s00894_023_05523_6
crossref_primary_10_1162_posc_a_00377
crossref_primary_10_1016_j_neucom_2018_10_097
crossref_primary_10_1063_5_0011998
crossref_primary_10_1002_ima_22562
crossref_primary_10_1016_j_optcom_2018_11_054
crossref_primary_10_1080_01431161_2022_2030070
crossref_primary_10_1190_geo2021_0560_1
crossref_primary_10_1109_ACCESS_2020_2979219
crossref_primary_10_1016_j_asoc_2025_113759
crossref_primary_10_1007_s10462_021_09975_1
crossref_primary_10_1016_j_ymssp_2020_107110
crossref_primary_10_1007_s11063_022_11035_w
crossref_primary_10_1109_TMTT_2021_3075689
crossref_primary_10_1049_iet_its_2017_0042
crossref_primary_10_1016_j_eswa_2024_123242
crossref_primary_10_1016_j_future_2022_10_022
crossref_primary_10_3390_mi12070781
crossref_primary_10_1016_j_fusengdes_2016_11_006
crossref_primary_10_1088_1361_6501_aaaca6
crossref_primary_10_1109_TASLP_2018_2842159
crossref_primary_10_3390_polym14235290
crossref_primary_10_1007_s11042_023_14656_y
crossref_primary_10_1109_TGRS_2022_3172227
crossref_primary_10_3390_su12187520
crossref_primary_10_51847_iW1DfVoXVw
crossref_primary_10_1007_s11227_023_05611_7
crossref_primary_10_3390_atmos11030246
crossref_primary_10_1016_j_jclepro_2023_138650
crossref_primary_10_1051_0004_6361_202142932
crossref_primary_10_1080_24751839_2021_1981684
crossref_primary_10_1002_ima_22542
crossref_primary_10_1016_j_autcon_2024_105894
crossref_primary_10_1109_ACCESS_2021_3064830
crossref_primary_10_1109_ACCESS_2020_2981506
crossref_primary_10_1080_00207543_2020_1832270
crossref_primary_10_1109_TSTE_2021_3123337
crossref_primary_10_1007_s12559_017_9461_9
crossref_primary_10_3390_axioms11090464
crossref_primary_10_1007_s10668_022_02387_3
crossref_primary_10_1088_1757_899X_450_4_042010
crossref_primary_10_3233_XST_210962
crossref_primary_10_1093_jge_gxab046
crossref_primary_10_1109_ACCESS_2020_2994810
crossref_primary_10_1007_s11042_019_08236_2
crossref_primary_10_1016_j_neucom_2023_126919
crossref_primary_10_1109_TNNLS_2022_3144515
crossref_primary_10_1007_s10489_022_03313_w
crossref_primary_10_1007_s41116_023_00038_x
crossref_primary_10_3390_cancers15164044
crossref_primary_10_3389_fpsyg_2016_01584
crossref_primary_10_1007_s12524_019_01049_8
crossref_primary_10_1016_j_atech_2025_100855
crossref_primary_10_2478_amcs_2018_0056
crossref_primary_10_3389_fnhum_2022_767612
crossref_primary_10_1086_714877
crossref_primary_10_1007_s00146_018_0860_6
crossref_primary_10_1109_TNNLS_2022_3157830
crossref_primary_10_1007_s12665_019_8210_7
crossref_primary_10_1016_j_iswa_2025_200563
crossref_primary_10_1128_AEM_00608_19
crossref_primary_10_1007_s40745_020_00300_1
crossref_primary_10_1145_3281032
crossref_primary_10_1109_ACCESS_2020_3003286
crossref_primary_10_1111_jfb_15793
crossref_primary_10_1007_s13369_023_07959_7
crossref_primary_10_3390_app10186357
crossref_primary_10_1016_j_mtcomm_2023_105979
crossref_primary_10_1007_s11269_022_03216_y
crossref_primary_10_1016_j_patrec_2018_07_027
crossref_primary_10_1016_j_csl_2020_101104
crossref_primary_10_1016_j_swevo_2020_100650
crossref_primary_10_1073_pnas_2016708118
crossref_primary_10_1007_s11220_019_0248_9
crossref_primary_10_1088_1742_6596_2050_1_012007
crossref_primary_10_1109_JBHI_2016_2633963
crossref_primary_10_1016_j_jmsy_2018_05_004
crossref_primary_10_1029_2018WR024090
crossref_primary_10_1007_s11103_018_0698_9
crossref_primary_10_1186_s12859_018_2055_z
crossref_primary_10_1371_journal_pone_0315343
crossref_primary_10_3390_s23208347
crossref_primary_10_3233_JIFS_190215
crossref_primary_10_1002_jbio_201960147
crossref_primary_10_1002_mde_3905
crossref_primary_10_1557_s43580_022_00308_0
crossref_primary_10_1039_D1SC01000J
crossref_primary_10_1093_bib_bbab271
crossref_primary_10_1038_s41598_018_21215_1
crossref_primary_10_1108_IJQRM_07_2022_0204
crossref_primary_10_1007_s11141_022_10175_2
crossref_primary_10_3847_1538_4365_ad1f5d
crossref_primary_10_1016_j_jappgeo_2024_105296
crossref_primary_10_1080_03610918_2020_1714659
crossref_primary_10_3390_math13132110
crossref_primary_10_3390_s22145265
crossref_primary_10_1109_ACCESS_2019_2920776
crossref_primary_10_1002_nsg_12163
crossref_primary_10_1016_j_jenvman_2023_119585
crossref_primary_10_1007_s40747_023_01257_3
crossref_primary_10_1109_JSEN_2022_3210773
crossref_primary_10_1016_j_aap_2023_107205
crossref_primary_10_1007_s11042_023_14959_0
crossref_primary_10_1016_j_jclepro_2022_132961
crossref_primary_10_1109_TMI_2021_3116298
crossref_primary_10_1016_j_cie_2020_106536
crossref_primary_10_1016_j_radphyschem_2021_109708
crossref_primary_10_1038_s41598_024_78979_y
crossref_primary_10_3390_su16229805
crossref_primary_10_3233_JIFS_201400
crossref_primary_10_3389_fbioe_2024_1351485
crossref_primary_10_1049_ccs2_12012
crossref_primary_10_1177_09544097221093486
crossref_primary_10_2196_59564
crossref_primary_10_1109_MSP_2018_2868887
crossref_primary_10_1109_ACCESS_2020_3042839
crossref_primary_10_3390_math11163603
crossref_primary_10_3390_w15234160
crossref_primary_10_1016_j_atech_2025_100898
crossref_primary_10_1109_TIE_2017_2745473
crossref_primary_10_1016_j_surg_2024_07_039
crossref_primary_10_1109_TITS_2017_2750070
crossref_primary_10_1016_j_knosys_2025_113575
crossref_primary_10_1016_j_neunet_2020_07_025
crossref_primary_10_1039_C9RA04186A
crossref_primary_10_1016_j_compag_2024_109695
crossref_primary_10_1007_s10586_018_2185_0
crossref_primary_10_1109_TGRS_2021_3085340
crossref_primary_10_1177_17562872211044880
crossref_primary_10_1007_s10845_018_1447_2
crossref_primary_10_3390_s24165350
crossref_primary_10_7232_JKIIE_2022_48_6_557
crossref_primary_10_3390_rs14195042
crossref_primary_10_1002_ece3_5410
crossref_primary_10_1109_TNNLS_2021_3122179
crossref_primary_10_1093_mnras_stw1621
crossref_primary_10_1007_s13351_019_8162_6
crossref_primary_10_3390_en14165150
crossref_primary_10_1038_s41591_025_03560_7
crossref_primary_10_1177_0022034520920593
crossref_primary_10_1002_jccs_201900514
crossref_primary_10_3390_math12233859
crossref_primary_10_1016_j_conbuildmat_2023_134212
crossref_primary_10_1109_ACCESS_2020_3029860
crossref_primary_10_1038_s41580_018_0094_y
crossref_primary_10_1109_ACCESS_2022_3206266
crossref_primary_10_1007_s42360_023_00660_7
crossref_primary_10_1080_08820538_2021_1901123
crossref_primary_10_3390_met11101533
crossref_primary_10_1016_j_ins_2023_119668
crossref_primary_10_3390_computation13020058
crossref_primary_10_1016_j_datak_2021_101909
crossref_primary_10_1049_iet_opt_2020_0021
crossref_primary_10_1109_JSTARS_2021_3103216
crossref_primary_10_1186_s13640_017_0213_2
crossref_primary_10_3390_a15120466
crossref_primary_10_5194_essd_14_3743_2022
crossref_primary_10_1109_TCOMM_2020_2968314
crossref_primary_10_1371_journal_pone_0176690
crossref_primary_10_1016_j_envsoft_2025_106338
crossref_primary_10_1155_2022_1812273
crossref_primary_10_3390_s23187712
crossref_primary_10_1126_scirobotics_abe2547
crossref_primary_10_1007_s44211_024_00681_w
crossref_primary_10_1088_1757_899X_1176_1_012034
crossref_primary_10_1186_s12880_025_01646_9
crossref_primary_10_1016_j_energy_2020_118878
crossref_primary_10_1016_j_eswa_2025_126557
crossref_primary_10_1002_cdt3_137
crossref_primary_10_1029_2021MS002926
crossref_primary_10_1016_j_ymssp_2019_106482
crossref_primary_10_1007_s11042_022_12223_5
crossref_primary_10_1093_bib_bbac552
crossref_primary_10_1109_TPEL_2023_3309233
crossref_primary_10_1109_TPEL_2023_3309232
crossref_primary_10_1016_j_neucom_2020_09_086
crossref_primary_10_1016_j_oceaneng_2024_118495
crossref_primary_10_1016_j_epsr_2020_106547
crossref_primary_10_4018_IJSI_2019100101
crossref_primary_10_1109_TSMC_2020_3042785
crossref_primary_10_1016_j_energy_2018_12_016
crossref_primary_10_1155_2024_1124598
crossref_primary_10_63463_kjes1074
crossref_primary_10_1016_j_petlm_2023_02_003
crossref_primary_10_1109_TNNLS_2021_3083759
crossref_primary_10_1016_j_neucom_2020_09_082
crossref_primary_10_1007_s00586_023_07909_9
crossref_primary_10_1016_j_chemolab_2018_07_001
crossref_primary_10_1016_j_imavis_2020_103981
crossref_primary_10_3390_jcdd12080314
crossref_primary_10_1002_stc_2899
crossref_primary_10_1038_s41598_024_77398_3
crossref_primary_10_1109_ACCESS_2019_2949577
crossref_primary_10_1109_ACCESS_2020_3040298
crossref_primary_10_1007_s10278_017_0010_6
crossref_primary_10_3390_inventions6010015
crossref_primary_10_1016_j_cageo_2025_105853
crossref_primary_10_1186_s12938_017_0405_0
crossref_primary_10_1007_s00034_022_02110_7
crossref_primary_10_3389_fmicb_2025_1510126
crossref_primary_10_1061__ASCE_WR_1943_5452_0001615
crossref_primary_10_1109_ACCESS_2020_2992063
crossref_primary_10_1016_j_csda_2023_107911
crossref_primary_10_3390_s21206910
crossref_primary_10_1007_s40430_024_05310_1
crossref_primary_10_1002_ese3_1405
crossref_primary_10_1016_j_isprsjprs_2017_07_014
crossref_primary_10_1364_AO_58_003179
crossref_primary_10_1109_ACCESS_2019_2962552
crossref_primary_10_1007_s11250_019_02097_5
crossref_primary_10_1177_15501477211009814
crossref_primary_10_1016_j_patcog_2020_107528
crossref_primary_10_1007_s13369_021_06309_9
crossref_primary_10_1007_s10489_022_04083_1
crossref_primary_10_1016_j_jmsy_2019_02_005
crossref_primary_10_1016_j_snb_2024_136528
crossref_primary_10_1016_j_biortech_2021_125581
crossref_primary_10_3390_diagnostics14111091
crossref_primary_10_1016_j_agwat_2022_108115
crossref_primary_10_1017_S1431927622012132
crossref_primary_10_1371_journal_pone_0276032
crossref_primary_10_1007_s00521_018_03973_1
crossref_primary_10_1109_JIOT_2019_2963701
crossref_primary_10_1109_TIFS_2016_2555287
crossref_primary_10_1049_cmu2_12335
crossref_primary_10_3390_cancers17152515
crossref_primary_10_1016_j_procs_2021_02_079
crossref_primary_10_1088_1757_899X_263_4_042094
crossref_primary_10_1016_j_rineng_2024_102461
crossref_primary_10_1007_s00521_024_10158_6
crossref_primary_10_1016_j_neucom_2018_07_097
crossref_primary_10_1007_s13143_023_00319_3
crossref_primary_10_1016_j_neucom_2018_07_099
crossref_primary_10_1186_s12711_018_0439_1
crossref_primary_10_1088_1757_899X_263_4_042097
crossref_primary_10_1088_1741_2552_ad8031
crossref_primary_10_1109_ACCESS_2020_2979074
crossref_primary_10_1109_ACCESS_2020_3022405
crossref_primary_10_1016_j_geoderma_2020_114552
crossref_primary_10_1088_2632_2153_abbf9a
crossref_primary_10_1016_j_neucom_2017_06_002
crossref_primary_10_1016_j_neucom_2021_02_049
crossref_primary_10_3390_ijgi10120813
crossref_primary_10_1049_iet_cvi_2018_5829
crossref_primary_10_1007_s00477_022_02195_1
crossref_primary_10_1016_j_ijsrc_2018_09_001
crossref_primary_10_1016_j_knosys_2021_106969
crossref_primary_10_1080_19648189_2022_2068657
crossref_primary_10_1109_TCSI_2020_2971642
crossref_primary_10_1088_1742_6596_1631_1_012135
crossref_primary_10_1109_TPAMI_2025_3552368
crossref_primary_10_1111_1541_4337_12492
crossref_primary_10_1016_j_patcog_2016_05_028
crossref_primary_10_1016_j_neunet_2022_08_014
crossref_primary_10_1007_s00521_022_07513_w
crossref_primary_10_3390_e24040471
crossref_primary_10_1109_ACCESS_2021_3064354
crossref_primary_10_1016_j_jhydrol_2020_125085
crossref_primary_10_1371_journal_pone_0211510
crossref_primary_10_1002_pd_5893
crossref_primary_10_1016_j_procs_2016_09_068
crossref_primary_10_1016_j_engappai_2022_105490
crossref_primary_10_3390_molecules26010182
crossref_primary_10_1088_2631_8695_ade02b
crossref_primary_10_1098_rsos_191649
crossref_primary_10_3390_en17010159
crossref_primary_10_1109_TNSE_2020_3004312
crossref_primary_10_3390_app14167312
crossref_primary_10_1002_er_6462
crossref_primary_10_1016_j_compbiomed_2023_106711
crossref_primary_10_1016_j_engstruct_2022_115311
crossref_primary_10_1016_j_jmst_2020_08_008
crossref_primary_10_1016_j_jcp_2022_111301
crossref_primary_10_3389_fpls_2019_01422
crossref_primary_10_1016_j_ins_2025_122104
crossref_primary_10_1016_j_ijplas_2023_103642
crossref_primary_10_1080_01969722_2019_1705548
crossref_primary_10_1016_j_optlaseng_2025_109058
crossref_primary_10_1145_3368313
crossref_primary_10_3390_e23030339
crossref_primary_10_3390_ani15030292
crossref_primary_10_1007_s10845_019_01485_w
crossref_primary_10_1038_s41467_019_11605_y
crossref_primary_10_3390_su15031895
crossref_primary_10_1177_00031348221109478
crossref_primary_10_1007_s11430_019_9584_9
crossref_primary_10_1016_j_media_2018_10_006
crossref_primary_10_1016_j_bspc_2023_105706
crossref_primary_10_1007_s10278_020_00391_5
crossref_primary_10_1016_j_technovation_2023_102768
crossref_primary_10_1007_s11768_022_00081_3
crossref_primary_10_1109_TED_2021_3093376
crossref_primary_10_1038_s41598_020_76826_4
crossref_primary_10_1016_j_cma_2021_114038
crossref_primary_10_1111_1556_4029_14978
crossref_primary_10_1016_j_conbuildmat_2018_08_011
crossref_primary_10_1016_j_engappai_2022_105458
crossref_primary_10_1117_1_JBO_24_5_051408
crossref_primary_10_1007_s10586_022_03577_4
crossref_primary_10_1016_j_aap_2023_107237
crossref_primary_10_1007_s00382_021_05869_8
crossref_primary_10_1063_5_0177640
crossref_primary_10_1175_JHM_D_21_0019_1
crossref_primary_10_1007_s41062_025_02147_y
crossref_primary_10_3390_su141610344
crossref_primary_10_1038_s41598_022_09453_w
crossref_primary_10_1155_2017_3471616
crossref_primary_10_3390_su141711084
crossref_primary_10_1016_j_apacoust_2023_109714
crossref_primary_10_3389_fmats_2019_00110
crossref_primary_10_1109_TIE_2017_2733438
crossref_primary_10_3390_s21051888
crossref_primary_10_1016_j_compag_2021_106136
crossref_primary_10_1162_neco_a_01100
crossref_primary_10_1016_j_wroa_2025_100346
crossref_primary_10_1002_stc_2824
crossref_primary_10_1116_6_0002809
crossref_primary_10_1177_14759217221075241
crossref_primary_10_3390_atmos10070373
crossref_primary_10_1002_sta4_308
crossref_primary_10_1007_s00521_023_09302_5
crossref_primary_10_1016_j_apor_2023_103511
crossref_primary_10_1061__ASCE_WR_1943_5452_0001624
crossref_primary_10_1063_5_0138060
crossref_primary_10_1109_ACCESS_2019_2918409
crossref_primary_10_3390_e23101242
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127616
crossref_primary_10_1109_ACCESS_2019_2905101
crossref_primary_10_3390_app13137690
crossref_primary_10_1080_09715010_2017_1408433
crossref_primary_10_1155_2022_2014510
crossref_primary_10_1016_j_conbuildmat_2023_131941
crossref_primary_10_3390_s18103327
crossref_primary_10_1016_j_est_2025_116403
crossref_primary_10_1007_s10287_024_00504_3
crossref_primary_10_56093_ijas_v91i9_116097
crossref_primary_10_1016_j_knosys_2019_104874
crossref_primary_10_1109_ACCESS_2021_3116131
crossref_primary_10_1108_AJIM_02_2020_0054
crossref_primary_10_1016_j_cviu_2018_09_001
crossref_primary_10_1038_s41380_019_0365_9
crossref_primary_10_1080_0952813X_2023_2219286
crossref_primary_10_3390_app15147684
crossref_primary_10_1007_s11668_022_01360_6
crossref_primary_10_1016_j_ins_2022_12_045
crossref_primary_10_3389_fenvs_2022_1025268
crossref_primary_10_1007_s42045_018_0003_0
crossref_primary_10_2139_ssrn_3155047
crossref_primary_10_1007_s41062_023_01351_y
crossref_primary_10_1016_j_spinee_2020_08_012
crossref_primary_10_1155_2022_9645830
crossref_primary_10_3390_app151810268
crossref_primary_10_1145_3323334
crossref_primary_10_1088_1757_899X_383_1_012018
crossref_primary_10_1109_TASLP_2019_2930913
crossref_primary_10_3390_sym15101875
crossref_primary_10_1016_j_engappai_2025_111849
crossref_primary_10_1109_JBHI_2019_2908488
crossref_primary_10_1016_j_asoc_2020_106678
crossref_primary_10_1016_j_ejrad_2025_112060
crossref_primary_10_1016_j_echo_2022_06_005
crossref_primary_10_1016_j_ejor_2019_10_049
crossref_primary_10_1007_s00419_021_01930_4
crossref_primary_10_3103_S1068799825010167
crossref_primary_10_1109_TAI_2021_3134186
crossref_primary_10_1016_j_oceaneng_2025_121008
crossref_primary_10_1016_j_scitotenv_2023_162797
crossref_primary_10_1038_s41551_019_0466_4
crossref_primary_10_1016_j_procs_2020_09_092
crossref_primary_10_3390_e20120927
crossref_primary_10_1080_13658816_2024_2321223
crossref_primary_10_1007_s11433_018_9321_7
crossref_primary_10_1007_s12145_022_00876_7
crossref_primary_10_1108_WJE_05_2024_0299
crossref_primary_10_3390_s17091941
crossref_primary_10_1016_j_pmcj_2018_06_011
crossref_primary_10_3168_jds_2023_24082
crossref_primary_10_14201_ADCAIJ2019841932
crossref_primary_10_1007_s11042_022_13567_8
crossref_primary_10_1177_1475921718799070
crossref_primary_10_1016_j_petlm_2018_09_005
crossref_primary_10_1002_suco_202100286
crossref_primary_10_1002_jcc_24764
crossref_primary_10_1016_j_engappai_2025_111860
crossref_primary_10_1016_j_ifacol_2019_09_172
crossref_primary_10_1109_ACCESS_2019_2912226
crossref_primary_10_1029_2025JH000657
crossref_primary_10_1186_s40537_020_00364_z
crossref_primary_10_1111_mila_12205
crossref_primary_10_1016_j_eswa_2022_116616
crossref_primary_10_1016_j_trc_2025_105166
crossref_primary_10_7759_cureus_61860
crossref_primary_10_1007_s10462_024_10744_z
crossref_primary_10_1016_j_eswa_2022_116618
crossref_primary_10_1016_j_engappai_2025_110534
crossref_primary_10_1186_s13071_022_05324_5
crossref_primary_10_1016_j_neucom_2018_07_101
crossref_primary_10_1016_j_neucom_2018_07_102
crossref_primary_10_1016_j_irbm_2021_06_010
crossref_primary_10_1038_s41598_020_78418_8
crossref_primary_10_1142_S0218194025500159
crossref_primary_10_1002_cite_70000
crossref_primary_10_19127_bshealthscience_1144271
crossref_primary_10_1016_j_ast_2019_04_021
crossref_primary_10_1109_TII_2019_2913853
crossref_primary_10_1002_wcms_1465
crossref_primary_10_1016_j_media_2017_04_002
crossref_primary_10_1016_j_ijsolstr_2024_113125
crossref_primary_10_1016_j_jmst_2021_09_061
crossref_primary_10_1177_03019233241301144
crossref_primary_10_1007_s10543_025_01058_9
crossref_primary_10_1109_ACCESS_2019_2925561
crossref_primary_10_1002_nme_6236
crossref_primary_10_1029_2025JH000686
crossref_primary_10_1016_j_envsoft_2019_07_013
crossref_primary_10_1016_j_aeolia_2021_100682
crossref_primary_10_3390_horticulturae7110489
crossref_primary_10_1016_j_cviu_2021_103249
crossref_primary_10_1016_j_neunet_2019_05_002
crossref_primary_10_3390_s16060895
crossref_primary_10_1049_itr2_12489
crossref_primary_10_1016_j_surfin_2024_105518
crossref_primary_10_1007_s13752_024_00483_3
crossref_primary_10_1016_j_neuroimage_2022_119717
crossref_primary_10_1155_2022_1420542
crossref_primary_10_3390_s22114157
crossref_primary_10_1111_tops_12527
crossref_primary_10_3389_fncom_2020_554097
crossref_primary_10_3390_a15060210
crossref_primary_10_1186_s12880_018_0286_0
crossref_primary_10_1155_2016_3891253
crossref_primary_10_1109_JIOT_2021_3123811
crossref_primary_10_3390_app12084088
crossref_primary_10_1038_s41598_020_66308_y
crossref_primary_10_1016_j_mri_2019_06_009
crossref_primary_10_1016_j_neunet_2019_05_012
crossref_primary_10_3389_frwa_2021_652100
crossref_primary_10_1007_s11042_016_4220_6
crossref_primary_10_1121_10_0021303
crossref_primary_10_1016_j_cmpb_2017_04_012
crossref_primary_10_51536_tusbad_1702172
crossref_primary_10_3390_app14083184
crossref_primary_10_3847_1538_4357_adc88e
crossref_primary_10_1007_s10115_017_1029_1
crossref_primary_10_1109_ACCESS_2022_3173734
crossref_primary_10_1088_1741_2552_abc902
crossref_primary_10_1088_1741_2552_abc903
crossref_primary_10_1016_j_oceaneng_2022_110749
crossref_primary_10_1038_s41598_019_55320_6
crossref_primary_10_3390_electronics9050750
crossref_primary_10_1080_01431161_2024_2406035
crossref_primary_10_2196_67969
crossref_primary_10_1007_s11047_022_09890_6
crossref_primary_10_1155_2022_7962686
crossref_primary_10_3390_math11030501
crossref_primary_10_1016_j_compchemeng_2021_107535
crossref_primary_10_1007_s11709_022_0882_5
crossref_primary_10_1016_j_neunet_2019_05_022
crossref_primary_10_1007_s00113_022_01202_y
crossref_primary_10_1007_s11042_017_5593_x
crossref_primary_10_1002_advs_202410065
crossref_primary_10_1002_wcms_1478
crossref_primary_10_1002_wcms_1479
crossref_primary_10_1109_ACCESS_2025_3525721
crossref_primary_10_7717_peerj_4568
crossref_primary_10_1145_3341167
crossref_primary_10_1007_s10055_023_00804_0
crossref_primary_10_3934_fods_2022004
crossref_primary_10_1002_wcms_1475
crossref_primary_10_1016_j_cscm_2023_e02370
crossref_primary_10_1016_j_trc_2021_103018
crossref_primary_10_1038_s43856_021_00008_0
crossref_primary_10_1155_2019_9196234
crossref_primary_10_3390_foods13172676
crossref_primary_10_1109_TVT_2019_2925562
crossref_primary_10_1016_j_istruc_2024_106321
crossref_primary_10_1007_s10570_022_05020_8
crossref_primary_10_1186_s40537_020_00377_8
crossref_primary_10_1109_TSP_2019_2957607
crossref_primary_10_3233_JIFS_200044
crossref_primary_10_1145_3575865
crossref_primary_10_3390_electronics11162497
crossref_primary_10_3390_s17112458
crossref_primary_10_1007_s11629_023_7931_y
crossref_primary_10_1016_j_ejps_2022_106324
crossref_primary_10_1109_ACCESS_2021_3059785
crossref_primary_10_1177_1059712316667202
crossref_primary_10_1016_j_mejo_2020_104827
crossref_primary_10_1109_TSC_2022_3155448
crossref_primary_10_3390_rs14071681
crossref_primary_10_1109_JSTARS_2018_2860989
crossref_primary_10_1016_j_nexres_2025_100639
crossref_primary_10_1007_s40846_018_0389_7
crossref_primary_10_1016_j_buildenv_2023_110739
crossref_primary_10_1016_j_enconman_2020_113764
crossref_primary_10_1080_08839514_2021_1935590
crossref_primary_10_1051_matecconf_202439201120
crossref_primary_10_1016_j_measurement_2020_107896
crossref_primary_10_3390_electronics12010044
crossref_primary_10_3390_ijerph16040599
crossref_primary_10_1190_geo2018_0884_1
crossref_primary_10_1007_s12599_020_00645_0
crossref_primary_10_1038_s41598_025_10859_5
crossref_primary_10_3390_s23239566
crossref_primary_10_1007_s11042_024_19479_z
crossref_primary_10_3389_fpls_2022_837020
crossref_primary_10_3390_jrfm13110265
crossref_primary_10_1016_j_neunet_2017_04_004
crossref_primary_10_2478_plua_2024_0015
crossref_primary_10_1109_TIFS_2019_2939713
crossref_primary_10_1002_ett_3302
crossref_primary_10_1016_j_imavis_2020_103933
crossref_primary_10_1016_j_isci_2025_112980
crossref_primary_10_1080_1062936X_2022_2109062
crossref_primary_10_1051_0004_6361_202348239
crossref_primary_10_3390_agriengineering7100317
crossref_primary_10_1007_s11063_022_10882_x
crossref_primary_10_3390_foods10081803
crossref_primary_10_1007_s11604_020_01009_0
crossref_primary_10_1109_TETC_2021_3072666
crossref_primary_10_1089_cmb_2020_0252
crossref_primary_10_1016_j_ejor_2021_03_006
crossref_primary_10_1016_j_neunet_2020_07_010
crossref_primary_10_32604_cmes_2023_022566
crossref_primary_10_3390_met9050557
crossref_primary_10_1007_s11042_024_20276_x
crossref_primary_10_1049_iet_cvi_2016_0482
crossref_primary_10_1111_1754_9485_13276
crossref_primary_10_1016_j_jvs_2023_09_037
crossref_primary_10_7717_peerj_cs_3091
crossref_primary_10_1007_s11042_023_15178_3
crossref_primary_10_1038_s41598_018_33516_6
crossref_primary_10_1007_s11571_024_10184_z
crossref_primary_10_1016_j_fuel_2022_126296
crossref_primary_10_1016_j_cherd_2020_09_024
crossref_primary_10_3390_agriculture14050712
crossref_primary_10_1016_j_renene_2020_03_042
crossref_primary_10_1007_s11042_021_10644_2
crossref_primary_10_3390_math11143160
crossref_primary_10_1109_JIOT_2018_2878477
crossref_primary_10_1007_s12530_022_09453_1
crossref_primary_10_1016_j_heliyon_2024_e26332
crossref_primary_10_1016_j_robot_2016_11_005
crossref_primary_10_1002_isaf_70015
crossref_primary_10_1177_09596518231154042
crossref_primary_10_1007_s10851_019_00876_1
crossref_primary_10_1016_j_ast_2019_07_002
crossref_primary_10_1145_3363554
crossref_primary_10_3389_fpls_2021_613507
crossref_primary_10_1016_j_ymssp_2020_107467
crossref_primary_10_1002_adem_202201780
crossref_primary_10_1007_s00521_022_07011_z
crossref_primary_10_1162_tacl_a_00489
crossref_primary_10_1002_widm_1560
crossref_primary_10_1108_SSMT_08_2023_0045
crossref_primary_10_1371_journal_pcbi_1005542
crossref_primary_10_1007_s13735_020_00195_x
crossref_primary_10_1680_jener_24_00027
crossref_primary_10_1016_j_ejor_2019_09_018
crossref_primary_10_1152_jn_00507_2024
crossref_primary_10_3390_wevj13010001
crossref_primary_10_3233_ICA_170538
crossref_primary_10_3390_rs13010054
crossref_primary_10_1155_2018_4651582
crossref_primary_10_3390_app11115029
crossref_primary_10_1016_j_oceaneng_2020_106972
crossref_primary_10_1007_s42484_022_00092_y
crossref_primary_10_1109_JBHI_2017_2771768
crossref_primary_10_1109_JSEN_2018_2844799
crossref_primary_10_7717_peerj_cs_3077
crossref_primary_10_1109_TMI_2019_2911211
crossref_primary_10_1007_s42417_023_01116_y
crossref_primary_10_1016_j_coastaleng_2018_03_004
crossref_primary_10_3390_ma14082056
crossref_primary_10_1038_s41598_017_16548_2
crossref_primary_10_1111_1754_9485_13286
crossref_primary_10_1016_j_prime_2024_100458
crossref_primary_10_1109_ACCESS_2019_2943381
crossref_primary_10_1007_s00170_024_14472_0
crossref_primary_10_1080_0951192X_2019_1571241
crossref_primary_10_1109_LGRS_2020_2998580
crossref_primary_10_1007_s12043_023_02653_7
crossref_primary_10_1016_j_trc_2021_103062
crossref_primary_10_1007_s00704_024_05304_y
crossref_primary_10_1109_JSTARS_2019_2900705
crossref_primary_10_1109_TAES_2020_3037406
crossref_primary_10_3389_fnins_2021_724391
crossref_primary_10_1016_j_chaos_2024_115886
crossref_primary_10_1186_s13321_019_0389_9
crossref_primary_10_1016_j_jspi_2022_11_001
crossref_primary_10_1080_08839514_2021_2014190
crossref_primary_10_1587_transinf_2018EDP7073
crossref_primary_10_1016_j_jenvman_2017_07_026
crossref_primary_10_1109_TAES_2021_3056086
crossref_primary_10_1109_TMI_2019_2936500
crossref_primary_10_1007_s11947_017_2050_9
crossref_primary_10_1109_ACCESS_2023_3271515
crossref_primary_10_1080_02626667_2021_1957105
crossref_primary_10_1109_ACCESS_2018_2873811
crossref_primary_10_1016_j_jvcir_2019_06_007
crossref_primary_10_3389_fbioe_2019_00443
crossref_primary_10_1155_2021_6721564
crossref_primary_10_1093_bib_bbaa043
crossref_primary_10_1038_s41534_019_0222_3
crossref_primary_10_1088_2632_2153_ab6432
crossref_primary_10_3389_fpsyt_2022_811665
crossref_primary_10_3390_agriculture12081192
crossref_primary_10_1016_j_eswa_2019_01_056
crossref_primary_10_1214_18_AOS1747
crossref_primary_10_3390_electronics11071078
crossref_primary_10_1088_1402_4896_acb39b
crossref_primary_10_1016_j_physa_2024_130295
crossref_primary_10_1007_s12145_023_00955_3
crossref_primary_10_1038_s41598_025_04764_0
crossref_primary_10_1155_2022_3525266
crossref_primary_10_1016_j_ijimpeng_2019_103461
crossref_primary_10_1016_j_aei_2022_101553
crossref_primary_10_3390_rs11091068
crossref_primary_10_1007_s11042_019_7444_4
crossref_primary_10_1038_s41598_021_95275_1
crossref_primary_10_1016_j_jfds_2017_05_001
crossref_primary_10_3390_diagnostics14202274
crossref_primary_10_1016_j_ejmp_2021_03_026
crossref_primary_10_3390_s21237925
crossref_primary_10_1088_1674_1056_adcb99
crossref_primary_10_3390_s17071564
crossref_primary_10_12677_AAM_2021_101012
crossref_primary_10_1007_s10694_017_0695_6
crossref_primary_10_1029_2021EA002043
crossref_primary_10_1109_TGRS_2017_2711275
crossref_primary_10_1016_j_enbuild_2021_111478
crossref_primary_10_1108_JM2_04_2021_0105
crossref_primary_10_1016_j_autcon_2024_105569
crossref_primary_10_3390_nano12111808
crossref_primary_10_1186_s12859_019_2823_4
crossref_primary_10_3389_fnbot_2022_1086578
crossref_primary_10_1371_journal_pone_0223451
crossref_primary_10_3389_fnsys_2016_00097
crossref_primary_10_1016_j_cie_2023_109352
crossref_primary_10_1109_ACCESS_2021_3076281
crossref_primary_10_3390_s23010062
crossref_primary_10_32604_iasc_2024_043020
crossref_primary_10_1007_s40558_025_00315_5
crossref_primary_10_1016_j_watres_2022_118299
crossref_primary_10_3233_JIFS_190101
crossref_primary_10_1016_j_compag_2025_110676
crossref_primary_10_1007_s00500_023_07949_9
crossref_primary_10_1587_transinf_2017EDP7138
crossref_primary_10_3389_fgene_2018_00717
crossref_primary_10_1029_2023JG007815
crossref_primary_10_3390_electronics12010105
crossref_primary_10_3390_rs11091044
crossref_primary_10_1016_j_asoc_2025_113930
crossref_primary_10_3390_s24051495
crossref_primary_10_1007_s00500_016_2416_3
crossref_primary_10_1016_j_neuroimage_2018_12_015
crossref_primary_10_3390_s24051493
crossref_primary_10_35675_befdergi_1605165
crossref_primary_10_1016_j_petrol_2018_06_072
crossref_primary_10_1007_s11071_024_10843_0
crossref_primary_10_3390_su12072914
crossref_primary_10_2514_1_G004080
crossref_primary_10_1093_bjro_tzae018
crossref_primary_10_1016_j_egyr_2025_05_074
crossref_primary_10_1093_comjnl_bxab049
crossref_primary_10_1080_10618600_2024_2421248
crossref_primary_10_1088_1361_6595_ac6e04
crossref_primary_10_1242_jeb_198101
crossref_primary_10_1016_j_knosys_2019_07_026
crossref_primary_10_1016_j_petrol_2018_06_038
crossref_primary_10_1016_j_jval_2022_06_004
crossref_primary_10_1002_ima_22734
crossref_primary_10_3390_aerospace11020140
crossref_primary_10_1016_j_engappai_2025_110389
crossref_primary_10_1109_TBME_2018_2889512
crossref_primary_10_1016_j_measurement_2020_107962
crossref_primary_10_1016_j_patcog_2020_107609
crossref_primary_10_1016_j_measurement_2024_115880
crossref_primary_10_1038_s41598_022_22204_1
crossref_primary_10_1016_j_jpdc_2019_03_010
crossref_primary_10_1109_JIOT_2017_2732735
crossref_primary_10_1016_j_eswa_2024_125276
crossref_primary_10_3390_atmos13071042
crossref_primary_10_1007_s11063_018_9878_5
crossref_primary_10_3390_s23208493
crossref_primary_10_1016_j_patcog_2017_05_025
crossref_primary_10_3390_en15082834
crossref_primary_10_2196_11499
crossref_primary_10_1016_j_neucom_2016_06_014
crossref_primary_10_1016_j_scitotenv_2023_166168
crossref_primary_10_1017_aer_2023_4
crossref_primary_10_1007_s11053_023_10193_5
crossref_primary_10_1515_nanoph_2020_0570
crossref_primary_10_1086_714960
crossref_primary_10_2196_22148
crossref_primary_10_3367_UFNe_2025_02_039872
crossref_primary_10_1016_j_heliyon_2024_e33490
crossref_primary_10_1016_j_jhydrol_2024_130627
crossref_primary_10_1016_j_cmpb_2015_12_014
crossref_primary_10_1186_s12967_024_05609_6
crossref_primary_10_1371_journal_pone_0246126
crossref_primary_10_1038_s41467_022_31560_5
crossref_primary_10_3389_fmed_2022_1037647
crossref_primary_10_1002_minf_202200257
crossref_primary_10_1080_01621459_2021_1938081
crossref_primary_10_1093_bib_bbab355
crossref_primary_10_1007_s11119_023_10073_1
crossref_primary_10_1088_1757_899X_177_1_012028
crossref_primary_10_3389_frwa_2023_1028922
crossref_primary_10_1145_3304103
crossref_primary_10_3390_rs11091079
crossref_primary_10_1016_j_prostr_2017_07_027
crossref_primary_10_1007_s10044_023_01161_z
crossref_primary_10_1051_shsconf_202419703002
crossref_primary_10_3390_agronomy13092387
crossref_primary_10_1145_3477535
crossref_primary_10_3389_fpls_2023_1102855
crossref_primary_10_1016_j_opelre_2019_02_003
crossref_primary_10_1007_s11042_019_08546_5
crossref_primary_10_1002_rse2_195
crossref_primary_10_1016_j_atmosres_2022_106339
crossref_primary_10_1016_j_bspc_2020_101860
crossref_primary_10_1016_j_jclepro_2022_131556
crossref_primary_10_1016_j_compbiomed_2022_105634
crossref_primary_10_3847_1538_4365_adb1c4
crossref_primary_10_1007_s11431_024_2762_5
crossref_primary_10_1007_s40687_022_00370_y
crossref_primary_10_1016_j_petsci_2024_09_015
crossref_primary_10_1007_s11269_023_03443_x
crossref_primary_10_1002_aisy_202100200
crossref_primary_10_1109_TITS_2019_2900426
crossref_primary_10_1155_2020_8856818
crossref_primary_10_1155_2022_9541115
crossref_primary_10_1007_s10584_024_03844_w
crossref_primary_10_1103_PhysRevResearch_5_013139
crossref_primary_10_1186_s12862_021_01839_0
crossref_primary_10_3390_risks9030046
crossref_primary_10_1080_23322039_2022_2150134
crossref_primary_10_3390_sym13030428
crossref_primary_10_1016_j_neuroimage_2018_03_065
crossref_primary_10_1007_s44245_025_00094_7
crossref_primary_10_1016_j_ultras_2023_106970
crossref_primary_10_1109_TBME_2018_2872726
crossref_primary_10_1007_s10489_020_02168_3
crossref_primary_10_1007_s11934_019_0914_4
crossref_primary_10_1016_j_biosystemseng_2019_05_002
crossref_primary_10_3390_app10062017
crossref_primary_10_1137_18M1203602
crossref_primary_10_3390_info9090238
crossref_primary_10_1016_j_cie_2020_106600
crossref_primary_10_1007_s10338_025_00607_7
crossref_primary_10_1016_j_mad_2019_111194
crossref_primary_10_1016_j_asoc_2022_109454
crossref_primary_10_1029_2022SW003090
crossref_primary_10_1016_j_ndteint_2021_102575
crossref_primary_10_1002_tee_22711
crossref_primary_10_1016_j_cie_2022_108129
crossref_primary_10_1016_j_procs_2017_03_130
crossref_primary_10_1002_hed_28213
crossref_primary_10_1016_j_compfluid_2019_104318
crossref_primary_10_1038_s41598_019_48016_4
crossref_primary_10_3390_rs11050597
crossref_primary_10_3390_rs13245054
crossref_primary_10_3390_biomedinformatics2010010
crossref_primary_10_1177_0954407019861028
crossref_primary_10_1007_s10664_024_10576_z
crossref_primary_10_1016_j_flowmeasinst_2025_102914
crossref_primary_10_1088_1361_6560_abc303
crossref_primary_10_1016_j_trgeo_2025_101492
crossref_primary_10_1162_neco_a_01275
crossref_primary_10_1016_j_engappai_2023_106500
crossref_primary_10_1002_pnp_721
crossref_primary_10_1007_s40808_024_02090_4
crossref_primary_10_1109_ACCESS_2019_2936124
crossref_primary_10_21673_anadoluklin_1653335
crossref_primary_10_1016_j_enconman_2023_117618
crossref_primary_10_1007_s42979_023_02214_0
crossref_primary_10_3233_JIFS_172261
crossref_primary_10_1007_s00521_020_05383_8
crossref_primary_10_1016_j_pepi_2021_106653
crossref_primary_10_1587_transinf_2019EDL8170
crossref_primary_10_1016_j_eswa_2025_126464
crossref_primary_10_1088_1757_899X_608_1_012045
crossref_primary_10_1007_s40747_021_00307_y
crossref_primary_10_1016_j_cageo_2025_105981
crossref_primary_10_3389_fpls_2023_1143326
crossref_primary_10_1177_01423312211040901
crossref_primary_10_1002_ijfe_3116
crossref_primary_10_1002_smr_2488
crossref_primary_10_1155_2022_8044887
crossref_primary_10_1016_j_ins_2018_07_015
crossref_primary_10_1145_3656047
crossref_primary_10_3390_rs13132598
crossref_primary_10_1109_TNNLS_2019_2957366
crossref_primary_10_1016_j_trip_2025_101636
crossref_primary_10_1051_e3sconf_202129102023
crossref_primary_10_1007_s00500_021_05983_z
crossref_primary_10_1016_j_neurad_2017_05_008
crossref_primary_10_3390_s22176491
crossref_primary_10_1080_00268976_2019_1652367
crossref_primary_10_1155_2021_2016816
crossref_primary_10_1109_TC_2020_2992113
crossref_primary_10_1016_j_neucom_2020_01_081
crossref_primary_10_1109_ACCESS_2019_2891588
crossref_primary_10_1016_j_taml_2020_01_043
crossref_primary_10_1109_TMM_2021_3121547
crossref_primary_10_1002_qute_202100140
crossref_primary_10_1016_j_compbiomed_2023_106837
crossref_primary_10_1061__ASCE_WR_1943_5452_0001540
crossref_primary_10_1038_s41467_025_56122_3
crossref_primary_10_1080_13416979_2024_2436748
crossref_primary_10_1016_j_cej_2018_04_087
crossref_primary_10_1038_s41377_022_00714_x
crossref_primary_10_3390_s23062957
crossref_primary_10_52711_2321_581X_2022_00007
crossref_primary_10_1088_2057_1976_acbd53
crossref_primary_10_22399_ijcesen_3235
crossref_primary_10_1016_j_compstruct_2021_114808
crossref_primary_10_1038_s41598_025_88446_x
crossref_primary_10_1016_j_physrep_2019_11_001
crossref_primary_10_1177_10760296231179438
crossref_primary_10_1016_j_cageo_2023_105364
crossref_primary_10_1186_s40537_023_00829_x
crossref_primary_10_1080_14680629_2023_2230298
crossref_primary_10_1049_iet_its_2018_0064
crossref_primary_10_3390_en17010264
crossref_primary_10_1155_2022_2515432
crossref_primary_10_3389_fphy_2021_710351
crossref_primary_10_1109_TCDS_2018_2833387
crossref_primary_10_1007_s10851_022_01106_x
crossref_primary_10_1016_j_rser_2022_112282
crossref_primary_10_1136_gpsych_2020_100197
crossref_primary_10_1002_zamm_202400051
crossref_primary_10_1016_j_bspc_2024_106195
crossref_primary_10_1088_1757_899X_569_4_042046
crossref_primary_10_1002_stc_2714
crossref_primary_10_3389_fphy_2021_650108
crossref_primary_10_1016_j_ecoinf_2024_102794
crossref_primary_10_1109_TVCG_2020_3023129
crossref_primary_10_1002_ajim_23037
crossref_primary_10_1109_TMI_2016_2526689
crossref_primary_10_1016_j_neucom_2017_12_066
crossref_primary_10_1016_j_ultras_2021_106671
crossref_primary_10_1109_ACCESS_2019_2920616
crossref_primary_10_1016_j_jmgm_2021_108083
crossref_primary_10_1016_j_optlaseng_2025_109155
crossref_primary_10_1038_s41598_022_08863_0
crossref_primary_10_1007_s10489_022_04370_x
crossref_primary_10_1007_s11042_019_08319_0
crossref_primary_10_1063_5_0025462
crossref_primary_10_1016_j_sciaf_2024_e02159
crossref_primary_10_1080_01969722_2016_1128776
crossref_primary_10_1049_rsn2_12084
crossref_primary_10_1016_j_ins_2022_04_052
crossref_primary_10_1016_j_oooo_2023_01_017
crossref_primary_10_1080_07038992_2021_1954498
crossref_primary_10_3390_en13246579
crossref_primary_10_1111_ffe_14379
crossref_primary_10_1016_j_arcontrol_2019_09_008
crossref_primary_10_3390_su12135317
crossref_primary_10_1109_ACCESS_2019_2907645
crossref_primary_10_2166_hydro_2019_084
crossref_primary_10_1080_23818107_2018_1446357
crossref_primary_10_36702_pb_563
crossref_primary_10_1049_iet_ipr_2019_0907
crossref_primary_10_1016_j_is_2023_102176
crossref_primary_10_1109_TNNLS_2020_3016632
crossref_primary_10_1515_eng_2020_0080
crossref_primary_10_1088_1742_6596_1695_1_012152
crossref_primary_10_1016_j_tree_2018_11_007
crossref_primary_10_1088_1742_6596_1343_1_012032
crossref_primary_10_1088_1742_6596_1621_1_012062
crossref_primary_10_1111_mice_12628
crossref_primary_10_1117_1_JRS_18_014531
crossref_primary_10_1088_1742_6596_1004_1_012004
crossref_primary_10_1016_j_compgeo_2023_105935
crossref_primary_10_3390_info6040790
crossref_primary_10_3390_s20154332
crossref_primary_10_3390_app121910025
crossref_primary_10_1109_TNNLS_2018_2890334
crossref_primary_10_1016_j_taml_2023_100482
crossref_primary_10_1109_ACCESS_2020_2983987
crossref_primary_10_1016_j_apenergy_2024_124430
crossref_primary_10_3389_fams_2018_00060
crossref_primary_10_3390_ani12151948
crossref_primary_10_3390_plants11233344
crossref_primary_10_3390_s20082193
crossref_primary_10_3389_frai_2025_1627078
crossref_primary_10_1016_j_eswa_2022_117847
crossref_primary_10_1007_s10922_016_9398_4
crossref_primary_10_1016_j_ipm_2018_08_001
crossref_primary_10_1007_s12559_017_9522_0
crossref_primary_10_1109_ACCESS_2022_3150924
crossref_primary_10_1080_10630732_2024_2402676
crossref_primary_10_1155_2018_5419645
crossref_primary_10_1371_journal_pone_0253217
crossref_primary_10_1007_s00500_017_2850_x
crossref_primary_10_1109_TVCG_2020_2973473
crossref_primary_10_1007_s10921_025_01236_3
crossref_primary_10_3390_electronics11010103
crossref_primary_10_1007_s11042_020_09527_9
crossref_primary_10_1016_j_apr_2021_101066
crossref_primary_10_1038_s41467_022_28487_2
crossref_primary_10_1016_j_neunet_2023_10_050
crossref_primary_10_1007_s40860_018_0072_3
crossref_primary_10_1007_s00009_020_01513_7
crossref_primary_10_1016_j_procs_2017_08_336
crossref_primary_10_1016_j_autcon_2025_106447
crossref_primary_10_1002_asl_1195
crossref_primary_10_1088_1755_1315_990_1_012054
crossref_primary_10_3390_en14196316
crossref_primary_10_1038_s41467_024_48766_4
crossref_primary_10_1111_mice_12623
crossref_primary_10_1007_s43681_024_00469_8
crossref_primary_10_3389_fncom_2024_1388166
crossref_primary_10_1175_MWR_D_18_0187_1
crossref_primary_10_1016_j_apenergy_2021_117193
crossref_primary_10_3390_jimaging8100267
crossref_primary_10_34248_bsengineering_938520
crossref_primary_10_1109_TCCN_2021_3066619
crossref_primary_10_1016_j_robot_2020_103578
crossref_primary_10_3390_ijerph17114152
crossref_primary_10_1117_1_OE_61_6_061409
crossref_primary_10_3390_s20154300
crossref_primary_10_1007_s12665_023_11134_4
crossref_primary_10_1007_s00521_022_07648_w
crossref_primary_10_1016_j_neucom_2019_04_093
crossref_primary_10_1109_TBDATA_2018_2871151
crossref_primary_10_32634_0869_8155_2025_397_08_104_114
crossref_primary_10_1007_s41109_021_00389_0
crossref_primary_10_1016_j_heliyon_2024_e26297
crossref_primary_10_1109_ACCESS_2019_2938768
crossref_primary_10_3390_w15152707
crossref_primary_10_1016_j_engstruct_2018_05_109
crossref_primary_10_1038_s41433_018_0269_y
crossref_primary_10_25122_jml_2019_0090
crossref_primary_10_1002_smr_2432
crossref_primary_10_1007_s12524_022_01506_x
crossref_primary_10_3390_s22010174
crossref_primary_10_1007_s11571_018_9489_x
crossref_primary_10_1016_j_seps_2023_101560
crossref_primary_10_3390_sym13050804
crossref_primary_10_3390_agriculture12020176
crossref_primary_10_1109_JIOT_2021_3088875
crossref_primary_10_4018_IJCINI_2016100101
crossref_primary_10_1007_s11042_023_16292_y
crossref_primary_10_1088_2515_7620_ac5b84
crossref_primary_10_1007_s11242_019_01265_3
crossref_primary_10_3389_fphys_2021_662314
crossref_primary_10_1016_j_supflu_2023_106051
crossref_primary_10_3390_molecules26030612
crossref_primary_10_1016_j_imu_2023_101210
crossref_primary_10_1002_ese3_439
crossref_primary_10_1017_wsc_2020_46
crossref_primary_10_3390_electronics10182304
crossref_primary_10_1002_adc2_70003
crossref_primary_10_1038_s42003_024_05871_w
crossref_primary_10_1109_ACCESS_2023_3275015
crossref_primary_10_3390_rs12071111
crossref_primary_10_1109_TIM_2017_2759418
crossref_primary_10_1371_journal_pone_0229596
crossref_primary_10_1016_j_est_2025_117836
crossref_primary_10_3390_diagnostics12112794
crossref_primary_10_1016_j_est_2021_103749
crossref_primary_10_1088_1361_6528_ad3648
crossref_primary_10_1007_s13278_020_00688_x
crossref_primary_10_1016_j_ast_2018_07_024
crossref_primary_10_1017_S0956792517000146
crossref_primary_10_1016_j_heliyon_2023_e19229
crossref_primary_10_1016_j_jastp_2020_105465
crossref_primary_10_1007_s12273_020_0735_x
crossref_primary_10_1007_s11042_020_09634_7
crossref_primary_10_1117_1_OE_64_5_056106
crossref_primary_10_1002_sta4_382
crossref_primary_10_1007_s11042_025_20766_6
crossref_primary_10_1007_s40031_023_00907_x
crossref_primary_10_3389_fnins_2022_801847
crossref_primary_10_3390_math10091428
crossref_primary_10_1145_3472770
crossref_primary_10_1016_j_jacr_2018_01_028
crossref_primary_10_1016_j_dsp_2023_104168
crossref_primary_10_1016_j_oceaneng_2022_110691
crossref_primary_10_1016_j_preteyeres_2020_100900
crossref_primary_10_1186_s12916_020_01823_3
crossref_primary_10_3389_fnins_2025_1551143
crossref_primary_10_1007_s11837_025_07542_5
crossref_primary_10_1093_cercor_bhaf160
crossref_primary_10_1016_j_jallcom_2022_168488
crossref_primary_10_1038_s42256_020_0160_y
crossref_primary_10_1016_j_autcon_2020_103520
crossref_primary_10_1016_j_ribaf_2022_101683
crossref_primary_10_4025_actasciagron_v45i1_59854
crossref_primary_10_1016_j_technovation_2021_102312
crossref_primary_10_3390_app132212316
crossref_primary_10_1016_j_ifacol_2023_10_1500
crossref_primary_10_1016_j_yebeh_2018_02_010
crossref_primary_10_1007_s00170_022_10649_7
crossref_primary_10_3390_rs9121305
crossref_primary_10_1016_j_geoen_2024_213275
crossref_primary_10_1007_s10614_024_10629_x
crossref_primary_10_1016_j_ins_2020_05_022
crossref_primary_10_1109_JBHI_2020_3002097
crossref_primary_10_1007_s00521_021_06082_8
crossref_primary_10_3390_s24020353
crossref_primary_10_1016_j_undsp_2023_11_008
crossref_primary_10_1007_s00521_019_04282_x
crossref_primary_10_1109_JPHOT_2022_3157776
crossref_primary_10_1007_s00466_019_01740_0
crossref_primary_10_34133_plantphenomics_0048
crossref_primary_10_3390_app9214656
crossref_primary_10_1007_s11831_023_10047_6
crossref_primary_10_1016_j_nima_2020_164951
crossref_primary_10_1016_j_jfranklin_2023_07_015
crossref_primary_10_3390_s25134231
crossref_primary_10_1007_s40201_018_0301_y
crossref_primary_10_3390_ecologies3030025
crossref_primary_10_1109_TNNLS_2017_2708712
crossref_primary_10_1016_j_eswa_2020_113788
crossref_primary_10_3938_jkps_75_909
crossref_primary_10_1002_cpe_6434
crossref_primary_10_1002_spy2_189
crossref_primary_10_1007_s10334_018_0718_4
crossref_primary_10_3390_electronics10212608
crossref_primary_10_1007_s10462_023_10698_8
crossref_primary_10_3390_e24060751
crossref_primary_10_1016_j_compag_2022_106928
crossref_primary_10_1016_j_cma_2020_113516
crossref_primary_10_1016_j_ijleo_2022_170268
crossref_primary_10_3390_brainsci9110326
crossref_primary_10_3917_qdm_204_0063
crossref_primary_10_3390_w15234194
crossref_primary_10_1016_j_trc_2024_104735
crossref_primary_10_1007_s11045_016_0408_1
crossref_primary_10_1016_j_anucene_2019_05_039
crossref_primary_10_1177_15501329221088450
crossref_primary_10_3390_electronics11121859
crossref_primary_10_1016_j_psep_2023_03_052
crossref_primary_10_1016_j_isatra_2021_06_013
crossref_primary_10_1016_j_measurement_2018_08_010
crossref_primary_10_1186_s11671_020_03319_8
crossref_primary_10_1016_j_istruc_2022_02_003
crossref_primary_10_1016_j_neucom_2016_12_110
crossref_primary_10_1007_s10506_016_9186_1
crossref_primary_10_1016_j_commatsci_2020_109948
crossref_primary_10_1016_j_renene_2021_04_025
crossref_primary_10_1016_j_seppur_2022_121129
crossref_primary_10_1038_s41598_020_66225_0
crossref_primary_10_1186_s40663_021_00328_6
crossref_primary_10_1007_s11042_022_12941_w
crossref_primary_10_1016_j_scitotenv_2022_160180
crossref_primary_10_1016_j_aap_2022_106769
crossref_primary_10_3390_rs17010111
crossref_primary_10_3390_biomedicines10092157
crossref_primary_10_1016_j_ifacol_2018_09_380
crossref_primary_10_1109_TCSVT_2019_2927550
crossref_primary_10_1088_1742_6596_960_1_012048
crossref_primary_10_1073_pnas_1900358116
crossref_primary_10_1051_e3sconf_202017505007
crossref_primary_10_1080_1755876X_2021_1999107
crossref_primary_10_3390_math11183964
crossref_primary_10_1088_2632_2153_ade04c
crossref_primary_10_1038_s41598_024_56502_7
crossref_primary_10_1002_adts_202300430
crossref_primary_10_1007_s11416_021_00386_y
crossref_primary_10_1155_2016_3289801
crossref_primary_10_3390_info14080441
crossref_primary_10_1038_s41598_023_30555_6
crossref_primary_10_1039_C9SC01928F
crossref_primary_10_3389_fnins_2021_552666
crossref_primary_10_1007_s10846_020_01281_2
crossref_primary_10_1016_j_cma_2022_115078
crossref_primary_10_1186_s12911_024_02761_3
crossref_primary_10_1109_TR_2019_2907402
crossref_primary_10_1109_JSYST_2020_3007428
crossref_primary_10_1109_TNB_2018_2873221
crossref_primary_10_1021_acs_jcim_7b00384
crossref_primary_10_1016_j_cma_2020_113568
crossref_primary_10_1016_j_neunet_2017_10_007
crossref_primary_10_1016_j_neunet_2017_10_005
crossref_primary_10_1007_s41649_018_0069_5
crossref_primary_10_1016_j_scitotenv_2023_163972
crossref_primary_10_1016_j_procs_2019_09_385
crossref_primary_10_3390_s17051173
crossref_primary_10_1016_j_asoc_2021_108212
crossref_primary_10_2196_43822
crossref_primary_10_1007_s00779_019_01248_7
crossref_primary_10_1016_j_neunet_2018_05_016
crossref_primary_10_1016_j_cej_2025_166668
crossref_primary_10_1016_j_engappai_2015_07_017
crossref_primary_10_1007_s00500_019_03947_y
crossref_primary_10_1016_j_ejmp_2025_104978
crossref_primary_10_1007_s10596_020_09940_x
crossref_primary_10_1016_j_compag_2018_02_016
crossref_primary_10_1016_j_ins_2020_05_031
crossref_primary_10_1007_s11280_021_00997_x
crossref_primary_10_3390_math11143062
crossref_primary_10_1109_ACCESS_2020_3004624
crossref_primary_10_3390_mi14081618
crossref_primary_10_1080_01431161_2023_2255350
crossref_primary_10_3390_s24020348
crossref_primary_10_1016_j_conbuildmat_2024_137276
crossref_primary_10_1109_TAI_2022_3180272
crossref_primary_10_3390_rs15153838
crossref_primary_10_1007_s10346_023_02072_0
crossref_primary_10_1007_s10614_022_10239_5
crossref_primary_10_3390_app9040684
crossref_primary_10_1109_JPROC_2020_2986602
crossref_primary_10_1108_JM2_07_2020_0181
crossref_primary_10_1007_s11082_020_02565_5
crossref_primary_10_1016_j_engstruct_2021_113619
crossref_primary_10_1016_j_apenergy_2020_115599
crossref_primary_10_1017_S0263574719000316
crossref_primary_10_3390_app11198979
crossref_primary_10_3389_fphys_2019_00255
crossref_primary_10_1109_COMST_2018_2866942
crossref_primary_10_1002_ima_22788
crossref_primary_10_1111_mice_12663
crossref_primary_10_1016_j_neucom_2025_129769
crossref_primary_10_1080_01431161_2023_2255349
crossref_primary_10_3390_ijerph19095367
crossref_primary_10_1016_j_neunet_2018_05_007
crossref_primary_10_1016_j_frl_2023_104304
crossref_primary_10_1016_j_cam_2017_05_008
crossref_primary_10_1007_s10032_019_00317_0
crossref_primary_10_1016_j_bspc_2025_108354
crossref_primary_10_1007_s11047_016_9597_7
crossref_primary_10_1109_JIOT_2018_2859480
crossref_primary_10_1016_j_cosrev_2022_100488
crossref_primary_10_1016_j_artmed_2018_02_004
crossref_primary_10_1016_j_patcog_2021_108057
crossref_primary_10_1007_s11042_020_09455_8
crossref_primary_10_1016_j_jcp_2020_109950
crossref_primary_10_1016_j_neucom_2016_01_074
crossref_primary_10_1016_j_asoc_2025_112979
crossref_primary_10_1051_matecconf_202235502054
crossref_primary_10_3390_rs12234000
crossref_primary_10_1049_iet_gtd_2018_5254
crossref_primary_10_1016_j_meatsci_2018_05_020
crossref_primary_10_1016_j_eswa_2024_125594
crossref_primary_10_52711_0975_4377_2025_00005
crossref_primary_10_1016_j_chaos_2025_116727
crossref_primary_10_1038_s41377_024_01721_w
crossref_primary_10_3390_molecules27196249
crossref_primary_10_1016_j_rse_2022_113116
crossref_primary_10_1016_j_compag_2023_107805
crossref_primary_10_3390_app10093020
crossref_primary_10_3390_s21051664
crossref_primary_10_1016_j_cose_2021_102246
crossref_primary_10_1016_j_asoc_2025_112984
crossref_primary_10_1016_j_jbusres_2024_114576
crossref_primary_10_1145_3079765
crossref_primary_10_1177_23312165251365802
crossref_primary_10_1007_s10596_022_10189_9
crossref_primary_10_1109_TBDATA_2019_2916868
crossref_primary_10_1016_j_eswa_2021_114839
crossref_primary_10_1016_j_compbiomed_2024_108561
crossref_primary_10_1002_jeq2_20138
crossref_primary_10_1016_j_jag_2020_102292
crossref_primary_10_1109_ACCESS_2022_3160179
crossref_primary_10_1016_j_eja_2024_127366
crossref_primary_10_1016_j_scitotenv_2022_160446
crossref_primary_10_1088_1755_1315_714_4_042049
crossref_primary_10_1016_j_drugalcdep_2019_107605
crossref_primary_10_1002_cem_2916
crossref_primary_10_1007_s11222_017_9793_z
crossref_primary_10_1016_j_autcon_2020_103145
crossref_primary_10_1080_09540091_2020_1862059
crossref_primary_10_1002_lom3_10573
crossref_primary_10_3390_molecules28031324
crossref_primary_10_1080_00949655_2020_1797031
crossref_primary_10_1007_s11227_017_2080_0
crossref_primary_10_1109_ACCESS_2020_3027499
crossref_primary_10_1038_s41598_023_35864_4
crossref_primary_10_1016_j_neunet_2025_107364
crossref_primary_10_1016_j_ecolind_2024_112402
crossref_primary_10_1007_s00521_020_04843_5
crossref_primary_10_3390_su13116165
crossref_primary_10_3389_fphy_2022_965095
crossref_primary_10_1080_24751839_2019_1573395
crossref_primary_10_1038_s41467_022_34807_3
crossref_primary_10_3390_math12233685
crossref_primary_10_1016_j_ins_2023_03_071
crossref_primary_10_1061__ASCE_WR_1943_5452_0001432
crossref_primary_10_1007_s42452_025_06941_2
crossref_primary_10_1007_s10898_018_0701_7
crossref_primary_10_1007_s11042_019_08162_3
crossref_primary_10_1093_bib_bbac350
crossref_primary_10_2196_11357
crossref_primary_10_1016_j_compbiomed_2017_08_001
crossref_primary_10_1016_j_vlsi_2017_11_001
crossref_primary_10_3389_fnins_2017_00350
crossref_primary_10_12677_jisp_2024_133030
crossref_primary_10_3390_s21165654
crossref_primary_10_1093_bioadv_vbad110
crossref_primary_10_2139_ssrn_5375099
crossref_primary_10_3390_bioengineering9100523
crossref_primary_10_1088_1674_4527_ace297
crossref_primary_10_1002_ese3_1297
crossref_primary_10_1016_j_ribaf_2022_101644
crossref_primary_10_1109_MCOM_2016_7470945
crossref_primary_10_3233_XST_221301
crossref_primary_10_1080_10447318_2023_2175494
crossref_primary_10_1038_s41928_022_00719_9
crossref_primary_10_1016_j_displa_2018_08_001
crossref_primary_10_1109_ACCESS_2024_3359055
crossref_primary_10_1016_j_engappai_2025_110264
crossref_primary_10_1007_s00330_021_08014_5
crossref_primary_10_1109_TCSII_2017_2746749
crossref_primary_10_1115_1_2016_Dec_2
crossref_primary_10_3390_pr10081653
crossref_primary_10_1016_j_neucom_2021_05_061
crossref_primary_10_3389_feart_2020_00227
crossref_primary_10_3390_plants13141918
crossref_primary_10_1155_2021_3006397
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122563
crossref_primary_10_1109_ACCESS_2020_3040408
crossref_primary_10_1016_j_compbiomed_2017_08_022
crossref_primary_10_3390_s21020505
crossref_primary_10_1155_2021_9919588
crossref_primary_10_1080_15481603_2023_2257978
crossref_primary_10_1109_ACCESS_2020_3026110
crossref_primary_10_3390_math13111861
crossref_primary_10_3390_electronics13101819
crossref_primary_10_1140_epjc_s10052_019_6909_y
crossref_primary_10_3390_cancers14082008
crossref_primary_10_1007_s11063_019_10116_7
crossref_primary_10_1089_big_2021_0013
crossref_primary_10_1007_s40684_018_0057_y
crossref_primary_10_1109_ACCESS_2020_2990985
crossref_primary_10_1111_mice_12494
crossref_primary_10_1016_j_ecoinf_2025_103203
crossref_primary_10_1088_1742_6596_1471_1_012043
crossref_primary_10_3390_atmos9110426
crossref_primary_10_3390_jcm9103313
crossref_primary_10_1016_j_istruc_2024_107478
crossref_primary_10_2166_ws_2022_136
crossref_primary_10_1002_ange_201804736
crossref_primary_10_3390_info9070169
crossref_primary_10_1016_j_ifacol_2022_07_097
crossref_primary_10_3389_fncom_2021_551111
crossref_primary_10_1016_j_culher_2020_04_008
crossref_primary_10_3390_jpm12091444
crossref_primary_10_1002_tal_1504
crossref_primary_10_1109_ACCESS_2020_2987324
crossref_primary_10_1016_j_tics_2021_01_008
crossref_primary_10_1021_acs_energyfuels_5c02808
crossref_primary_10_3390_jimaging9110238
crossref_primary_10_1021_acs_iecr_4c03342
crossref_primary_10_1121_10_0026459
crossref_primary_10_1038_lsa_2017_141
crossref_primary_10_1007_s12206_018_1205_6
crossref_primary_10_3390_jmse9080906
crossref_primary_10_4018_IJAIML_2020070102
crossref_primary_10_1016_j_neunet_2020_04_008
crossref_primary_10_1007_s00500_025_10591_2
crossref_primary_10_1016_j_jmr_2019_07_034
crossref_primary_10_3390_app11219848
crossref_primary_10_1109_ACCESS_2020_3022627
crossref_primary_10_1016_j_neunet_2020_04_004
crossref_primary_10_4018_IJAIML_2020070101
crossref_primary_10_3390_systems11060296
crossref_primary_10_1371_journal_pone_0195621
crossref_primary_10_1016_j_neucom_2019_01_078
crossref_primary_10_3390_s20226442
crossref_primary_10_1155_2021_5529905
crossref_primary_10_1177_20552076241272632
crossref_primary_10_1016_j_jpowsour_2019_227281
crossref_primary_10_1007_s11269_020_02507_6
crossref_primary_10_1002_qute_202100053
crossref_primary_10_1016_j_compeleceng_2021_107621
crossref_primary_10_1016_j_jcp_2018_10_024
crossref_primary_10_1080_13658816_2018_1480783
crossref_primary_10_1007_s10973_024_13621_7
crossref_primary_10_3390_app13137507
crossref_primary_10_1016_j_drudis_2021_04_028
crossref_primary_10_1016_j_camwa_2025_01_030
crossref_primary_10_1016_j_earscirev_2019_103076
crossref_primary_10_3389_fgene_2018_00693
crossref_primary_10_1016_j_apacoust_2021_108068
crossref_primary_10_1371_journal_pone_0183661
crossref_primary_10_5194_acp_25_4167_2025
crossref_primary_10_1007_s11280_018_0576_z
crossref_primary_10_3233_NAI_240720
crossref_primary_10_1016_j_compenvurbsys_2019_101350
crossref_primary_10_1016_j_jvcir_2023_104017
crossref_primary_10_1145_3464301
crossref_primary_10_1007_s11517_023_02984_y
crossref_primary_10_1016_j_jag_2020_102215
crossref_primary_10_3390_agriculture14030411
crossref_primary_10_1007_s10531_020_02107_1
crossref_primary_10_1007_s10489_021_02262_0
crossref_primary_10_1080_19427867_2021_1952042
crossref_primary_10_1007_s11082_019_2038_y
crossref_primary_10_1016_j_ebiom_2019_10_033
crossref_primary_10_1111_eos_12853
crossref_primary_10_1109_TVCG_2018_2881451
crossref_primary_10_1007_s12194_024_00780_3
crossref_primary_10_1109_LRA_2021_3135573
crossref_primary_10_1038_s41598_020_58178_1
crossref_primary_10_1016_j_cosrev_2018_01_004
crossref_primary_10_1007_s11440_020_01091_8
crossref_primary_10_1088_1742_6596_1547_1_012024
crossref_primary_10_1016_j_oceaneng_2025_122607
crossref_primary_10_1080_15325008_2021_1937401
crossref_primary_10_1109_JSEN_2019_2958787
crossref_primary_10_1049_iet_smt_2016_0423
crossref_primary_10_1016_j_heliyon_2025_e42512
crossref_primary_10_1063_1_5108663
crossref_primary_10_1088_1367_2630_aaf749
crossref_primary_10_1109_TNSE_2018_2872034
crossref_primary_10_1177_1475921718800363
crossref_primary_10_1007_s10586_018_2196_x
crossref_primary_10_1016_j_ymssp_2019_06_012
crossref_primary_10_1016_j_powtec_2020_07_102
crossref_primary_10_1103_PhysRevApplied_15_024030
crossref_primary_10_3365_KJMM_2019_57_3_184
crossref_primary_10_3390_buildings12060829
crossref_primary_10_1016_j_icte_2022_01_013
crossref_primary_10_1007_s11042_021_11435_5
crossref_primary_10_1109_LSP_2018_2885511
crossref_primary_10_3390_fi17030119
crossref_primary_10_1109_JSTARS_2018_2854893
crossref_primary_10_3390_rs13214241
crossref_primary_10_1016_j_compag_2023_107836
crossref_primary_10_1360_SSC_2025_0015
crossref_primary_10_1007_s42241_020_0028_y
crossref_primary_10_1016_j_envpol_2023_123082
crossref_primary_10_3390_rs13112212
crossref_primary_10_1016_j_ecoser_2022_101475
crossref_primary_10_1088_1742_6596_1575_1_012018
crossref_primary_10_1016_j_bdr_2020_100179
crossref_primary_10_1063_1_5086812
crossref_primary_10_1088_1748_3190_adad26
crossref_primary_10_3389_fgene_2022_927721
crossref_primary_10_1063_5_0095871
crossref_primary_10_3103_S0146411622010035
crossref_primary_10_1007_s00704_023_04622_x
crossref_primary_10_1055_a_1423_8006
crossref_primary_10_3390_rs17101779
crossref_primary_10_1016_j_fct_2019_110921
crossref_primary_10_1007_s11042_020_10070_w
crossref_primary_10_1016_j_ins_2022_06_093
crossref_primary_10_1080_21681163_2023_2219755
crossref_primary_10_1016_j_bspc_2020_101929
crossref_primary_10_3390_rs13112229
crossref_primary_10_1177_2631774521993059
crossref_primary_10_3390_w12061549
crossref_primary_10_1016_j_bspc_2020_101921
crossref_primary_10_1038_s41598_024_69243_4
crossref_primary_10_1016_j_compbiomed_2023_107814
crossref_primary_10_1016_j_ces_2021_117272
crossref_primary_10_1016_j_ces_2021_117271
crossref_primary_10_1016_j_ins_2021_02_064
crossref_primary_10_1016_j_forsciint_2025_112476
crossref_primary_10_3390_s16101701
crossref_primary_10_1007_s12559_023_10200_0
crossref_primary_10_1002_aisy_202100186
crossref_primary_10_1016_j_scs_2020_102589
crossref_primary_10_1088_1361_6501_ad1811
crossref_primary_10_1016_j_istruc_2024_106193
crossref_primary_10_1364_AO_486107
crossref_primary_10_1038_s41598_018_30390_0
crossref_primary_10_1038_s41598_025_13794_7
crossref_primary_10_1007_s40435_018_0412_4
crossref_primary_10_3389_fonc_2022_892056
crossref_primary_10_1007_s40031_021_00693_4
crossref_primary_10_1016_j_phycom_2020_101213
crossref_primary_10_1007_s00170_021_06770_8
crossref_primary_10_3390_info13050246
crossref_primary_10_1109_TITS_2021_3076844
crossref_primary_10_1155_2021_9976939
crossref_primary_10_3233_JIFS_190095
crossref_primary_10_1007_s11227_021_04263_9
crossref_primary_10_3390_pr9071178
crossref_primary_10_1016_j_jacr_2023_12_005
crossref_primary_10_1109_TCCN_2019_2946358
crossref_primary_10_1016_j_semcancer_2018_07_001
crossref_primary_10_1109_JSTARS_2023_3297013
crossref_primary_10_1016_j_patcog_2018_09_007
crossref_primary_10_1109_TNNLS_2016_2522428
crossref_primary_10_1109_TFUZZ_2019_2931254
crossref_primary_10_1002_mrm_29000
crossref_primary_10_1016_j_ins_2021_02_046
crossref_primary_10_1088_1873_7005_ac4f2d
crossref_primary_10_1038_s41598_021_85928_6
crossref_primary_10_1016_j_neunet_2020_04_030
crossref_primary_10_1038_s41598_024_52944_1
crossref_primary_10_1016_j_patcog_2020_107312
crossref_primary_10_1080_03772063_2025_2467761
crossref_primary_10_1007_s10614_025_11001_3
crossref_primary_10_1177_0361198119841291
crossref_primary_10_1177_14759217231216694
crossref_primary_10_1016_j_neunet_2021_12_007
crossref_primary_10_1097_CMR_0000000000000922
crossref_primary_10_1109_TGRS_2019_2901945
crossref_primary_10_1109_ACCESS_2019_2891548
crossref_primary_10_1016_j_physa_2024_129513
crossref_primary_10_1177_08953996241290326
crossref_primary_10_3390_diagnostics12112843
crossref_primary_10_1016_j_jfranklin_2020_04_033
crossref_primary_10_1016_j_tourman_2022_104559
crossref_primary_10_1080_13658816_2020_1775836
crossref_primary_10_1016_j_ecofro_2024_08_001
crossref_primary_10_1007_s42243_024_01179_5
crossref_primary_10_1128_spectrum_00032_24
crossref_primary_10_1016_j_ijmecsci_2023_108654
crossref_primary_10_1016_j_matdes_2022_110880
crossref_primary_10_1016_j_infrared_2023_104672
crossref_primary_10_1186_s12938_025_01401_9
crossref_primary_10_3390_en16031352
crossref_primary_10_1016_j_compbiomed_2025_110693
crossref_primary_10_3390_electronics12030756
crossref_primary_10_1145_3483596
crossref_primary_10_1145_3544968
crossref_primary_10_1039_D3EW00619K
crossref_primary_10_1109_MCE_2016_2614423
crossref_primary_10_1007_s10614_023_10413_3
crossref_primary_10_1007_s35764_017_0104_4
crossref_primary_10_1016_j_inffus_2017_12_007
crossref_primary_10_1186_s13677_023_00582_9
crossref_primary_10_1088_2632_072X_ac68bf
crossref_primary_10_1007_s40864_020_00130_7
crossref_primary_10_1002_adhm_202100734
crossref_primary_10_1177_03611981241254109
crossref_primary_10_1109_TC_2019_2954495
crossref_primary_10_1109_ACCESS_2020_2969549
crossref_primary_10_3390_app12020656
crossref_primary_10_1007_s42241_020_0027_z
crossref_primary_10_1140_epjc_s10052_025_14042_y
crossref_primary_10_1016_j_envsoft_2020_104669
crossref_primary_10_1016_j_ins_2019_12_006
crossref_primary_10_1007_s00603_022_02992_8
crossref_primary_10_1103_f2f3_l3fc
crossref_primary_10_1109_JBHI_2017_2655720
crossref_primary_10_1029_2021JF006276
crossref_primary_10_1186_s40537_019_0192_5
crossref_primary_10_1002_nme_7388
crossref_primary_10_2196_28114
crossref_primary_10_3390_genes9120626
crossref_primary_10_1109_TNNLS_2019_2952864
crossref_primary_10_1007_s10494_020_00170_w
crossref_primary_10_1007_s43681_023_00408_z
crossref_primary_10_3390_rs10040511
crossref_primary_10_1007_s00500_021_05626_3
crossref_primary_10_1109_ACCESS_2019_2915971
crossref_primary_10_1111_mice_12503
crossref_primary_10_1140_epjp_s13360_020_00122_3
crossref_primary_10_1007_s00466_023_02435_3
crossref_primary_10_1016_j_bspc_2022_103532
crossref_primary_10_3390_en18051144
crossref_primary_10_3390_rs12010021
crossref_primary_10_1088_1755_1315_170_4_042051
crossref_primary_10_1002_dac_5072
crossref_primary_10_1007_s00521_015_2009_6
crossref_primary_10_1016_j_neunet_2024_106528
crossref_primary_10_1038_s41598_025_95629_z
crossref_primary_10_1007_s00259_019_04373_w
crossref_primary_10_1155_2016_5642856
crossref_primary_10_1049_ipr2_12637
crossref_primary_10_1016_j_knosys_2023_110477
crossref_primary_10_1051_e3sconf_202021710004
crossref_primary_10_3390_robotics8010004
crossref_primary_10_1007_s10489_022_03351_4
crossref_primary_10_1109_TNNLS_2020_3042943
crossref_primary_10_1177_0361198118772723
crossref_primary_10_1155_2024_4097442
crossref_primary_10_12677_SEA_2018_76031
crossref_primary_10_1080_24725854_2019_1632502
crossref_primary_10_1007_s40687_019_0183_3
crossref_primary_10_1155_2015_141363
crossref_primary_10_3389_fgene_2022_995532
crossref_primary_10_3390_diagnostics12112888
crossref_primary_10_1097_SCS_0000000000009856
crossref_primary_10_1108_SR_03_2019_0085
crossref_primary_10_3390_app10175933
crossref_primary_10_1016_j_nicl_2017_01_033
crossref_primary_10_1016_j_neucom_2016_09_110
crossref_primary_10_1109_ACCESS_2018_2885565
crossref_primary_10_1016_j_neunet_2021_03_003
crossref_primary_10_1016_j_jksuci_2020_04_009
crossref_primary_10_1002_aenm_201902106
crossref_primary_10_1016_j_cageo_2021_104952
crossref_primary_10_1016_j_foodchem_2023_138039
crossref_primary_10_3390_rs13071250
crossref_primary_10_1002_jmri_27308
crossref_primary_10_1016_j_scs_2022_104090
crossref_primary_10_1177_15500594241234836
crossref_primary_10_1007_s11738_019_2946_2
crossref_primary_10_1088_1742_6596_1578_1_012217
crossref_primary_10_1007_s00146_017_0731_6
crossref_primary_10_1007_s11356_021_14632_9
crossref_primary_10_1002_srin_201900454
crossref_primary_10_1038_s41598_025_15282_4
crossref_primary_10_1007_s42600_023_00301_y
crossref_primary_10_1007_s42064_018_0053_6
crossref_primary_10_1073_pnas_1917285117
crossref_primary_10_1002_qre_2947
crossref_primary_10_1016_j_health_2025_100388
crossref_primary_10_1007_s42835_025_02430_z
crossref_primary_10_1016_j_biosystemseng_2018_06_017
crossref_primary_10_1109_LAWP_2020_2973937
crossref_primary_10_1109_JBHI_2020_3034863
crossref_primary_10_1016_j_bios_2024_116076
crossref_primary_10_1016_j_neunet_2021_03_029
crossref_primary_10_1111_odi_13631
crossref_primary_10_1016_j_nima_2023_168409
crossref_primary_10_1002_nme_6012
crossref_primary_10_1007_s42235_022_00230_z
crossref_primary_10_1002_smtd_202401501
crossref_primary_10_1016_j_neucom_2019_10_099
crossref_primary_10_1109_JIOT_2021_3063497
crossref_primary_10_3390_pr8091042
crossref_primary_10_1038_s41598_021_01313_3
crossref_primary_10_1109_TCYB_2020_3008963
crossref_primary_10_1109_JBHI_2020_2969322
crossref_primary_10_24171_j_phrp_2025_0120
crossref_primary_10_3233_JIFS_210956
crossref_primary_10_1007_s10489_020_01913_y
crossref_primary_10_1016_j_neucom_2018_02_093
crossref_primary_10_1017_S0956792520000182
crossref_primary_10_1080_01431161_2025_2467303
crossref_primary_10_1007_s00521_020_05374_9
crossref_primary_10_1088_2058_9565_aaf59e
crossref_primary_10_1108_JSIT_06_2020_0120
crossref_primary_10_56530_spectroscopy_op4571n3
crossref_primary_10_1109_ACCESS_2021_3131506
crossref_primary_10_1007_s10772_020_09781_0
crossref_primary_10_1016_j_neunet_2021_03_015
crossref_primary_10_3390_app10124381
crossref_primary_10_1016_j_neucom_2018_02_042
crossref_primary_10_1016_j_forsciint_2022_111177
crossref_primary_10_1080_17538947_2024_2430679
crossref_primary_10_1109_JSTSP_2020_3002391
crossref_primary_10_1155_2019_6862031
crossref_primary_10_1016_j_trc_2024_104625
crossref_primary_10_1080_02286203_2020_1783494
crossref_primary_10_1007_s12652_023_04667_w
crossref_primary_10_1088_1742_6596_1237_3_032057
crossref_primary_10_1088_1742_6596_1237_3_032058
crossref_primary_10_1016_j_iot_2023_100893
crossref_primary_10_1109_TIE_2017_2764861
crossref_primary_10_1016_j_bspc_2021_102767
crossref_primary_10_1016_j_mri_2023_01_015
crossref_primary_10_1186_s12859_020_3531_9
crossref_primary_10_3390_app13064018
crossref_primary_10_1155_2019_5629572
crossref_primary_10_33715_inonusaglik_1022065
crossref_primary_10_32604_cmc_2021_014943
crossref_primary_10_1016_j_cageo_2021_104987
crossref_primary_10_1002_adem_201901338
crossref_primary_10_1016_j_foodchem_2023_138082
crossref_primary_10_1109_TGRS_2019_2899129
crossref_primary_10_3390_forecast6030035
crossref_primary_10_3389_fnins_2022_906290
crossref_primary_10_1016_j_enbuild_2025_116053
crossref_primary_10_1016_j_jvcir_2019_01_043
crossref_primary_10_1145_3524497
crossref_primary_10_3390_sym14010013
crossref_primary_10_1002_jmri_26047
crossref_primary_10_1080_10407782_2025_2520808
crossref_primary_10_1016_j_neucom_2018_02_062
crossref_primary_10_1162_NECO_a_00931
crossref_primary_10_1016_j_aei_2020_101120
crossref_primary_10_1016_j_istruc_2018_11_013
crossref_primary_10_1016_j_petsci_2023_10_024
crossref_primary_10_32604_cmc_2021_014924
crossref_primary_10_1016_j_rse_2021_112468
crossref_primary_10_3390_su14138200
crossref_primary_10_1016_j_engfracmech_2023_109321
crossref_primary_10_1016_j_jclepro_2020_122722
crossref_primary_10_3389_fneur_2021_603868
crossref_primary_10_1016_j_eurtel_2017_06_001
crossref_primary_10_1016_j_dynatmoce_2021_101266
crossref_primary_10_1016_j_pharmthera_2019_107395
crossref_primary_10_1016_j_ins_2019_12_084
crossref_primary_10_1007_s10664_020_09819_6
crossref_primary_10_1007_s10845_023_02127_y
crossref_primary_10_1016_j_procs_2021_05_044
crossref_primary_10_3390_rs11070755
crossref_primary_10_1016_j_clon_2021_12_003
crossref_primary_10_1007_s41024_023_00371_6
crossref_primary_10_1016_j_future_2018_09_060
crossref_primary_10_1109_TETCI_2016_2642200
crossref_primary_10_3390_su13094652
crossref_primary_10_1257_jel_20221319
crossref_primary_10_3390_batteries8030021
crossref_primary_10_1038_521037a
crossref_primary_10_1109_TBME_2020_3008707
crossref_primary_10_3390_fi17080374
crossref_primary_10_1007_s13042_020_01122_6
crossref_primary_10_1016_j_asoc_2021_107227
crossref_primary_10_1038_s41598_024_73035_1
crossref_primary_10_1016_j_compbiomed_2024_108620
crossref_primary_10_1007_s11831_021_09691_7
crossref_primary_10_1155_2019_5982834
crossref_primary_10_1088_1361_6471_aa9408
crossref_primary_10_3390_app132212244
crossref_primary_10_3390_mi13081313
crossref_primary_10_1016_j_neunet_2023_04_045
crossref_primary_10_1109_TGRS_2023_3339303
crossref_primary_10_35784_jcsi_3579
crossref_primary_10_1080_15567036_2021_2007179
crossref_primary_10_1109_TII_2020_2978114
crossref_primary_10_1016_j_wneu_2022_02_097
crossref_primary_10_3390_su11010189
crossref_primary_10_1007_s11750_020_00563_0
crossref_primary_10_3390_s21082709
crossref_primary_10_1016_j_eswa_2021_114805
crossref_primary_10_1016_j_eswa_2024_125546
crossref_primary_10_1007_s44163_025_00322_9
crossref_primary_10_1007_s42452_020_2222_5
crossref_primary_10_4103_ijo_IJO_1754_19
crossref_primary_10_1080_0144929X_2020_1741684
crossref_primary_10_1016_j_procs_2019_01_189
crossref_primary_10_1371_journal_pone_0286825
crossref_primary_10_3390_cancers16061102
crossref_primary_10_1016_j_amjoto_2023_104155
crossref_primary_10_1038_s43587_022_00266_0
crossref_primary_10_1016_j_catena_2019_104451
crossref_primary_10_1016_j_procs_2019_01_181
crossref_primary_10_1007_s10845_017_1380_9
crossref_primary_10_1016_j_conb_2020_11_009
crossref_primary_10_2118_203980_PA
crossref_primary_10_1002_cjce_25181
crossref_primary_10_1109_TITS_2020_3046974
crossref_primary_10_1109_TII_2018_2864759
crossref_primary_10_1016_j_postharvbio_2024_113120
crossref_primary_10_3390_s19081917
crossref_primary_10_3389_fnins_2020_00179
crossref_primary_10_1111_mice_12532
crossref_primary_10_1016_j_jclepro_2025_144781
crossref_primary_10_3390_app13148128
crossref_primary_10_1016_j_catena_2019_104424
crossref_primary_10_1016_j_ecoinf_2021_101252
crossref_primary_10_1016_j_optlastec_2024_112220
crossref_primary_10_1093_nc_niab012
crossref_primary_10_1177_1059712318763806
crossref_primary_10_1007_s00138_019_01008_w
crossref_primary_10_1016_j_catena_2019_104426
crossref_primary_10_1016_j_conbuildmat_2024_137393
crossref_primary_10_1109_ACCESS_2020_3045280
crossref_primary_10_1016_j_eswa_2024_125564
crossref_primary_10_1093_sysbio_syab048
crossref_primary_10_1007_s00704_022_04300_4
crossref_primary_10_1016_j_specom_2019_03_006
crossref_primary_10_1177_1748006X251369081
crossref_primary_10_1007_s11229_024_04566_3
crossref_primary_10_1016_j_jpowsour_2025_237203
crossref_primary_10_1016_j_coche_2019_02_008
crossref_primary_10_1080_09540091_2020_1822780
crossref_primary_10_1088_1757_899X_1130_1_012056
crossref_primary_10_29109_gujsc_1632938
crossref_primary_10_1016_j_cosrev_2017_11_002
crossref_primary_10_1016_j_engstruct_2023_116379
crossref_primary_10_3390_s20071809
crossref_primary_10_3390_app12042071
crossref_primary_10_3390_jmse11040880
crossref_primary_10_1007_s11227_017_1994_x
crossref_primary_10_3390_agriculture14010060
crossref_primary_10_3390_s22103693
crossref_primary_10_1002_lpor_202300939
crossref_primary_10_1177_1074248419878405
crossref_primary_10_1002_smll_202305195
crossref_primary_10_1016_j_advengsoft_2022_103240
crossref_primary_10_1109_JIOT_2019_2902815
crossref_primary_10_1016_j_ijinfomgt_2022_102538
crossref_primary_10_1109_ACCESS_2018_2890150
crossref_primary_10_3390_s21051794
crossref_primary_10_1371_journal_pone_0289076
crossref_primary_10_3390_make4010009
crossref_primary_10_3390_make4010004
crossref_primary_10_1016_j_neunet_2018_08_001
crossref_primary_10_1016_j_neunet_2018_08_002
crossref_primary_10_1111_epi_16719
crossref_primary_10_1016_j_eswa_2016_10_010
crossref_primary_10_1002_aisy_202100016
crossref_primary_10_1016_j_ymssp_2019_106587
crossref_primary_10_1088_1674_1056_ac380b
crossref_primary_10_1016_j_patrec_2017_05_011
crossref_primary_10_1109_TNNLS_2017_2697455
crossref_primary_10_1007_s13201_022_01798_x
crossref_primary_10_1186_s13705_020_00266_1
crossref_primary_10_1007_s11053_021_10002_x
crossref_primary_10_1016_j_patrec_2017_05_018
crossref_primary_10_1038_s41598_021_94564_z
crossref_primary_10_3390_jmse11020313
crossref_primary_10_1109_TIP_2018_2851670
crossref_primary_10_1108_IMDS_10_2018_0445
crossref_primary_10_1109_TII_2025_3526478
crossref_primary_10_1016_j_procir_2020_01_019
crossref_primary_10_1080_13658816_2019_1652304
crossref_primary_10_1016_j_compag_2021_106045
crossref_primary_10_1121_1_5116016
crossref_primary_10_1016_j_energy_2019_07_034
crossref_primary_10_1016_j_aquaculture_2021_737215
crossref_primary_10_1007_s00521_024_09660_8
crossref_primary_10_1186_s12859_018_2198_y
crossref_primary_10_1049_rsn2_12295
crossref_primary_10_1007_s41095_019_0142_3
crossref_primary_10_1038_s41598_024_61379_7
crossref_primary_10_3390_sym15071413
crossref_primary_10_1061__ASCE_WR_1943_5452_0001317
crossref_primary_10_1109_ACCESS_2018_2825996
crossref_primary_10_1016_j_bspc_2021_102825
crossref_primary_10_3390_jmse11020340
crossref_primary_10_1016_j_artmed_2025_103276
crossref_primary_10_1080_01621459_2025_2529602
crossref_primary_10_1109_ACCESS_2019_2920410
crossref_primary_10_3847_1538_4365_aba8ff
crossref_primary_10_1080_07038992_2020_1833186
crossref_primary_10_3390_jimaging8070182
crossref_primary_10_1109_TIT_2015_2510657
crossref_primary_10_3389_fonc_2025_1587517
crossref_primary_10_3390_jimaging7090177
crossref_primary_10_1016_j_ocecoaman_2023_106631
crossref_primary_10_1016_j_bej_2018_04_015
crossref_primary_10_1038_s41928_023_01069_w
crossref_primary_10_1016_j_bspc_2017_06_012
crossref_primary_10_1016_j_bspc_2021_102814
crossref_primary_10_1149_1945_7111_ad69c5
crossref_primary_10_1016_j_prrv_2021_06_002
crossref_primary_10_1016_j_aei_2022_101749
crossref_primary_10_1063_1_5040020
crossref_primary_10_1007_s00163_020_00336_7
crossref_primary_10_1002_stc_2571
crossref_primary_10_1109_JSEN_2023_3348597
crossref_primary_10_1063_5_0220809
crossref_primary_10_3390_s21020618
crossref_primary_10_1089_cmb_2015_0145
crossref_primary_10_1109_ACCESS_2019_2920436
crossref_primary_10_3390_diagnostics14151634
crossref_primary_10_1016_j_rse_2022_113263
crossref_primary_10_3390_en14082163
crossref_primary_10_3233_THC_248011
crossref_primary_10_1109_TGRS_2020_2963928
crossref_primary_10_1109_ACCESS_2020_2988557
crossref_primary_10_1109_JIOT_2023_3303253
crossref_primary_10_1109_TUFFC_2020_2964698
crossref_primary_10_3103_S0147688221030035
crossref_primary_10_1002_suco_202400188
crossref_primary_10_1007_s10462_025_11282_y
crossref_primary_10_1162_NECO_a_00929
crossref_primary_10_1088_1742_6596_1889_3_032029
crossref_primary_10_1109_JSTARS_2021_3117975
crossref_primary_10_1109_TIFS_2019_2925452
crossref_primary_10_1016_j_jbef_2021_100474
crossref_primary_10_1038_s41746_022_00651_4
crossref_primary_10_1038_s42256_019_0018_3
crossref_primary_10_1007_s40192_024_00369_z
crossref_primary_10_1162_neco_a_01079
crossref_primary_10_1016_j_measurement_2024_114760
crossref_primary_10_1016_j_engappai_2019_06_016
crossref_primary_10_1016_j_envres_2024_120015
crossref_primary_10_1038_nphoton_2017_93
crossref_primary_10_1007_s00521_023_08260_2
crossref_primary_10_1080_17477778_2024_2403424
crossref_primary_10_1109_TII_2017_2672988
crossref_primary_10_1007_s13239_020_00497_5
crossref_primary_10_1016_j_mineng_2025_109741
crossref_primary_10_1146_annurev_pathmechdis_051222_113147
crossref_primary_10_1016_j_compbiomed_2022_105888
crossref_primary_10_1007_s13369_024_09818_5
crossref_primary_10_1111_mice_12376
crossref_primary_10_1002_stc_2552
crossref_primary_10_1016_j_trf_2017_12_006
crossref_primary_10_1016_j_aei_2020_101166
crossref_primary_10_1016_j_energy_2023_128546
crossref_primary_10_1515_med_2020_0006
crossref_primary_10_1007_s00034_019_01157_3
crossref_primary_10_1109_ACCESS_2020_2977880
crossref_primary_10_3390_en14082144
crossref_primary_10_1111_coin_12198
crossref_primary_10_1016_j_procs_2019_09_190
crossref_primary_10_1162_neco_a_01086
crossref_primary_10_1007_s10845_016_1279_x
crossref_primary_10_1016_j_scs_2021_103231
crossref_primary_10_1016_j_combustflame_2019_07_015
crossref_primary_10_1016_j_autcon_2020_103230
crossref_primary_10_1016_j_compag_2021_106090
crossref_primary_10_1109_TNS_2016_2543203
crossref_primary_10_1016_j_inffus_2018_11_016
crossref_primary_10_1016_j_aei_2022_101773
crossref_primary_10_1016_j_eswa_2019_112855
crossref_primary_10_1093_bib_bbac427
crossref_primary_10_1016_j_entcom_2020_100357
crossref_primary_10_1016_j_scitotenv_2023_167234
crossref_primary_10_1109_ACCESS_2019_2920448
crossref_primary_10_1587_transinf_2020EDL8163
crossref_primary_10_1088_1361_6528_ab3480
crossref_primary_10_1109_ACCESS_2018_2847314
crossref_primary_10_1371_journal_pone_0196828
crossref_primary_10_3390_diagnostics14151646
crossref_primary_10_1371_journal_pone_0249856
crossref_primary_10_1590_1981_5344_3505
crossref_primary_10_1016_j_patcog_2016_08_015
crossref_primary_10_32604_cmc_2023_029618
crossref_primary_10_1016_j_optcom_2022_127951
crossref_primary_10_1109_LRA_2019_2926959
crossref_primary_10_1016_j_jksuci_2017_09_001
crossref_primary_10_1109_TIFS_2021_3103062
crossref_primary_10_1007_s10791_017_9321_y
crossref_primary_10_3390_s19010063
crossref_primary_10_1016_j_aquaculture_2018_12_079
crossref_primary_10_1214_17_AAP1328
crossref_primary_10_1155_2021_9022558
crossref_primary_10_3390_robotics12050124
crossref_primary_10_1109_TITS_2021_3052771
crossref_primary_10_3847_1538_4357_ac9793
crossref_primary_10_1016_j_patcog_2020_107407
crossref_primary_10_1007_s41027_022_00412_7
crossref_primary_10_1007_s43545_020_00043_z
crossref_primary_10_1007_s11227_019_02838_1
crossref_primary_10_1007_s12652_021_03184_y
crossref_primary_10_1038_s41598_020_59801_x
crossref_primary_10_1063_5_0200395
crossref_primary_10_1371_journal_pone_0177630
crossref_primary_10_1016_j_xnsj_2023_100236
crossref_primary_10_1007_s10661_021_09561_6
crossref_primary_10_1016_j_bspc_2022_103596
crossref_primary_10_1016_j_petlm_2018_12_001
crossref_primary_10_3233_ICA_200640
crossref_primary_10_1007_s00158_018_02191_6
crossref_primary_10_1002_jsp2_1044
crossref_primary_10_3389_fphy_2020_621966
crossref_primary_10_1007_s11082_020_02372_y
crossref_primary_10_1155_2022_7067342
crossref_primary_10_1016_j_procs_2025_04_387
crossref_primary_10_3390_rs14112648
crossref_primary_10_1007_s11306_017_1274_z
crossref_primary_10_1016_j_yofte_2024_103952
crossref_primary_10_1371_journal_pcbi_1005929
crossref_primary_10_3847_1538_4357_ab14eb
crossref_primary_10_1016_j_petrol_2019_106332
crossref_primary_10_1109_TSE_2020_2979701
crossref_primary_10_1016_j_knosys_2021_106855
crossref_primary_10_1109_ACCESS_2018_2789935
crossref_primary_10_3390_jmse13050905
crossref_primary_10_1208_s12249_025_03075_x
crossref_primary_10_1109_TASE_2020_3003124
crossref_primary_10_1109_TASE_2021_3072363
crossref_primary_10_1371_journal_pone_0228065
crossref_primary_10_3390_app14198686
crossref_primary_10_1016_j_seppur_2024_127790
crossref_primary_10_1016_j_cities_2024_105141
crossref_primary_10_3233_JAD_160309
crossref_primary_10_3390_ijgi8090417
crossref_primary_10_3390_jimaging6030008
crossref_primary_10_1088_2051_672X_ac9492
crossref_primary_10_1016_j_apm_2023_12_008
crossref_primary_10_3390_s21134412
crossref_primary_10_1016_j_jcp_2019_108910
crossref_primary_10_3390_jne5030015
crossref_primary_10_1002_mp_14382
crossref_primary_10_1109_TII_2021_3115567
crossref_primary_10_1016_j_autcon_2025_106283
crossref_primary_10_1162_neco_a_01029
crossref_primary_10_1109_ACCESS_2021_3088423
crossref_primary_10_1109_TGRS_2018_2870202
crossref_primary_10_3390_s21248467
crossref_primary_10_1002_tee_22938
crossref_primary_10_3390_math10152552
crossref_primary_10_1177_0954406219834048
crossref_primary_10_1016_j_patcog_2018_01_002
crossref_primary_10_1063_5_0279303
crossref_primary_10_1214_17_BA1082
crossref_primary_10_1007_s40192_018_0117_8
crossref_primary_10_1109_TIM_2017_2735661
crossref_primary_10_1016_j_cogsys_2017_10_003
crossref_primary_10_3390_rs12030343
crossref_primary_10_1088_2515_7647_abf02c
crossref_primary_10_1016_j_cnsns_2022_106708
crossref_primary_10_1016_j_physrep_2019_05_002
crossref_primary_10_1109_ACCESS_2021_3099111
crossref_primary_10_1631_jzus_B2400103
crossref_primary_10_1038_s41598_017_08892_0
crossref_primary_10_3233_THC_220514
crossref_primary_10_1016_j_acra_2020_02_006
crossref_primary_10_1007_s11119_023_10022_y
crossref_primary_10_3390_jmse11020368
crossref_primary_10_1016_j_cej_2021_133244
crossref_primary_10_3233_XST_221260
crossref_primary_10_1016_j_neunet_2016_07_006
crossref_primary_10_1016_j_compag_2018_07_014
crossref_primary_10_1016_j_neunet_2016_07_004
crossref_primary_10_3390_act12040154
crossref_primary_10_1016_j_petrol_2019_106306
crossref_primary_10_1137_24M1639464
crossref_primary_10_1002_aisy_202100054
crossref_primary_10_3390_s21051745
crossref_primary_10_3390_app9173569
crossref_primary_10_1109_TIM_2020_3016408
crossref_primary_10_1093_jcr_ucab018
crossref_primary_10_3390_pr10122500
crossref_primary_10_1016_j_jcp_2019_108939
crossref_primary_10_1515_cclm_2021_0081
crossref_primary_10_3389_fimmu_2021_642383
crossref_primary_10_1109_TSM_2017_2787550
crossref_primary_10_1371_journal_pcbi_1009467
crossref_primary_10_1007_s42452_023_05447_z
crossref_primary_10_1061__ASCE_GM_1943_5622_0002064
crossref_primary_10_1051_0004_6361_202243900
crossref_primary_10_1002_aisy_202100066
crossref_primary_10_1088_1751_8121_ab6943
crossref_primary_10_1145_3366022
crossref_primary_10_1155_2020_5408942
crossref_primary_10_1002_ett_4388
crossref_primary_10_1038_s41598_020_80426_7
crossref_primary_10_1016_j_microc_2025_115053
crossref_primary_10_1016_j_energy_2019_04_221
crossref_primary_10_17573_cepar_2025_1_05
crossref_primary_10_1175_WAF_D_18_0095_1
crossref_primary_10_1007_s40574_025_00502_6
crossref_primary_10_3390_app9245502
crossref_primary_10_1088_1757_899X_563_5_052082
crossref_primary_10_1007_s11356_024_35764_8
crossref_primary_10_1051_matecconf_201821004019
crossref_primary_10_1016_j_patcog_2020_107424
crossref_primary_10_3390_jmse11020384
crossref_primary_10_1016_j_ijepes_2025_110945
crossref_primary_10_1016_j_cej_2020_126673
crossref_primary_10_1016_j_flowmeasinst_2021_101913
crossref_primary_10_3390_electronics11030305
crossref_primary_10_13169_prometheus_36_4_0322
crossref_primary_10_1007_s10479_018_2891_2
crossref_primary_10_3390_app13031858
crossref_primary_10_3390_cancers16213702
crossref_primary_10_1016_j_gpb_2017_07_003
crossref_primary_10_2174_1381612829666230412084137
crossref_primary_10_1080_02640414_2023_2268366
crossref_primary_10_1002_ps_5349
crossref_primary_10_1177_0165551521991022
crossref_primary_10_1016_j_ijepes_2021_107744
crossref_primary_10_1007_s12652_020_02357_5
crossref_primary_10_4018_IJSKD_2019070101
crossref_primary_10_1007_s11042_021_10510_1
crossref_primary_10_1038_s41567_025_02855_3
crossref_primary_10_1016_j_technovation_2023_102711
crossref_primary_10_1029_2019WR026793
crossref_primary_10_1109_ACCESS_2021_3094262
crossref_primary_10_1039_D4TC05041J
crossref_primary_10_1109_ACCESS_2020_2970433
crossref_primary_10_1109_TCBB_2022_3199758
crossref_primary_10_1007_s10845_022_01933_0
crossref_primary_10_1002_anie_202008366
crossref_primary_10_3389_fnut_2023_1277048
crossref_primary_10_1016_j_ces_2025_121603
crossref_primary_10_1088_2632_2153_acefaa
crossref_primary_10_1140_epjc_s10052_025_13943_2
crossref_primary_10_1016_j_measurement_2018_11_040
crossref_primary_10_1007_s11030_021_10217_3
crossref_primary_10_3390_foods11182915
crossref_primary_10_1016_j_fuel_2023_130586
crossref_primary_10_1109_TCYB_2022_3207878
crossref_primary_10_1109_ACCESS_2020_2970442
crossref_primary_10_1016_j_eswa_2023_122013
crossref_primary_10_1155_2019_8124254
crossref_primary_10_1016_j_optlastec_2023_110005
crossref_primary_10_1007_s00170_019_03821_z
crossref_primary_10_3390_plants14182841
crossref_primary_10_1016_j_knosys_2019_104971
crossref_primary_10_1063_5_0123614
crossref_primary_10_1016_j_resourpol_2020_101806
crossref_primary_10_3390_en17050993
crossref_primary_10_1007_s00330_019_06457_5
crossref_primary_10_3390_ma14185342
crossref_primary_10_1007_s13369_020_04533_3
crossref_primary_10_1371_journal_pcbi_1008127
crossref_primary_10_1073_pnas_1620742114
crossref_primary_10_1109_ACCESS_2020_2982404
crossref_primary_10_1016_j_ress_2019_106731
crossref_primary_10_3390_beverages9030068
crossref_primary_10_1007_s11042_023_14634_4
crossref_primary_10_1162_NECO_a_00893
crossref_primary_10_1007_s11554_019_00887_6
crossref_primary_10_1016_j_jcp_2019_108877
crossref_primary_10_1016_j_compeleceng_2016_04_018
crossref_primary_10_3390_ijms232112975
crossref_primary_10_1007_s11071_024_10423_2
crossref_primary_10_1007_s11042_022_13771_6
crossref_primary_10_3390_rs13071391
crossref_primary_10_1109_COMST_2020_3013514
crossref_primary_10_1109_JSEN_2022_3179466
crossref_primary_10_1109_ACCESS_2022_3179589
crossref_primary_10_1109_ACCESS_2020_3046687
crossref_primary_10_1109_JSTQE_2019_2941485
crossref_primary_10_36930_40310317
crossref_primary_10_1103_PhysRevE_107_045301
crossref_primary_10_1145_3355089_3356557
crossref_primary_10_1007_s11634_018_0344_z
crossref_primary_10_3390_pr8091155
crossref_primary_10_1016_j_ymssp_2020_107513
crossref_primary_10_1016_j_ipm_2019_02_018
crossref_primary_10_1093_mnras_stab953
crossref_primary_10_1016_j_jksuci_2021_06_008
crossref_primary_10_3846_mma_2022_15974
crossref_primary_10_1016_j_engappai_2024_108470
crossref_primary_10_1038_s41598_020_64509_z
crossref_primary_10_3390_brainsci10110835
crossref_primary_10_1088_1742_6596_1402_3_033092
crossref_primary_10_1002_cyto_a_23701
crossref_primary_10_1080_17445302_2018_1447746
crossref_primary_10_1016_j_compag_2020_105258
crossref_primary_10_1007_s42405_019_00233_x
crossref_primary_10_1016_j_geoderma_2024_116838
crossref_primary_10_1016_j_neucom_2019_09_113
crossref_primary_10_1088_1742_6596_1646_1_012039
crossref_primary_10_1016_j_ins_2018_10_053
crossref_primary_10_1097_CIN_0000000000001052
crossref_primary_10_3390_s24196313
crossref_primary_10_1109_TITS_2015_2465296
crossref_primary_10_1190_geo2023_0424_1
crossref_primary_10_1038_s41598_018_24330_1
crossref_primary_10_1007_s13534_025_00469_5
crossref_primary_10_1016_j_biosystemseng_2015_06_011
crossref_primary_10_3390_app10113835
crossref_primary_10_1016_j_jmapro_2024_11_067
crossref_primary_10_1029_2023JC019941
crossref_primary_10_1016_j_oceaneng_2025_122479
crossref_primary_10_1016_j_coal_2019_103284
crossref_primary_10_3389_fnins_2018_00525
crossref_primary_10_1109_TIM_2022_3217839
crossref_primary_10_2196_17364
crossref_primary_10_1109_ACCESS_2019_2940853
crossref_primary_10_2196_42337
crossref_primary_10_1007_s10479_021_04429_x
crossref_primary_10_1042_BCJ20200781
crossref_primary_10_3390_math11143217
crossref_primary_10_1109_TIP_2019_2928627
crossref_primary_10_1155_2022_2540546
crossref_primary_10_1016_j_apenergy_2019_02_052
crossref_primary_10_1016_j_ces_2021_117224
crossref_primary_10_2196_28036
crossref_primary_10_3390_app12168007
crossref_primary_10_1016_j_imavis_2022_104401
crossref_primary_10_1088_1361_6501_ac7b6b
crossref_primary_10_1007_s42161_025_01983_2
crossref_primary_10_1061__ASCE_CP_1943_5487_0001010
crossref_primary_10_3390_app10113816
crossref_primary_10_3390_s19183914
crossref_primary_10_1007_s11356_024_33058_7
crossref_primary_10_3390_ai2010008
crossref_primary_10_1109_TVCG_2016_2598838
crossref_primary_10_3390_ai2010009
crossref_primary_10_1007_s40860_020_00121_2
crossref_primary_10_1109_JIOT_2020_2981379
crossref_primary_10_1016_j_ins_2024_121363
crossref_primary_10_1051_bioconf_20249700004
crossref_primary_10_3390_en15093265
crossref_primary_10_3390_e27030279
crossref_primary_10_1109_ACCESS_2020_3019048
crossref_primary_10_1016_j_patter_2025_101182
crossref_primary_10_1063_5_0201613
crossref_primary_10_1155_2024_2444698
crossref_primary_10_1016_j_knosys_2017_10_004
crossref_primary_10_1016_j_physrep_2021_10_005
crossref_primary_10_1587_transinf_2016LOI0001
crossref_primary_10_1177_03611981241248164
crossref_primary_10_1007_s10614_021_10118_5
crossref_primary_10_3390_en16031404
crossref_primary_10_1007_s10845_018_1438_3
crossref_primary_10_1016_j_inffus_2020_09_006
crossref_primary_10_3390_ijgi11020085
crossref_primary_10_1016_j_procs_2018_10_503
crossref_primary_10_1016_j_oceaneng_2025_121199
crossref_primary_10_1515_humaff_2022_2035
crossref_primary_10_3390_app142210657
crossref_primary_10_1016_j_compstruc_2021_106714
crossref_primary_10_1097_WNO_0000000000001605
crossref_primary_10_1007_s10346_024_02336_3
crossref_primary_10_1007_s12273_022_0953_5
crossref_primary_10_1098_rsos_221614
crossref_primary_10_3390_en13102640
crossref_primary_10_1016_j_chemolab_2018_01_014
crossref_primary_10_1109_ACCESS_2022_3213061
crossref_primary_10_1520_JTE20170563
crossref_primary_10_1093_mnras_stac3797
crossref_primary_10_3390_s19224909
crossref_primary_10_1016_j_acra_2019_05_018
crossref_primary_10_1039_D2NR06202J
crossref_primary_10_3390_diagnostics12040869
crossref_primary_10_3389_fbioe_2020_01039
crossref_primary_10_1007_s42107_025_01388_7
crossref_primary_10_3390_jsan12040059
crossref_primary_10_1038_s41598_025_08515_z
crossref_primary_10_3847_1538_4357_ab0e8a
crossref_primary_10_1016_j_cageo_2021_104869
crossref_primary_10_1016_j_bdr_2017_05_002
crossref_primary_10_1109_MIE_2017_2788850
crossref_primary_10_1109_TNNLS_2017_2697386
crossref_primary_10_1016_j_ymssp_2017_11_024
crossref_primary_10_1007_s11277_020_07173_w
crossref_primary_10_1016_j_knosys_2017_10_024
crossref_primary_10_1109_ACCESS_2023_3293041
crossref_primary_10_1038_s41598_021_83315_9
crossref_primary_10_1109_TSMC_2016_2637279
crossref_primary_10_1016_j_procs_2018_10_520
crossref_primary_10_1007_s00339_022_06365_4
crossref_primary_10_1016_j_foodchem_2025_145932
crossref_primary_10_1016_j_physletb_2017_12_053
crossref_primary_10_1016_j_ejrad_2024_111655
crossref_primary_10_1016_j_measurement_2016_04_007
crossref_primary_10_1109_TVCG_2020_3030467
crossref_primary_10_1109_TKDE_2017_2682858
crossref_primary_10_1016_j_jhazmat_2016_07_034
crossref_primary_10_1109_ACCESS_2021_3072897
crossref_primary_10_1177_15500594221137234
crossref_primary_10_1186_s10033_019_0388_9
crossref_primary_10_1155_2021_4259629
crossref_primary_10_1016_j_saa_2021_120187
crossref_primary_10_3390_app12042158
crossref_primary_10_1109_ACCESS_2019_2933676
crossref_primary_10_2514_1_J059027
crossref_primary_10_1109_ACCESS_2022_3156888
crossref_primary_10_1016_j_istruc_2024_107543
crossref_primary_10_1155_2020_1895076
crossref_primary_10_1049_rsn2_12316
crossref_primary_10_1007_s00417_023_06208_9
crossref_primary_10_1093_brain_awad255
crossref_primary_10_1097_AUD_0000000000001217
crossref_primary_10_1097_TP_0000000000002189
crossref_primary_10_1109_TSMC_2018_2850367
crossref_primary_10_2478_mspe_2020_0020
crossref_primary_10_1093_icb_icab015
crossref_primary_10_3390_rs11141678
crossref_primary_10_1016_j_segan_2022_100660
crossref_primary_10_1109_ACCESS_2019_2931040
crossref_primary_10_1109_TNSM_2020_3043482
crossref_primary_10_1093_bib_bbab048
crossref_primary_10_1016_j_aop_2019_167938
crossref_primary_10_1016_j_apacoust_2020_107435
crossref_primary_10_1051_epjconf_202532801052
crossref_primary_10_1109_TASE_2021_3118226
crossref_primary_10_1109_TNSE_2023_3246463
crossref_primary_10_1016_j_rser_2025_115986
crossref_primary_10_1016_j_molliq_2022_120571
crossref_primary_10_1109_TSMC_2018_2791575
crossref_primary_10_1017_S0263574721000023
crossref_primary_10_1007_s42486_020_00039_x
crossref_primary_10_1093_bib_bbab047
crossref_primary_10_1080_00036846_2022_2141462
crossref_primary_10_1093_bib_bbac373
crossref_primary_10_3390_ma18071464
crossref_primary_10_3390_en16020799
crossref_primary_10_3389_fspas_2023_1177550
crossref_primary_10_15407_kvt208_02_030
crossref_primary_10_1109_TASLP_2020_3043655
crossref_primary_10_1371_journal_pone_0320224
crossref_primary_10_1007_s11220_022_00377_3
crossref_primary_10_3390_app11115146
crossref_primary_10_1080_14680629_2023_2237597
crossref_primary_10_2139_ssrn_5351278
crossref_primary_10_1016_j_compag_2024_108660
crossref_primary_10_3390_app9193945
crossref_primary_10_1016_j_artmed_2020_101792
crossref_primary_10_1016_j_comnet_2024_110344
crossref_primary_10_3390_bios15090571
crossref_primary_10_1007_s00180_016_0678_y
crossref_primary_10_1177_1745691617693393
crossref_primary_10_1016_j_physa_2019_122656
crossref_primary_10_1016_j_aei_2022_101818
crossref_primary_10_1016_j_jclepro_2021_129579
crossref_primary_10_1016_j_eswa_2020_113994
crossref_primary_10_1111_mice_12422
crossref_primary_10_3389_fped_2022_1005099
crossref_primary_10_1136_bmjgast_2019_000371
crossref_primary_10_1016_j_ress_2019_106706
crossref_primary_10_1007_s00371_022_02468_4
crossref_primary_10_1016_j_comnet_2024_110330
crossref_primary_10_1016_j_applthermaleng_2024_123191
crossref_primary_10_1007_s00107_025_02211_5
Cites_doi 10.1016/j.neuron.2012.01.010
10.1007/BF00199581
10.1162/089976600300015015
10.1073/pnas.79.8.2554
10.1109/72.279181
10.1162/neco.1997.9.1.1
10.1007/s10827-007-0038-6
10.1016/S0893-6080(09)80004-X
10.1016/j.neuron.2008.10.043
10.1016/S0893-6080(96)00110-4
10.1016/0167-2789(90)90081-Y
10.1162/neco.1996.8.1.1
10.1162/neco.1994.6.1.147
10.1093/comjnl/11.2.185
10.1007/BF00992696
10.1162/neco.1992.4.4.559
10.1007/BF02331346
10.1016/j.neunet.2005.06.042
10.1162/neco.1989.1.1.151
10.1109/72.623201
10.1162/neco.1992.4.2.243
10.1016/S0893-6080(02)00235-6
10.1016/j.neunet.2012.09.016
10.1103/PhysRevLett.72.3634
10.1109/CVPR.2014.223
10.1109/TSMCC.2012.2218595
10.1016/S0893-6080(96)00127-X
10.1016/j.neunet.2012.02.023
10.1109/ICSMC.1990.142119
10.1162/neco.1993.5.1.140
10.1113/jphysiol.1968.sp008455
10.1023/A:1008925309027
10.1109/72.265959
10.1093/cercor/1.1.1
10.1137/S0363012999361974
10.1162/neco.1995.7.5.889
10.1109/ICDAR.2013.218
10.1007/BF00116250
10.1109/TEVC.2010.2104157
10.1113/jphysiol.1959.sp006308
10.1162/neco.1994.6.6.1155
10.1523/JNEUROSCI.04-08-02051.1984
10.1016/j.neunet.2008.02.002
10.1109/JRPROC.1962.288235
10.1142/S0129065791000030
10.1098/rspb.2012.2863
10.1103/PhysRevE.59.4498
10.1109/72.410363
10.1126/science.1225266
10.1109/TPAMI.2012.59
10.1098/rstl.1763.0053
10.1162/0899766053011519
10.1007/3-540-36755-1_25
10.1111/j.2517-6161.1977.tb01600.x
10.1162/neco.1994.6.4.559
10.1093/cercor/bhs348
10.1109/72.377972
10.1007/978-1-4684-1716-6_25
10.1007/BF01700692
10.1162/neco.1989.1.3.412
10.1007/BF00344251
10.1126/science.316.5825.688c
10.1109/TAC.1973.1100330
10.1088/0954-898X/3/2/004
10.1109/IVS.1994.639472
10.1613/jair.2110
10.1016/j.neucom.2007.11.026
10.3389/fpsyg.2013.00124
10.1023/A:1025696116075
10.1145/175247.175257
10.1162/neco.1996.8.6.1135
10.1162/NECO_a_00344
10.1016/S0004-3702(99)00052-1
10.1109/TPAMI.2013.50
10.1109/IJCNN.1998.685873
10.1126/science.1254642
10.1016/0743-1066(94)90029-9
10.1162/neco.1989.1.4.541
10.1109/72.963769
10.1016/0042-6989(82)90113-4
10.1162/neco.2007.19.3.757
10.1016/0893-6080(90)90044-L
10.1109/IJCNN.1999.831160
10.1364/JOSAA.22.002013
10.1162/neco.1995.7.6.1129
10.1162/neco.1996.8.3.643
10.1080/09540098908915631
10.1109/72.377990
10.1109/CEC.2008.4631255
10.1162/neco.1989.1.4.425
10.1109/TCT.1969.1082967
10.1109/TSMCB.2003.818557
10.1364/JOSAA.4.002379
10.1016/S0893-6080(03)00127-8
10.1162/neco.2009.10-08-881
10.1016/j.ijar.2008.11.006
10.1109/TAC.1974.1100705
10.1016/j.patcog.2004.01.013
10.1016/S0893-6080(05)80023-1
10.1016/0022-247X(62)90004-5
10.1007/BF00288907
10.1109/5.726791
10.1162/08997660460733994
10.21437/Interspeech.2014-305
10.1109/CDC.1989.70114
10.1093/nar/gkp305
10.1007/3-540-46084-5_213
10.1162/neco.1992.4.2.141
10.1162/089976698300017502
10.1016/0022-5193(68)90079-9
10.1016/0004-3702(89)90049-0
10.1162/089976698300017746
10.1145/6592.6594
10.1016/S0925-2312(01)00658-0
10.1162/neco.1990.2.2.173
10.1162/08997660360675099
10.1109/5.726790
10.1109/DEVLRN.2011.6037326
10.2307/2371045
10.1142/S0129054102001199
10.1016/S0019-9958(64)90223-2
10.1016/0165-6074(96)00012-9
10.1162/neco.1992.4.1.1
10.1109/IJCNN.2008.4633916
10.1098/rspb.1976.0087
10.1162/neco.1997.9.8.1735
10.6028/jres.049.044
10.1093/comjnl/6.2.163
10.1016/S0166-4115(97)80111-2
10.1523/JNEUROSCI.14-01-00409.1994
10.1016/0925-2312(94)90034-5
10.4249/scholarpedia.4650
10.1080/09540090600768658
10.1109/TNN.2003.820440
10.1023/B:VISI.0000029664.99615.94
10.1371/journal.pcbi.1000894
10.1007/BF00114727
10.1162/neco.1994.6.2.215
10.1088/0954-898X/5/4/008
10.3389/fpsyg.2013.00313
10.1016/0893-6080(88)90007-X
10.1109/72.839013
10.1093/bioinformatics/17.5.419
10.1145/1143844.1143891
10.1109/TSMC.1974.5408453
10.1109/21.155944
10.1080/00401706.1979.10489751
10.1613/jair.639
10.21437/Interspeech.2014-80
10.1613/jair.806
10.1177/105971239700600202
10.1109/IJCNN.1990.137723
10.1109/TKDE.2009.191
10.1109/MSP.2012.2205597
10.1162/NECO_a_00397
10.1016/S0893-6080(02)00219-8
10.1109/34.825759
10.1126/science.1109676
10.1109/78.554307
10.1109/TPAMI.2012.272
10.1109/CEC.2010.5586547
10.1162/neco.1997.9.5.1127
10.1007/BF00114724
10.1080/09540098908915640
10.1007/BF02478259
10.1214/aos/1176350051
10.1162/neco.1989.1.2.270
10.1109/2.36
10.1090/qam/10666
10.1109/ICDAR.2003.1227801
10.1016/0004-3702(89)90047-7
10.1162/neco.1992.4.4.473
10.1109/MCSE.2010.112
10.1109/72.363438
10.1162/089976602317318938
10.1162/neco.1997.9.5.1015
10.1364/JOSAA.7.000923
10.1016/0893-6080(89)90020-8
10.1002/aic.690370209
10.1109/72.279191
10.1142/S0129065789000475
10.1109/IJCNN.1989.118645
10.1162/089976602760408035
10.1111/j.2517-6161.1974.tb00994.x
10.1109/78.650093
10.1007/BF00337365
10.1162/neco.1989.1.3.295
10.1038/14819
10.1162/neco.1994.6.5.842
10.1162/NECO_a_00052
10.1109/IJCNN.2002.1007449
10.1016/S0304-3975(02)00097-X
10.1109/TNNLS.2014.2308519
10.1147/rd.33.0210
10.1113/jphysiol.1952.sp004764
10.1007/BF00118594
10.1109/TITS.2011.2119483
10.1162/106365602320169811
10.1142/S0129065794000074
10.1016/0893-6080(94)90030-2
10.1016/j.patcog.2013.10.020
10.1016/S0893-6080(01)00054-5
10.1007/3-540-45110-2_105
10.1162/neco.2006.18.7.1527
10.1109/IJCNN.2000.861532
10.1163/156855308X360604
10.1016/j.neunet.2011.03.017
10.1016/0020-0190(87)90114-1
10.1016/j.neunet.2013.01.001
10.1016/0893-6080(94)00098-7
10.2991/agi.2010.22
10.1162/neco.1993.5.3.402
10.1016/0165-1684(94)90029-9
10.1109/TNN.2002.804221
10.1007/978-3-642-15825-4_10
10.1016/0004-3702(90)90005-K
10.1007/978-3-540-74695-9_23
10.1109/TPAMI.2008.137
10.1093/jigpal/jzp049
10.1038/381607a0
10.1109/ICASSP.2014.6853982
10.1162/neco.1997.9.1.123
10.1109/TSMC.1976.4309532
10.1109/TPAMI.2012.231
10.1088/0954-898X/7/4/005
10.1145/321356.321363
10.1098/rstb.1997.0101
10.1016/0893-6080(95)00086-0
10.1126/science.1117593
10.1109/72.80202
10.1109/CVPR.2014.98
10.21437/Interspeech.2014-483
10.1523/JNEUROSCI.5044-12.2013
10.1145/1276958.1277155
10.1037/h0042519
10.1109/JRPROC.1952.273898
10.1109/CVPR.2014.249
10.1098/rstb.1992.0003
10.1162/neco.1993.5.2.289
10.1162/106365601750190398
10.1007/BF01931367
10.1162/jocn_a_00282
10.1109/ICIP.2013.6738831
10.1007/BF01404567
10.1016/S0005-1098(00)00050-9
10.1162/089976606775093891
10.2514/8.5282
10.1023/A:1007967800668
10.1007/BF00203171
10.1023/A:1007379606734
10.21437/Interspeech.2014-445
10.1103/PhysRevLett.59.2229
10.1523/JNEUROSCI.4098-12.2013
10.1126/science.1091277
10.1016/S0925-2312(02)00635-5
10.1007/BF00116037
10.1038/scientificamerican0612-50
10.1152/jn.1994.71.3.856
10.1109/ICCV.1999.790410
10.1152/jn.01095.2004
10.1109/ICASSP.2014.6854518
10.1137/0111030
10.1016/0020-0255(93)90049-R
10.1145/192161.192167
10.1145/1553374.1553453
10.1162/neco.1992.4.2.234
10.1162/neco.1992.4.6.863
10.1109/TSMC.1983.6313077
10.1016/j.artint.2014.02.004
10.1007/BF00114116
10.1162/08997660260028683
10.1016/B978-1-55860-307-3.50045-9
10.1007/BF00114731
10.1016/j.neunet.2008.02.003
10.1016/S0006-3495(61)86902-6
10.1093/bioinformatics/bts475
10.1109/IJCNN.1989.118583
10.1109/IROS.2003.1250667
10.1016/0893-6080(94)90100-7
10.1109/ICASSP.2010.5495651
10.1145/1569901.1569976
10.1162/neco.1995.7.3.565
10.1109/TSMC.1987.289329
10.1007/978-3-642-22887-2_25
10.1038/nn.2996
10.1016/0893-9659(91)90080-F
10.1207/s15516709cog1402_1
10.1007/BF00198094
10.1109/TNN.2010.2044802
10.1109/72.248466
10.1016/j.neunet.2010.04.009
10.1126/science.1127647
10.1007/978-3-642-40763-5_51
10.1007/BF00993077
10.1162/089976602760128018
10.1093/protein/6.4.383
10.1162/089976602753712972
10.1162/NECO_a_00268
10.1109/MCI.2010.938364
10.1090/S0025-5718-1970-0274029-X
10.1109/72.548162
10.1016/S0168-0102(99)00108-X
10.1162/089976602760407955
10.1109/72.80204
10.1109/IJCNN.1992.287238
10.1371/journal.pcbi.0030166
10.1023/A:1007469218079
10.1007/BF00993591
10.1523/JNEUROSCI.13-08-03406.1993
10.1002/(SICI)1098-1063(1996)6:3<271::AID-HIPO5>3.3.CO;2-Q
10.1113/jphysiol.1962.sp006837
10.1016/0165-1684(91)90079-X
10.1007/978-3-642-04277-5_76
10.1016/j.conb.2007.03.002
10.1007/BF00337288
10.1109/TNN.2009.2023653
10.1162/neco.2010.01-09-953
10.1002/(SICI)1520-684X(199904)30:4<20::AID-SCJ3>3.0.CO;2-E
10.1016/S0893-6080(97)00011-7
10.1137/1105015
10.1080/095400900750060122
10.21437/Interspeech.2014-151
10.1162/neco.1993.5.3.473
10.1177/105971239400200301
10.21437/Interspeech.2014-443
10.1016/j.neunet.2014.01.006
10.1093/bioinformatics/15.11.937
10.1016/j.patcog.2013.05.025
10.1109/72.392248
10.1016/S0896-6273(03)00761-X
10.1109/TAMD.2012.2182765
10.4103/2153-3539.112693
10.1109/TNN.2011.2167240
10.1023/A:1007562800292
10.1109/TIT.1978.1055913
10.1145/1830483.1830596
10.1109/72.363436
10.1162/08997660260293319
10.1016/S0893-6080(05)80077-2
10.1152/jn.1987.58.6.1233
10.1177/105971239700600201
10.1162/artl.2009.15.2.15202
10.1109/ICASSP.2013.6637694
10.1162/neco.1996.8.4.773
10.1016/S0925-2312(01)00700-7
10.1007/BF00337019
10.1016/S0893-6080(03)00054-6
10.1080/095400999116340
10.1016/B978-1-55860-377-6.50013-X
10.1007/BF00992698
10.1016/S0893-6080(05)80010-3
10.1162/evco.1997.5.2.123
10.1126/science.7761831
10.1016/0893-6080(89)90014-2
10.1109/72.105414
10.1162/neco.1996.8.7.1541
10.4249/scholarpedia.3698
10.1016/S0004-3702(02)00378-8
10.1016/j.jalgor.2009.04.002
10.1007/BF00239352
10.1007/BF00058655
10.1093/bioinformatics/17.2.126
10.1016/S0960-9822(95)00108-4
10.1145/2382559.2382563
10.1007/BF00993982
10.1524/itit.2005.47.5_2005.250
10.1109/ROBOT.2004.1302446
10.1109/IJCNN.2011.6033458
10.1007/s10994-005-0460-9
10.1145/2463372.2463484
10.1016/S0893-6080(05)80155-8
10.1109/72.846741
10.1115/1.3662552
10.1007/BF02506337
10.1080/09540098908915650
10.1162/089976600300014827
10.1162/106365603321828970
10.1109/IJCNN.2012.6252544
10.1021/ci400187y
10.1007/BF00340335
10.1016/0004-3702(84)90016-X
10.1016/j.neunet.2009.12.004
10.1162/neco.1996.8.5.895
10.1162/089976699300016629
10.1109/72.80212
10.1016/0004-3702(94)90105-8
10.1109/72.279188
10.1007/BF00993104
10.1109/PGEC.1967.264666
10.1177/105971239400300102
10.1152/jn.1996.75.4.1515
10.1145/42372.42377
10.1016/0893-6080(88)90003-2
10.1049/ip-vis:19941301
10.1023/A:1007383707642
10.1109/72.478390
10.1090/S0025-5718-1970-0258249-6
10.1007/s00521-004-0444-x
10.1002/j.1538-7305.1948.tb01338.x
10.1023/B:MACH.0000015880.99707.b2
10.1109/IJCNN.2011.6033589
10.1007/BF00332914
10.1214/aoms/1177699147
10.1016/j.conengprac.2005.04.007
10.1109/64.393139
10.1162/neco.1992.4.5.703
10.1016/j.patrec.2013.07.013
10.1162/neco.2007.03-07-493
10.1109/TASL.2011.2134090
10.1109/TC.1972.5008975
10.1109/TSMC.1971.4308320
10.1109/TSE.1985.231877
10.1090/S0025-5718-1965-0198670-6
10.1162/neco.1992.4.3.448
10.1109/ICIP.2013.6738559
10.1142/S1469026801000342
10.1016/0950-7051(96)81920-4
10.1016/S0893-6080(96)00009-3
10.1371/journal.pcbi.1003037
10.1016/0167-2789(86)90244-7
10.1103/PhysRevA.46.2131
10.1109/IJCNN.2003.1224004
10.1016/j.neunet.2012.02.016
10.1142/S0218001493000339
10.1162/neco.1989.1.2.263
10.1007/BF00114722
10.1038/78829
10.1162/artl.1995.2.4.417
10.1016/j.specom.2012.08.006
10.1016/0893-6080(91)90005-P
10.2307/2269031
10.1088/0954-898X/8/4/003
10.1080/09540098908915647
10.1214/aoms/1177729694
10.1109/CVPR.2012.6248110
10.1109/IJCNN.2010.5596468
10.1016/j.neunet.2007.04.011
10.1142/S0129065793000274
10.1109/CIG.2009.5286504
10.1007/BF00344744
ContentType Journal Article
Copyright 2014
Copyright_xml – notice: 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neunet.2014.09.003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 117
ExternalDocumentID 25462637
10_1016_j_neunet_2014_09_003
S0893608014002135
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
ID FETCH-LOGICAL-c362t-7c5d783d99f7ae868619fc1e852479eaf1631ba6a958e5166b1720b15d4f933a3
ISICitedReferencesCount 12082
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000347595400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0893-6080
1879-2782
IngestDate Sun Sep 28 10:34:00 EDT 2025
Thu Apr 03 07:01:00 EDT 2025
Sat Nov 29 02:39:45 EST 2025
Tue Nov 18 20:57:25 EST 2025
Fri Feb 23 02:28:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Supervised learning
Unsupervised learning
Reinforcement learning
Evolutionary computation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-7c5d783d99f7ae868619fc1e852479eaf1631ba6a958e5166b1720b15d4f933a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 25462637
PQID 1662427875
PQPubID 23479
PageCount 33
ParticipantIDs proquest_miscellaneous_1662427875
pubmed_primary_25462637
crossref_primary_10_1016_j_neunet_2014_09_003
crossref_citationtrail_10_1016_j_neunet_2014_09_003
elsevier_sciencedirect_doi_10_1016_j_neunet_2014_09_003
PublicationCentury 2000
PublicationDate January 2015
2015-01-00
2015-Jan
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References De Freitas (br000780) 2003
Hyvärinen, Hoyer, Oja (br001700) 1999
Ostrovskii, Volin, Borisov (br002885) 1971; 13
Kohonen (br001995) 1982; 43
Neil, Liu (br002775) 2014; PP
De Valois, Albrecht, Thorell (br000815) 1982; 22
Felleman, Van Essen (br001000) 1991; 1
Buhler (br000535) 2001; 17
Jaeger (br001795) 2001
An (br000070) 1996; 8
Fu (br001105) 1977
Jones, Palmer (br001835) 1987; 58
Watanabe (br004075) 1985
Bishop (br000395) 1993; 4
Prokhorov, Puskorius, Feldkamp (br003075) 2001
Dayan, Hinton, Neal, Zemel (br000760) 1995; 7
Narendra, Thathatchar (br002750) 1974; 4
Werbos (br004165) 2006
Rosenblatt (br003240) 1962
Young, Davis, Mishtal, Arel (br004395) 2014; 37
.
Levin, Narendra (br002280) 1995; 7
McCallum (br002520) 1996
Watrous, Kuhn (br004095) 1992
Martens, J., & Sutskever, I. (2011). Learning recurrent neural networks with Hessian-free optimization. In
Melnik, O., Levy, S. D., & Pollack, J. B. (2000). RAAM for infinite context-free languages. In
Baluja (br000200) 1994
Belouchrani, Abed-Meraim, Cardoso, Moulines (br000340) 1997; 45
Urlbe (br003970) 1999
(pp. 585–590).
Wöllmer, Schuller, Rigoll (br004330) 2013; 55
Hornik, Stinchcombe, White (br001665) 1989; 2
Schaul, T., Zhang, S., & LeCun, Y. (2013). No more pesky learning rates. In
Hopfield (br001660) 1982; 79
Schmidhuber (br003475) 2007; 316
Boltzmann (br000450) 1909
Versino, Gambardella (br004010) 1996
Hansen, Müller, Koumoutsakos (br001440) 2003; 11
(pp. 68–73).
Plate (br003020) 1993
Windisch (br004310) 2005; 17
Faggin, F. (1992). Neural network hardware. In
Desimone, Albright, Gross, Bruce (br000805) 1984; 4
Werbos (br004130) 1974
Neti, Schneider, Young (br002785) 1992; 3
D’Ambrosio, D. B., & Stanley, K. O. (2007). A novel generative encoding for exploiting neural network sensor and output geometry. In
Waydo, Koch (br004100) 2008; 20
Williams, Zipser (br004290) 1988
Munro, P. W. (1987). A dual back-propagation scheme for scalar reinforcement learning. In
Goodfellow, I. J., Courville, A. C., & Bengio, Y. (2012). Large-scale feature learning with spike-and-slab sparse coding. In
Hassibi, Stork (br001470) 1993
Pan, Yang (br002925) 2010; 22
Kasabov (br001920) 2014
Kempter, Gerstner, Van Hemmen (br001930) 1999; 59
Steijvers, Grunwald (br003775) 1996
Fletcher, Powell (br001050) 1963; 6
Snowbird: Utah. Computational and Biological Learning Society.
Prokhorov (br003065) 2010; 21
Jordan, Sejnowski (br001860) 2001
(pp. 759–766).
Rodriguez, Wiles (br003215) 1998
Chellapilla, K., Puri, S., & Simard, P. (2006). High performance convolutional neural networks for document processing. In
Ivakhnenko (br001755) 1995; 5
(pp. 1845–1853).
Wu, Baldi (br004345) 2008; 21
Hestenes, Stiefel (br001530) 1952; 49
Arel, Rose, Karnowski (br000095) 2010; 5
Hihi, Bengio (br001535) 1996
Almeida, L. B. (1987). A learning rule for asynchronous perceptrons with feedback in a combinatorial environment. In
Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014). Large-scale video classification with convolutional neural networks. In
Lee (br002190) 1996
Lindenmayer (br002315) 1968; 18
Risi, Stanley (br003190) 2012
Pasemann, Steinmetz, Dieckman (br002950) 1999
Williams (br004265) 1988
Floreano, Mattiussi (br001055) 2001
Gomez (br001270) 2003
Pineda (br003015) 1987; 19
Fogel, Fogel, Porto (br001060) 1990; 63
Fahlman (br000960) 1991
Wiskott, Sejnowski (br004315) 2002; 14
(pp. 755–764).
Rifai, S., Vincent, P., Muller, X., Glorot, X., & Bengio, Y. (2011). Contractive auto-encoders: Explicit invariance during feature extraction. In
Jacobs (br001790) 1988; 1
Burgess (br000545) 1994; 5
Werbos, P. J. (1989a). Backpropagation and neurocontrol: A review and prospectus. In
Cochocki, Unbehauen (br000685) 1993
(pp. 118–126).
Whiteson, Kohl, Miikkulainen, Stone (br004190) 2005; 59
Schmidhuber, Wierstra, Gagliolo, Gomez (br003525) 2007; 19
Gomi, Kawato (br001290) 1993; 6
(p. 153).
Church (br000615) 1936; 58
Kompella, Luciw, Schmidhuber (br002020) 2012; 24
Schmidhuber (br003450) 1997; 10
Yin, Meng, Jin (br004385) 2012; 4
Minton, Carbonell, Knoblock, Kuokka, Etzioni, Gil (br002605) 1989; 40
(pp. 220–229).
Indermuhle, Frinken, Fischer, Bunke (br001735) 2011
Becker (br000285) 1991; 2
Sims (br003690) 1994
Gomez, F. J., & Miikkulainen, R. (2003). Active guidance for a finless rocket using neuroevolution. In
Gisslen, Luciw, Graziano, Schmidhuber (br001220) 2011
Mozer (br002695) 1989; 3
Dickmanns, E. D., Behringer, R., Dickmanns, D., Hildebrandt, T., Maurer, M., & Thomanek, F., et al. (1994). The seeing passenger car ’VaMoRs-P’. In
Blum, Rivest (br000420) 1992; 5
Oudeyer, Baranes, Kaplan (br002905) 2013
Wysoski, Benuskova, Kasabov (br004360) 2010; 23
Igel, Hüsken (br001720) 2003; 50
(pp. 92–101).
Kalman (br001905) 1960; 82
Zipser, Kehoe, Littlewort, Fuster (br004440) 1993; 13
Földiák (br001070) 1990; 64
Nessler, Pfeiffer, Buesing, Maass (br002780) 2013; 9
Miller, Todd, Hedge (br002580) 1989
Hanson (br001450) 1990; 42
Wu, D., & Shao, L. (2014). Leveraging hierarchical parametric networks for skeletal joints based action segmentation and recognition. In
(pp. 1356–1361).
Palm (br002920) 1992; 4
Bryson Jr., Denham (br000525) 1961
Deville, Lau (br000820) 1994; 19
Connor, Martin, Atlas (br000705) 1994; 5
Gauss, C. F. (1821). Theoria combinationis observationum erroribus minimis obnoxiae (Theory of the combination of observations least subject to error).
Schmidhuber (br003445) 1993
Lagoudakis, Parr (br002110) 2003; 4
Schwefel (br003585) 1974
Behnke (br000300) 2001; 1
Hinton, Deng, Yu, Dahl, Mohamed, Jaitly (br001555) 2012; 29
Hochreiter (br001590) 1991
Yamauchi, Beer (br004365) 1994; 2
Deco, Rolls (br000775) 2005; 94
Mohamed, A., & Hinton, G. E. (2010). Phone recognition using restricted Boltzmann machines. In
Riesenhuber, Poggio (br003160) 1999; 2
(pp. 320–322).
Jacob, Lindenmayer, Rozenberg (br001785) 1994
Miller (br002565) 1994; 14
Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural network acoustic models. In
Legenstein, Wilbert, Wiskott (br002230) 2010; 6
Oquab, Bottou, Laptev, Sivic (br002860) 2013
Fine, Singer, Tishby (br001035) 1998; 32
(pp. 369–376).
Goodfellow, I. J., Courville, A., & Bengio, Y. (2011). Spike-and-slab sparse coding for unsupervised feature discovery. In
Whitehead (br004180) 1992
Smolensky (br003715) 1986
Brunel (br000515) 2000; 8
Graves, A., & Jaitly, N. (2014). Towards end-to-end speech recognition with recurrent neural networks. In
Pascanu, R., Gulcehre, C., Cho, K., & Bengio, Y. (2013). How to construct deep recurrent neural networks. arXiv Preprint
LeCun, Muller, Cosatto, Flepp (br002180) 2006
Schmidhuber (br003395) 1990
Moriarty (br002675) 1997
(pp. 91–96).
Prokhorov, D. V., Feldkamp, L. A., & Tyukin, I. Y. (2002). Adaptive behavior with fixed weights in RNN: an overview. In
Ciresan, Meier, Masci, Schmidhuber (br000645) 2012; 32
Pachitariu, M., & Sahani, M. (2013). Regularization and nonlinearities for neural language models: when are they needed? arXiv Preprint
Bakker, B., Zhumatiy, V., Gruener, G., & Schmidhuber, J. (2003). A robot that reinforcement-learns to identify and memorize important previous observations. In
Steil (br003780) 2007; 20
Mesnil, G., Dauphin, Y., Glorot, X., Rifai, S., Bengio, Y., & Goodfellow, I., et al. (2011). Unsupervised and transfer learning challenge: a deep learning approach. In
Dorffner, G. (1996). Neural networks for time series processing. In
Koutník, Cuccu, Schmidhuber, Gomez (br002050) 2013
Síma (br003675) 1994; 6
Martinetz, Ritter, Schulten (br002500) 1990; 1
Schmidhuber (br003480) 2012
Veta, M., Viergever, M., Pluim, J., Stathonikos, N., & van Diest, P. J. (2013). MICCAI 2013 grand challenge on mitosis detection.
McCulloch, Pitts (br002525) 1943; 7
Ge, Hang, Lee, Zhang (br001160) 2010
(pp. 279–284).
Heess, N., Silver, D., & Teh, Y. W. (2012). Actor-critic reinforcement learning with energy-based policies. In
Fukada, Schuster, Sagisaka (br001110) 1999; 30
Guyon, Vapnik, Boser, Bottou, Solla (br001420) 1992
(pp. 762–770).
Akaike (br000025) 1974; 19
(pp. 619–626).
Menache, I., Mannor, S., & Shimkin, N. (2002).
Schmidhuber (br003390) 1990
Lin, Horne, Tino, Giles (br002310) 1996; 7
Leibniz (br002240) 1684
Sun, Giles, Chen, Lee (br003815) 1993
Post (br003050) 1936; 1
Schmidhuber, Wahnsiedler (br003520) 1992
Honavar, Uhr (br001655) 1993; 70
Fukushima (br001125) 2011; 24
(pp. 776–779).
Shavlik (br003650) 1994; 14
Kelley (br001925) 1960; 30
Moody (br002655) 1992
Eubank (br000935) 1988
Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701.
Marchi, E., Ferroni, G., Eyben, F., Gabrielli, L., Squartini, S., & Schuller, B. (2014). Multi-resolution linear prediction based features for audio onset detection with bidirectional LSTM neural networks. In
Cuccu, Luciw, Schmidhuber, Gomez (br000725) 2011
Hinton, Sejnowski (br001575) 1986
Pham, V., Kermorvant, C., & Louradour, J. (2013). Dropout improves recurrent neural networks for handwriting recognition. arXiv Preprint
Barlow (br000210) 1989; 1
Grossberg (br001395) 1976; 23
Kramer (br002070) 1991; 37
Schuster, Paliwal (br003575) 1997; 45
Behnke, S., & Rojas, R. (1998). Neural abstraction pyramid: a hierarchical image understanding architecture. In
Schmidhuber (br003485) 2013
Schemmel, Grubl, Meier, Mueller (br003365) 2006
Srivastava, Masci, Kazerounian, Gomez, Schmidhuber (br003750) 2013
Wolpert (br004335) 1992; 5
Kohonen (br001990) 1972; 100
Barlow, Kaushal, Mitchison (br000215) 1989; 1
[cs.NE].
Singh, S. P. (1994). Reinforcement learning algorithms for average-payoff Markovian decision processes. In
Kak, S., Chen, Y., & Wang, L. (2010). Data mining using surface and deep agents based on neural networks. In
Hutter (br001695) 2005
Field (br001025) 1994; 6
Hashem, Schmeiser (br001465) 1992; 6
(pp. 836–843).
Madala, Ivakhnenko (br002435) 1994
(pp. 700–705).
Jain, Seung (br001805) 2009
Schmidhuber, Zhao, Wiering (br003535) 1997; 28
Amari (br000045) 1967; 16
Sallans, Hinton (br003300) 2004; 5
Abounadi, Bertsekas, Borkar (br000010) 2002; 40
ICPR (2012). Contest on Mitosis Detection in Breast Cancer Histological Images (2012). IPAL laboratory and TRIBVN company and pitie-salpetriere hospital and CIALAB of Ohio State Univ.
Fernandez, R., Rendel,
Zamora-Martínez (10.1016/j.neunet.2014.09.003_br004405) 2014; 47
Fritzke (10.1016/j.neunet.2014.09.003_br001100) 1994
LeCun (10.1016/j.neunet.2014.09.003_br002180) 2006
Grondman (10.1016/j.neunet.2014.09.003_br001380) 2012; 42
Lampinen (10.1016/j.neunet.2014.09.003_br002115) 1992; 2
Bengio (10.1016/j.neunet.2014.09.003_br000355) 2013; 35
10.1016/j.neunet.2014.09.003_br004015
Kasabov (10.1016/j.neunet.2014.09.003_br001920) 2014
10.1016/j.neunet.2014.09.003_br003165
Koza (10.1016/j.neunet.2014.09.003_br002065) 1992
Krizhevsky (10.1016/j.neunet.2014.09.003_br002085) 2012
Weigend (10.1016/j.neunet.2014.09.003_br004110) 1991
Bayes (10.1016/j.neunet.2014.09.003_br000280) 1763; 53
Sehnke (10.1016/j.neunet.2014.09.003_br003595) 2010; 23
Song (10.1016/j.neunet.2014.09.003_br003740) 2000; 3
Hastie (10.1016/j.neunet.2014.09.003_br001480) 2009
Hochreiter (10.1016/j.neunet.2014.09.003_br001625) 2001; Vol. 2130
Shavlik (10.1016/j.neunet.2014.09.003_br003655) 1989; 1
Yu (10.1016/j.neunet.2014.09.003_br004400) 1995; 6
Lenat (10.1016/j.neunet.2014.09.003_br002250) 1984; 23
Grüttner (10.1016/j.neunet.2014.09.003_br001410) 2010
Li (10.1016/j.neunet.2014.09.003_br002295) 1997
Biegler-König (10.1016/j.neunet.2014.09.003_br000390) 1993; 6
Williams (10.1016/j.neunet.2014.09.003_br004275) 1992; 8
10.1016/j.neunet.2014.09.003_br003155
Schmidhuber (10.1016/j.neunet.2014.09.003_br003445) 1993
Waydo (10.1016/j.neunet.2014.09.003_br004100) 2008; 20
Bakker (10.1016/j.neunet.2014.09.003_br000140) 2004
Turing (10.1016/j.neunet.2014.09.003_br003955) 1936; 41
Molgedey (10.1016/j.neunet.2014.09.003_br002630) 1994; 72
Maniezzo (10.1016/j.neunet.2014.09.003_br002465) 1994; 5
Williams (10.1016/j.neunet.2014.09.003_br004265) 1988
Li (10.1016/j.neunet.2014.09.003_br002300) 2014
Schmidhuber (10.1016/j.neunet.2014.09.003_br003440) 1993
Baldi (10.1016/j.neunet.2014.09.003_br000170) 1996; 8
10.1016/j.neunet.2014.09.003_br002060
Whiteson (10.1016/j.neunet.2014.09.003_br004195) 2006; 7
10.1016/j.neunet.2014.09.003_br004240
10.1016/j.neunet.2014.09.003_br002055
Haykin (10.1016/j.neunet.2014.09.003_br001490) 2001
Vahed (10.1016/j.neunet.2014.09.003_br003980) 2004; 16
Peters (10.1016/j.neunet.2014.09.003_br002995) 2010; 5
Brunel (10.1016/j.neunet.2014.09.003_br000515) 2000; 8
Madala (10.1016/j.neunet.2014.09.003_br002435) 1994
Schmidhuber (10.1016/j.neunet.2014.09.003_br003465) 2006; 18
Wöllmer (10.1016/j.neunet.2014.09.003_br004330) 2013; 55
Riesenhuber (10.1016/j.neunet.2014.09.003_br003160) 1999; 2
Windisch (10.1016/j.neunet.2014.09.003_br004310) 2005; 17
Sims (10.1016/j.neunet.2014.09.003_br003690) 1994
LeCun (10.1016/j.neunet.2014.09.003_br002170) 1998; 86
Schäfer (10.1016/j.neunet.2014.09.003_br003345) 2006; Vol. 4131
Lapedes (10.1016/j.neunet.2014.09.003_br002130) 1986; 22
Marquardt (10.1016/j.neunet.2014.09.003_br002485) 1963; 11
Baldi (10.1016/j.neunet.2014.09.003_br000190) 2014; 210C
Hinton (10.1016/j.neunet.2014.09.003_br001560) 1997; 352
Kitano (10.1016/j.neunet.2014.09.003_br001965) 1990; 4
Escalante-B (10.1016/j.neunet.2014.09.003_br000930) 2013; 14
Williams (10.1016/j.neunet.2014.09.003_br004260) 1986
Witczak (10.1016/j.neunet.2014.09.003_br004320) 2006; 14
Fogel (10.1016/j.neunet.2014.09.003_br001065) 1966
Rezende (10.1016/j.neunet.2014.09.003_br003140) 2014; 8
Lewicki (10.1016/j.neunet.2014.09.003_br002285) 1998
Mosteller (10.1016/j.neunet.2014.09.003_br002690) 1968
Amari (10.1016/j.neunet.2014.09.003_br000050) 1998; 10
Narendra (10.1016/j.neunet.2014.09.003_br002750) 1974; 4
Glackin (10.1016/j.neunet.2014.09.003_br001230) 2005
Rubner (10.1016/j.neunet.2014.09.003_br003250) 1990; 62
Shavlik (10.1016/j.neunet.2014.09.003_br003650) 1994; 14
Ciresan (10.1016/j.neunet.2014.09.003_br000645) 2012; 32
10.1016/j.neunet.2014.09.003_br002040
10.1016/j.neunet.2014.09.003_br003370
Zemel (10.1016/j.neunet.2014.09.003_br004420) 1993
Legendre (10.1016/j.neunet.2014.09.003_br002220) 1805
Judd (10.1016/j.neunet.2014.09.003_br001875) 1990
Schmidhuber (10.1016/j.neunet.2014.09.003_br003500) 1996; 8
O’Reilly (10.1016/j.neunet.2014.09.003_br002875) 2013; 4
Hutter (10.1016/j.neunet.2014.09.003_br001695) 2005
Hoerzer (10.1016/j.neunet.2014.09.003_br001635) 2014; 24
10.1016/j.neunet.2014.09.003_br003120
10.1016/j.neunet.2014.09.003_br003360
von der Malsburg (10.1016/j.neunet.2014.09.003_br004045) 1973; 14
Jaeger (10.1016/j.neunet.2014.09.003_br001795) 2001
Brea (10.1016/j.neunet.2014.09.003_br000480) 2013; 33
Schmidhuber (10.1016/j.neunet.2014.09.003_br003470) 2006
Sun (10.1016/j.neunet.2014.09.003_br003815) 1993
Boltzmann (10.1016/j.neunet.2014.09.003_br000450) 1909
Soloway (10.1016/j.neunet.2014.09.003_br003735) 1986; 29
Hinton (10.1016/j.neunet.2014.09.003_br001545) 2002; 14
Collobert (10.1016/j.neunet.2014.09.003_br000690) 2008
Ranzato (10.1016/j.neunet.2014.09.003_br003105) 2007
Lee (10.1016/j.neunet.2014.09.003_br002195) 2007
Levin (10.1016/j.neunet.2014.09.003_br002265) 1973; 14
10.1016/j.neunet.2014.09.003_br003590
10.1016/j.neunet.2014.09.003_br002495
Saito (10.1016/j.neunet.2014.09.003_br003280) 1997; 9
Baldi (10.1016/j.neunet.2014.09.003_br000160) 1999; 15
10.1016/j.neunet.2014.09.003_br001165
Battiti (10.1016/j.neunet.2014.09.003_br000245) 1992; 4
Speelpenning (10.1016/j.neunet.2014.09.003_br003745) 1980
Dickmanns (10.1016/j.neunet.2014.09.003_br000840) 1987
Maex (10.1016/j.neunet.2014.09.003_br002450) 1996; 75
Miller (10.1016/j.neunet.2014.09.003_br002565) 1994; 14
Carter (10.1016/j.neunet.2014.09.003_br000560) 1990
Mitchell (10.1016/j.neunet.2014.09.003_br002610) 1997
Pasemann (10.1016/j.neunet.2014.09.003_br002950) 1999
DeJong (10.1016/j.neunet.2014.09.003_br000785) 1986; 1
Ciresan (10.1016/j.neunet.2014.09.003_br000660) 2013
Jin (10.1016/j.neunet.2014.09.003_br001825) 2010; 12
Schaul (10.1016/j.neunet.2014.09.003_br003355) 2010; 6
Martens (10.1016/j.neunet.2014.09.003_br002490) 2010
Neal (10.1016/j.neunet.2014.09.003_br002760) 2006; Vol. 3944
Lindstädt (10.1016/j.neunet.2014.09.003_br002320) 1993
10.1016/j.neunet.2014.09.003_br003580
Bohte (10.1016/j.neunet.2014.09.003_br000445) 2002; 48
10.1016/j.neunet.2014.09.003_br001155
Baldi (10.1016/j.neunet.2014.09.003_br000150) 1995; 6
Becker (10.1016/j.neunet.2014.09.003_br000290) 1989
Werbos (10.1016/j.neunet.2014.09.003_br004160) 1992
Hinton (10.1016/j.neunet.2014.09.003_br001550) 1995; 268
Levin (10.1016/j.neunet.2014.09.003_br002270) 1973; 9
Barlow (10.1016/j.neunet.2014.09.003_br000215) 1989; 1
Farlow (10.1016/j.neunet.2014.09.003_br000980) 1984
Zeng (10.1016/j.neunet.2014.09.003_br004430) 1994; 5
Bengio (10.1016/j.neunet.2014.09.003_br000360) 2007
Desimone (10.1016/j.neunet.2014.09.003_br000805) 1984; 4
Akaike (10.1016/j.neunet.2014.09.003_br000015) 1970; 22
Young (10.1016/j.neunet.2014.09.003_br004395) 2014; 37
10.1016/j.neunet.2014.09.003_br000970
10.1016/j.neunet.2014.09.003_br002910
Gers (10.1016/j.neunet.2014.09.003_br001190) 2002; 3
Wallace (10.1016/j.neunet.2014.09.003_br004055) 1968; 11
Síma (10.1016/j.neunet.2014.09.003_br003680) 2002; 14
Belouchrani (10.1016/j.neunet.2014.09.003_br000340) 1997; 45
Neftci (10.1016/j.neunet.2014.09.003_br002770) 2014; 7
Geman (10.1016/j.neunet.2014.09.003_br001170) 1992; 4
Moore (10.1016/j.neunet.2014.09.003_br002665) 1993; 13
Jordan (10.1016/j.neunet.2014.09.003_br001860) 2001
Koikkalainen (10.1016/j.neunet.2014.09.003_br002005) 1990
Ivakhnenko (10.1016/j.neunet.2014.09.003_br001755) 1995; 5
Wierstra (10.1016/j.neunet.2014.09.003_br004235) 2010; 18
Oh (10.1016/j.neunet.2014.09.003_br002835) 2004; 37
Schmidhuber (10.1016/j.neunet.2014.09.003_br003520) 1992
LeCun (10.1016/j.neunet.2014.09.003_br002175) 1990
Stanley (10.1016/j.neunet.2014.09.003_br003765) 2009; 15
Blum (10.1016/j.neunet.2014.09.003_br000420) 1992; 5
Schmidhuber (10.1016/j.neunet.2014.09.003_br003535) 1997; 28
Golub (10.1016/j.neunet.2014.09.003_br001265) 1979; 21
Pineda (10.1016/j.neunet.2014.09.003_br003015) 1987; 19
Ueda (10.1016/j.neunet.2014.09.003_br003965) 2000; 22
O’Connor (10.1016/j.neunet.2014.09.003_br002830) 2013; 7
Jacobs (10.1016/j.neunet.2014.09.003_br001790) 1988; 1
Lusci (10.1016/j.neunet.2014.09.003_br002385) 2013; 53
10.1016/j.neunet.2014.09.003_br000950
Serrano-Gotarredona (10.1016/j.neunet.2014.09.003_br003610) 2009; 20
McCallum (10.1016/j.neunet.2014.09.003_br002520) 1996
Steil (10.1016/j.neunet.2014.09.003_br003780) 2007; 20
Guo (10.1016/j.neunet.2014.09.003_br001415) 2014
Behnke (10.1016/j.neunet.2014.09.003_br000320) 2005; 14
Falconbridge (10.1016/j.neunet.2014.09.003_br000965) 2006; 18
Holland (10.1016/j.neunet.2014.09.003_br001645) 1975
Deville (10.1016/j.neunet.2014.09.003_br000820) 1994; 19
Post (10.1016/j.neunet.2014.09.003_br003050) 1936; 1
10.1016/j.neunet.2014.09.003_br000940
10.1016/j.neunet.2014.09.003_br000945
Tsodyks (10.1016/j.neunet.2014.09.003_br003945) 1996; 6
Jutten (10.1016/j.neunet.2014.09.003_br001880) 1991; 24
Werbos (10.1016/j.neunet.2014.09.003_br004130) 1974
Kordík (10.1016/j.neunet.2014.09.003_br002035) 2003; 2
Schmidhuber (10.1016/j.neunet.2014.09.003_br003455) 2002
Blumer (10.1016/j.neunet.2014.09.003_br000425) 1987; 24
Goldberg (10.1016/j.neunet.2014.09.003_br001255) 1989
Tesauro (10.1016/j.neunet.2014.09.003_br003900) 1994; 6
Jodogne (10.1016/j.neunet.2014.09.003_br001830) 2007; 28
de Souto (10.1016/j.neunet.2014.09.003_br000810) 1999
Mahadevan (10.1016/j.neunet.2014.09.003_br002455) 1996; 22
Ostrovskii (10.1016/j.neunet.2014.09.003_br002885) 1971; 13
10.1016/j.neunet.2014.09.003_br004065
Gers (10.1016/j.neunet.2014.09.003_br001180) 2001; 12
Hadsell (10.1016/j.neunet.2014.09.003_br001430) 2006
Cliff (10.1016/j.neunet.2014.09.003_br000665) 1993
Bradtke (10.1016/j.neunet.2014.09.003_br000470) 1996
Sun (10.1016/j.neunet.2014.09.003_br003820) 2013
Wu (10.1016/j.neunet.2014.09.003_br004345) 2008; 21
Bodenhausen (10.1016/j.neunet.2014.09.003_br000440) 1991
Oudeyer (10.1016/j.neunet.2014.09.003_br002905) 2013
Grünwald (10.1016/j.neunet.2014.09.003_br001405) 2005
Chalup (10.1016/j.neunet.2014.09.003_br000585) 2003; 16
Grossberg (10.1016/j.neunet.2014.09.003_br001395) 1976; 23
Gallant (10.1016/j.neunet.2014.09.003_br001145) 1988; 31
Elman (10.1016/j.neunet.2014.09.003_br000920) 1990; 14
Peters (10.1016/j.neunet.2014.09.003_br003005) 200
References_xml – reference: Brueckner, R., & Schulter, B. (2014). Social signal classification using deep BLSTM recurrent neural networks. In
– start-page: 318
  year: 1986
  end-page: 362
  ident: br003260
  article-title: Learning internal representations by error propagation
  publication-title: Parallel distributed processing, vol. 1
– reference: Masci, J., Giusti, A., Ciresan, D. C., Fricout, G., & Schmidhuber, J. (2013). A fast learning algorithm for image segmentation with max-pooling convolutional networks. In
– start-page: 473
  year: 1976
  end-page: 479
  ident: br001725
  article-title: Sequential GMDH algorithm and its application to river flow prediction
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
– start-page: 302
  year: 2012
  end-page: 307
  ident: br001730
  article-title: Mode detection in online handwritten documents using BLSTM neural networks
  publication-title: Frontiers in handwriting recognition (ICFHR), 2012 international conference on
– reference: Korkin, M., de Garis, H., Gers, F., & Hemmi, H. (1997). CBM (CAM-Brain Machine)—a hardware tool which evolves a neural net module in a fraction of a second and runs a million neuron artificial brain in real time.
– start-page: 151
  year: 1986
  end-page: 193
  ident: br003265
  article-title: Feature discovery by competitive learning
  publication-title: Parallel distributed processing
– reference: (pp. 253–258).
– reference:  [cs.NE].
– start-page: 216
  year: 2002
  end-page: 228
  ident: br003455
  article-title: The speed prior: a new simplicity measure yielding near-optimal computable predictions
  publication-title: Proceedings of the 15th annual conference on computational learning theory
– volume: 8
  start-page: 895
  year: 1996
  end-page: 938
  ident: br002865
  article-title: Biologically plausible error-driven learning using local activation differences: The generalized recirculation algorithm
  publication-title: Neural Computation
– volume: 4
  start-page: 448
  year: 1992
  end-page: 472
  ident: br002415
  article-title: A practical Bayesian framework for backprop networks
  publication-title: Neural Computation
– reference: Sermanet, P., & LeCun, Y. (2011). Traffic sign recognition with multi-scale convolutional networks. In
– reference: Pollack, J. B. (1988). Implications of recursive distributed representations. In
– volume: 18
  start-page: 602
  year: 2005
  end-page: 610
  ident: br001360
  article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures
  publication-title: Neural Networks
– volume: 54
  start-page: 211
  year: 2004
  end-page: 254
  ident: br003460
  article-title: Optimal ordered problem solver
  publication-title: Machine Learning
– reference: D’Ambrosio, D. B., & Stanley, K. O. (2007). A novel generative encoding for exploiting neural network sensor and output geometry. In
– reference: Ciresan, D. C., Meier, U., Masci, J., & Schmidhuber, J. (2011). A committee of neural networks for traffic sign classification. In
– volume: 10
  start-page: 857
  year: 1997
  end-page: 873
  ident: br003450
  article-title: Discovering neural nets with low Kolmogorov complexity and high generalization capability
  publication-title: Neural Networks
– start-page: 265
  year: 2006
  end-page: 295
  ident: br002765
  article-title: High dimensional classification with Bayesian neural networks and Dirichlet diffusion trees
  publication-title: Feature extraction: foundations and applications
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: br002170
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
– start-page: 847
  year: 1992
  end-page: 854
  ident: br002655
  article-title: The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems
  publication-title: Advances in neural information processing systems (NIPS), vol. 4
– volume: 2
  start-page: 135
  year: 1991
  end-page: 141
  ident: br003505
  article-title: Learning to generate artificial fovea trajectories for target detection
  publication-title: International Journal of Neural Systems
– reference: Bryson, A. E. (1961). A gradient method for optimizing multi-stage allocation processes. In
– start-page: 282
  year: 1986
  end-page: 317
  ident: br001575
  article-title: Learning and relearning in Boltzmann machines
  publication-title: Parallel distributed processing, vol. 1
– volume: 25
  start-page: 109
  year: 1997
  end-page: 143
  ident: br004125
  article-title: Learning recognition and segmentation using the cresceptron
  publication-title: International Journal of Computer Vision
– start-page: 667
  year: 1991
  end-page: 673
  ident: br004210
  article-title: Evolving neural network controllers for unstable systems
  publication-title: International joint conference on neural networks, vol. 2
– volume: 10
  start-page: 821
  year: 1998
  end-page: 835
  ident: br003940
  article-title: Neural networks with dynamic synapses
  publication-title: Neural Computation
– reference: Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., & Bengio, Y. (2013). Maxout networks. In
– volume: 60
  start-page: 1126
  year: 2008
  end-page: 1141
  ident: br002080
  article-title: Matching categorical object representations in inferior temporal cortex of man and monkey
  publication-title: Neuron
– year: 1970
  ident: br004025
  article-title: Applications of pattern recognition technology
  publication-title: Adaptive, learning, and pattern recognition systems
– year: 2006
  ident: br000400
  article-title: Pattern recognition and machine learning
– start-page: 429
  year: 1989
  end-page: 438
  ident: br003380
  article-title: Accelerated learning in back-propagation nets
  publication-title: Connectionism in perspective
– volume: 41
  start-page: 757
  year: 1996
  end-page: 769
  ident: br000085
  article-title: Mixing floating- and fixed-point formats for neural network learning on neuroprocessors
  publication-title: Microprocessing and Microprogramming
– start-page: 6645
  year: 2013
  end-page: 6649
  ident: br001355
  article-title: Speech recognition with deep recurrent neural networks
  publication-title: IEEE International conference on acoustics, speech and signal processing
– year: 2013
  ident: br000660
  article-title: Multi-column deep neural networks for offline handwritten Chinese character classification. Technical report
– volume: 50
  start-page: 105
  year: 2003
  end-page: 123
  ident: br001720
  article-title: Empirical evaluation of the improved Rprop learning algorithm
  publication-title: Neurocomputing
– volume: 58
  start-page: 345
  year: 1936
  end-page: 363
  ident: br000615
  article-title: An unsolvable problem of elementary number theory
  publication-title: The American Journal of Mathematics
– volume: 18
  start-page: 415
  year: 2006
  end-page: 429
  ident: br000965
  article-title: A simple Hebbian/anti-Hebbian network learns the sparse, independent components of natural images
  publication-title: Neural Computation
– reference: Giusti, A., Ciresan, D. C., Masci, J., Gambardella, L. M., & Schmidhuber, J. (2013). Fast image scanning with deep max-pooling convolutional neural networks. In
– volume: 16
  start-page: 683
  year: 2003
  end-page: 689
  ident: br000990
  article-title: Simple and conditioned adaptive behavior from Kalman filter trained recurrent networks
  publication-title: Neural Networks
– year: 1968
  ident: br002690
  article-title: Data analysis, including statistics
  publication-title: Handbook of social psychology, vol. 2
– volume: 8
  start-page: 549
  year: 1995
  end-page: 562
  ident: br001910
  article-title: Generalizations of principal component analysis, optimization problems, and neural networks
  publication-title: Neural Networks
– volume: Vol. 5212
  start-page: 234
  year: 2008
  end-page: 249
  ident: br003255
  article-title: State-dependent exploration for policy gradient methods
  publication-title: European conference on machine learning (ECML) and principles and practice of knowledge discovery in databases 2008, part II
– reference: Fernandez, R., Rendel, A., Ramabhadran, B., & Hoory, R. (2014). Prosody contour prediction with long short-term memory, bi-directional, deep recurrent neural networks. In
– reference: Schaul, T., Zhang, S., & LeCun, Y. (2013). No more pesky learning rates. In
– start-page: 200
  year: 1994
  end-page: 207
  ident: br004340
  article-title: Bayesian backpropagation over i-o functions rather than weights
  publication-title: Advances in neural information processing systems (NIPS), vol. 6
– volume: 310
  start-page: 863
  year: 2005
  end-page: 866
  ident: br001685
  article-title: Fast readout of object identity from macaque inferior temporal cortex
  publication-title: Science
– start-page: 2729
  year: 2011
  end-page: 2736
  ident: br003875
  article-title: Learning invariance through imitation
  publication-title: Conference on computer vision and pattern recognition
– year: 1993
  ident: br002305
  article-title: Reinforcement learning for robots using neural networks
– reference: (pp. 369–376).
– year: 1991
  ident: br001810
  article-title: Delayed reinforcement learning with multiple time scale hierarchical backpropagated adaptive critics
  publication-title: Neural networks for control
– volume: 1
  start-page: 1
  year: 1965
  end-page: 11
  ident: br002015
  article-title: Three approaches to the quantitative definition of information
  publication-title: Problems of Information Transmission
– start-page: 534
  year: 1996
  end-page: 542
  ident: br004215
  article-title: Solving POMDPs with Levin search and EIRA
  publication-title: Machine learning: proceedings of the thirteenth international conference
– reference: . CD edition.
– volume: 6
  start-page: 271
  year: 1996
  end-page: 280
  ident: br003945
  article-title: Population dynamics and theta rhythm phase precession of hippocampal place cell firing: a spiking neuron model
  publication-title: Hippocampus
– year: 1992
  ident: br002065
  article-title: Genetic programming—on the programming of computers by means of natural selection
– volume: 13
  start-page: 1331
  year: 2002
  end-page: 1341
  ident: br003115
  article-title: The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data
  publication-title: IEEE Transactions on Neural Networks
– volume: Vol. 1502
  year: 1998
  ident: br001900
  article-title: Computation in recurrent neural networks: from counters to iterated function systems
  publication-title: Advanced topics in artificial intelligence, Proceedings of the 11th Australian joint conference on artificial intelligence
– year: 1997
  ident: br002675
  article-title: Symbiotic evolution of neural networks in sequential decision tasks
– volume: 5
  start-page: 552
  year: 1995
  end-page: 563
  ident: br002355
  article-title: Shape representation in the inferior temporal cortex of monkeys
  publication-title: Current Biology
– volume: 9
  start-page: 159
  year: 2001
  end-page: 195
  ident: br001445
  article-title: Completely derandomized self-adaptation in evolution strategies
  publication-title: Evolutionary Computation
– volume: 29
  start-page: 850
  year: 1986
  end-page: 858
  ident: br003735
  article-title: Learning to program
  publication-title: Communications of the ACM
– volume: 5
  start-page: 527
  year: 1995
  end-page: 535
  ident: br001755
  article-title: The review of problems solvable by algorithms of the group method of data handling (GMDH)
  publication-title: Pattern Recognition and Image Analysis/Raspoznavaniye Obrazov I Analiz Izobrazhenii
– reference: Shan, H., & Cottrell, G. (2014). Efficient visual coding: From retina to V2. In
– volume: 36
  start-page: 287
  year: 1994
  end-page: 314
  ident: br000695
  article-title: Independent component analysis—a new concept?
  publication-title: Signal Processing
– year: 2013
  ident: br003490
  article-title: : training an increasingly general problem solver by continually searching for the simplest still unsolvable problem
  publication-title: Frontiers in Psychology
– reference: Yin, F., Wang, Q.-F., Zhang, X.-Y., & Liu, C.-L. (2013). ICDAR 2013 Chinese handwriting recognition competition. In
– reference: Behnke, S. (2002). Learning face localization using hierarchical recurrent networks. In
– reference: (pp. 471–482).
– year: 1988
  ident: br000955
  article-title: An empirical study of learning speed in back-propagation networks. Technical report CMU-CS-88-162
– volume: IT-24
  start-page: 422
  year: 1978
  end-page: 432
  ident: br003730
  article-title: Complexity-based induction systems
  publication-title: IEEE Transactions on Information Theory
– year: 1994
  ident: br001785
  article-title: Genetic L-system programming
  publication-title: Parallel problem solving from nature III
– start-page: 325
  year: 2012
  end-page: 355
  ident: br004185
  article-title: Evolutionary computation for reinforcement learning
  publication-title: Reinforcement learning
– year: 1980
  ident: br003745
  article-title: Compiling fast partial derivatives of functions given by algorithms
– start-page: 968
  year: 1999
  end-page: 974
  ident: br000130
  article-title: Gradient descent for general reinforcement learning
  publication-title: Advances in neural information processing systems, vol. 12 (NIPS)
– volume: 6
  start-page: 1155
  year: 1994
  end-page: 1173
  ident: br002470
  article-title: First-order recurrent neural networks and deterministic finite state automata
  publication-title: Neural Computation
– year: 1994
  ident: br003180
  article-title: Continual learning in reinforcement environments
– volume: 147
  start-page: 5
  year: 2003
  end-page: 34
  ident: br002440
  article-title: On the undecidability of probabilistic planning and related stochastic optimization problems
  publication-title: Artificial Intelligence
– volume: 13
  start-page: 382
  year: 1971
  end-page: 384
  ident: br002885
  article-title: Über die Berechnung von Ableitungen
  publication-title: Wissenschaftliche Zeitschrift der Technischen Hochschule für Chemie
– volume: 6
  start-page: 842
  year: 1994
  end-page: 850
  ident: br003675
  article-title: Loading deep networks is hard
  publication-title: Neural Computation
– volume: 25
  start-page: 805
  year: 2013
  end-page: 831
  ident: br000610
  article-title: Enhanced gradient for training restricted Boltzmann machines
  publication-title: Neural Computation
– start-page: 11
  year: 1993
  end-page: 18
  ident: br001585
  article-title: Keeping neural networks simple
  publication-title: Proceedings of the international conference on artificial neural networks, Amsterdam
– volume: 36
  start-page: 111
  year: 1974
  end-page: 147
  ident: br003795
  article-title: Cross-validatory choice and assessment of statistical predictions
  publication-title: Journal of the Royal Statistical Society B
– start-page: 271
  year: 1993
  end-page: 278
  ident: br000750
  article-title: Feudal reinforcement learning
  publication-title: Advances in neural information processing systems (NIPS), vol. 5
– volume: 160
  start-page: 106
  year: 1962
  end-page: 154
  ident: br001670
  article-title: Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex
  publication-title: Journal of Physiology (London)
– start-page: 580
  year: 1993
  end-page: 587
  ident: br000790
  article-title: Non-linear dimensionality reduction
  publication-title: Advances in neural information processing systems (NIPS), vol. 5
– reference: (pp. 1764–1772).
– volume: 7
  year: 2013
  ident: br002380
  article-title: An intrinsic value system for developing multiple invariant representations with incremental slowness learning
  publication-title: Frontiers in Neurorobotics
– year: 1985
  ident: br000715
  article-title: A representation for the adaptive generation of simple sequential programs
  publication-title: Proceedings of an international conference on genetic algorithms and their applications, Carnegie-Mellon University
– start-page: 343
  year: 1991
  end-page: 347
  ident: br003170
  article-title: Incremental development of complex behaviors through automatic construction of sensory-motor hierarchies
  publication-title: Machine learning: proceedings of the eighth international workshop
– start-page: 1057
  year: 1999
  end-page: 1063
  ident: br003845
  article-title: Policy gradient methods for reinforcement learning with function approximation
  publication-title: Advances in neural information processing systems (NIPS), vol. 12
– start-page: 115
  year: 1987
  end-page: 121
  ident: br000220
  article-title: Learning receptive fields
  publication-title: Proceedings of the IEEE 1st annual conference on neural networks, vol. IV
– volume: 4
  start-page: 243
  year: 1992
  end-page: 248
  ident: br003425
  article-title: A fixed size storage
  publication-title: Neural Computation
– volume: Vol. 1524
  start-page: 373
  year: 1996
  end-page: 423
  ident: br002790
  article-title: How to train neural networks
  publication-title: Neural networks: tricks of the trade
– start-page: 190
  year: 1994
  end-page: 197
  ident: br002810
  article-title: How to evolve autonomous robots: Different approaches in evolutionary robotics
  publication-title: Fourth international workshop on the synthesis and simulation of living systems (artificial life IV)
– start-page: 364
  year: 1971
  end-page: 378
  ident: br001750
  article-title: Polynomial theory of complex systems
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
– reference: Griewank, A. (2012). Documenta Mathematica—Extra Volume ISMP, (pp. 389–400).
– year: 2003
  ident: br000005
  article-title: Policy-gradient algorithms for partially observable Markov decision processes
– reference: Raiko, T., Valpola, H., & LeCun, Y. (2012). Deep learning made easier by linear transformations in perceptrons. In
– volume: 40
  start-page: 185
  year: 1989
  end-page: 234
  ident: br001540
  article-title: Connectionist learning procedures
  publication-title: Artificial Intelligence
– volume: 16
  start-page: 955
  year: 2003
  end-page: 972
  ident: br000585
  article-title: Incremental training of first order recurrent neural networks to predict a context-sensitive language
  publication-title: Neural Networks
– volume: 23
  start-page: 551
  year: 2010
  end-page: 559
  ident: br003595
  article-title: Parameter-exploring policy gradients
  publication-title: Neural Networks
– volume: PP
  start-page: 1
  year: 2014
  end-page: 8
  ident: br002775
  article-title: Minitaur, an event-driven FPGA-based spiking network accelerator
  publication-title: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
– reference: Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., & Tzeng, E., et al. (2013). DeCAF: a deep convolutional activation feature for generic visual recognition. ArXiv Preprint
– volume: 22
  start-page: 511
  year: 2010
  end-page: 538
  ident: br003950
  article-title: Convolutional networks can learn to generate affinity graphs for image segmentation
  publication-title: Neural Computation
– reference: Sak, H., Vinyals, O., Heigold, G., Senior, A., McDermott, E., & Monga, R., et al. (2014). Sequence discriminative distributed training of long short-term memory recurrent neural networks. In
– reference: Kimura, H., Miyazaki, K., & Kobayashi, S. (1997). Reinforcement learning in POMDPs with function approximation. In
– start-page: 967
  year: 1991
  end-page: 972
  ident: br003415
  article-title: Learning to generate sub-goals for action sequences
  publication-title: Artificial neural networks
– reference: Ballard, D. H. (1987). Modular learning in neural networks. In
– volume: 1
  start-page: 425
  year: 1989
  end-page: 464
  ident: br004175
  article-title: Learning in artificial neural networks: A statistical perspective
  publication-title: Neural Computation
– volume: 33
  start-page: 9565
  year: 2013
  end-page: 9575
  ident: br000480
  article-title: Matching recall and storage in sequence learning with spiking neural networks
  publication-title: The Journal of Neuroscience
– reference: Bayer, J., Wierstra, D., Togelius, J., & Schmidhuber, J. (2009). Evolving memory cell structures for sequence learning. In
– volume: Vol. 43
  year: 1990
  ident: br001475
  publication-title: Generalized additive models
– year: 1969
  ident: br002600
  article-title: Perceptrons
– volume: 42
  start-page: 265
  year: 1990
  end-page: 272
  ident: br001450
  article-title: A stochastic version of the delta rule
  publication-title: Physica D: Nonlinear Phenomena
– volume: 287
  start-page: 239
  year: 2002
  end-page: 249
  ident: br002225
  article-title: Neural circuits for pattern recognition with small total wire length
  publication-title: Theoretical Computer Science
– volume: 36
  year: 1980
  ident: br002915
  article-title: On associative memory
  publication-title: Biological Cybernetics
– start-page: 563
  year: 1996
  end-page: 569
  ident: br003555
  article-title: Tempering backpropagation networks: not all weights are created equal
  publication-title: Advances in neural information processing systems (NIPS), vol. 8
– volume: 10
  start-page: 99
  year: 2002
  end-page: 127
  ident: br003770
  article-title: Evolving neural networks through augmenting topologies
  publication-title: Evolutionary Computation
– volume: 11
  start-page: 1
  year: 2003
  end-page: 18
  ident: br001440
  article-title: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)
  publication-title: Evolutionary Computation
– volume: 7
  year: 2013
  ident: br002830
  article-title: Real-time classification and sensor fusion with a spiking deep belief network
  publication-title: Frontiers in Neuroscience
– year: 1999
  ident: br003970
  article-title: Structure-adaptable digital neural networks
– reference: Dorffner, G. (1996). Neural networks for time series processing. In
– year: 2010
  ident: br001160
  article-title: Stable adaptive neural network control
– volume: 7
  start-page: 115
  year: 1943
  end-page: 133
  ident: br002525
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bulletin of Mathematical Biophysics
– volume: 22
  start-page: 1744
  year: 2011
  end-page: 1756
  ident: br000595
  article-title: Learning speaker-specific characteristics with a deep neural architecture
  publication-title: IEEE Transactions on Neural Networks
– volume: 7
  start-page: 30
  year: 1995
  end-page: 42
  ident: br002280
  article-title: Control of nonlinear dynamical systems using neural networks. II. Observability, identification, and control
  publication-title: IEEE Transactions on Neural Networks
– start-page: 1
  year: 2013
  end-page: 9
  ident: br004370
  article-title: Hierarchical modular optimization of convolutional networks achieves representations similar to macaque IT and human ventral stream
  publication-title: Advances in neural information processing systems (NIPS)
– start-page: 873
  year: 2007
  end-page: 880
  ident: br002200
  article-title: Sparse deep belief net model for visual area V2
  publication-title: Advances in neural information processing systems (NIPS), vol. 7
– volume: 9
  start-page: 937
  year: 2008
  end-page: 965
  ident: br001285
  article-title: Accelerated neural evolution through cooperatively coevolved synapses
  publication-title: Journal of Machine Learning Research
– start-page: 1
  year: 2012
  end-page: 8
  ident: br003190
  article-title: A unified approach to evolving plasticity and neural geometry
  publication-title: International joint conference on neural networks
– volume: 1
  start-page: 44
  year: 1990
  end-page: 57
  ident: br002045
  article-title: Unsupervised learning in noise
  publication-title: IEEE Transactions on Neural Networks
– start-page: 293
  year: 1997
  end-page: 309
  ident: br003530
  article-title: Reinforcement learning with self-modifying policies
  publication-title: Learning to learn
– volume: 141
  start-page: 245
  year: 1994
  end-page: 250
  ident: br003985
  article-title: Original approach for the localisation of objects in images
  publication-title: IEE Proceedings Vision, Image, and Signal Processing
– start-page: 1786
  year: 1993
  end-page: 1793
  ident: br004105
  article-title: Results of the time series prediction competition at the Santa Fe Institute
  publication-title: Neural networks, 1993., IEEE international conference on
– start-page: 3084
  year: 2013
  end-page: 3092
  ident: br000115
  article-title: Adaptive dropout for training deep neural networks
  publication-title: Advances in neural information processing systems (NIPS)
– reference: (pp. 2758–2763).
– volume: 36
  start-page: 81
  year: 2000
  end-page: 91
  ident: br003800
  article-title: When pyramidal neurons lock, when they respond chaotically, and when they like to synchronize
  publication-title: Neuroscience Research
– year: 1986
  ident: br001840
  article-title: Serial order: a parallel distributed processing approach. Technical report ICS report 8604
– start-page: 241
  year: 2003
  end-page: 250
  ident: br002980
  article-title: Kalman filters improve LSTM network performance in problems unsolvable by traditional recurrent nets
  publication-title: Neural Networks
– start-page: 387
  year: 2002
  end-page: 397
  ident: br003615
  article-title: On the role of object-specific features for real world object recognition in biological vision
  publication-title: Biologically motivated computer vision
– volume: 24
  start-page: 2248
  year: 2012
  end-page: 2261
  ident: br004355
  article-title: The limits of feedforward vision: Recurrent processing promotes robust object recognition when objects are degraded
  publication-title: Journal of Cognitive Neuroscience
– reference: Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701.
– start-page: 500
  year: 1991
  end-page: 506
  ident: br003420
  article-title: Reinforcement learning in Markovian and non-Markovian environments
  publication-title: Advances in neural information processing systems, vol. 3 (NIPS 3)
– volume: 46
  start-page: 2131
  year: 1992
  end-page: 2138
  ident: br003565
  article-title: Learning by maximization the information transfer through nonlinear noisy neurons and “noise breakdown”
  publication-title: Physical Review A
– start-page: 467
  year: 1684
  end-page: 473
  ident: br002240
  article-title: Nova methodus pro maximis et minimis, itemque tangentibus, quae nec fractas, nec irrationales quantitates moratur, et singulare pro illis calculi genus
  publication-title: Acta Eruditorum
– volume: 14
  start-page: 671
  year: 2006
  end-page: 683
  ident: br004320
  article-title: A GMDH neural network-based approach to robust fault diagnosis: Application to the DAMADICS benchmark problem
  publication-title: Control Engineering Practice
– start-page: 34
  year: 1993
  end-page: 41
  ident: br003020
  article-title: Holographic recurrent networks
  publication-title: Advances in neural information processing systems (NIPS), vol. 5
– volume: 1
  start-page: 295
  year: 1988
  end-page: 307
  ident: br001790
  article-title: Increased rates of convergence through learning rate adaptation
  publication-title: Neural Networks
– year: 1965
  ident: br001760
  article-title: Cybernetic predicting devices
– volume: 6
  year: 2010
  ident: br002230
  article-title: Reinforcement learning on slow features of high-dimensional input streams
  publication-title: PLoS Computational Biology
– volume: Vol. 2766
  year: 2003
  ident: br000315
  publication-title: Hierarchical neural networks for image interpretation
– volume: XXVII
  start-page: 379
  year: 1948
  end-page: 423
  ident: br003640
  article-title: A mathematical theory of communication (parts I and II)
  publication-title: Bell System Technical Journal
– start-page: 689
  year: 2011
  end-page: 690
  ident: br003045
  article-title: Sum–product networks: A new deep architecture
  publication-title: IEEE International conference on computer vision workshops
– volume: 24
  start-page: 647
  year: 1970
  end-page: 656
  ident: br003635
  article-title: Conditioning of quasi-Newton methods for function minimization
  publication-title: Mathematics of Computation
– volume: 64
  start-page: 152
  year: 2009
  end-page: 168
  ident: br001515
  article-title: Neuroevolution strategies for episodic reinforcement learning
  publication-title: Journal of Algorithms
– year: 2003
  ident: br001270
  article-title: Robust nonlinear control through neuroevolution
– year: 1993
  ident: br003445
  article-title: Netzwerkarchitekturen, Zielfunktionen und Kettenregel. (Network architectures, objective functions, and chain rule.)
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: br004030
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the 25th international conference on Machine learning
– reference: Chellapilla, K., Puri, S., & Simard, P. (2006). High performance convolutional neural networks for document processing. In
– volume: 8
  start-page: 38
  year: 2014
  ident: br003140
  article-title: Stochastic variational learning in recurrent spiking networks
  publication-title: Frontiers in Computational Neuroscience
– year: 1977
  ident: br001105
  article-title: Syntactic pattern recognition and applications
– reference: (pp. 1096–1104).
– volume: 21
  start-page: 215
  year: 1979
  end-page: 224
  ident: br001265
  article-title: Generalized cross-validation as a method for choosing a good ridge parameter
  publication-title: Technometrics
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: br001570
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– year: 1996
  ident: br001400
  article-title: A comparison between cellular encoding and direct encoding for genetic neural networks. NeuroCOLT Technical report NC-TR-96-048, ESPRIT Working Group in Neural and Computational Learning, NeuroCOLT 8556
– reference: Behnke, S. (1999). Hebbian learning and competition in the neural abstraction pyramid. In
– year: 1993
  ident: br002185
  article-title: Automatic learning rate maximization by on-line estimation of the Hessian’s eigenvectors
  publication-title: Advances in neural information processing systems, vol. 5 (NIPS 1992)
– reference: (pp. 524–531).
– year: 1996
  ident: br000380
  article-title: Neuro-dynamic programming
– volume: 5
  start-page: 140
  year: 1993
  end-page: 153
  ident: br000060
  article-title: Statistical theory of learning curves under entropic loss criterion
  publication-title: Neural Computation
– reference: -maximization: An unsupervised learning procedure for discovering regularities. In Denker, J.S., (Ed.),
– volume: 4
  start-page: 8
  year: 2013
  ident: br003245
  article-title: Mitosis detection in breast cancer histological images—an ICPR 2012 contest
  publication-title: Journal of Pathology Informatics
– reference: , vol. 1 (pp. 209–216).
– reference: Almeida, L. B. (1987). A learning rule for asynchronous perceptrons with feedback in a combinatorial environment. In
– volume: 31
  start-page: 377
  year: 1979
  end-page: 403
  ident: br000720
  article-title: Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation
  publication-title: Numerische Mathematik
– start-page: 253
  year: 2004
  end-page: 262
  ident: br000745
  article-title: Locality-sensitive hashing scheme based on
  publication-title: Proceedings of the 20th annual symposium on computational geometry
– volume: 61
  start-page: 241
  year: 1989
  end-page: 254
  ident: br003200
  article-title: Self-organizing semantic maps
  publication-title: Biological Cybernetics
– volume: 10
  start-page: 1659
  year: 1997
  end-page: 1671
  ident: br002400
  article-title: Networks of spiking neurons: the third generation of neural network models
  publication-title: Neural Networks
– volume: 24
  start-page: 677
  year: 2014
  end-page: 690
  ident: br001635
  article-title: Emergence of complex computational structures from chaotic neural networks through reward-modulated Hebbian learning
  publication-title: Cerebral Cortex
– year: 2005
  ident: br001695
  article-title: Universal artificial intelligence: sequential decisions based on algorithmic probability
– year: 2001
  ident: br002140
  article-title: Estimation of distribution algorithms: a new tool for evolutionary computation
– volume: 14
  start-page: 1080
  year: 1986
  end-page: 1100
  ident: br003195
  article-title: Stochastic complexity and modeling
  publication-title: The Annals of Statistics
– volume: 6
  start-page: 792
  year: 1992
  end-page: 794
  ident: br001465
  article-title: Improving model accuracy using optimal linear combinations of trained neural networks
  publication-title: IEEE Transactions on Neural Networks
– volume: 18
  start-page: 383
  year: 1973
  end-page: 385
  ident: br000890
  article-title: The computational solution of optimal control problems with time lag
  publication-title: IEEE Transactions on Automatic Control
– volume: 6
  start-page: 1212
  year: 1995
  end-page: 1228
  ident: br002965
  article-title: Gradient calculations for dynamic recurrent neural networks: A survey
  publication-title: IEEE Transactions on Neural Networks
– volume: 5
  start-page: 30
  year: 1962
  end-page: 45
  ident: br000885
  article-title: The numerical solution of variational problems
  publication-title: Journal of Mathematical Analysis and Applications
– reference: Friedman, J., Hastie, T., & Tibshirani, R. (2001).
– volume: 6
  start-page: 163
  year: 1963
  end-page: 168
  ident: br001050
  article-title: A rapidly convergent descent method for minimization
  publication-title: The Computer Journal
– volume: 16
  start-page: 146
  year: 1976
  end-page: 160
  ident: br002330
  article-title: Taylor expansion of the accumulated rounding error
  publication-title: BIT Numerical Mathematics
– start-page: 873
  year: 2009
  end-page: 880
  ident: br003095
  article-title: Large-scale deep unsupervised learning using graphics processors
  publication-title: Proceedings of the 26th annual International conference on machine learning
– volume: 3
  start-page: 14
  year: 1992
  end-page: 23
  ident: br002785
  article-title: Maximally fault tolerant neural networks
  publication-title: IEEE Transactions on Neural Networks
– volume: 12
  start-page: 1333
  year: 2001
  end-page: 1340
  ident: br001180
  article-title: LSTM recurrent networks learn simple context free and context sensitive languages
  publication-title: IEEE Transactions on Neural Networks
– start-page: 317
  year: 2005
  end-page: 328
  ident: br003145
  article-title: Neural fitted Q iteration—first experiences with a data efficient neural reinforcement learning method
  publication-title: Proc. ECML-2005
– volume: 9
  start-page: 41
  year: 1996
  end-page: 52
  ident: br002855
  article-title: Extraction of rules from discrete-time recurrent neural networks
  publication-title: Neural Networks
– reference: (pp. 1237–1242).
– year: 1993
  ident: br003815
  article-title: The neural network pushdown automaton: Model, stack and learning simulations. Technical report CS-TR-3118
– reference: Menache, I., Mannor, S., & Shimkin, N. (2002).
– reference: Egorova, A., Gloye, A., Göktekin, C., Liers, A., Luft, M., & Rojas, R., et al. (2004). FU-fighters small size 2004, team description. In
– reference: Wierstra, D., Schaul, T., Peters, J., & Schmidhuber, J. (2008). Natural evolution strategies. In
– volume: 2
  start-page: 219
  year: 1994
  end-page: 246
  ident: br004365
  article-title: Sequential behavior and learning in evolved dynamical neural networks
  publication-title: Adaptive Behavior
– reference: Hochreiter, S., & Obermayer, K. (2005). Sequence classification for protein analysis. In
– volume: 194
  start-page: 431
  year: 1976
  end-page: 445
  ident: br004305
  article-title: How patterned neural connections can be set up by self-organization
  publication-title: Proceedings of the Royal Society of London. Series B
– start-page: 627
  year: 1991
  end-page: 634
  ident: br002700
  article-title: Discovering discrete distributed representations with iterative competitive learning
  publication-title: Advances in neural information processing systems, vol. 3
– start-page: 22
  year: 1996
  end-page: 33
  ident: br000470
  article-title: Linear least-squares algorithms for temporal difference learning
  publication-title: Machine Learning
– volume: 14
  start-page: 2709
  year: 2002
  end-page: 2728
  ident: br003680
  article-title: Training a single sigmoidal neuron is hard
  publication-title: Neural Computation
– start-page: 177
  year: 1989
  end-page: 185
  ident: br001455
  article-title: Comparing biases for minimal network construction with back-propagation
  publication-title: Advances in neural information processing systems (NIPS), vol. 1
– start-page: 683
  year: 2013
  end-page: 687
  ident: br000495
  article-title: High-performance OCR for printed English and Fraktur using LSTM networks
  publication-title: 12th International conference on document analysis and recognition
– volume: 2
  start-page: 625
  year: 1988
  end-page: 640
  ident: br003720
  article-title: Accelerated learning in layered neural networks
  publication-title: Complex Systems
– start-page: 151
  year: 1990
  end-page: 158
  ident: br003670
  article-title: Speeding up back-propagation
  publication-title: Advanced neural computers
– volume: 14
  start-page: 1723
  year: 2002
  end-page: 1738
  ident: br003545
  article-title: Fast curvature matrix–vector products for second-order gradient descent
  publication-title: Neural Computation
– volume: 2
  start-page: 17
  year: 1991
  end-page: 33
  ident: br000285
  article-title: Unsupervised learning procedures for neural networks
  publication-title: International Journal of Neural Systems
– year: 2014
  ident: br001920
  article-title: Neucube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data
  publication-title: Neural Networks
– volume: 11
  start-page: 5
  year: 1999
  end-page: 40
  ident: br003220
  article-title: A recurrent neural network that learns to count
  publication-title: Connection Science
– reference: Khan, S. H., Bennamoun, M., Sohel, F., & Togneri, R. (2014). Automatic feature learning for robust shadow detection. In
– year: 1985
  ident: br004075
  article-title: Pattern recognition: human and mechanical
– year: 2014
  ident: br003835
  article-title: Sequence to sequence learning with neural networks. Technical report
– volume: 40
  start-page: 1098
  year: 1952
  end-page: 1101
  ident: br001680
  article-title: A method for construction of minimum-redundancy codes
  publication-title: Proceedings IRE
– reference: . ArXiv Preprint
– volume: 3
  start-page: 115
  year: 2002
  end-page: 143
  ident: br001190
  article-title: Learning precise timing with LSTM recurrent networks
  publication-title: Journal of Machine Learning Research
– reference: (pp. 1033–1040).
– start-page: 160
  year: 2008
  end-page: 167
  ident: br000690
  article-title: A unified architecture for natural language processing: deep neural networks with multitask learning
  publication-title: Proceedings of the 25th international conference on machine learning
– year: 1984
  ident: br000980
  article-title: Self-organizing methods in modeling: GMDH type algorithms, vol. 54
– volume: 3
  start-page: 139
  year: 1992
  end-page: 164
  ident: br001200
  article-title: Associative memory in a network of spiking neurons
  publication-title: Network: Computation in Neural Systems
– reference: , Snowbird: Utah. Computational and Biological Learning Society.
– reference: Cardoso, J.-F. (1994). On the performance of orthogonal source separation algorithms. In
– volume: 5
  year: 2011
  ident: br001740
  article-title: Neuromorphic silicon neuron circuits
  publication-title: Frontiers in Neuroscience
– start-page: 801
  year: 2007
  end-page: 808
  ident: br002195
  article-title: Efficient sparse coding algorithms
  publication-title: Advances in neural information processing systems (NIPS), vol. 19
– reference: Boutilier, C., & Poole, D. (1996). Computing optimal policies for partially observable Markov decision processes using compact representations. In
– start-page: 735
  year: 2010
  end-page: 742
  ident: br002490
  article-title: Deep learning via Hessian-free optimization
  publication-title: Proceedings of the 27th international conference on machine learning
– volume: 9
  start-page: 123
  year: 1997
  end-page: 141
  ident: br003280
  article-title: Partial BFGS update and efficient step-length calculation for three-layer neural networks
  publication-title: Neural Computation
– volume: 10
  start-page: 251
  year: 1998
  end-page: 276
  ident: br000050
  article-title: Natural gradient works efficiently in learning
  publication-title: Neural Computation
– start-page: 909
  year: 2006
  end-page: 916
  ident: br003860
  article-title: Cross-entropy optimization for independent process analysis
  publication-title: Independent component analysis and blind signal separation
– volume: 35
  start-page: 1915
  year: 2013
  end-page: 1929
  ident: br000975
  article-title: Learning hierarchical features for scene labeling
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2009
  ident: br001370
  article-title: The intelligent movement machine: an ethological perspective on the primate motor system
– volume: 9
  start-page: 1385
  year: 1996
  end-page: 1403
  ident: br000755
  article-title: Varieties of Helmholtz machine
  publication-title: Neural Networks
– volume: 24
  start-page: 1271
  year: 2012
  end-page: 1296
  ident: br003885
  article-title: Learning invariance from natural images inspired by observations in the primary visual cortex
  publication-title: Neural Computation
– reference: Le, Q. V., Ranzato, M., Monga, R., Devin, M., Corrado, G., & Chen, K., et al. (2012). Building high-level features using large scale unsupervised learning. In
– start-page: 950
  year: 1992
  end-page: 957
  ident: br002090
  article-title: A simple weight decay can improve generalization
  publication-title: Advances in neural information processing systems, vol. 4
– volume: 1
  start-page: 412
  year: 1989
  end-page: 423
  ident: br000215
  article-title: Finding minimum entropy codes
  publication-title: Neural Computation
– start-page: 29
  year: 1989
  end-page: 37
  ident: br000290
  article-title: Improving the convergence of back-propagation learning with second order methods
  publication-title: Proc. 1988 connectionist models summer school, 1988
– reference: Coates, A., Huval, B., Wang, T., Wu, D. J., Ng, A. Y., & Catanzaro, B. (2013). Deep learning with COTS HPC systems. In
– start-page: 337
  year: 1993
  end-page: 343
  ident: br003895
  article-title: Learning via task decomposition
  publication-title: From animals to animats 2: proceedings of the second international conference on simulation of adaptive behavior
– volume: 3
  start-page: 331
  year: 1989
  end-page: 342
  ident: br000240
  article-title: Accelerated backpropagation learning: two optimization methods
  publication-title: Complex Systems
– volume: 40
  start-page: 63
  year: 1989
  end-page: 118
  ident: br002605
  article-title: Explanation-based learning: A problem solving perspective
  publication-title: Artificial Intelligence
– start-page: 438
  year: 2004
  end-page: 445
  ident: br000140
  article-title: Hierarchical reinforcement learning based on subgoal discovery and subpolicy specialization
  publication-title: Proc. 8th conference on intelligent autonomous systems IAS-8
– year: 1988
  ident: br004265
  article-title: Toward a theory of reinforcement-learning connectionist systems. Technical report NU-CCS-88-3
– volume: 2
  start-page: 164
  year: 1944
  end-page: 168
  ident: br002260
  article-title: A method for the solution of certain problems in least squares
  publication-title: Quarterly of Applied Mathematics
– volume: 8
  start-page: 373
  year: 1995
  end-page: 389
  ident: br000080
  article-title: Survey and critique of techniques for extracting rules from trained artificial neural networks
  publication-title: Knowledge-Based Systems
– volume: 13
  start-page: 547
  year: 1966
  end-page: 569
  ident: br000580
  article-title: On the length of programs for computing finite binary sequences
  publication-title: Journal of the ACM
– volume: 4
  start-page: 2379
  year: 1987
  end-page: 2394
  ident: br001020
  article-title: Relations between the statistics of natural images and the response properties of cortical cells
  publication-title: Journal of the Optical Society of America
– reference: Kak, S., Chen, Y., & Wang, L. (2010). Data mining using surface and deep agents based on neural networks. In
– year: 1977
  ident: br003910
  article-title: Solutions of ill-posed problems
– year: 1993
  ident: br000685
  article-title: Neural networks for optimization and signal processing
– start-page: 1973
  year: 1999
  end-page: 1978
  ident: br002950
  article-title: Evolving structure and function of neurocontrollers
  publication-title: Proceedings of the congress on evolutionary computation, vol. 3
– year: 1971
  ident: br003125
  article-title: Evolutionsstrategie—optimierung technischer systeme nach prinzipien der biologischen evolution
– reference: Goodfellow, I. J., Courville, A. C., & Bengio, Y. (2012). Large-scale feature learning with spike-and-slab sparse coding. In
– volume: 14
  start-page: 1413
  year: 1973
  end-page: 1416
  ident: br002265
  article-title: On the notion of a random sequence
  publication-title: Soviet Mathematics Doklady
– reference: (pp. 226–233).
– start-page: 11
  year: 1989
  end-page: 19
  ident: br003320
  article-title: An optimality principle for unsupervised learning
  publication-title: Advances in neural information processing systems (NIPS), vol. 1
– start-page: 576
  year: 1992
  end-page: 581
  ident: br004120
  article-title: Cresceptron: a self-organizing neural network which grows adaptively
  publication-title: International joint conference on neural networks, vol. 1
– start-page: 73
  year: 2011
  end-page: 77
  ident: br001735
  article-title: Keyword spotting in online handwritten documents containing text and non-text using BLSTM neural networks
  publication-title: Document analysis and recognition (ICDAR), 2011 international conference on
– volume: 23
  start-page: 187
  year: 1976
  end-page: 202
  ident: br001390
  article-title: Adaptive pattern classification and universal recoding, 1: parallel development and coding of neural feature detectors
  publication-title: Biological Cybernetics
– reference: (pp. 1356–1361).
– reference: Bluche, T., Louradour, J., Knibbe, M., Moysset, B., Benzeghiba, F., & Kermorvant, C. (2014). The A2iA Arabic handwritten text recognition system at the OpenHaRT2013 evaluation. In
– year: 1974
  ident: br003585
  article-title: Numerische optimierung von computer-modellen
– year: 1990
  ident: br001875
  publication-title: Neural network design and the complexity of learning
– reference: (pp. 609–618).
– volume: 29
  start-page: 82
  year: 2012
  end-page: 97
  ident: br001555
  article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Processing Magazine
– volume: 11
  start-page: 697
  year: 2000
  end-page: 709
  ident: br000110
  article-title: New results on recurrent network training: unifying the algorithms and accelerating convergence
  publication-title: IEEE Transactions on Neural Networks
– reference: Simsek, Ö., & Barto, A. G. (2008). Skill characterization based on betweenness. In
– volume: 7
  start-page: 687
  year: 1996
  end-page: 716
  ident: br003785
  article-title: A single spike suffices: the simplest form of stochastic resonance in model neurons
  publication-title: Network: Computation in Neural Systems
– volume: 1
  start-page: 61
  year: 1989
  end-page: 68
  ident: br002840
  article-title: Neural networks, principal components, and subspaces
  publication-title: International Journal of Neural Systems
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: br000355
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 5
  start-page: 402
  year: 1993
  end-page: 418
  ident: br000165
  article-title: Neural networks for fingerprint recognition
  publication-title: Neural Computation
– year: 1994
  ident: br001640
  article-title: On the theory of generalization and self-structuring in linearly weighted connectionist networks
– volume: 47
  year: 2005
  ident: br001245
  article-title: Reinforcing the driving quality of soccer playing robots by anticipation
  publication-title: IT—Information Technology
– start-page: 593
  year: 1989
  end-page: 605
  ident: br001500
  article-title: Theory of the backpropagation neural network
  publication-title: International joint conference on neural networks
– reference: Martens, J., & Sutskever, I. (2011). Learning recurrent neural networks with Hessian-free optimization. In
– year: 1996
  ident: br002190
  article-title: Learning of context-free languages: a survey of the literature. Technical report TR-12-96
– volume: 5
  start-page: 565
  year: 1994
  end-page: 581
  ident: br002730
  article-title: Non-linear neurons in the low noise limit: a factorial code maximises information transfer
  publication-title: Networks
– volume: 1
  start-page: 403
  year: 1989
  end-page: 412
  ident: br003385
  article-title: A local learning algorithm for dynamic feedforward and recurrent networks
  publication-title: Connection Science
– start-page: 112
  year: 2004
  end-page: 119
  ident: br000230
  article-title: Intrinsically motivated learning of hierarchical collections of skills
  publication-title: Proceedings of international conference on developmental learning
– volume: 6
  start-page: 147
  year: 1994
  end-page: 160
  ident: br002960
  article-title: Fast exact multiplication by the Hessian
  publication-title: Neural Computation
– reference: (pp. 924–932).
– start-page: 769
  year: 2009
  end-page: 776
  ident: br001805
  article-title: Natural image denoising with convolutional networks
  publication-title: Advances in neural information processing systems (NIPS), vol. 21
– year: 2006
  ident: br002180
  article-title: Off-road obstacle avoidance through end-to-end learning
  publication-title: Advances in neural information processing systems (NIPS 2005)
– volume: 11
  start-page: 185
  year: 1968
  end-page: 194
  ident: br004055
  article-title: An information theoretic measure for classification
  publication-title: The Computer Journal
– year: 2014
  ident: br002300
  article-title: Deep learning based imaging data completion for improved brain disease diagnosis
  publication-title: Proc. MICCAI
– reference: Rifai, S., Vincent, P., Muller, X., Glorot, X., & Bengio, Y. (2011). Contractive auto-encoders: Explicit invariance during feature extraction. In
– volume: 7
  start-page: 1129
  year: 1995
  end-page: 1159
  ident: br000330
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Computation
– reference: (pp. 91–96).
– start-page: 8609
  year: 2013
  end-page: 8613
  ident: br000730
  article-title: Improving deep neural networks for LVCSR using rectified linear units and dropout
  publication-title: IEEE International conference on acoustics, speech and signal processing
– volume: 21
  start-page: 858
  year: 2010
  end-page: 863
  ident: br003065
  article-title: A convolutional learning system for object classification in 3-D LIDAR data
  publication-title: IEEE Transactions on Neural Networks
– volume: 50
  start-page: 461
  year: 2003
  end-page: 472
  ident: br004020
  article-title: A training algorithm for classification of high-dimensional data
  publication-title: Neurocomputing
– volume: 2
  start-page: 261
  year: 1992
  end-page: 272
  ident: br002115
  article-title: Clustering properties of hierarchical self-organizing maps
  publication-title: Journal of Mathematical Imaging and Vision
– volume: 40
  start-page: 1063
  year: 2003
  end-page: 1073
  ident: br003620
  article-title: Learning in spiking neural networks by reinforcement of stochastic synaptic transmission
  publication-title: Neuron
– reference: (pp. 1497–1504).
– volume: 1
  start-page: 47
  year: 1986
  end-page: 80
  ident: br002615
  article-title: Explanation-based generalization: A unifying view
  publication-title: Machine Learning
– start-page: 1273
  year: 2007
  ident: br003630
  article-title: Recursive ICA
  publication-title: Advances in neural information processing systems (NIPS), vol. 19
– volume: 27
  start-page: 37
  year: 2012
  end-page: 50
  ident: br000155
  article-title: Autoencoders, unsupervised learning, and deep architectures
  publication-title: Journal of Machine Learning Research
– volume: 1
  start-page: 145
  year: 1986
  end-page: 176
  ident: br000785
  article-title: Explanation-based learning: an alternative view
  publication-title: Machine Learning
– volume: 94
  start-page: 295
  year: 2005
  end-page: 313
  ident: br000775
  article-title: Neurodynamics of biased competition and cooperation for attention: a model with spiking neurons
  publication-title: Journal of Neurophysiology
– reference: (pp. 152–160).
– reference: (pp. 427–436).
– volume: 24
  start-page: 377
  year: 1987
  end-page: 380
  ident: br000425
  article-title: Occam’s razor
  publication-title: Information Processing Letters
– volume: Vol. 37
  start-page: 65
  year: 1996
  end-page: 72
  ident: br001605
  article-title: Bridging long time lags by weight guessing and Long Short-Term Memory
  publication-title: Spatiotemporal models in biological and artificial systems
– volume: 316
  start-page: 688
  year: 2007
  ident: br003475
  article-title: Prototype resilient, self-modeling robots
  publication-title: Science
– volume: 1
  start-page: 131
  year: 1990
  end-page: 136
  ident: br002500
  article-title: Three-dimensional neural net for learning visuomotor coordination of a robot arm
  publication-title: IEEE Transactions on Neural Networks
– reference: Turner, A. J., & Miller, J. F. (2013). Cartesian genetic programming encoded artificial neural networks: A comparison using three benchmarks. In
– start-page: 340
  year: 1990
  end-page: 347
  ident: br000560
  article-title: Operational fault tolerance of CMAC networks
  publication-title: Advances in neural information processing systems (NIPS), vol. 2
– start-page: 545
  year: 2009
  end-page: 552
  ident: br001365
  article-title: Offline handwriting recognition with multidimensional recurrent neural networks
  publication-title: Advances in neural information processing systems (NIPS), vol. 21
– volume: 5
  start-page: 157
  year: 1994
  end-page: 166
  ident: br000365
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Transactions on Neural Networks
– start-page: 207
  year: 2012
  end-page: 251
  ident: br003995
  article-title: Reinforcement learning in continuous state and action spaces
  publication-title: Reinforcement learning
– volume: 35
  start-page: 221
  year: 2013
  end-page: 231
  ident: br001815
  article-title: 3D convolutional neural networks for human action recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: Graves, A., Eck, D., Beringer, N., & Schmidhuber, J. (2003). Isolated digit recognition with LSTM recurrent networks. In
– start-page: 2849
  year: 2008
  end-page: 2856
  ident: br001950
  article-title: SpiNNaker: mapping neural networks onto a massively-parallel chip multiprocessor
  publication-title: International joint conference on neural networks
– reference: (pp. 43–57).
– reference: (pp. 243–246).
– volume: 4
  start-page: 12
  year: 2012
  ident: br004035
  article-title: On the computational complexity of stochastic controller optimization in POMDPs
  publication-title: ACM Transactions on Computation Theory
– year: 1992
  ident: br003515
  article-title: Discovering predictable classifications. Technical report CU-CS-626-92
– volume: 3
  start-page: 349
  year: 1989
  end-page: 381
  ident: br002695
  article-title: A focused back-propagation algorithm for temporal sequence recognition
  publication-title: Complex Systems
– start-page: 283
  year: 1992
  end-page: 356
  ident: br004160
  article-title: Neural networks, system identification, and control in the chemical industries
  publication-title: Handbook of intelligent control: neural, fuzzy, and adaptive approaches
– volume: 20
  start-page: 30
  year: 2012
  end-page: 42
  ident: br000735
  article-title: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
  publication-title: IEEE Transactions on Audio, Speech and Language Processing
– volume: 86
  start-page: 2259
  year: 1998
  end-page: 2277
  ident: br000995
  article-title: A signal processing framework based on dynamic neural networks with application to problems in adaptation, filtering, and classification
  publication-title: Proceedings of the IEEE
– reference: Maei, H. R., & Sutton, R. S. (2010). GQ(
– reference: ): A general gradient algorithm for temporal-difference prediction learning with eligibility traces. In
– reference: Marchi, E., Ferroni, G., Eyben, F., Gabrielli, L., Squartini, S., & Schuller, B. (2014). Multi-resolution linear prediction based features for audio onset detection with bidirectional LSTM neural networks. In
– year: 1997
  ident: br000040
  article-title: On-line step size adaptation. Technical report, INESC, 9 Rua Alves Redol, 1000
– reference: Ciresan, D. C., Meier, U., Masci, J., Gambardella, L. M., & Schmidhuber, J. (2011). Flexible, high performance convolutional neural networks for image classification. In
– reference: Baird, H. (1990). Document image defect models. In
– reference: Munro, P. W. (1987). A dual back-propagation scheme for scalar reinforcement learning. In
– reference: (pp. 609–616).
– reference: (pp. 1845–1853).
– year: 1990
  ident: br001855
  article-title: Supervised learning with a distal teacher. Technical report Occasional Paper #40
– volume: 15
  start-page: 346
  year: 2011
  end-page: 367
  ident: br000675
  article-title: On the performance of indirect encoding across the continuum of regularity
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: (pp. 333–338).
– reference: (pp. 220–229).
– reference: (pp. 2018–2023).
– year: 1989
  ident: br003230
  article-title: The ‘moving targets’ training method
  publication-title: Proceedings of ‘distributed adaptive neural information processing’
– volume: 11
  start-page: 436
  year: 2000
  end-page: 451
  ident: br002930
  article-title: Constructive neural network learning algorithms for multi-category pattern classification
  publication-title: IEEE Transactions on Neural Networks
– volume: 21
  start-page: 682
  year: 2008
  end-page: 697
  ident: br003005
  article-title: Reinforcement learning of motor skills with policy gradients
  publication-title: Neural Networks
– year: 2012
  ident: br001580
  article-title: Improving neural networks by preventing co-adaptation of feature detectors. Technical report
– reference: .
– volume: Vol. 2130
  start-page: 87
  year: 2001
  end-page: 94
  ident: br001625
  article-title: Learning to learn using gradient descent
  publication-title: Proc. intl. conf. on artificial neural networks
– reference: Meuleau, N., Peshkin, L., Kim, K. E., & Kaelbling, L. P. (1999). Learning finite state controllers for partially observable environments. In
– volume: 21
  year: 1983
  ident: br002245
  article-title: Theory formation by heuristic search
  publication-title: Machine Learning
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: br001615
  article-title: Long short-term memory
  publication-title: Neural Computation
– volume: Vol. 3944
  start-page: 28
  year: 2006
  end-page: 32
  ident: br002760
  article-title: Classification with Bayesian neural networks
  publication-title: Machine learning challenges. Evaluating predictive uncertainty, visual object classification, and recognising textual entailment
– year: 1998
  ident: br003840
  article-title: Reinforcement learning: An introduction
– volume: 22
  start-page: 436
  year: 1992
  end-page: 440
  ident: br002510
  article-title: Noise injection into inputs in back-propagation learning
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
– volume: 8
  start-page: 229
  year: 1992
  end-page: 256
  ident: br004275
  article-title: Simple statistical gradient-following algorithms for connectionist reinforcement learning
  publication-title: Machine Learning
– reference: Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural networks. In
– start-page: 379
  year: 1989
  end-page: 384
  ident: br002580
  article-title: Designing neural networks using genetic algorithms
  publication-title: Proceedings of the 3rd international conference on genetic algorithms
– year: 1996
  ident: br003775
  article-title: A recurrent network that performs a contextsensitive prediction task
  publication-title: Proceedings of the 18th annual conference of the cognitive science society
– reference: Ciresan, D. C., Meier, U., & Schmidhuber, J. (2012a). Multi-column deep neural networks for image classification. In
– volume: 11
  start-page: 431
  year: 1963
  end-page: 441
  ident: br002485
  article-title: An algorithm for least-squares estimation of nonlinear parameters
  publication-title: Journal of the Society for Industrial & Applied Mathematics
– volume: 3
  start-page: 919
  year: 2000
  end-page: 926
  ident: br003740
  article-title: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity
  publication-title: Nature Neuroscience
– volume: 71
  start-page: 856
  year: 1994
  end-page: 867
  ident: br001980
  article-title: Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex
  publication-title: Journal of Neurophysiology
– year: 1992
  ident: br003340
  article-title: Numerische mathematik, vol. 4
– volume: 93
  start-page: 429
  year: 1946
  end-page: 441
  ident: br001140
  article-title: Theory of communication. Part 1: the analysis of information
  publication-title: Electrical Engineers-Part III: Journal of the Institution of Radio and Communication Engineering
– volume: 22
  start-page: 59
  year: 1996
  end-page: 94
  ident: br003935
  article-title: Feature-based methods for large scale dynamic programming
  publication-title: Machine Learning
– year: 1998
  ident: br002350
  article-title: System identification
– reference: (pp. 430–435).
– volume: 2
  start-page: 68
  year: 2003
  end-page: 75
  ident: br002035
  article-title: Modified GMDH method and models quality evaluation by visualization
  publication-title: Control Systems and Computers
– volume: 11
  start-page: 679
  year: 1999
  end-page: 714
  ident: br001620
  article-title: Feature extraction through LOCOCODE
  publication-title: Neural Computation
– reference: Heess, N., Silver, D., & Teh, Y. W. (2012). Actor-critic reinforcement learning with energy-based policies. In
– start-page: 189
  year: 2003
  end-page: 198
  ident: br003225
  article-title: Hardware spiking neural network with run-time reconfigurable connectivity in an autonomous robot
  publication-title: Proc. NASA/DoD conference on evolvable hardware
– start-page: 199
  year: 2006
  end-page: 226
  ident: br003470
  article-title: Gödel machines: Fully self-referential optimal universal self-improvers
  publication-title: Artificial general intelligence
– volume: 12
  start-page: 574
  year: 2011
  end-page: 582
  ident: br004325
  article-title: On-line driver distraction detection using long short-term memory
  publication-title: IEEE Transactions on Intelligent Transportation Systems (TITS)
– year: 1996
  ident: br000055
  article-title: A new learning algorithm for blind signal separation
  publication-title: Advances in neural information processing systems (NIPS), vol. 8
– reference: Prokhorov, D. V., Feldkamp, L. A., & Tyukin, I. Y. (2002). Adaptive behavior with fixed weights in RNN: an overview. In
– year: 2014
  ident: br000800
  article-title: Deep learning: methods and applications
– volume: 33
  start-page: 105
  year: 1998
  end-page: 116
  ident: br004225
  article-title: Fast online Q(
  publication-title: Machine Learning
– reference: (pp. 755–764).
– year: 1992
  ident: br004180
  article-title: Reinforcement learning for the adaptive control of perception and action
– volume: 7
  start-page: 985
  year: 1994
  end-page: 1004
  ident: br001460
  article-title: Design and evolution of modular neural network architectures
  publication-title: Neural Networks
– volume: 14
  start-page: 321
  year: 1994
  end-page: 331
  ident: br003650
  article-title: Combining symbolic and neural learning
  publication-title: Machine Learning
– volume: 71
  start-page: 1180
  year: 2008
  end-page: 1190
  ident: br003000
  article-title: Natural actor-critic
  publication-title: Neurocomputing
– reference: Pearlmutter, B. A., & Hinton, G. E. (1986).
– volume: 12
  start-page: 2121
  year: 2011
  end-page: 2159
  ident: br000895
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: The Journal of Machine Learning
– volume: 3
  start-page: 166
  year: 2007
  ident: br001085
  article-title: Slowness and sparseness lead to place, head-direction, and spatial-view cells
  publication-title: PLoS Computational Biology
– volume: 2
  start-page: 173
  year: 1990
  end-page: 187
  ident: br002420
  article-title: Analysis of Linsker’s simulation of Hebbian rules
  publication-title: Neural Computation
– year: 1988
  ident: br000935
  article-title: Spline smoothing and nonparametric regression
  publication-title: Self-organizing methods in modeling
– reference: Schrauwen, B., Verstraeten, D., & Van Campenhout, J. (2007). An overview of reservoir computing: theory, applications and implementations. In
– volume: 79
  start-page: 2554
  year: 1982
  end-page: 2558
  ident: br001660
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proceedings of the National Academy of Sciences
– start-page: 153
  year: 2007
  end-page: 160
  ident: br000360
  article-title: Greedy layer-wise training of deep networks
  publication-title: Advances in neural information processing systems, vol. 19 (NIPS)
– start-page: 1458
  year: 1991
  end-page: 1463
  ident: br003410
  article-title: Curious model-building control systems
  publication-title: Proceedings of the international joint conference on neural networks, vol. 2
– reference: Robinson, T., & Fallside, F. (1989). Dynamic reinforcement driven error propagation networks with application to game playing. In
– year: 1687
  ident: br002795
  article-title: Philosophiae naturalis principia mathematica
– year: 1991
  ident: br001590
  article-title: Untersuchungen zu dynamischen neuronalen Netzen
– start-page: 2619
  year: 2004
  end-page: 2624
  ident: br001985
  article-title: Policy gradient reinforcement learning for fast quadrupedal locomotion
  publication-title: Robotics and automation, 2004. Proceedings. ICRA’04. 2004 IEEE international conference on, vol. 3
– volume: 31
  start-page: 152
  year: 1988
  end-page: 169
  ident: br001145
  article-title: Connectionist expert systems
  publication-title: Communications of the ACM
– volume: 75
  start-page: 1515
  year: 1996
  end-page: 1545
  ident: br002450
  article-title: Model circuit of spiking neurons generating directional selectivity in simple cells
  publication-title: Journal of Neurophysiology
– start-page: 199
  year: 1994
  end-page: 219
  ident: br003890
  article-title: The evolution of mental models
  publication-title: Advances in genetic programming
– start-page: 586
  year: 1993
  end-page: 591
  ident: br003150
  article-title: A direct adaptive method for faster backpropagation learning: The Rprop algorithm
  publication-title: Proc. IJCNN
– reference: (pp. 118–126).
– volume: 63
  start-page: 487
  year: 1990
  end-page: 493
  ident: br001060
  article-title: Evolving neural networks
  publication-title: Biological Cybernetics
– start-page: 6015
  year: 2000
  ident: br000865
  article-title: The growing hierarchical self-organizing map
  publication-title: IEEE-INNS-ENNS International joint conference on neural networks, vol. 6
– volume: 12
  start-page: 2519
  year: 2000
  end-page: 2535
  ident: br002405
  article-title: On the computational power of winner-take-all
  publication-title: Neural Computation
– volume: 4
  start-page: 141
  year: 1992
  end-page: 166
  ident: br000245
  article-title: First- and second-order methods for learning: between steepest descent and Newton’s method
  publication-title: Neural Computation
– reference: Förster, A., Graves, A., & Schmidhuber, J. (2007). RNN-based learning of compact maps for efficient robot localization. In
– volume: 4
  start-page: 333
  year: 1993
  end-page: 336
  ident: br003100
  article-title: Multiprocessor and memory architecture of the neurocomputer SYNAPSE-1
  publication-title: International Journal of Neural Systems
– start-page: 155
  year: 1991
  end-page: 161
  ident: br000440
  article-title: The Tempo 2 algorithm: adjusting time-delays by supervised learning
  publication-title: Advances in neural information processing systems, vol. 3
– reference: (pp. 295–306).
– start-page: 29
  year: 1998
  end-page: 53
  ident: br000985
  article-title: Enhanced multi-stream Kalman filter training for recurrent networks
  publication-title: Nonlinear modeling
– reference: Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y. (2013). OverFeat: integrated recognition, localization and detection using convolutional networks. ArXiv Preprint
– reference: (pp. 1150–1157).
– volume: 8
  start-page: 373
  year: 1997
  end-page: 404
  ident: br000065
  article-title: Dynamics of a recurrent network of spiking neurons before and following learning
  publication-title: Network: Computation in Neural Systems
– year: 2005
  ident: br001280
  article-title: Co-evolving recurrent neurons learn deep memory POMDPs
  publication-title: Proc. of the 2005 conference on genetic and evolutionary computation
– start-page: 625
  year: 1994
  end-page: 632
  ident: br001100
  article-title: A growing neural gas network learns topologies
  publication-title: NIPS
– volume: 4
  start-page: 1
  year: 1992
  end-page: 58
  ident: br001170
  article-title: Neural networks and the bias/variance dilemma
  publication-title: Neural Computation
– reference: Sun, Y., Wierstra, D., Schaul, T., & Schmidhuber, J. (2009). Efficient natural evolution strategies. In
– volume: 14
  start-page: 1771
  year: 2002
  end-page: 1800
  ident: br001545
  article-title: Training products of experts by minimizing contrastive divergence
  publication-title: Neural Computation
– volume: 46
  start-page: 77
  year: 1990
  end-page: 105
  ident: br003035
  article-title: Recursive distributed representation
  publication-title: Artificial Intelligence
– year: 1961
  ident: br001865
  article-title: Contributions to perceptron theory
– start-page: 577
  year: 2008
  end-page: 584
  ident: br001340
  article-title: Unconstrained on-line handwriting recognition with recurrent neural networks
  publication-title: Advances in neural information processing systems (NIPS), vol. 20
– reference: (pp. 599–604).
– volume: 4
  start-page: 124
  year: 2013
  ident: br002875
  article-title: Recurrent processing during object recognition
  publication-title: Frontiers in Psychology
– reference: Segmentation of Neuronal Structures in EM Stacks Challenge,  (2012).
– reference: (p. 2008).
– volume: 15
  start-page: 185
  year: 2009
  end-page: 212
  ident: br003765
  article-title: A hypercube-based encoding for evolving large-scale neural networks
  publication-title: Artificial Life
– volume: Vol. 3696
  start-page: 575
  year: 2005
  end-page: 581
  ident: br000370
  article-title: Classifying unprompted speech by retraining LSTM nets
  publication-title: Artificial neural networks: biological inspirations—ICANN 2005
– volume: 5
  start-page: 156
  year: 1960
  end-page: 178
  ident: br003805
  article-title: Conditional Markov processes
  publication-title: Theory of Probability and Its Applications
– volume: 5
  year: 1994
  ident: br004430
  article-title: Discrete recurrent neural networks for grammatical inference
  publication-title: IEEE Transactions on Neural Networks
– reference: . New York.
– volume: Vol. 7700
  year: 2012
  ident: br002645
  publication-title: Neural networks: tricks of the trade
– volume: 13
  start-page: 3406
  year: 1993
  end-page: 3420
  ident: br004440
  article-title: A spiking network model of short-term active memory
  publication-title: The Journal of Neuroscience
– volume: 6
  start-page: 837
  year: 1995
  end-page: 858
  ident: br000180
  article-title: Learning in linear networks: a survey
  publication-title: IEEE Transactions on Neural Networks
– volume: 335
  start-page: 23
  year: 1992
  end-page: 30
  ident: br002985
  article-title: Organization and functions of cells responsive to faces in the temporal cortex [and discussion]
  publication-title: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences
– volume: 23
  start-page: 349
  year: 2007
  end-page: 398
  ident: br000490
  article-title: Simulation of networks of spiking neurons: a review of tools and strategies
  publication-title: Journal of Computational Neuroscience
– reference: (pp. 315–323).
– reference: Scherer, D., Müller, A., & Behnke, S. (2010). Evaluation of pooling operations in convolutional architectures for object recognition. In
– volume: 32
  start-page: 333
  year: 2012
  end-page: 338
  ident: br000645
  article-title: Multi-column deep neural network for traffic sign classification
  publication-title: Neural Networks
– reference: van den Berg, T., & Whiteson, S. (2013). Critical factors in the performance of HyperNEAT. In
– year: 1988
  ident: br002000
  article-title: Self-organization and associative memory
– reference: (pp. 619–626).
– reference: (pp. 320–322).
– volume: 345
  start-page: 668
  year: 2014
  end-page: 673
  ident: br002545
  article-title: A million spiking-neuron integrated circuit with a scalable communication network and interface
  publication-title: Science
– volume: 18
  start-page: 173
  year: 2006
  end-page: 187
  ident: br003465
  article-title: Developmental robotics, optimal artificial curiosity, creativity, music, and the fine arts
  publication-title: Connection Science
– volume: 28
  start-page: 2449
  year: 2012
  end-page: 2457
  ident: br000855
  article-title: Deep architectures for protein contact map prediction
  publication-title: Bioinformatics
– volume: 35
  start-page: 1847
  year: 2013
  end-page: 1871
  ident: br002095
  article-title: Deep hierarchies in the primate visual cortex: what can we learn for computer vision?
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: Fan, Y., Qian, Y., Xie, F., & Soong, F. K. (2014). TTS synthesis with bidirectional LSTM based recurrent neural networks. In
– volume: 12
  start-page: 197
  year: 2000
  end-page: 210
  ident: br000435
  article-title: Context-free and context-sensitive dynamics in recurrent neural networks
  publication-title: Connection Science
– volume: 22
  start-page: 159
  year: 1996
  ident: br002455
  article-title: Average reward reinforcement learning: Foundations, algorithms, and empirical results
  publication-title: Machine Learning
– start-page: 737
  year: 1991
  end-page: 745
  ident: br002845
  article-title: Data compression, feature extraction, and autoassociation in feedforward neural networks
  publication-title: Artificial neural networks, vol. 1
– year: 1992
  ident: br003660
  article-title: Theoretical foundations of recurrent neural networks
– volume: 73
  start-page: 415
  year: 2012
  end-page: 434
  ident: br000830
  article-title: How does the brain solve visual object recognition?
  publication-title: Neuron
– start-page: 499
  year: 1993
  end-page: 506
  ident: br003550
  article-title: Unsupervised discrimination of clustered data via optimization of binary information gain
  publication-title: Advances in neural information processing systems, vol. 5
– volume: 5
  start-page: 1063
  year: 2004
  end-page: 1088
  ident: br003300
  article-title: Reinforcement learning with factored states and actions
  publication-title: Journal of Machine Learning Research
– volume: 14
  start-page: 3683
  year: 2013
  end-page: 3719
  ident: br000930
  article-title: How to solve classification and regression problems on high-dimensional data with a supervised extension of slow feature analysis
  publication-title: Journal of Machine Learning Research
– start-page: 27
  year: 1994
  end-page: 34
  ident: br003335
  article-title: Unsupervised learning of mixtures of multiple causes in binary data
  publication-title: Advances in neural information processing systems (NIPS), vol. 6
– reference: Ting, K. M., & Witten, I. H. (1997). Stacked generalization: when does it work? In
– volume: 6
  start-page: 219
  year: 1998
  end-page: 246
  ident: br004220
  article-title: HQ-learning
  publication-title: Adaptive Behavior
– volume: 9
  start-page: 1127
  year: 1997
  end-page: 1142
  ident: br000405
  article-title: Analysis of dynamical recognizers
  publication-title: Neural Computation
– reference: Ring, M., Schaul, T., & Schmidhuber, J. (2011). The two-dimensional organization of behavior. In
– volume: 7
  start-page: 565
  year: 1995
  end-page: 579
  ident: br000765
  article-title: Competition and multiple cause models
  publication-title: Neural Computation
– volume: 7
  year: 2014
  ident: br002770
  article-title: Event-driven contrastive divergence for spiking neuromorphic systems
  publication-title: Frontiers in Neuroscience
– start-page: 323
  year: 1995
  end-page: 329
  ident: br004170
  article-title: Adaptive back-propagation in on-line learning of multilayer networks
  publication-title: NIPS
– reference: Behnke, S., & Rojas, R. (1998). Neural abstraction pyramid: a hierarchical image understanding architecture. In
– reference: Gherrity, M. (1989). A learning algorithm for analog fully recurrent neural networks. In
– start-page: 6
  year: 1992
  end-page: 22
  ident: br000030
  article-title: Application of time-bounded Kolmogorov complexity in complexity theory
  publication-title: Kolmogorov complexity and computational complexity
– volume: 7
  start-page: 375
  year: 1994
  end-page: 388
  ident: br003135
  article-title: Stock performance modeling using neural networks: a comparative study with regression models
  publication-title: Neural Networks
– reference: Ghavamzadeh, M., & Mahadevan, S. (2003). Hierarchical policy gradient algorithms. In
– start-page: 189
  year: 2000
  end-page: 194
  ident: br001175
  article-title: Recurrent nets that time and count
  publication-title: Proceedings of the IEEE-INNS-ENNS international joint conference on neural networks, 2000, vol. 3
– volume: 21
  start-page: 1392
  year: 2008
  end-page: 1400
  ident: br004345
  article-title: Learning to play go using recursive neural networks
  publication-title: Neural Networks
– volume: 48
  start-page: 17
  year: 2002
  end-page: 37
  ident: br000445
  article-title: Error-backpropagation in temporally encoded networks of spiking neurons
  publication-title: Neurocomputing
– volume: 19
  start-page: 716
  year: 1974
  end-page: 723
  ident: br000025
  article-title: A new look at the statistical model identification
  publication-title: IEEE Transactions on Automatic Control
– start-page: 1554
  year: 1966
  end-page: 1563
  ident: br000255
  article-title: Statistical inference for probabilistic functions of finite state Markov chains
  publication-title: The Annals of Mathematical Statistics
– start-page: 1
  year: 2000
  end-page: 15
  ident: br000845
  article-title: Ensemble methods in machine learning
  publication-title: Multiple classifier systems
– year: 2013
  ident: br002860
  article-title: Learning and transferring mid-level image representations using convolutional neural networks. Technical report hal-00911179
– volume: 4
  start-page: 491
  year: 1990
  end-page: 501
  ident: br004285
  article-title: An efficient gradient-based algorithm for on-line training of recurrent network trajectories
  publication-title: Neural Computation
– reference: (pp. 527–536).
– reference: (pp. 279–284).
– volume: 100
  start-page: 353
  year: 1972
  end-page: 359
  ident: br001990
  article-title: Correlation matrix memories
  publication-title: IEEE Transactions on Computers
– volume: 72
  start-page: 3634
  year: 1994
  end-page: 3637
  ident: br002630
  article-title: Separation of independent signals using time-delayed correlations
  publication-title: Physical Review Letters
– volume: 47
  start-page: 329
  year: 1982
  end-page: 342
  ident: br002990
  article-title: Visual neurones responsive to faces in the monkey temporal cortex
  publication-title: Experimental Brain Research
– volume: 381
  start-page: 607
  year: 1996
  end-page: 609
  ident: br002850
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
– reference: Leibniz, G. W. (1676). Memoir using the chain rule (cited in TMME 7:2&3 p. 321–332, 2010).
– year: 2006
  ident: br003110
  article-title: Efficient learning of sparse representations with an energy-based model
  publication-title: Advances in neural information processing systems (NIPS 2006)
– volume: 7
  start-page: 1329
  year: 1996
  end-page: 1338
  ident: br002310
  article-title: Learning long-term dependencies in NARX recurrent neural networks
  publication-title: IEEE Transactions on Neural Networks
– start-page: 180
  year: 1993
  end-page: 187
  ident: br003810
  article-title: Time warping invariant neural networks
  publication-title: Advances in neural information processing systems (NIPS), vol. 5
– start-page: 533
  year: 2012
  end-page: 537
  ident: br002900
  article-title: Local feature based online mode detection with recurrent neural networks
  publication-title: Proceedings of the 2012 international conference on Frontiers in handwriting recognition
– reference: Lowe, D. (1999). Object recognition from local scale-invariant features. In
– reference: Bakker, B., Zhumatiy, V., Gruener, G., & Schmidhuber, J. (2003). A robot that reinforcement-learns to identify and memorize important previous observations. In
– start-page: 598
  year: 1990
  end-page: 605
  ident: br002175
  article-title: Optimal brain damage
  publication-title: Advances in neural information processing systems, vol. 2
– reference: Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines. In
– reference: Bayer, J., & Osendorfer, C. (2014). Variational inference of latent state sequences using recurrent networks. ArXiv Preprint
– volume: 6
  start-page: 127
  year: 1993
  end-page: 131
  ident: br000390
  article-title: A learning algorithm for multilayered neural networks based on linear least squares problems
  publication-title: Neural Networks
– volume: 1
  start-page: 1
  year: 1991
  end-page: 47
  ident: br001000
  article-title: Distributed hierarchical processing in the primate cerebral cortex
  publication-title: Cerebral Cortex
– start-page: 241
  year: 1992
  end-page: 246
  ident: br004280
  article-title: Training recurrent networks using the extended Kalman filter
  publication-title: International joint conference on neural networks, vol. 4
– volume: 30
  start-page: 947
  year: 1960
  end-page: 954
  ident: br001925
  article-title: Gradient theory of optimal flight paths
  publication-title: ARS Journal
– start-page: 87
  year: 1993
  end-page: 95
  ident: br003510
  article-title: Continuous history compression
  publication-title: Proc. of intl. workshop on neural networks
– year: 1986
  ident: br004260
  article-title: Reinforcement-learning in connectionist networks: A mathematical analysis. Technical report 8605
– year: 2014
  ident: br000600
  article-title: Foundations and advances in deep learning
– year: 2006
  ident: br001485
  article-title: Hierarchical temporal memory—concepts, theory, and terminology
– volume: 22
  start-page: 2013
  year: 2005
  end-page: 2033
  ident: br002255
  article-title: Coding of color and form in the geniculostriate visual pathway
  publication-title: Journal of the Optical Society of America A
– volume: 82
  start-page: 35
  year: 1960
  end-page: 45
  ident: br001905
  article-title: A new approach to linear filtering and prediction problems
  publication-title: Journal of Basic Engineering
– reference: Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier networks. In
– start-page: 191
  year: 1993
  end-page: 195
  ident: br003440
  article-title: An introspective network that can learn to run its own weight change algorithm
  publication-title: Proc. of the intl. conf. on artificial neural networks, Brighton
– volume: 43
  start-page: 59
  year: 1982
  end-page: 69
  ident: br001995
  article-title: Self-organized formation of topologically correct feature maps
  publication-title: Biological Cybernetics
– start-page: 107
  year: 1989
  end-page: 115
  ident: br002710
  article-title: Skeletonization: A technique for trimming the fat from a network via relevance assessment
  publication-title: Advances in neural information processing systems (NIPS), vol. 1
– reference: Fieres, J., Schemmel, J., & Meier, K. (2008). Realizing biological spiking network models in a configurable wafer-scale hardware system. In
– volume: 9
  start-page: 265
  year: 1973
  end-page: 266
  ident: br002270
  article-title: Universal sequential search problems
  publication-title: Problems of Information Transmission
– reference: (pp. 643–644).
– volume: 4
  start-page: 559
  year: 1992
  end-page: 572
  ident: br000105
  article-title: Understanding retinal color coding from first principles
  publication-title: Neural Computation
– reference: (pp. 1301–1306).
– start-page: 472
  year: 1988
  end-page: 484
  ident: br001650
  article-title: A network of neuron-like units that learns to perceive by generation as well as reweighting of its links
  publication-title: Proc. of the 1988 connectionist models summer school
– volume: 8
  start-page: 773
  year: 1996
  end-page: 786
  ident: br003500
  article-title: Semilinear predictability minimization produces well-known feature detectors
  publication-title: Neural Computation
– volume: 4
  start-page: 882
  year: 1993
  end-page: 884
  ident: br000395
  article-title: Curvature-driven smoothing: A learning algorithm for feed-forward networks
  publication-title: IEEE Transactions on Neural Networks
– volume: 37
  start-page: W515
  year: 2009
  end-page: W518
  ident: br003880
  article-title: NNcon: improved protein contact map prediction using 2D-recursive neural networks
  publication-title: Nucleic Acids Research
– volume: 59
  start-page: 257
  year: 1988
  end-page: 263
  ident: br004040
  article-title: Accelerating the convergence of the back-propagation method
  publication-title: Biological Cybernetics
– volume: 1
  start-page: 445
  year: 1961
  end-page: 466
  ident: br001045
  article-title: Impulses and physiological states in theoretical models of nerve membrane
  publication-title: Biophysical Journal
– volume: 19
  start-page: 2229
  year: 1987
  end-page: 2232
  ident: br003015
  article-title: Generalization of back-propagation to recurrent neural networks
  publication-title: Physical Review Letters
– volume: 16
  start-page: 299
  year: 1967
  end-page: 307
  ident: br000045
  article-title: A theory of adaptive pattern classifiers
  publication-title: IEEE Transactions on Electronic Computers
– volume: 9
  start-page: e1003037
  year: 2013
  ident: br002780
  article-title: Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity
  publication-title: PLoS Computational Biology
– volume: 13
  start-page: 431
  year: 2002
  end-page: 443
  ident: br001690
  article-title: The fastest and shortest algorithm for all well-defined problems
  publication-title: International Journal of Foundations of Computer Science
– start-page: 762
  year: 1989
  end-page: 767
  ident: br002640
  article-title: Training feedforward neural networks using genetic algorithms
  publication-title: Proceedings of the 11th international joint conference on artificial intelligence—vol. 1
– year: 2012
  ident: br004230
  article-title: Reinforcement learning
– volume: 32
  start-page: 323
  year: 2012
  end-page: 332
  ident: br003760
  article-title: Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition
  publication-title: Neural Networks
– year: 1995
  ident: br001505
  article-title: Overview of neural hardware
  publication-title: Neurocomputers for brain-style processing. Design, implementation and application
– volume: 5
  start-page: 3698
  year: 2010
  ident: br002995
  article-title: Policy gradient methods
  publication-title: Scholarpedia
– reference: (pp. 958–963).
– year: 1805
  ident: br002220
  article-title: Nouvelles méthodes pour la détermination des orbites des cometes
– start-page: 357
  year: 1989
  end-page: 363
  ident: br002800
  article-title: The truck backer-upper: An example of self learning in neural networks
  publication-title: Proceedings of the international joint conference on neural networks
– volume: 7
  start-page: 877
  year: 2006
  end-page: 917
  ident: br004195
  article-title: Evolutionary function approximation for reinforcement learning
  publication-title: Journal of Machine Learning Research
– volume: 10
  start-page: 683
  year: 1997
  end-page: 691
  ident: br000770
  article-title: Non-linear feature extraction by redundancy reduction in an unsupervised stochastic neural network
  publication-title: Neural Networks
– year: 2003
  ident: br002870
  article-title: Making working memory work: A computational model of learning in the prefrontal cortex and basal ganglia. Technical report ICS-03-03
– year: 2001
  ident: br000375
  article-title: Dynamic programming and optimal control
– volume: 55
  start-page: 252
  year: 2013
  end-page: 265
  ident: br004330
  article-title: Keyword spotting exploiting long short-term memory
  publication-title: Speech Communication
– year: 1999
  ident: br000810
  article-title: The loading problem for pyramidal neural networks
  publication-title: Electronic Journal on Mathematics of Computation
– year: 1961
  ident: br003040
  article-title: The mathematical theory of optimal processes
– start-page: 1061
  year: 2013
  end-page: 1068
  ident: br002050
  article-title: Evolving large-scale neural networks for vision-based reinforcement learning
  publication-title: Proceedings of the genetic and evolutionary computation conference
– year: 1990
  ident: br003390
  article-title: Dynamische neuronale Netze und das fundamentale raumzeitliche Lernproblem. (Dynamic neural nets and the fundamental spatio-temporal credit assignment problem.)
– volume: 14
  start-page: 179
  year: 1990
  end-page: 211
  ident: br000920
  article-title: Finding structure in time
  publication-title: Cognitive Science
– volume: 53
  start-page: 1563
  year: 2013
  end-page: 1575
  ident: br002385
  article-title: Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules
  publication-title: Journal of Chemical Information and Modeling
– start-page: 164
  year: 1993
  end-page: 171
  ident: br001470
  article-title: Second order derivatives for network pruning: optimal brain surgeon
  publication-title: Advances in neural information processing systems, vol. 5
– start-page: 1061
  year: 2000
  end-page: 1067
  ident: br002685
  article-title: Robust reinforcement learning
  publication-title: Advances in neural information processing systems (NIPS), vol. 13
– reference: Jackel, L., Boser, B., Graf, H.-P., Denker, J., LeCun, Y., & Henderson, D., et al. (1990). VLSI implementation of electronic neural networks: and example in character recognition. In IEEE (Ed.),
– reference: Melnik, O., Levy, S. D., & Pollack, J. B. (2000). RAAM for infinite context-free languages. In
– start-page: 190
  year: 1991
  end-page: 196
  ident: br000960
  article-title: The recurrent cascade-correlation learning algorithm
  publication-title: Advances in neural information processing systems (NIPS), vol. 3
– volume: 117
  start-page: 500
  year: 1952
  ident: br001630
  article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve
  publication-title: The Journal of Physiology
– volume: 1
  start-page: 295
  year: 1989
  end-page: 311
  ident: br000210
  article-title: Unsupervised learning
  publication-title: Neural Computation
– start-page: 1143
  year: 1998
  end-page: 1148
  ident: br002025
  article-title: GMDH neural network algorithm using the heuristic self-organization method and its application to the pattern identification problem
  publication-title: Proceedings of the 37th SICE annual conference
– volume: 13
  start-page: 103
  year: 1993
  end-page: 130
  ident: br002665
  article-title: Prioritized sweeping: Reinforcement learning with less data and less time
  publication-title: Machine Learning
– year: 1966
  ident: br001065
  article-title: Artificial intelligence through simulated evolution
– start-page: 81
  year: 2012
  end-page: 88
  ident: br000605
  article-title: Tikhonov-type regularization for restricted Boltzmann machines
  publication-title: Intl. conf. on artificial neural networks 2012
– reference: (pp. 411–418).
– start-page: 2588
  year: 2003
  end-page: 2595
  ident: br001715
  article-title: Neuroevolution for reinforcement learning using evolution strategies
  publication-title: Congress on evolutionary computation, vol. 4
– reference: Mesnil, G., Dauphin, Y., Glorot, X., Rifai, S., Bengio, Y., & Goodfellow, I., et al. (2011). Unsupervised and transfer learning challenge: a deep learning approach. In
– start-page: 267
  year: 1973
  end-page: 281
  ident: br000020
  article-title: Information theory and an extension of the maximum likelihood principle
  publication-title: Second intl. symposium on information theory
– start-page: 1335
  year: 1994
  end-page: 1340
  ident: br004115
  article-title: Hierarchical chunking in classifier systems
  publication-title: Proceedings of the 12th national conference on artificial intelligence, vol. 2
– volume: 7
  start-page: 889
  year: 1995
  end-page: 904
  ident: br000760
  article-title: The Helmholtz machine
  publication-title: Neural Computation
– volume: 14
  start-page: 1347
  year: 2002
  end-page: 1369
  ident: br000880
  article-title: Multiple model-based reinforcement learning
  publication-title: Neural Computation
– volume: 3
  start-page: 210
  year: 1959
  end-page: 229
  ident: br003315
  article-title: Some studies in machine learning using the game of checkers
  publication-title: IBM Journal of Research and Development
– start-page: 221
  year: 1996
  end-page: 226
  ident: br004010
  article-title: Learning fine motion by using the hierarchical extended Kohonen map
  publication-title: Proc. intl. conf. on artificial neural networks
– start-page: 121
  year: 2000
  end-page: 132
  ident: br002575
  article-title: Cartesian genetic programming
  publication-title: Genetic programming
– volume: 1
  start-page: 4
  year: 1990
  end-page: 27
  ident: br002745
  article-title: Identification and control of dynamical systems using neural networks
  publication-title: IEEE Transactions on Neural Networks
– reference: Schwartz, A. (1993). A reinforcement learning method for maximizing undiscounted rewards. In
– reference: Pham, V., Kermorvant, C., & Louradour, J. (2013). Dropout improves recurrent neural networks for handwriting recognition. arXiv Preprint
– year: 2001
  ident: br001705
  article-title: Independent component analysis
– reference: . Long preprint
– year: 1988
  ident: br004290
  article-title: A learning algorithm for continually running fully recurrent networks. Technical report ICS report 8805
– start-page: 196
  year: 1992
  end-page: 202
  ident: br003520
  article-title: Planning simple trajectories using neural subgoal generators
  publication-title: Proc. of the 2nd international conference on simulation of adaptive behavior
– volume: 8
  start-page: 1135
  year: 1996
  end-page: 1178
  ident: br000570
  article-title: The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction
  publication-title: Neural Computation
– start-page: 15
  year: 2006
  end-page: 34
  ident: br004165
  article-title: Backwards differentiation in AD and neural nets: Past links and new opportunities
  publication-title: Automatic differentiation: applications, theory, and implementations
– volume: 17
  start-page: 487
  year: 2005
  end-page: 502
  ident: br004310
  article-title: Loading deep networks is hard: The pyramidal case
  publication-title: Neural Computation
– volume: 23
  start-page: 269
  year: 1984
  end-page: 294
  ident: br002250
  article-title: Why AM an EURISKO appear to work
  publication-title: Artificial Intelligence
– volume: 304
  start-page: 78
  year: 2004
  end-page: 80
  ident: br001800
  article-title: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
  publication-title: Science
– reference: (pp. 68–73).
– volume: 16
  start-page: 59
  year: 2004
  end-page: 71
  ident: br003980
  article-title: A machine learning method for extracting symbolic knowledge from recurrent neural networks
  publication-title: Neural Computation
– volume: Vol. 1524
  year: 1998
  ident: br002880
  publication-title: Neural networks: tricks of the trade
– volume: 5
  start-page: 117
  year: 1992
  end-page: 127
  ident: br000420
  article-title: Training a 3-node neural network is NP-complete
  publication-title: Neural Networks
– reference: (pp. 4856–4860).
– year: 1997
  ident: br002295
  article-title: An introduction to Kolmogorov complexity and its applications
– reference: Sutskever, I., Hinton, G. E., & Taylor, G. W. (2008). The recurrent temporal restricted Boltzmann machine. In
– reference: (pp. 1005–1012).
– volume: 8
  start-page: 183
  year: 2000
  end-page: 208
  ident: br000515
  article-title: Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons
  publication-title: Journal of Computational Neuroscience
– year: 1988
  ident: br001845
  article-title: Supervised learning and systems with excess degrees of freedom. Technical report COINS TR 88-27
– volume: 14
  start-page: 409
  year: 1994
  end-page: 441
  ident: br002565
  article-title: A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between on- and off-center inputs
  publication-title: Journal of Neuroscience
– volume: 23
  start-page: 819
  year: 2010
  end-page: 835
  ident: br004360
  article-title: Evolving spiking neural networks for audiovisual information processing
  publication-title: Neural Networks
– volume: 13
  start-page: 227
  year: 2000
  end-page: 303
  ident: br000850
  article-title: Hierarchical reinforcement learning with the MAXQ value function decomposition
  publication-title: Journal of Artificial Intelligence Research (JAIR)
– volume: 37
  start-page: 1311
  year: 2004
  end-page: 1314
  ident: br002835
  article-title: GPU implementation of neural networks
  publication-title: Pattern Recognition
– volume: 1
  start-page: 263
  year: 1989
  end-page: 269
  ident: br002955
  article-title: Learning state space trajectories in recurrent neural networks
  publication-title: Neural Computation
– year: 1992
  ident: br004080
  article-title: Kolmogorov complexity and computational complexity
  publication-title: EATCS monographs on theoretical computer science
– volume: 14
  start-page: 2531
  year: 2002
  end-page: 2560
  ident: br002410
  article-title: Real-time computing without stable states: A new framework for neural computation based on perturbations
  publication-title: Neural Computation
– volume: 59
  start-page: 5
  year: 2005
  end-page: 30
  ident: br004190
  article-title: Evolving keepaway soccer players through task decomposition
  publication-title: Machine Learning
– volume: 148
  start-page: 574
  year: 1959
  end-page: 591
  ident: br004245
  article-title: Receptive fields of single neurones in the cat’s striate cortex
  publication-title: Journal of Physiology
– year: 2014
  ident: br003865
  article-title: Going deeper with convolutions. Technical report
– start-page: 61
  year: 2013
  ident: br003820
  article-title: A linear time natural evolution strategy for non-separable functions
  publication-title: Proceedings of the genetic and evolutionary computation conference
– reference: Fernández, S., Graves, A., & Schmidhuber, J. (2007a). An application of recurrent neural networks to discriminative keyword spotting. In
– volume: 6
  start-page: 383
  year: 1993
  end-page: 390
  ident: br000075
  article-title: Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network
  publication-title: Protein Engineering
– reference: Graves, A., & Jaitly, N. (2014). Towards end-to-end speech recognition with recurrent neural networks. In
– start-page: 15
  year: 1994
  end-page: 22
  ident: br003690
  article-title: Evolving virtual creatures
  publication-title: Proceedings of SIGGRAPH ’94, computer graphics proceedings, annual conference
– reference: Veta, M., Viergever, M., Pluim, J., Stathonikos, N., & van Diest, P. J. (2013). MICCAI 2013 grand challenge on mitosis detection.
– year: 1993
  ident: br004420
  article-title: A minimum description length framework for unsupervised learning
– start-page: 21
  year: 1988
  end-page: 28
  ident: br002155
  article-title: A theoretical framework for back-propagation
  publication-title: Proceedings of the 1988 connectionist models summer school
– volume: 1
  start-page: 365
  year: 1989
  end-page: 375
  ident: br000100
  article-title: Dynamic node creation in backpropagation neural networks
  publication-title: Connection Science
– year: 1987
  ident: br003375
  article-title: Evolutionary principles in self-referential learning, or on learning how to learn: the meta-meta-... hook
– start-page: 265
  year: 1994
  end-page: 295
  ident: br004060
  article-title: Time series prediction by using a connectionist network with internal delay lines
  publication-title: Time series prediction: forecasting the future and understanding the past
– volume: 31
  year: 2009
  ident: br001350
  article-title: A novel connectionist system for improved unconstrained handwriting recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 1994
  ident: br002435
  article-title: Inductive learning algorithms for complex systems modeling
– reference: (pp. 1319–1324).
– start-page: 428
  year: 1993
  end-page: 435
  ident: br000665
  article-title: Evolving recurrent dynamical networks for robot control
  publication-title: Artificial neural nets and genetic algorithms
– reference: (pp. 165–176).
– volume: 20
  start-page: 1417
  year: 2009
  end-page: 1438
  ident: br003610
  article-title: Caviar: A 45 k neuron, 5 m synapse, 12 g connects/s AER hardware sensory–processing–learning–actuating system for high-speed visual object recognition and tracking
  publication-title: IEEE Transactions on Neural Networks
– volume: 40
  start-page: 681
  year: 2002
  end-page: 698
  ident: br000010
  article-title: Learning algorithms for Markov decision processes with average cost
  publication-title: SIAM Journal on Control and Optimization
– year: 1974
  ident: br004130
  article-title: Beyond regression: new tools for prediction and analysis in the behavioral sciences
– volume: 18
  start-page: 620
  year: 2010
  end-page: 634
  ident: br004235
  article-title: Recurrent policy gradients
  publication-title: Logic Journal of IGPL
– start-page: 79
  year: 1951
  end-page: 86
  ident: br002100
  article-title: On information and sufficiency
  publication-title: The Annals of Mathematical Statistics
– year: 1995
  ident: br004005
  article-title: The nature of statistical learning theory
– volume: 31
  start-page: 1
  year: 1978
  end-page: 6
  ident: br000430
  article-title: Learning processes in multilayer threshold nets
  publication-title: Biological Cybernetics
– year: 2013
  ident: br004415
  article-title: Visualizing and understanding convolutional networks. Technical report
– reference: Eyben, F., Weninger, F., Squartini, S., & Schuller, B. (2013). Real-life voice activity detection with LSTM recurrent neural networks and an application to Hollywood movies. In
– year: 2001
  ident: br001795
  article-title: The “echo state” approach to analysing and training recurrent neural networks. Technical report GMD Report 148
– volume: 14
  start-page: 629
  year: 2001
  end-page: 643
  ident: br002345
  article-title: Orientation-selective aVLSI spiking neurons
  publication-title: Neural Networks
– volume: 1
  start-page: 541
  year: 1989
  end-page: 551
  ident: br002160
  article-title: Back-propagation applied to handwritten zip code recognition
  publication-title: Neural Computation
– volume: 21
  start-page: 105
  year: 1988
  end-page: 117
  ident: br002335
  article-title: Self-organization in a perceptual network
  publication-title: IEEE Computer
– start-page: 491
  year: 1993
  end-page: 498
  ident: br002725
  article-title: Synaptic weight noise during MLP learning enhances fault-tolerance, generalisation and learning trajectory
  publication-title: Advances in neural information processing systems (NIPS), vol. 5
– reference: Lange, S., & Riedmiller, M. (2010). Deep auto-encoder neural networks in reinforcement learning. In
– volume: 5
  start-page: 123
  year: 1997
  end-page: 141
  ident: br003305
  article-title: Probabilistic incremental program evolution
  publication-title: Evolutionary Computation
– reference: Bayer, J., Osendorfer, C., Chen, N., Urban, S., & van der Smagt, P. (2013). On fast dropout and its applicability to recurrent networks. ArXiv Preprint
– year: 2002
  ident: br001195
  article-title: Spiking neuron models
– reference: Simard, P., Steinkraus, D., & Platt, J. (2003). Best practices for convolutional neural networks applied to visual document analysis. In
– volume: 3
  start-page: 213
  year: 2002
  end-page: 231
  ident: br000475
  article-title: R-MAX—a general polynomial time algorithm for near-optimal reinforcement learning
  publication-title: Journal of Machine Learning Research
– start-page: 35
  year: 1994
  ident: br002275
  article-title: Fast pruning using principal components
  publication-title: Advances in neural information processing systems (NIPS), vol. 6
– reference: Koutník, J., Greff, K., Gomez, F., & Schmidhuber, J. (2014). A clockwork RNN. In
– reference: Werbos, P. J. (1989a). Backpropagation and neurocontrol: A review and prospectus. In
– volume: 1
  start-page: 233
  year: 1989
  end-page: 255
  ident: br003655
  article-title: Combining explanation-based and neural learning: An algorithm and empirical results
  publication-title: Connection Science
– volume: 16
  start-page: 985
  year: 2003
  end-page: 994
  ident: br003310
  article-title: Inter-module credit assignment in modular reinforcement learning
  publication-title: Neural Networks
– volume: 4
  start-page: 575
  year: 2003
  end-page: 602
  ident: br000185
  article-title: The principled design of large-scale recursive neural network architectures—DAG-RNNs and the protein structure prediction problem
  publication-title: Journal of Machine Learning Research
– volume: 28
  start-page: 41
  year: 1997
  end-page: 75
  ident: br000565
  article-title: Multitask learning
  publication-title: Machine Learning
– year: 2005
  ident: br001405
  article-title: Advances in minimum description length: theory and applications
– year: 2001
  ident: br002075
  article-title: Field guide to dynamical recurrent networks
– volume: 4
  start-page: 863
  year: 1992
  end-page: 879
  ident: br003435
  article-title: Learning factorial codes by predictability minimization
  publication-title: Neural Computation
– volume: 15
  start-page: 1931
  year: 2004
  end-page: 1957
  ident: br003920
  article-title: Architectural bias in recurrent neural networks: Fractal analysis
  publication-title: Neural Computation
– volume: 22
  start-page: 203
  year: 1970
  end-page: 217
  ident: br000015
  article-title: Statistical predictor identification
  publication-title: Annals of the Institute of Statistical Mathematics
– volume: 7
  start-page: 1
  year: 1964
  end-page: 22
  ident: br003725
  article-title: A formal theory of inductive inference. Part I
  publication-title: Information and Control
– reference: (pp. 537–542).
– volume: 5
  start-page: 197
  year: 1990
  end-page: 227
  ident: br003350
  article-title: The strength of weak learnability
  publication-title: Machine Learning
– year: 2012
  ident: br002105
  article-title: How to create a mind: the secret of human thought revealed
– volume: 13
  start-page: 43
  year: 1968
  end-page: 55
  ident: br001745
  article-title: The group method of data handling—a rival of the method of stochastic approximation
  publication-title: Soviet Automatic Control
– reference: (pp. 298–305).
– volume: 4
  start-page: 77
  year: 1991
  end-page: 80
  ident: br003665
  article-title: Turing computability with neural nets
  publication-title: Applied Mathematics Letters
– start-page: 649
  year: 1995
  ident: br001820
  article-title: Effects of noise on convergence and generalization in recurrent networks
  publication-title: Advances in neural information processing systems (NIPS), vol. 7
– year: 1994
  ident: br000460
  article-title: Connnectionist speech recognition: a hybrid approach
– reference: Ciresan, D. C., Meier, U., & Schmidhuber, J. (2012b). Transfer learning for Latin and Chinese characters with deep neural networks. In
– volume: 4
  start-page: 234
  year: 1992
  end-page: 242
  ident: br003430
  article-title: Learning complex, extended sequences using the principle of history compression
  publication-title: Neural Computation
– volume: 195
  start-page: 215
  year: 1968
  end-page: 243
  ident: br001675
  article-title: Receptive fields and functional architecture of monkey striate cortex
  publication-title: The Journal of Physiology
– volume: 17
  start-page: 419
  year: 2001
  end-page: 428
  ident: br000535
  article-title: Efficient large-scale sequence comparison by locality-sensitive hashing
  publication-title: Bioinformatics
– reference: (pp. 776–779).
– volume: 22
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: br002925
  article-title: A survey on transfer learning
  publication-title: The IEEE Transactions on Knowledge and Data Engineering
– volume: 36
  start-page: 193
  year: 1980
  end-page: 202
  ident: br001120
  article-title: Neocognitron: A self-organizing neural network for a mechanism of pattern recognition unaffected by shift in position
  publication-title: Biological Cybernetics
– year: 1995
  ident: br003275
  article-title: Artificial intelligence: a modern approach, vol. 2
– volume: Vol. 2(1)
  year: 2009
  ident: br000350
  publication-title: Learning deep architectures for AI
– year: 1980
  ident: br002805
  article-title: Principles of artificial intelligence
– year: 2001
  ident: br001595
  article-title: Gradient flow in recurrent nets: the difficulty of learning long-term dependencies
  publication-title: A field guide to dynamical recurrent neural networks
– volume: 6
  start-page: 215
  year: 1994
  end-page: 219
  ident: br003900
  article-title: TD-gammon, a self-teaching backgammon program, achieves master-level play
  publication-title: Neural Computation
– volume: 60
  start-page: 91
  year: 2004
  end-page: 110
  ident: br002375
  article-title: Distinctive image features from scale-invariant key-points
  publication-title: International Journal of Computer Vision
– volume: 7
  start-page: 783
  year: 1994
  end-page: 796
  ident: br002590
  article-title: Perturbation response in feedforward networks
  publication-title: Neural Networks
– volume: 5
  start-page: 13
  year: 2010
  end-page: 18
  ident: br000095
  article-title: Deep machine learning—a new frontier in artificial intelligence research
  publication-title: IEEE Computational Intelligence Magazine
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: br000485
  article-title: Bagging predictors
  publication-title: Machine Learning
– year: 2001
  ident: br000555
  article-title: Continuous latent variable models for dimensionality reduction and sequential data reconstruction
– reference: (pp. 1–8).
– year: 1993
  ident: br002635
  article-title: Exact calculation of the product of the Hessian matrix of feed-forward network error functions and a vector in O(N) time. Technical report PB-432
– volume: 268
  start-page: 1158
  year: 1995
  end-page: 1160
  ident: br001550
  article-title: The wake-sleep algorithm for unsupervised neural networks
  publication-title: Science
– year: 1980
  ident: br003710
  article-title: A learning system based on genetic adaptive algorithms
– volume: 5
  start-page: 603
  year: 1991
  end-page: 643
  ident: br000540
  article-title: Bayesian back-propagation
  publication-title: Complex Systems
– start-page: 1453
  year: 2011
  end-page: 1460
  ident: br003755
  article-title: The German traffic sign recognition benchmark: A multi-class classification competition
  publication-title: International joint conference on neural networks
– volume: 42
  start-page: 1291
  year: 2012
  end-page: 1307
  ident: br001380
  article-title: A survey of actor-critic reinforcement learning: standard and natural policy gradients
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews
– reference: Maclin, R., & Shavlik, J. W. (1995). Combining the predictions of multiple classifiers: Using competitive learning to initialize neural networks. In
– start-page: 162
  year: 1991
  end-page: 168
  ident: br000825
  article-title: A theory for neural networks with time delays
  publication-title: Advances in neural information processing systems (NIPS), vol. 3
– reference: .
– volume: Vol. 4131
  start-page: 71
  year: 2006
  end-page: 80
  ident: br003345
  article-title: Learning long term dependencies with recurrent neural networks
  publication-title: ICANN (1)
– volume: 2
  start-page: 1019
  year: 1999
  end-page: 1025
  ident: br003160
  article-title: Hierarchical models of object recognition in cortex
  publication-title: Nature Neuroscience
– reference: Sak, H., Senior, A., & Beaufays, F. (2014). Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In
– start-page: 215
  year: 2010
  end-page: 222
  ident: br000905
  article-title: Free-energy based reinforcement learning for vision-based navigation with high-dimensional sensory inputs
  publication-title: Neural information processing. theory and algorithms (ICONIP), vol. 1
– volume: 9
  start-page: 1
  year: 1997
  end-page: 42
  ident: br001610
  article-title: Flat minima
  publication-title: Neural Computation
– volume: 352
  start-page: 1177
  year: 1997
  end-page: 1190
  ident: br001560
  article-title: Generative models for discovering sparse distributed representations
  publication-title: Philosophical Transactions of the Royal Society B
– volume: 22
  start-page: 545
  year: 1982
  end-page: 559
  ident: br000815
  article-title: Spatial frequency selectivity of cells in macaque visual cortex
  publication-title: Vision Research
– volume: 3
  start-page: 23
  year: 1990
  end-page: 43
  ident: br002120
  article-title: A time-delay neural network architecture for isolated word recognition
  publication-title: Neural Networks
– start-page: 87
  year: 1998
  end-page: 93
  ident: br003215
  article-title: Recurrent neural networks can learn to implement symbol-sensitive counting
  publication-title: Advances in neural information processing systems (NIPS), vol. 10
– year: 1995
  ident: br001885
  article-title: Planning and acting in partially observable stochastic domains. Technical report
– volume: 28
  start-page: 349
  year: 2007
  end-page: 391
  ident: br001830
  article-title: Closed-loop learning of visual control policies
  publication-title: Journal of Artificial Intelligence Research
– reference: Pascanu, R., Gulcehre, C., Cho, K., & Bengio, Y. (2013). How to construct deep recurrent neural networks. arXiv Preprint
– reference: Schmidhuber, J. (1990c). The neural heat exchanger. Talks at TU Munich (1990), University of Colorado at Boulder (1992), and Z. Li’s NIPS*94 workshop on unsupervised learning. Also published at the
– year: 2013
  ident: br000910
  article-title: How to build a brain: a neural architecture for biological cognition
– start-page: 315
  year: 1996
  end-page: 324
  ident: br002520
  article-title: Learning to use selective attention and short-term memory in sequential tasks
  publication-title: From animals to animats 4: proceedings of the fourth international conference on simulation of adaptive behavior
– reference: Razavian, A. S., Azizpour, H., Sullivan, J., & Carlsson, S. (2014). CNN features off-the-shelf: an astounding baseline for recognition. ArXiv Preprint
– start-page: 23
  year: 1995
  end-page: 27
  ident: br003330
  article-title: Evolving neural control systems
  publication-title: IEEE Expert
– volume: 70
  start-page: 75
  year: 1993
  end-page: 108
  ident: br001655
  article-title: Generative learning structures and processes for generalized connectionist networks
  publication-title: Information Sciences
– year: 2005
  ident: br003705
  article-title: Intrinsically motivated reinforcement learning
  publication-title: Advances in neural information processing systems, vol. 17 (NIPS)
– start-page: 11
  year: 1994
  end-page: 18
  ident: br004425
  article-title: Developing population codes by minimizing description length
  publication-title: Advances in neural information processing systems vol. 6
– volume: 6
  start-page: 559
  year: 1994
  end-page: 601
  ident: br001025
  article-title: What is the goal of sensory coding?
  publication-title: Neural Computation
– volume: 58
  start-page: 1233
  year: 1987
  end-page: 1258
  ident: br001835
  article-title: An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex
  publication-title: Journal of Neurophysiology
– volume: 32
  start-page: 41
  year: 1998
  end-page: 62
  ident: br001035
  article-title: The hierarchical hidden Markov model: analysis and applications
  publication-title: Machine Learning
– year: 1949
  ident: br001495
  article-title: The organization of behavior
– volume: 39
  year: 1977
  ident: br000795
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society B
– reference: Dickmanns, E. D., Behringer, R., Dickmanns, D., Hildebrandt, T., Maurer, M., & Thomanek, F., et al. (1994). The seeing passenger car ’VaMoRs-P’. In
– reference: Hagras, H., Pounds-Cornish, A., Colley, M., Callaghan, V., & Clarke, G. (2004). Evolving spiking neural network controllers for autonomous robots. In
– start-page: 23
  year: 2001
  end-page: 78
  ident: br003075
  article-title: Dynamical neural networks for control
  publication-title: A field guide to dynamical recurrent networks
– volume: 3
  start-page: 5
  year: 1994
  end-page: 28
  ident: br002815
  article-title: Learning and evolution in neural networks
  publication-title: Adaptive Behavior
– start-page: 362
  year: 1995
  end-page: 370
  ident: br002340
  article-title: Learning policies for partially observable environments: scaling up
  publication-title: Machine learning: proceedings of the twelfth international conference
– year: 2013
  ident: br002905
  article-title: Intrinsically motivated learning of real world sensorimotor skills with developmental constraints
  publication-title: Intrinsically motivated learning in natural and artificial systems
– volume: 8
  start-page: 1
  year: 1996
  end-page: 40
  ident: br002395
  article-title: Lower bounds for the computational power of networks of spiking neurons
  publication-title: Neural Computation
– year: 2011
  ident: br002360
  article-title: Simulated car racing championship competition software manual. Technical report
– start-page: 552
  year: 2005
  end-page: 563
  ident: br001230
  article-title: A novel approach for the implementation of large scale spiking neural networks on FPGA hardware
  publication-title: Computational intelligence and bioinspired systems
– reference: (pp. 700–705).
– volume: 50
  start-page: 2061
  year: 1962
  end-page: 2070
  ident: br002735
  article-title: An active pulse transmission line simulating nerve axon
  publication-title: Proceedings of the IRE
– year: 1991
  ident: br003025
  article-title: On information theory and unsupervised neural networks. Dissertation, published as Technical report CUED/F-INFENG/TR.78
– volume: 2
  start-page: 53
  year: 1989
  end-page: 58
  ident: br000175
  article-title: Neural networks and principal component analysis: learning from examples without local minima
  publication-title: Neural Networks
– reference: Yang, M., Ji, S., Xu, W., Wang, J., Lv, F., & Yu, K., et al. (2009). Detecting human actions in surveillance videos. In
– volume: 15
  start-page: 937
  year: 1999
  end-page: 946
  ident: br000160
  article-title: Exploiting the past and the future in protein secondary structure prediction
  publication-title: Bioinformatics
– volume: 17
  start-page: 126
  year: 2001
  end-page: 136
  ident: br001520
  article-title: A hierarchical unsupervised growing neural network for clustering gene expression patterns
  publication-title: Bioinformatics
– volume: 306
  start-page: 50
  year: 2012
  end-page: 55
  ident: br002480
  article-title: The human brain project
  publication-title: Scientific American
– volume: 8
  start-page: 997
  year: 1997
  end-page: 1007
  ident: br003080
  article-title: Adaptive critic design
  publication-title: IEEE Transactions on Neural Networks
– year: 1994
  ident: br003270
  article-title: On-line Q-learning using connectionist sytems. Technical report CUED/F-INFENG-TR 166
– start-page: 393
  year: 2010
  end-page: 400
  ident: br001235
  article-title: Exponential natural evolution strategies
  publication-title: Proceedings of the genetic and evolutionary computation conference
– reference: (p. 153).
– reference: Wu, D., & Shao, L. (2014). Leveraging hierarchical parametric networks for skeletal joints based action segmentation and recognition. In
– volume: 4
  start-page: 323
  year: 1974
  end-page: 334
  ident: br002750
  article-title: Learning automata—a survey
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
– reference: (pp. 762–770).
– start-page: 482
  year: 1995
  end-page: 487
  ident: br004250
  article-title: Learning to count without a counter: A case study of dynamics and activation landscapes in recurrent networks
  publication-title: Proceedings of the seventeenth annual conference of the cognitive science society
– volume: 8
  start-page: 1541
  year: 1996
  end-page: 1565
  ident: br000170
  article-title: Hybrid modeling, HMM/NN architectures, and protein applications
  publication-title: Neural Computation
– reference: Szegedy, C., Toshev, A., & Erhan, D. (2013). Deep neural networks for object detection (pp. 2553–2561).
– start-page: 115
  year: 1993
  end-page: 122
  ident: br003175
  article-title: Learning sequential tasks by incrementally adding higher orders
  publication-title: Advances in neural information processing systems, vol. 5
– year: 2013
  ident: br003485
  article-title: My first deep learning system of 1991 + deep learning timeline 1962–2013. Technical report
– volume: 121
  start-page: 471
  year: 1997
  end-page: 495
  ident: br001850
  article-title: Serial order: a parallel distributed processing approach
  publication-title: Advances in Psychology
– volume: 4
  start-page: 461
  year: 1990
  end-page: 476
  ident: br001965
  article-title: Designing neural networks using genetic algorithms with graph generation system
  publication-title: Complex Systems
– volume: 4
  start-page: 703
  year: 1992
  end-page: 711
  ident: br002920
  article-title: On the information storage capacity of local learning rules
  publication-title: Neural Computation
– start-page: 345
  year: 1995
  end-page: 352
  ident: br001775
  article-title: Reinforcement learning algorithm for partially observable Markov decision problems
  publication-title: Advances in neural information processing systems, vol. 7
– start-page: 3489
  year: 2009
  end-page: 3512
  ident: br002570
  article-title: Cartesian genetic programming
  publication-title: Proceedings of the 11th annual conference companion on genetic and evolutionary computation conference: late breaking papers
– year: 2003
  ident: br000780
  article-title: Bayesian methods for neural networks
– volume: 5
  start-page: 279
  year: 1994
  end-page: 297
  ident: br003085
  article-title: Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks
  publication-title: IEEE Transactions on Neural Networks
– start-page: 701
  year: 2012
  end-page: 704
  ident: br001095
  article-title: Long-short term memory neural networks language modeling for handwriting recognition
  publication-title: 2012 21st International conference on pattern recognition
– volume: 19
  start-page: 53
  year: 1969
  end-page: 91
  ident: br001385
  article-title: Some networks that can learn, remember, and reproduce any number of complicated space–time patterns, I
  publication-title: Journal of Mathematics and Mechanics
– year: 2012
  ident: br003480
  article-title: Self-delimiting neural networks. Technical report IDSIA-08-12
– volume: Vol. 8150
  start-page: 246
  year: 2013
  end-page: 253
  ident: br003055
  article-title: Voxel classification based on triplanar convolutional neural networks applied to cartilage segmentation in knee MRI
  publication-title: Medical image computing and computer assisted intervention (MICCAI)
– volume: 37
  start-page: 93
  year: 1994
  end-page: 105
  ident: br004205
  article-title: Neural networks: Applications in industry, business and science
  publication-title: Communications of the ACM
– volume: 114
  start-page: 679
  year: 1965
  end-page: 681
  ident: br002010
  article-title: On the representation of continuous functions of several variables by superposition of continuous functions of one variable and addition
  publication-title: Doklady Akademii Nauk SSSR
– volume: 14
  start-page: 97
  year: 2005
  end-page: 103
  ident: br000320
  article-title: Face localization and tracking in the neural abstraction pyramid
  publication-title: Neural Computing and Applications
– volume: 19
  start-page: 757
  year: 2007
  end-page: 779
  ident: br003525
  article-title: Training recurrent networks by Evolino
  publication-title: Neural Computation
– start-page: 815
  year: 1998
  end-page: 821
  ident: br002285
  article-title: Inferring sparse, overcomplete image codes using an efficient coding framework
  publication-title: Advances in neural information processing systems (NIPS), vol. 10
– volume: 4
  start-page: 1107
  year: 2003
  end-page: 1149
  ident: br002110
  article-title: Least-squares policy iteration
  publication-title: Journal of Machine Learning Research
– volume: 17
  year: 1987
  ident: br004140
  article-title: Building and understanding adaptive systems: A statistical/numerical approach to factory automation and brain research
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
– reference: Riedmiller, M., Lange, S., & Voigtlaender, A. (2012). Autonomous reinforcement learning on raw visual input data in a real world application. In
– volume: 308
  start-page: 529
  year: 2005
  end-page: 534
  ident: br000385
  article-title: Parallel and serial neural mechanisms for visual search in macaque area V4
  publication-title: Science
– volume: 4
  start-page: 203
  year: 1993
  end-page: 222
  ident: br004380
  article-title: A review of evolutionary artificial neural networks
  publication-title: International Journal of Intelligent Systems
– volume: 6
  start-page: 182
  year: 1995
  end-page: 195
  ident: br000150
  article-title: Gradient descent learning algorithms overview: A general dynamical systems perspective
  publication-title: IEEE Transactions on Neural Networks
– start-page: 38
  year: 2001
  end-page: 61
  ident: br001055
  article-title: Evolution of spiking neural controllers for autonomous vision-based robots
  publication-title: Evolutionary robotics. From intelligent robotics to artificial life
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: br001565
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Computation
– volume: 24
  start-page: 2994
  year: 2012
  end-page: 3024
  ident: br002020
  article-title: Incremental slow feature analysis: Adaptive low-complexity slow feature updating from high-dimensional input streams
  publication-title: Neural Computation
– volume: 1
  start-page: 151
  year: 1989
  end-page: 160
  ident: br000250
  article-title: What size net gives valid generalization?
  publication-title: Neural Computation
– year: 2001
  ident: br001490
  article-title: Kalman filtering and neural networks
– year: 1962
  ident: br003240
  article-title: Principles of neurodynamics
– year: 1965
  ident: br004255
  publication-title: The algebraic eigenvalue problem
– volume: 59
  start-page: 4498
  year: 1999
  ident: br001930
  article-title: Hebbian learning and spiking neurons
  publication-title: Physical Review E
– start-page: 396
  year: 1990
  end-page: 404
  ident: br002165
  article-title: Handwritten digit recognition with a back-propagation network
  publication-title: Advances in neural information processing systems, vol. 2
– reference: LeCun, Y. (1985). Une procédure d’apprentissage pour réseau à seuil asymétrique. In
– reference: Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009). Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In
– volume: 6
  start-page: 4650
  year: 2010
  ident: br003355
  article-title: Metalearning
  publication-title: Scholarpedia
– volume: 40
  start-page: 18
  year: 2013
  end-page: 31
  ident: br001135
  article-title: Training multi-layered neural network neocognitron
  publication-title: Neural Networks
– start-page: 2852
  year: 2012
  end-page: 2860
  ident: br000620
  article-title: Deep neural networks segment neuronal membranes in electron microscopy images
  publication-title: Advances in neural information processing systems (NIPS)
– volume: 14
  start-page: 715
  year: 2002
  end-page: 770
  ident: br004315
  article-title: Slow feature analysis: Unsupervised learning of invariances
  publication-title: Neural Computation
– volume: 6
  start-page: 669
  year: 1995
  end-page: 677
  ident: br004400
  article-title: Dynamic learning rate optimization of the backpropagation algorithm
  publication-title: IEEE Transactions on Neural Networks
– reference: (pp. 836–843).
– volume: 22
  start-page: 1473
  year: 2010
  end-page: 1492
  ident: br002535
  article-title: Learning to represent spatial transformations with factored higher-order Boltzmann machines
  publication-title: Neural Computation
– reference: Ciresan, D. C., Giusti, A., Gambardella, L. M., & Schmidhuber, J. (2013). Mitosis detection in breast cancer histology images with deep neural networks. In
– volume: 5
  start-page: 39
  year: 1994
  end-page: 53
  ident: br002465
  article-title: Genetic evolution of the topology and weight distribution of neural networks
  publication-title: IEEE Transactions on Neural Networks
– volume: 2
  start-page: 417
  year: 1995
  end-page: 434
  ident: br002560
  article-title: Evolving mobile robots in simulated and real environments
  publication-title: Artificial Life
– year: 1994
  ident: br000200
  article-title: Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning. Technical report CMU-CS-94-163
– start-page: 406
  year: 1963
  end-page: 450
  ident: br002595
  article-title: Steps toward artificial intelligence
  publication-title: Computers and thought
– year: 1696
  ident: br002290
  article-title: Analyse des infiniment petits, pour l’intelligence des lignes courbes
– start-page: 275
  year: 1992
  end-page: 282
  ident: br002705
  article-title: Induction of multiscale temporal structure
  publication-title: Advances in neural information processing systems (NIPS), vol. 4
– volume: CT-16
  start-page: 330
  year: 1969
  end-page: 337
  ident: br000860
  article-title: Automated network design—the frequency-domain case
  publication-title: IEEE Transactions on Circuit Theory
– reference: Werbos, P. J. (1981). Applications of advances in nonlinear sensitivity analysis. In
– reference: Fernandez, S., Graves, A., & Schmidhuber, J. (2007b). Sequence labelling in structured domains with hierarchical recurrent neural networks. In
– start-page: 151
  year: 1971
  end-page: 158
  ident: br000710
  article-title: The complexity of theorem-proving procedures
  publication-title: Proceedings of the 3rd annual ACM symposium on the theory of computing
– reference: Schmidhuber, J., Ciresan, D., Meier, U., Masci, J., & Graves, A. (2011). On fast deep nets for AGI vision. In
– volume: 37
  start-page: 103
  year: 2013
  end-page: 119
  ident: br001130
  article-title: Artificial vision by multi-layered neural networks: neocognitron and its advances
  publication-title: Neural Networks
– start-page: 303
  year: 1994
  end-page: 310
  ident: br004070
  article-title: Optimal stopping and effective machine complexity in learning
  publication-title: Advances in neural information processing systems (NIPS’6)
– volume: 11
  start-page: 625
  year: 2010
  end-page: 660
  ident: br000925
  article-title: Why does unsupervised pre-training help deep learning?
  publication-title: Journal of Machine Learning Research
– reference: Geiger, J. T., Zhang, Z., Weninger, F., Schuller, B., & Rigoll, G. (2014). Robust speech recognition using long short-term memory recurrent neural networks for hybrid acoustic modelling. In
– year: 2014
  ident: br001415
  article-title: Deep learning for real-time Atari game play using offline Monte-Carlo tree search planning
  publication-title: Advances in neural information processing systems, vol. 27 (NIPS)
– reference: (pp. 1464–1470).
– volume: 19
  start-page: 321
  year: 1994
  end-page: 350
  ident: br000820
  article-title: Logic program synthesis
  publication-title: Journal of Logic Programming
– volume: 17
  start-page: 140
  year: 2007
  end-page: 147
  ident: br000700
  article-title: Transformation of shape information in the ventral pathway
  publication-title: Current Opinion in Neurobiology
– reference: , vol. 1 (pp. 194–197), 1996.
– start-page: 1
  year: 2007
  end-page: 8
  ident: br003105
  article-title: Unsupervised learning of invariant feature hierarchies with applications to object recognition
  publication-title: Proc. computer vision and pattern recognition conference
– volume: 9
  start-page: 1015
  year: 1997
  end-page: 1045
  ident: br001960
  article-title: Reduction of the Hodgkin–Huxley equations to a single-variable threshold model
  publication-title: Neural Computation
– volume: SMC-13
  start-page: 834
  year: 1983
  end-page: 846
  ident: br000235
  article-title: Neuronlike adaptive elements that can solve difficult learning control problems
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
– year: 1989
  ident: br001255
  article-title: Genetic algorithms in search, optimization and machine learning
– start-page: 1475
  year: 2002
  end-page: 1482
  ident: br000135
  article-title: Reinforcement learning with long short-term memory
  publication-title: Advances in neural information processing systems, vol. 14
– reference: Gauss, C. F. (1821). Theoria combinationis observationum erroribus minimis obnoxiae (Theory of the combination of observations least subject to error).
– volume: 5
  start-page: 240
  year: 1994
  end-page: 254
  ident: br000705
  article-title: Recurrent neural networks and robust time series prediction
  publication-title: IEEE Transactions on Neural Networks
– reference: (pp. 969–976).
– volume: 30
  start-page: 20
  year: 1999
  end-page: 30
  ident: br001110
  article-title: Phoneme boundary estimation using bidirectional recurrent neural networks and its applications
  publication-title: Systems and Computers in Japan
– start-page: 308
  year: 1993
  end-page: 315
  ident: br002320
  article-title: Comparison of two unsupervised neural network models for redundancy reduction
  publication-title: Proc. of the 1993 connectionist models summer school
– volume: 22
  start-page: 207
  year: 2000
  end-page: 215
  ident: br003965
  article-title: Optimal linear combination of neural networks for improving classification performance
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 210C
  start-page: 78
  year: 2014
  end-page: 122
  ident: br000190
  article-title: The dropout learning algorithm
  publication-title: Artificial Intelligence
– reference: Tonkes, B., & Wiles, J. (1997). Learning a context-free task with a recurrent neural network: An analysis of stability. In
– year: 1991
  ident: br000455
  article-title: Une approche théorique de l’apprentissage connexioniste; applications à la reconnaissance de la parole
– volume: 5
  start-page: 241
  year: 1992
  end-page: 259
  ident: br004335
  article-title: Stacked generalization
  publication-title: Neural Networks
– volume: 6
  start-page: 203
  year: 1995
  end-page: 213
  ident: br002715
  article-title: Fast neural net simulation with a DSP processor array
  publication-title: IEEE Transactions on Neural Networks
– year: 1975
  ident: br001645
  article-title: Adaptation in natural and artificial systems
– volume: 7
  start-page: 923
  year: 1990
  end-page: 932
  ident: br002460
  article-title: Preattentive texture discrimination with early vision mechanisms
  publication-title: Journal of the Optical Society of America A
– volume: 37
  start-page: 233
  year: 1991
  end-page: 243
  ident: br002070
  article-title: Nonlinear principal component analysis using autoassociative neural networks
  publication-title: AIChE Journal
– volume: 45
  start-page: 2673
  year: 1997
  end-page: 2681
  ident: br003575
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Transactions on Signal Processing
– reference: Loiacono, D., Lanzi, P. L., Togelius, J., Onieva, E., Pelta, D. A., & Butz, M. V., et al. (2009). The 2009 simulated car racing championship.
– volume: 4
  start-page: 273
  year: 2012
  end-page: 289
  ident: br004385
  article-title: A developmental approach to structural self-organization in reservoir computing
  publication-title: IEEE Transactions on Autonomous Mental Development
– start-page: 29
  year: 1989
  end-page: 39
  ident: br002650
  article-title: Fast learning in multi-resolution hierarchies
  publication-title: Advances in neural information processing systems (NIPS), vol. 1
– volume: 1
  start-page: 160
  year: 1962
  ident: br004200
  article-title: Associative storage and retrieval of digital information in networks of adaptive neurons
  publication-title: Biological Prototypes and Synthetic Systems
– volume: 14
  start-page: 2497
  year: 2002
  end-page: 2529
  ident: br003975
  article-title: Many-layered learning
  publication-title: Neural Computation
– volume: 36
  start-page: 1249
  year: 2000
  end-page: 1274
  ident: br000410
  article-title: A survey of computational complexity results in systems and control
  publication-title: Automatica
– volume: 33
  start-page: 11515
  year: 2013
  end-page: 11529
  ident: br001970
  article-title: Emergence of dynamic memory traces in cortical microcircuit models through STDP
  publication-title: The Journal of Neuroscience
– volume: 6
  start-page: 163
  year: 1997
  end-page: 217
  ident: br003325
  article-title: Experiments with reinforcement learning in problems with continuous state and action spaces
  publication-title: Adaptive Behavior
– volume: 8
  start-page: 279
  year: 1992
  end-page: 292
  ident: br004090
  article-title: Q-learning
  publication-title: Machine Learning
– reference: (pp. 585–590).
– volume: 20
  start-page: 353
  year: 2007
  end-page: 364
  ident: br003780
  article-title: Online reservoir adaptation by intrinsic plasticity for backpropagation–decorrelation and echo state learning
  publication-title: Neural Networks
– volume: 1
  year: 1988
  ident: br004145
  article-title: Generalization of backpropagation with application to a recurrent gas market model
  publication-title: Neural Networks
– year: 2006
  ident: br001430
  article-title: Dimensionality reduction by learning an invariant mapping
  publication-title: Proc. computer vision and pattern recognition conference
– reference: (pp. 539–546).
– volume: 6
  start-page: 621
  year: 1774
  end-page: 656
  ident: br002135
  article-title: Mémoire sur la probabilité des causes par les évènements
  publication-title: Mémoires de l’Academie Royale des Sciences Presentés par Divers Savan
– volume: 14
  start-page: 1569
  year: 2003
  end-page: 1572
  ident: br001770
  article-title: Simple model of spiking neurons
  publication-title: IEEE Transactions on Neural Networks
– volume: 4
  start-page: 175
  year: 2008
  end-page: 187
  ident: br002030
  article-title: Multi-layered GMDH-type neural network self-selecting optimum neural network architecture and its application to 3-dimensional medical image recognition of blood vessels
  publication-title: International Journal of Innovative Computing, Information and Control
– reference: Mohamed, A., & Hinton, G. E. (2010). Phone recognition using restricted Boltzmann machines. In
– reference: Graves, A., Fernandez, S., Gomez, F. J., & Schmidhuber, J. (2006). Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural nets. In
– year: 1991
  ident: br000345
  article-title: Artificial neural networks and their application to sequence recognition
– start-page: 471
  year: 1992
  end-page: 479
  ident: br001420
  article-title: Structural risk minimization for character recognition
  publication-title: Advances in neural information processing systems (NIPS), vol. 4
– volume: 49
  start-page: 409
  year: 1952
  end-page: 436
  ident: br001530
  article-title: Methods of conjugate gradients for solving linear systems
  publication-title: Journal of Research of the National Bureau of Standards
– year: 1970
  ident: br002325
  article-title: The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors
– year: 1909
  ident: br000450
  publication-title: Wissenschaftliche Abhandlungen
– volume: 38
  start-page: 173
  year: 1931
  end-page: 198
  ident: br001250
  article-title: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I
  publication-title: Monatshefte für Mathematik und Physik
– reference: Faggin, F. (1992). Neural network hardware. In
– volume: 62
  start-page: 193
  year: 1990
  end-page: 199
  ident: br003250
  article-title: Development of feature detectors by self-organization: A network model
  publication-title: Biological Cybernetics
– volume: 8
  start-page: 643
  year: 1996
  end-page: 674
  ident: br000070
  article-title: The effects of adding noise during backpropagation training on a generalization performance
  publication-title: Neural Computation
– start-page: 114
  year: 2010
  end-page: 123
  ident: br001410
  article-title: Multi-dimensional deep memory atari-go players for parameter exploring policy gradients
  publication-title: Proceedings of the international conference on artificial neural networks ICANN
– reference: Khan, M. M., Khan, G. M., & Miller, J. F. (2010). Evolution of neural networks using Cartesian Genetic Programming. In
– reference: ICPR (2012). Contest on Mitosis Detection in Breast Cancer Histological Images (2012). IPAL laboratory and TRIBVN company and pitie-salpetriere hospital and CIALAB of Ohio State Univ.
– volume: 24
  start-page: 1
  year: 1991
  end-page: 10
  ident: br001880
  article-title: Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture
  publication-title: Signal Processing
– volume: 22
  start-page: 283
  year: 1996
  end-page: 290
  ident: br002975
  article-title: Incremental multi-step Q-learning
  publication-title: Machine Learning
– volume: 6
  start-page: 57
  year: 1994
  end-page: 65
  ident: br000090
  article-title: An efficient implementation of BP on RISC-based workstations
  publication-title: Neurocomputing
– volume: 4
  start-page: 2051
  year: 1984
  end-page: 2062
  ident: br000805
  article-title: Stimulus-selective properties of inferior temporal neurons in the macaque
  publication-title: The Journal of Neuroscience
– volume: 22
  start-page: 1521
  year: 2008
  end-page: 1537
  ident: br002515
  article-title: A system for robotic heart surgery that learns to tie knots using recurrent neural networks
  publication-title: Advanced Robotics
– volume: 1
  start-page: 103
  year: 1936
  end-page: 105
  ident: br003050
  article-title: Finite combinatory processes-formulation 1
  publication-title: The Journal of Symbolic Logic
– year: 1987
  ident: br000840
  article-title: Der genetische algorithmus: eine implementierung in prolog. Technical report
– volume: 21
  start-page: 199
  year: 1995
  end-page: 233
  ident: br002670
  article-title: The parti-game algorithm for variable resolution reinforcement learning in multidimensional state-spaces
  publication-title: Machine Learning
– year: 2014
  ident: br003645
  article-title: Learning deep and wide: A spectral method for learning deep networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 12
  start-page: 91
  year: 2010
  end-page: 97
  ident: br001825
  article-title: Modeling spiking neural networks on SpiNNaker
  publication-title: Computing in Science and Engineering
– reference: Goodfellow, I. J., Courville, A., & Bengio, Y. (2011). Spike-and-slab sparse coding for unsupervised feature discovery. In
– volume: 11
  start-page: 195
  year: 1993
  end-page: 215
  ident: br002425
  article-title: Using knowledge-based neural networks to improve algorithms: Refining the Chou–Fasman algorithm for protein folding
  publication-title: Machine Learning
– year: 1985
  ident: br002935
  article-title: Learning-logic. Technical report TR-47
– reference: (pp. 759–766).
– volume: 20
  start-page: 1165
  year: 2008
  end-page: 1178
  ident: br004100
  article-title: Unsupervised learning of individuals and categories from images
  publication-title: Neural Computation
– start-page: 895
  year: 1995
  end-page: 898
  ident: br001075
  article-title: Sparse coding in the primate cortex
  publication-title: The handbook of brain theory and neural networks
– reference: Lee, H., Pham, P. T., Largman, Y., & Ng, A. Y. (2009). Unsupervised feature learning for audio classification using convolutional deep belief networks. In
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: br001665
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
– reference: Gonzalez-Dominguez, J., Lopez-Moreno, I., Sak, H., Gonzalez-Rodriguez, J., & Moreno, P. J. (2014). Automatic language identification using long short-term memory recurrent neural networks. In
– reference: Koutník, J., Gomez, F., & Schmidhuber, J. (2010). Evolving neural networks in compressed weight space. In
– start-page: 244
  year: 1993
  ident: br000575
  article-title: A fast stochastic error-descent algorithm for supervised learning and optimization
  publication-title: Advances in neural information processing systems, vol. 5
– reference: Gauss, C. F. (1809). Theoria motus corporum coelestium in sectionibus conicis solem ambientium.
– year: 1969
  ident: br000530
  article-title: Applied optimal control: optimization, estimation, and control
– start-page: 194
  year: 1986
  end-page: 281
  ident: br003715
  article-title: Parallel distributed processing: Explorations in the microstructure of cognition
  publication-title: Information processing in dynamical systems: foundations of harmony theory, vol. 1
– year: 1987
  ident: br003205
  article-title: The utility driven dynamic error propagation network. Technical report CUED/F-INFENG/TR.1
– reference:  [cs.CV].
– volume: 24
  start-page: 23
  year: 1970
  end-page: 26
  ident: br001260
  article-title: A family of variable-metric methods derived by variational means
  publication-title: Mathematics of Computation
– year: 2014
  ident: br001315
  article-title: An empirical investigation of catastrophic forgetting in gradient-based neural networks. TR
– reference: Schmidhuber, J. (1990d). An on-line algorithm for dynamic reinforcement learning and planning in reactive environments. In
– year: 1957
  ident: br000335
  article-title: Dynamic programming
– year: 1991
  ident: br001525
  article-title: Introduction to the theory of neural computation
– volume: 50
  start-page: 969
  year: 2009
  end-page: 978
  ident: br003295
  article-title: Semantic hashing
  publication-title: International Journal of Approximate Reasoning
– volume: 11
  start-page: 1257
  year: 1985
  end-page: 1268
  ident: br000205
  article-title: A 15 year perspective on automatic programming
  publication-title: IEEE Transactions on Software Engineering
– reference: (pp. 30–37).
– start-page: 1
  year: 2011
  end-page: 7
  ident: br000725
  article-title: Intrinsically motivated evolutionary search for vision-based reinforcement learning
  publication-title: Proceedings of the 2011 IEEE conference on development and learning and epigenetic robotics IEEE-ICDL-EPIROB, vol. 2
– volume: 6
  start-page: 933
  year: 1993
  end-page: 946
  ident: br001290
  article-title: Neural network control for a closed-loop system using feedback-error-learning
  publication-title: Neural Networks
– start-page: 1609
  year: 2008
  end-page: 1616
  ident: br003855
  article-title: A convergent
  publication-title: Advances in neural information processing systems (NIPS’08), vol. 21
– volume: 1
  start-page: 427
  year: 2001
  end-page: 438
  ident: br000300
  article-title: Learning iterative image reconstruction in the neural abstraction pyramid
  publication-title: International Journal of Computational Intelligence and Applications
– volume: 24
  start-page: 767
  year: 2011
  end-page: 778
  ident: br001125
  article-title: Increasing robustness against background noise: visual pattern recognition by a neocognitron
  publication-title: Neural Networks
– reference: Werbos, P. J. (1989b). Neural networks for control and system identification. In
– volume: 19
  start-page: 577
  year: 1965
  end-page: 593
  ident: br000505
  article-title: A class of methods for solving nonlinear simultaneous equations
  publication-title: Mathematics of Computation
– year: 1999
  ident: br003570
  article-title: On supervised learning from sequential data with applications for speech recognition
– start-page: 241
  year: 1969
  end-page: 252
  ident: br004050
  article-title: PROW: a step toward automatic program writing
  publication-title: Proceedings of the 1st international joint conference on artificial intelligence
– reference: (pp. 483–487).
– year: 1967
  ident: br001765
  article-title: Cybernetics and forecasting techniques
– start-page: 490
  year: 2006
  end-page: 503
  ident: br002820
  article-title: Sampling strategies for bag-of-features image classification
  publication-title: Proc. ECCV 2006
– reference: (pp. 2183–2187).
– reference: Pachitariu, M., & Sahani, M. (2013). Regularization and nonlinearities for neural language models: when are they needed? arXiv Preprint
– volume: 41
  start-page: 230
  year: 1936
  end-page: 267
  ident: br003955
  article-title: On computable numbers, with an application to the Entscheidungsproblem
  publication-title: Proceedings of the London Mathematical Society, Series 2
– reference: Goodfellow, I. J., Bulatov, Y., Ibarz, J., Arnoud, S., & Shet, V. (2014). Multi-digit number recognition from street view imagery using deep convolutional neural networks. ArXiv Preprint
– volume: 14
  start-page: 85
  year: 1973
  end-page: 100
  ident: br004045
  article-title: Self-organization of orientation sensitive cells in the striate cortex
  publication-title: Kybernetik
– reference: (pp. 92–101).
– volume: 12
  start-page: 2451
  year: 2000
  end-page: 2471
  ident: br001185
  article-title: Learning to forget: continual prediction with LSTM
  publication-title: Neural Computation
– year: 1908
  ident: br001425
  article-title: Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques encastrées. Mémoires présentés par divers savants à l’Académie des sciences de l’Institut de France: Éxtrait
– year: 1999
  ident: br001700
  article-title: Sparse code shrinkage: denoising by maximum likelihood estimation
  publication-title: Advances in neural information processing systems (NIPS), vol. 12
– volume: 280
  start-page: 20122863
  year: 2013
  ident: br000670
  article-title: The evolutionary origins of modularity
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 23
  year: 1976
  ident: br001395
  article-title: Adaptive pattern classification and universal recoding, 2: feedback, expectation, olfaction, and illusions
  publication-title: Biological Cybernetics
– reference: Otsuka, M., Yoshimoto, J., & Doya, K. (2010). Free-energy-based reinforcement learning in a partially observable environment. In
– start-page: 2348
  year: 2011
  end-page: 2356
  ident: br001325
  article-title: Practical variational inference for neural networks
  publication-title: Advances in neural information processing systems (NIPS)
– volume: 4
  start-page: 207
  year: 1991
  end-page: 224
  ident: br002210
  article-title: A Gaussian potential function network with hierarchically self-organizing learning
  publication-title: Neural Networks
– year: 2010
  ident: br002890
  article-title: Goal-oriented representation of the external world: a free-energy-based approach
– start-page: 2310
  year: 2013
  end-page: 2318
  ident: br003750
  article-title: Compete to compute
  publication-title: Advances in neural information processing systems (NIPS)
– year: 2012
  ident: br003905
  article-title: Lecture 6.5—RmsProp: Divide the gradient by a running average of its recent magnitude
  publication-title: COURSERA: Neural Networks for Machine Learning
– year: 1989
  ident: br004085
  article-title: Learning from delayed rewards
– volume: 64
  start-page: 165
  year: 1990
  end-page: 170
  ident: br001070
  article-title: Forming sparse representations by local anti-Hebbian learning
  publication-title: Biological Cybernetics
– volume: 37
  start-page: 115
  year: 2014
  end-page: 123
  ident: br004395
  article-title: Hierarchical spatiotemporal feature extraction using recurrent online clustering
  publication-title: Pattern Recognition Letters
– start-page: 4
  year: 2012
  ident: br002085
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in neural information processing systems
– year: 1961
  ident: br000525
  article-title: A steepest-ascent method for solving optimum programming problems. Technical report BR-1303
– volume: 18
  start-page: 280
  year: 1968
  end-page: 315
  ident: br002315
  article-title: Mathematical models for cellular interaction in development
  publication-title: Journal of Theoretical Biology
– year: 1997
  ident: br002610
  article-title: Machine learning
– start-page: 831
  year: 1992
  end-page: 838
  ident: br004000
  article-title: Principles of risk minimization for learning theory
  publication-title: Advances in neural information processing systems (NIPS), vol. 4
– reference: Gomez, F. J., & Miikkulainen, R. (2003). Active guidance for a finless rocket using neuroevolution. In
– start-page: 309
  year: 1992
  end-page: 316
  ident: br004095
  article-title: Induction of finite-state automata using second-order recurrent networks
  publication-title: Advances in neural information processing systems, vol. 4
– start-page: 31
  year: 2011
  end-page: 40
  ident: br001220
  article-title: Sequential constant size compressor for reinforcement learning
  publication-title: Proc. fourth conference on artificial general intelligence
– year: 1995
  ident: br002755
  article-title: Bayesian learning for neural networks
– reference: (pp. 2809–2813).
– reference: Behnke, S. (2003a). Discovering hierarchical speech features using convolutional non-negative matrix factorization. In
– volume: 34
  start-page: 997
  year: 2004
  end-page: 1006
  ident: br001870
  article-title: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
– volume: 4
  start-page: 173
  year: 1992
  end-page: 193
  ident: br002825
  article-title: Simplifying neural networks by soft weight sharing
  publication-title: Neural Computation
– volume: 22
  start-page: 3207
  year: 2010
  end-page: 3220
  ident: br000630
  article-title: Deep big simple neural nets for handwritten digit recogntion
  publication-title: Neural Computation
– start-page: 1
  year: 2006
  end-page: 6
  ident: br003365
  article-title: Implementing synaptic plasticity in a VLSI spiking neural network model
  publication-title: International joint conference on neural networks
– reference: (pp. 833–840).
– volume: 4
  start-page: 237
  year: 1996
  end-page: 285
  ident: br001890
  article-title: Reinforcement learning: A survey
  publication-title: Journal of AI Research
– reference: Singh, S. P. (1994). Reinforcement learning algorithms for average-payoff Markovian decision processes. In
– year: 2001
  ident: br001860
  article-title: Graphical models: foundations of neural computation
– reference: Euler, L. (1744). Methodus inveniendi.
– reference: Baird, L. C. (1995). Residual algorithms: Reinforcement learning with function approximation. In
– volume: 15
  start-page: 319
  year: 2001
  end-page: 350
  ident: br000260
  article-title: Infinite-horizon policy-gradient estimation
  publication-title: Journal of Artificial Intelligence Research
– reference: Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014). Large-scale video classification with convolutional neural networks. In
– year: 1994
  ident: br002660
  article-title: Architecture selection strategies for neural networks: Application to corporate bond rating prediction
  publication-title: Neural networks in the capital markets
– volume: 15
  start-page: 194
  year: 2012
  end-page: 196
  ident: br003790
  article-title: Emergence of a ‘visual number sense’ in hierarchical generative models
  publication-title: Nature Neuroscience
– volume: 5
  start-page: 473
  year: 1993
  end-page: 482
  ident: br001935
  article-title: Robustness in multilayer perceptrons
  publication-title: Neural Computation
– reference: (pp. 974–981).
– year: 2013
  ident: br001215
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation. Technical report
– volume: 1
  start-page: 87
  year: 1989
  end-page: 111
  ident: br004295
  article-title: Experimental analysis of the real-time recurrent learning algorithm
  publication-title: Connection Science
– volume: 13
  start-page: 341
  year: 2003
  end-page: 379
  ident: br000225
  article-title: Recent advances in hierarchical reinforcement learning
  publication-title: Discrete Event Dynamic Systems
– volume: J62-A
  start-page: 658
  year: 1979
  end-page: 665
  ident: br001115
  article-title: Neural network model for a mechanism of pattern recognition unaffected by shift in position—Neocognitron
  publication-title: Transactions of the IECE
– year: 2013
  ident: br002620
  article-title: Playing Atari with deep reinforcement learning. Technical report
– reference: (pp. 4354–4357).
– volume: Vol. 2130
  start-page: 684
  year: 2001
  end-page: 691
  ident: br001975
  article-title: Unsupervised learning in LSTM recurrent neural networks
  publication-title: Proc. intl. conf. on artificial neural networks
– volume: 28
  start-page: 105
  year: 1997
  end-page: 130
  ident: br003535
  article-title: Shifting inductive bias with success-story algorithm, adaptive Levin search, and incremental self-improvement
  publication-title: Machine Learning
– volume: 112
  start-page: 181
  year: 1999
  end-page: 211
  ident: br003850
  article-title: Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning
  publication-title: Artificial Intelligence
– volume: 53
  start-page: 370
  year: 1763
  end-page: 418
  ident: br000280
  article-title: An essay toward solving a problem in the doctrine of chances
  publication-title: Philosophical Transactions of the Royal Society of London
– volume: 1
  start-page: 270
  year: 1989
  end-page: 280
  ident: br004300
  article-title: A learning algorithm for continually running fully recurrent networks
  publication-title: Neural Computation
– reference: Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural network acoustic models. In
– volume: 7
  start-page: 669
  year: 1993
  end-page: 688
  ident: br000500
  article-title: Signature verification using a Siamese time delay neural network
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
– reference: -cut—dynamic discovery of sub-goals in reinforcement learning. In
– start-page: 52
  year: 1990
  end-page: 61
  ident: br003395
  article-title: Learning algorithms for networks with internal and external feedback
  publication-title: Proc. of the 1990 connectionist models summer school
– volume: 47
  start-page: 25
  year: 2014
  end-page: 39
  ident: br001040
  article-title: Training restricted Boltzmann machines: an introduction
  publication-title: Pattern Recognition
– reference: (pp. 4620–4626).
– volume: 5
  start-page: 59
  year: 1994
  end-page: 66
  ident: br000545
  article-title: A constructive algorithm that converges for real-valued input patterns
  publication-title: International Journal of Neural Systems
– year: 1998
  ident: br003540
  publication-title: Advances in kernel methods—support vector learning
– volume: 5
  start-page: 289
  year: 1993
  end-page: 304
  ident: br003130
  article-title: Redundancy reduction as a strategy for unsupervised learning
  publication-title: Neural Computation
– volume: 22
  start-page: 247
  year: 1986
  end-page: 259
  ident: br002130
  article-title: A self-optimizing, nonsymmetrical neural net for content addressable memory and pattern recognition
  publication-title: Physica D
– year: 1995
  ident: br002585
  article-title: Neural networks for control
– year: 1989
  ident: br004270
  article-title: Complexity of exact gradient computation algorithms for recurrent neural networks. Technical report NU-CCS-89-27
– volume: 70
  start-page: 119
  year: 1994
  end-page: 165
  ident: br003930
  article-title: Knowledge-based artificial neural networks
  publication-title: Artificial Intelligence
– volume: 65
  start-page: 386
  year: 1958
  ident: br003235
  article-title: The perceptron: a probabilistic model for information storage and organization in the brain
  publication-title: Psychological Review
– start-page: 875
  year: 1991
  end-page: 882
  ident: br004110
  article-title: Generalization by weight-elimination with application to forecasting
  publication-title: Advances in neural information processing systems (NIPS), vol. 3
– volume: 47
  start-page: 1642
  year: 2014
  end-page: 1652
  ident: br004405
  article-title: Neural network language models for off-line handwriting recognition
  publication-title: Pattern Recognition
– volume: 45
  start-page: 434
  year: 1997
  end-page: 444
  ident: br000340
  article-title: A blind source separation technique using second-order statistics
  publication-title: IEEE Transactions on Signal Processing
– volume: Vol. 7700
  start-page: 687
  year: 2012
  end-page: 707
  ident: br004435
  article-title: Forecasting with recurrent neural networks: 12 tricks
  publication-title: Neural networks: tricks of the trade
– volume: 22
  start-page: 11
  year: 1996
  end-page: 32
  ident: br002680
  article-title: Efficient reinforcement learning through symbiotic evolution
  publication-title: Machine Learning
– reference: (pp. 820–825).
– volume: 338
  start-page: 1202
  year: 2012
  end-page: 1205
  ident: br000915
  article-title: A large-scale model of the functioning brain
  publication-title: Science
– start-page: 493
  year: 1996
  end-page: 499
  ident: br001535
  article-title: Hierarchical recurrent neural networks for long-term dependencies
  publication-title: Advances in neural information processing systems, vol. 8
– year: 2009
  ident: br001480
  publication-title: The elements of statistical learning
– start-page: 1050
  year: 1998
  end-page: 1056
  ident: br003060
  article-title: Multi-time models for temporally abstract planning
  publication-title: Advances in neural information processing systems (NIPS)
– start-page: 279
  year: 1990
  end-page: 284
  ident: br002005
  article-title: Self-organizing hierarchical feature maps
  publication-title: International joint conference on neural networks
– reference: Wang, S., & Manning, C. (2013). Fast dropout training. In
– volume: 73
  start-page: 415
  issue: 3
  year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br000830
  article-title: How does the brain solve visual object recognition?
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.01.010
– start-page: 1
  year: 2011
  ident: 10.1016/j.neunet.2014.09.003_br000725
  article-title: Intrinsically motivated evolutionary search for vision-based reinforcement learning
– volume: 63
  start-page: 487
  issue: 6
  year: 1990
  ident: 10.1016/j.neunet.2014.09.003_br001060
  article-title: Evolving neural networks
  publication-title: Biological Cybernetics
  doi: 10.1007/BF00199581
– volume: Vol. 2766
  year: 2003
  ident: 10.1016/j.neunet.2014.09.003_br000315
– start-page: 34
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br003020
  article-title: Holographic recurrent networks
– volume: 12
  start-page: 2451
  issue: 10
  year: 2000
  ident: 10.1016/j.neunet.2014.09.003_br001185
  article-title: Learning to forget: continual prediction with LSTM
  publication-title: Neural Computation
  doi: 10.1162/089976600300015015
– volume: 79
  start-page: 2554
  year: 1982
  ident: 10.1016/j.neunet.2014.09.003_br001660
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.79.8.2554
– volume: 5
  start-page: 157
  issue: 2
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br000365
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.279181
– volume: 9
  start-page: 1
  issue: 1
  year: 1997
  ident: 10.1016/j.neunet.2014.09.003_br001610
  article-title: Flat minima
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.1.1
– volume: 4
  start-page: 237
  year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br001890
  article-title: Reinforcement learning: A survey
  publication-title: Journal of AI Research
– volume: 23
  start-page: 349
  issue: 3
  year: 2007
  ident: 10.1016/j.neunet.2014.09.003_br000490
  article-title: Simulation of networks of spiking neurons: a review of tools and strategies
  publication-title: Journal of Computational Neuroscience
  doi: 10.1007/s10827-007-0038-6
– volume: 6
  start-page: 933
  issue: 7
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br001290
  article-title: Neural network control for a closed-loop system using feedback-error-learning
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(09)80004-X
– volume: 60
  start-page: 1126
  issue: 6
  year: 2008
  ident: 10.1016/j.neunet.2014.09.003_br002080
  article-title: Matching categorical object representations in inferior temporal cortex of man and monkey
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.10.043
– year: 2001
  ident: 10.1016/j.neunet.2014.09.003_br002140
– start-page: 576
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br004120
  article-title: Cresceptron: a self-organizing neural network which grows adaptively
– year: 2002
  ident: 10.1016/j.neunet.2014.09.003_br001195
– volume: 10
  start-page: 683
  issue: 4
  year: 1997
  ident: 10.1016/j.neunet.2014.09.003_br000770
  article-title: Non-linear feature extraction by redundancy reduction in an unsupervised stochastic neural network
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(96)00110-4
– ident: 10.1016/j.neunet.2014.09.003_br000870
– volume: 7
  issue: 9
  year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br002380
  article-title: An intrinsic value system for developing multiple invariant representations with incremental slowness learning
  publication-title: Frontiers in Neurorobotics
– year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br002860
– year: 2014
  ident: 10.1016/j.neunet.2014.09.003_br001315
– start-page: 112
  year: 2004
  ident: 10.1016/j.neunet.2014.09.003_br000230
  article-title: Intrinsically motivated learning of hierarchical collections of skills
– start-page: 593
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br001500
  article-title: Theory of the backpropagation neural network
– start-page: 308
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br002320
  article-title: Comparison of two unsupervised neural network models for redundancy reduction
– volume: 42
  start-page: 265
  issue: 1
  year: 1990
  ident: 10.1016/j.neunet.2014.09.003_br001450
  article-title: A stochastic version of the delta rule
  publication-title: Physica D: Nonlinear Phenomena
  doi: 10.1016/0167-2789(90)90081-Y
– year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br003485
– year: 1998
  ident: 10.1016/j.neunet.2014.09.003_br003840
– volume: 8
  start-page: 1
  issue: 1
  year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br002395
  article-title: Lower bounds for the computational power of networks of spiking neurons
  publication-title: Neural Computation
  doi: 10.1162/neco.1996.8.1.1
– volume: 6
  start-page: 147
  issue: 1
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br002960
  article-title: Fast exact multiplication by the Hessian
  publication-title: Neural Computation
  doi: 10.1162/neco.1994.6.1.147
– volume: 11
  start-page: 185
  issue: 2
  year: 1968
  ident: 10.1016/j.neunet.2014.09.003_br004055
  article-title: An information theoretic measure for classification
  publication-title: The Computer Journal
  doi: 10.1093/comjnl/11.2.185
– volume: 8
  start-page: 229
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br004275
  article-title: Simple statistical gradient-following algorithms for connectionist reinforcement learning
  publication-title: Machine Learning
  doi: 10.1007/BF00992696
– volume: 4
  start-page: 559
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br000105
  article-title: Understanding retinal color coding from first principles
  publication-title: Neural Computation
  doi: 10.1162/neco.1992.4.4.559
– volume: PP
  start-page: 1
  issue: 99
  year: 2014
  ident: 10.1016/j.neunet.2014.09.003_br002775
  article-title: Minitaur, an event-driven FPGA-based spiking network accelerator
  publication-title: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
– start-page: 6015
  year: 2000
  ident: 10.1016/j.neunet.2014.09.003_br000865
  article-title: The growing hierarchical self-organizing map
– volume: 64
  start-page: 165
  year: 1990
  ident: 10.1016/j.neunet.2014.09.003_br001070
  article-title: Forming sparse representations by local anti-Hebbian learning
  publication-title: Biological Cybernetics
  doi: 10.1007/BF02331346
– volume: 18
  start-page: 602
  issue: 5–6
  year: 2005
  ident: 10.1016/j.neunet.2014.09.003_br001360
  article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2005.06.042
– volume: 1
  start-page: 151
  issue: 1
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br000250
  article-title: What size net gives valid generalization?
  publication-title: Neural Computation
  doi: 10.1162/neco.1989.1.1.151
– volume: 8
  start-page: 997
  issue: 5
  year: 1997
  ident: 10.1016/j.neunet.2014.09.003_br003080
  article-title: Adaptive critic design
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.623201
– volume: 4
  start-page: 243
  issue: 2
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br003425
  article-title: A fixed size storage O(n3) time complexity learning algorithm for fully recurrent continually running networks
  publication-title: Neural Computation
  doi: 10.1162/neco.1992.4.2.243
– volume: 16
  start-page: 985
  issue: 7
  year: 2003
  ident: 10.1016/j.neunet.2014.09.003_br003310
  article-title: Inter-module credit assignment in modular reinforcement learning
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(02)00235-6
– volume: 37
  start-page: 103
  year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br001130
  article-title: Artificial vision by multi-layered neural networks: neocognitron and its advances
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2012.09.016
– volume: 72
  start-page: 3634
  issue: 23
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br002630
  article-title: Separation of independent signals using time-delayed correlations
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.72.3634
– start-page: 317
  year: 2005
  ident: 10.1016/j.neunet.2014.09.003_br003145
  article-title: Neural fitted Q iteration—first experiences with a data efficient neural reinforcement learning method
– volume: 2
  start-page: 135
  issue: 1 and 2
  year: 1991
  ident: 10.1016/j.neunet.2014.09.003_br003505
  article-title: Learning to generate artificial fovea trajectories for target detection
  publication-title: International Journal of Neural Systems
– year: 2001
  ident: 10.1016/j.neunet.2014.09.003_br001595
  article-title: Gradient flow in recurrent nets: the difficulty of learning long-term dependencies
– year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br000910
– ident: 10.1016/j.neunet.2014.09.003_br001915
  doi: 10.1109/CVPR.2014.223
– volume: 12
  start-page: 2121
  year: 2011
  ident: 10.1016/j.neunet.2014.09.003_br000895
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: The Journal of Machine Learning
– start-page: 769
  year: 2009
  ident: 10.1016/j.neunet.2014.09.003_br001805
  article-title: Natural image denoising with convolutional networks
– year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br003660
– start-page: 6645
  year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br001355
  article-title: Speech recognition with deep recurrent neural networks
– volume: 42
  start-page: 1291
  issue: 6
  year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br001380
  article-title: A survey of actor-critic reinforcement learning: standard and natural policy gradients
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews
  doi: 10.1109/TSMCC.2012.2218595
– volume: 10
  start-page: 857
  issue: 5
  year: 1997
  ident: 10.1016/j.neunet.2014.09.003_br003450
  article-title: Discovering neural nets with low Kolmogorov complexity and high generalization capability
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(96)00127-X
– volume: 32
  start-page: 333
  year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br000645
  article-title: Multi-column deep neural network for traffic sign classification
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2012.02.023
– start-page: 200
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br004340
  article-title: Bayesian backpropagation over i-o functions rather than weights
– ident: 10.1016/j.neunet.2014.09.003_br001780
  doi: 10.1109/ICSMC.1990.142119
– volume: 5
  start-page: 140
  issue: 1
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br000060
  article-title: Statistical theory of learning curves under entropic loss criterion
  publication-title: Neural Computation
  doi: 10.1162/neco.1993.5.1.140
– start-page: 1786
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br004105
  article-title: Results of the time series prediction competition at the Santa Fe Institute
– volume: 195
  start-page: 215
  issue: 1
  year: 1968
  ident: 10.1016/j.neunet.2014.09.003_br001675
  article-title: Receptive fields and functional architecture of monkey striate cortex
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.1968.sp008455
– volume: 8
  start-page: 183
  issue: 3
  year: 2000
  ident: 10.1016/j.neunet.2014.09.003_br000515
  article-title: Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons
  publication-title: Journal of Computational Neuroscience
  doi: 10.1023/A:1008925309027
– volume: 5
  start-page: 39
  issue: 1
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br002465
  article-title: Genetic evolution of the topology and weight distribution of neural networks
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.265959
– volume: 1
  start-page: 1
  issue: 1
  year: 1991
  ident: 10.1016/j.neunet.2014.09.003_br001000
  article-title: Distributed hierarchical processing in the primate cerebral cortex
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/1.1.1
– volume: 40
  start-page: 681
  issue: 3
  year: 2002
  ident: 10.1016/j.neunet.2014.09.003_br000010
  article-title: Learning algorithms for Markov decision processes with average cost
  publication-title: SIAM Journal on Control and Optimization
  doi: 10.1137/S0363012999361974
– ident: 10.1016/j.neunet.2014.09.003_br000940
– year: 1966
  ident: 10.1016/j.neunet.2014.09.003_br001065
– volume: 7
  start-page: 889
  year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br000760
  article-title: The Helmholtz machine
  publication-title: Neural Computation
  doi: 10.1162/neco.1995.7.5.889
– volume: Vol. 5212
  start-page: 234
  year: 2008
  ident: 10.1016/j.neunet.2014.09.003_br003255
  article-title: State-dependent exploration for policy gradient methods
– start-page: 1
  year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br004370
  article-title: Hierarchical modular optimization of convolutional networks achieves representations similar to macaque IT and human ventral stream
– ident: 10.1016/j.neunet.2014.09.003_br004390
  doi: 10.1109/ICDAR.2013.218
– volume: 5
  start-page: 527
  year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br001755
  article-title: The review of problems solvable by algorithms of the group method of data handling (GMDH)
  publication-title: Pattern Recognition and Image Analysis/Raspoznavaniye Obrazov I Analiz Izobrazhenii
– ident: 10.1016/j.neunet.2014.09.003_br001300
– volume: 1
  start-page: 47
  issue: 1
  year: 1986
  ident: 10.1016/j.neunet.2014.09.003_br002615
  article-title: Explanation-based generalization: A unifying view
  publication-title: Machine Learning
  doi: 10.1007/BF00116250
– start-page: 482
  year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br004250
  article-title: Learning to count without a counter: A case study of dynamics and activation landscapes in recurrent networks
– ident: 10.1016/j.neunet.2014.09.003_br000035
– volume: 15
  start-page: 346
  issue: 3
  year: 2011
  ident: 10.1016/j.neunet.2014.09.003_br000675
  article-title: On the performance of indirect encoding across the continuum of regularity
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2010.2104157
– volume: 148
  start-page: 574
  year: 1959
  ident: 10.1016/j.neunet.2014.09.003_br004245
  article-title: Receptive fields of single neurones in the cat’s striate cortex
  publication-title: Journal of Physiology
  doi: 10.1113/jphysiol.1959.sp006308
– start-page: 81
  year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br000605
  article-title: Tikhonov-type regularization for restricted Boltzmann machines
– year: 2010
  ident: 10.1016/j.neunet.2014.09.003_br002890
– start-page: 533
  year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br002900
  article-title: Local feature based online mode detection with recurrent neural networks
– year: 1988
  ident: 10.1016/j.neunet.2014.09.003_br004290
– volume: 6
  start-page: 1155
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br002470
  article-title: First-order recurrent neural networks and deterministic finite state automata
  publication-title: Neural Computation
  doi: 10.1162/neco.1994.6.6.1155
– volume: 4
  start-page: 2051
  issue: 8
  year: 1984
  ident: 10.1016/j.neunet.2014.09.003_br000805
  article-title: Stimulus-selective properties of inferior temporal neurons in the macaque
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.04-08-02051.1984
– volume: 21
  start-page: 1392
  issue: 9
  year: 2008
  ident: 10.1016/j.neunet.2014.09.003_br004345
  article-title: Learning to play go using recursive neural networks
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2008.02.002
– year: 1986
  ident: 10.1016/j.neunet.2014.09.003_br004260
– volume: Vol. 2130
  start-page: 684
  year: 2001
  ident: 10.1016/j.neunet.2014.09.003_br001975
  article-title: Unsupervised learning in LSTM recurrent neural networks
– volume: 50
  start-page: 2061
  issue: 10
  year: 1962
  ident: 10.1016/j.neunet.2014.09.003_br002735
  article-title: An active pulse transmission line simulating nerve axon
  publication-title: Proceedings of the IRE
  doi: 10.1109/JRPROC.1962.288235
– start-page: 11
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br003320
  article-title: An optimality principle for unsupervised learning
– volume: 2
  start-page: 17
  issue: 1–2
  year: 1991
  ident: 10.1016/j.neunet.2014.09.003_br000285
  article-title: Unsupervised learning procedures for neural networks
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065791000030
– volume: 280
  start-page: 20122863
  issue: 1755
  year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br000670
  article-title: The evolutionary origins of modularity
  publication-title: Proceedings of the Royal Society B: Biological Sciences
  doi: 10.1098/rspb.2012.2863
– volume: 59
  start-page: 4498
  issue: 4
  year: 1999
  ident: 10.1016/j.neunet.2014.09.003_br001930
  article-title: Hebbian learning and spiking neurons
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.59.4498
– year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br002065
– volume: 6
  start-page: 1212
  issue: 5
  year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br002965
  article-title: Gradient calculations for dynamic recurrent neural networks: A survey
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.410363
– volume: 338
  start-page: 1202
  issue: 6111
  year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br000915
  article-title: A large-scale model of the functioning brain
  publication-title: Science
  doi: 10.1126/science.1225266
– volume: 35
  start-page: 221
  issue: 1
  year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br001815
  article-title: 3D convolutional neural networks for human action recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2012.59
– volume: 53
  start-page: 370
  year: 1763
  ident: 10.1016/j.neunet.2014.09.003_br000280
  article-title: An essay toward solving a problem in the doctrine of chances
  publication-title: Philosophical Transactions of the Royal Society of London
  doi: 10.1098/rstl.1763.0053
– volume: Vol. 2130
  start-page: 87
  year: 2001
  ident: 10.1016/j.neunet.2014.09.003_br001625
  article-title: Learning to learn using gradient descent
– start-page: 1458
  year: 1991
  ident: 10.1016/j.neunet.2014.09.003_br003410
  article-title: Curious model-building control systems
– volume: 17
  start-page: 487
  issue: 2
  year: 2005
  ident: 10.1016/j.neunet.2014.09.003_br004310
  article-title: Loading deep networks is hard: The pyramidal case
  publication-title: Neural Computation
  doi: 10.1162/0899766053011519
– start-page: 895
  year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br001075
  article-title: Sparse coding in the primate cortex
– ident: 10.1016/j.neunet.2014.09.003_br003700
– ident: 10.1016/j.neunet.2014.09.003_br002540
  doi: 10.1007/3-540-36755-1_25
– start-page: 265
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br004060
  article-title: Time series prediction by using a connectionist network with internal delay lines
– start-page: 815
  year: 1998
  ident: 10.1016/j.neunet.2014.09.003_br002285
  article-title: Inferring sparse, overcomplete image codes using an efficient coding framework
– year: 2005
  ident: 10.1016/j.neunet.2014.09.003_br003705
  article-title: Intrinsically motivated reinforcement learning
– volume: 7
  issue: 178
  year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br002830
  article-title: Real-time classification and sensor fusion with a spiking deep belief network
  publication-title: Frontiers in Neuroscience
– ident: 10.1016/j.neunet.2014.09.003_br002740
– volume: 39
  year: 1977
  ident: 10.1016/j.neunet.2014.09.003_br000795
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: 10.1016/j.neunet.2014.09.003_br003360
– volume: 6
  start-page: 559
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br001025
  article-title: What is the goal of sensory coding?
  publication-title: Neural Computation
  doi: 10.1162/neco.1994.6.4.559
– volume: 24
  start-page: 677
  year: 2014
  ident: 10.1016/j.neunet.2014.09.003_br001635
  article-title: Emergence of complex computational structures from chaotic neural networks through reward-modulated Hebbian learning
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhs348
– volume: 6
  start-page: 669
  issue: 3
  year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br004400
  article-title: Dynamic learning rate optimization of the backpropagation algorithm
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.377972
– volume: 1
  start-page: 160
  year: 1962
  ident: 10.1016/j.neunet.2014.09.003_br004200
  article-title: Associative storage and retrieval of digital information in networks of adaptive neurons
  publication-title: Biological Prototypes and Synthetic Systems
  doi: 10.1007/978-1-4684-1716-6_25
– volume: 38
  start-page: 173
  year: 1931
  ident: 10.1016/j.neunet.2014.09.003_br001250
  article-title: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I
  publication-title: Monatshefte für Mathematik und Physik
  doi: 10.1007/BF01700692
– start-page: 216
  year: 2002
  ident: 10.1016/j.neunet.2014.09.003_br003455
  article-title: The speed prior: a new simplicity measure yielding near-optimal computable predictions
– volume: 1
  start-page: 412
  issue: 3
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br000215
  article-title: Finding minimum entropy codes
  publication-title: Neural Computation
  doi: 10.1162/neco.1989.1.3.412
– ident: 10.1016/j.neunet.2014.09.003_br001310
– volume: 36
  start-page: 193
  issue: 4
  year: 1980
  ident: 10.1016/j.neunet.2014.09.003_br001120
  article-title: Neocognitron: A self-organizing neural network for a mechanism of pattern recognition unaffected by shift in position
  publication-title: Biological Cybernetics
  doi: 10.1007/BF00344251
– start-page: 683
  year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br000495
  article-title: High-performance OCR for printed English and Fraktur using LSTM networks
– year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br002585
– year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br004080
  article-title: Kolmogorov complexity and computational complexity
– volume: 316
  start-page: 688
  issue: 5825
  year: 2007
  ident: 10.1016/j.neunet.2014.09.003_br003475
  article-title: Prototype resilient, self-modeling robots
  publication-title: Science
  doi: 10.1126/science.316.5825.688c
– volume: 18
  start-page: 383
  issue: 4
  year: 1973
  ident: 10.1016/j.neunet.2014.09.003_br000890
  article-title: The computational solution of optimal control problems with time lag
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.1973.1100330
– ident: 10.1016/j.neunet.2014.09.003_br003600
– volume: 3
  start-page: 139
  issue: 2
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br001200
  article-title: Associative memory in a network of spiking neurons
  publication-title: Network: Computation in Neural Systems
  doi: 10.1088/0954-898X/3/2/004
– ident: 10.1016/j.neunet.2014.09.003_br000835
  doi: 10.1109/IVS.1994.639472
– volume: 28
  start-page: 349
  year: 2007
  ident: 10.1016/j.neunet.2014.09.003_br001830
  article-title: Closed-loop learning of visual control policies
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.2110
– volume: 71
  start-page: 1180
  year: 2008
  ident: 10.1016/j.neunet.2014.09.003_br003000
  article-title: Natural actor-critic
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.11.026
– volume: 4
  start-page: 124
  year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br002875
  article-title: Recurrent processing during object recognition
  publication-title: Frontiers in Psychology
  doi: 10.3389/fpsyg.2013.00124
– year: 1988
  ident: 10.1016/j.neunet.2014.09.003_br000935
  article-title: Spline smoothing and nonparametric regression
– year: 1980
  ident: 10.1016/j.neunet.2014.09.003_br003745
– year: 1991
  ident: 10.1016/j.neunet.2014.09.003_br001525
– ident: 10.1016/j.neunet.2014.09.003_br004410
– year: 1990
  ident: 10.1016/j.neunet.2014.09.003_br001875
– ident: 10.1016/j.neunet.2014.09.003_br003165
– volume: 13
  start-page: 341
  issue: 4
  year: 2003
  ident: 10.1016/j.neunet.2014.09.003_br000225
  article-title: Recent advances in hierarchical reinforcement learning
  publication-title: Discrete Event Dynamic Systems
  doi: 10.1023/A:1025696116075
– ident: 10.1016/j.neunet.2014.09.003_br002040
– year: 2009
  ident: 10.1016/j.neunet.2014.09.003_br001370
– start-page: 3489
  year: 2009
  ident: 10.1016/j.neunet.2014.09.003_br002570
  article-title: Cartesian genetic programming
– volume: 37
  start-page: 93
  issue: 3
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br004205
  article-title: Neural networks: Applications in industry, business and science
  publication-title: Communications of the ACM
  doi: 10.1145/175247.175257
– volume: 8
  start-page: 1135
  issue: 6
  year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br000570
  article-title: The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction
  publication-title: Neural Computation
  doi: 10.1162/neco.1996.8.6.1135
– year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br003515
– volume: 41
  start-page: 230
  year: 1936
  ident: 10.1016/j.neunet.2014.09.003_br003955
  article-title: On computable numbers, with an application to the Entscheidungsproblem
  publication-title: Proceedings of the London Mathematical Society, Series 2
– ident: 10.1016/j.neunet.2014.09.003_br003990
– year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br001505
  article-title: Overview of neural hardware
– year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br001640
– volume: Vol. 1524
  year: 1998
  ident: 10.1016/j.neunet.2014.09.003_br002880
– volume: 24
  start-page: 2994
  issue: 11
  year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br002020
  article-title: Incremental slow feature analysis: Adaptive low-complexity slow feature updating from high-dimensional input streams
  publication-title: Neural Computation
  doi: 10.1162/NECO_a_00344
– year: 1985
  ident: 10.1016/j.neunet.2014.09.003_br004075
– volume: 112
  start-page: 181
  issue: 1–2
  year: 1999
  ident: 10.1016/j.neunet.2014.09.003_br003850
  article-title: Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(99)00052-1
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br000355
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2013.50
– volume: 19
  start-page: 53
  year: 1969
  ident: 10.1016/j.neunet.2014.09.003_br001385
  article-title: Some networks that can learn, remember, and reproduce any number of complicated space–time patterns, I
  publication-title: Journal of Mathematics and Mechanics
– ident: 10.1016/j.neunet.2014.09.003_br003560
– start-page: 701
  year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br001095
  article-title: Long-short term memory neural networks language modeling for handwriting recognition
– start-page: 6
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br000030
  article-title: Application of time-bounded Kolmogorov complexity in complexity theory
– ident: 10.1016/j.neunet.2014.09.003_br000325
  doi: 10.1109/IJCNN.1998.685873
– volume: 345
  start-page: 668
  issue: 6197
  year: 2014
  ident: 10.1016/j.neunet.2014.09.003_br002545
  article-title: A million spiking-neuron integrated circuit with a scalable communication network and interface
  publication-title: Science
  doi: 10.1126/science.1254642
– year: 1909
  ident: 10.1016/j.neunet.2014.09.003_br000450
– volume: 14
  start-page: 1413
  issue: 5
  year: 1973
  ident: 10.1016/j.neunet.2014.09.003_br002265
  article-title: On the notion of a random sequence
  publication-title: Soviet Mathematics Doklady
– volume: Vol. 2(1)
  year: 2009
  ident: 10.1016/j.neunet.2014.09.003_br000350
– volume: 19
  start-page: 321
  issue: 20
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br000820
  article-title: Logic program synthesis
  publication-title: Journal of Logic Programming
  doi: 10.1016/0743-1066(94)90029-9
– volume: 2
  start-page: 68
  year: 2003
  ident: 10.1016/j.neunet.2014.09.003_br002035
  article-title: Modified GMDH method and models quality evaluation by visualization
  publication-title: Control Systems and Computers
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br002160
  article-title: Back-propagation applied to handwritten zip code recognition
  publication-title: Neural Computation
  doi: 10.1162/neco.1989.1.4.541
– volume: Vol. 3696
  start-page: 575
  year: 2005
  ident: 10.1016/j.neunet.2014.09.003_br000370
  article-title: Classifying unprompted speech by retraining LSTM nets
– volume: 12
  start-page: 1333
  issue: 6
  year: 2001
  ident: 10.1016/j.neunet.2014.09.003_br001180
  article-title: LSTM recurrent networks learn simple context free and context sensitive languages
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.963769
– start-page: 337
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br003895
  article-title: Learning via task decomposition
– volume: 22
  start-page: 545
  issue: 5
  year: 1982
  ident: 10.1016/j.neunet.2014.09.003_br000815
  article-title: Spatial frequency selectivity of cells in macaque visual cortex
  publication-title: Vision Research
  doi: 10.1016/0042-6989(82)90113-4
– start-page: 667
  year: 1991
  ident: 10.1016/j.neunet.2014.09.003_br004210
  article-title: Evolving neural network controllers for unstable systems
– start-page: 1273
  year: 2007
  ident: 10.1016/j.neunet.2014.09.003_br003630
  article-title: Recursive ICA
– volume: 19
  start-page: 757
  issue: 3
  year: 2007
  ident: 10.1016/j.neunet.2014.09.003_br003525
  article-title: Training recurrent networks by Evolino
  publication-title: Neural Computation
  doi: 10.1162/neco.2007.19.3.757
– start-page: 343
  year: 1991
  ident: 10.1016/j.neunet.2014.09.003_br003170
  article-title: Incremental development of complex behaviors through automatic construction of sensory-motor hierarchies
– volume: 3
  start-page: 23
  year: 1990
  ident: 10.1016/j.neunet.2014.09.003_br002120
  article-title: A time-delay neural network architecture for isolated word recognition
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(90)90044-L
– ident: 10.1016/j.neunet.2014.09.003_br000295
  doi: 10.1109/IJCNN.1999.831160
– start-page: 151
  year: 1971
  ident: 10.1016/j.neunet.2014.09.003_br000710
  article-title: The complexity of theorem-proving procedures
– volume: 22
  start-page: 2013
  issue: 10
  year: 2005
  ident: 10.1016/j.neunet.2014.09.003_br002255
  article-title: Coding of color and form in the geniculostriate visual pathway
  publication-title: Journal of the Optical Society of America A
  doi: 10.1364/JOSAA.22.002013
– volume: 7
  start-page: 1129
  issue: 6
  year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br000330
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Computation
  doi: 10.1162/neco.1995.7.6.1129
– volume: 8
  start-page: 643
  issue: 3
  year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br000070
  article-title: The effects of adding noise during backpropagation training on a generalization performance
  publication-title: Neural Computation
  doi: 10.1162/neco.1996.8.3.643
– year: 2003
  ident: 10.1016/j.neunet.2014.09.003_br001270
– volume: 1
  start-page: 87
  issue: 1
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br004295
  article-title: Experimental analysis of the real-time recurrent learning algorithm
  publication-title: Connection Science
  doi: 10.1080/09540098908915631
– year: 1961
  ident: 10.1016/j.neunet.2014.09.003_br000525
– ident: 10.1016/j.neunet.2014.09.003_br001375
– volume: 6
  start-page: 792
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br001465
  article-title: Improving model accuracy using optimal linear combinations of trained neural networks
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.377990
– year: 2014
  ident: 10.1016/j.neunet.2014.09.003_br000600
– start-page: 762
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br002640
  article-title: Training feedforward neural networks using genetic algorithms
– year: 1969
  ident: 10.1016/j.neunet.2014.09.003_br002600
– volume: 93
  start-page: 429
  issue: 26
  year: 1946
  ident: 10.1016/j.neunet.2014.09.003_br001140
  article-title: Theory of communication. Part 1: the analysis of information
  publication-title: Electrical Engineers-Part III: Journal of the Institution of Radio and Communication Engineering
– year: 2005
  ident: 10.1016/j.neunet.2014.09.003_br001280
  article-title: Co-evolving recurrent neurons learn deep memory POMDPs
– year: 1991
  ident: 10.1016/j.neunet.2014.09.003_br000345
– ident: 10.1016/j.neunet.2014.09.003_br000270
– ident: 10.1016/j.neunet.2014.09.003_br004240
  doi: 10.1109/CEC.2008.4631255
– volume: 1
  start-page: 425
  issue: 4
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br004175
  article-title: Learning in artificial neural networks: A statistical perspective
  publication-title: Neural Computation
  doi: 10.1162/neco.1989.1.4.425
– volume: CT-16
  start-page: 330
  year: 1969
  ident: 10.1016/j.neunet.2014.09.003_br000860
  article-title: Automated network design—the frequency-domain case
  publication-title: IEEE Transactions on Circuit Theory
  doi: 10.1109/TCT.1969.1082967
– year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br003340
– year: 1987
  ident: 10.1016/j.neunet.2014.09.003_br003205
– volume: 34
  start-page: 997
  issue: 2
  year: 2004
  ident: 10.1016/j.neunet.2014.09.003_br001870
  article-title: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
  doi: 10.1109/TSMCB.2003.818557
– volume: 4
  start-page: 2379
  year: 1987
  ident: 10.1016/j.neunet.2014.09.003_br001020
  article-title: Relations between the statistics of natural images and the response properties of cortical cells
  publication-title: Journal of the Optical Society of America
  doi: 10.1364/JOSAA.4.002379
– year: 1962
  ident: 10.1016/j.neunet.2014.09.003_br003240
– volume: 16
  start-page: 683
  issue: 5
  year: 2003
  ident: 10.1016/j.neunet.2014.09.003_br000990
  article-title: Simple and conditioned adaptive behavior from Kalman filter trained recurrent networks
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(03)00127-8
– start-page: 493
  year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br001535
  article-title: Hierarchical recurrent neural networks for long-term dependencies
– start-page: 302
  year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br001730
  article-title: Mode detection in online handwritten documents using BLSTM neural networks
– year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br003815
– volume: Vol. 37
  start-page: 65
  year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br001605
  article-title: Bridging long time lags by weight guessing and Long Short-Term Memory
– volume: 22
  start-page: 511
  issue: 2
  year: 2010
  ident: 10.1016/j.neunet.2014.09.003_br003950
  article-title: Convolutional networks can learn to generate affinity graphs for image segmentation
  publication-title: Neural Computation
  doi: 10.1162/neco.2009.10-08-881
– volume: 50
  start-page: 969
  issue: 7
  year: 2009
  ident: 10.1016/j.neunet.2014.09.003_br003295
  article-title: Semantic hashing
  publication-title: International Journal of Approximate Reasoning
  doi: 10.1016/j.ijar.2008.11.006
– volume: 19
  start-page: 716
  issue: 6
  year: 1974
  ident: 10.1016/j.neunet.2014.09.003_br000025
  article-title: A new look at the statistical model identification
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.1974.1100705
– volume: 37
  start-page: 1311
  issue: 6
  year: 2004
  ident: 10.1016/j.neunet.2014.09.003_br002835
  article-title: GPU implementation of neural networks
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2004.01.013
– volume: 5
  start-page: 241
  issue: 2
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br004335
  article-title: Stacked generalization
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80023-1
– volume: 5
  start-page: 30
  issue: 1
  year: 1962
  ident: 10.1016/j.neunet.2014.09.003_br000885
  article-title: The numerical solution of variational problems
  publication-title: Journal of Mathematical Analysis and Applications
  doi: 10.1016/0022-247X(62)90004-5
– volume: 14
  start-page: 85
  issue: 2
  year: 1973
  ident: 10.1016/j.neunet.2014.09.003_br004045
  article-title: Self-organization of orientation sensitive cells in the striate cortex
  publication-title: Kybernetik
  doi: 10.1007/BF00288907
– start-page: 406
  year: 1963
  ident: 10.1016/j.neunet.2014.09.003_br002595
  article-title: Steps toward artificial intelligence
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.neunet.2014.09.003_br002170
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.726791
– start-page: 580
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br000790
  article-title: Non-linear dimensionality reduction
– volume: 16
  start-page: 59
  issue: 1
  year: 2004
  ident: 10.1016/j.neunet.2014.09.003_br003980
  article-title: A machine learning method for extracting symbolic knowledge from recurrent neural networks
  publication-title: Neural Computation
  doi: 10.1162/08997660460733994
– start-page: 801
  year: 2007
  ident: 10.1016/j.neunet.2014.09.003_br002195
  article-title: Efficient sparse coding algorithms
– ident: 10.1016/j.neunet.2014.09.003_br003290
  doi: 10.21437/Interspeech.2014-305
– start-page: 293
  year: 1997
  ident: 10.1016/j.neunet.2014.09.003_br003530
  article-title: Reinforcement learning with self-modifying policies
– ident: 10.1016/j.neunet.2014.09.003_br004155
  doi: 10.1109/CDC.1989.70114
– volume: 37
  start-page: W515
  issue: Suppl 2
  year: 2009
  ident: 10.1016/j.neunet.2014.09.003_br003880
  article-title: NNcon: improved protein contact map prediction using 2D-recursive neural networks
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkp305
– start-page: 873
  year: 2009
  ident: 10.1016/j.neunet.2014.09.003_br003095
  article-title: Large-scale deep unsupervised learning using graphics processors
– year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br004420
– ident: 10.1016/j.neunet.2014.09.003_br000305
  doi: 10.1007/3-540-46084-5_213
– ident: 10.1016/j.neunet.2014.09.003_br002550
– year: 1968
  ident: 10.1016/j.neunet.2014.09.003_br002690
  article-title: Data analysis, including statistics
– volume: 4
  start-page: 141
  issue: 2
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br000245
  article-title: First- and second-order methods for learning: between steepest descent and Newton’s method
  publication-title: Neural Computation
  doi: 10.1162/neco.1992.4.2.141
– volume: 10
  start-page: 821
  issue: 4
  year: 1998
  ident: 10.1016/j.neunet.2014.09.003_br003940
  article-title: Neural networks with dynamic synapses
  publication-title: Neural Computation
  doi: 10.1162/089976698300017502
– start-page: 379
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br002580
  article-title: Designing neural networks using genetic algorithms
– year: 2003
  ident: 10.1016/j.neunet.2014.09.003_br000780
– volume: 18
  start-page: 280
  year: 1968
  ident: 10.1016/j.neunet.2014.09.003_br002315
  article-title: Mathematical models for cellular interaction in development
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/0022-5193(68)90079-9
– year: 1988
  ident: 10.1016/j.neunet.2014.09.003_br004265
– volume: 40
  start-page: 185
  issue: 1
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br001540
  article-title: Connectionist learning procedures
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(89)90049-0
– volume: 10
  start-page: 251
  issue: 2
  year: 1998
  ident: 10.1016/j.neunet.2014.09.003_br000050
  article-title: Natural gradient works efficiently in learning
  publication-title: Neural Computation
  doi: 10.1162/089976698300017746
– start-page: 3084
  year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br000115
  article-title: Adaptive dropout for training deep neural networks
– volume: 29
  start-page: 850
  issue: 9
  year: 1986
  ident: 10.1016/j.neunet.2014.09.003_br003735
  article-title: Learning to program = learning to construct mechanisms and explanations
  publication-title: Communications of the ACM
  doi: 10.1145/6592.6594
– volume: 48
  start-page: 17
  issue: 1
  year: 2002
  ident: 10.1016/j.neunet.2014.09.003_br000445
  article-title: Error-backpropagation in temporally encoded networks of spiking neurons
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00658-0
– volume: 9
  start-page: 937
  issue: May
  year: 2008
  ident: 10.1016/j.neunet.2014.09.003_br001285
  article-title: Accelerated neural evolution through cooperatively coevolved synapses
  publication-title: Journal of Machine Learning Research
– year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br001255
– volume: 2
  start-page: 173
  year: 1990
  ident: 10.1016/j.neunet.2014.09.003_br002420
  article-title: Analysis of Linsker’s simulation of Hebbian rules
  publication-title: Neural Computation
  doi: 10.1162/neco.1990.2.2.173
– volume: 15
  start-page: 1931
  issue: 8
  year: 2004
  ident: 10.1016/j.neunet.2014.09.003_br003920
  article-title: Architectural bias in recurrent neural networks: Fractal analysis
  publication-title: Neural Computation
  doi: 10.1162/08997660360675099
– volume: 86
  start-page: 2259
  issue: 11
  year: 1998
  ident: 10.1016/j.neunet.2014.09.003_br000995
  article-title: A signal processing framework based on dynamic neural networks with application to problems in adaptation, filtering, and classification
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.726790
– start-page: 303
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br004070
  article-title: Optimal stopping and effective machine complexity in learning
– ident: 10.1016/j.neunet.2014.09.003_br003185
  doi: 10.1109/DEVLRN.2011.6037326
– year: 1991
  ident: 10.1016/j.neunet.2014.09.003_br001590
– volume: 58
  start-page: 345
  year: 1936
  ident: 10.1016/j.neunet.2014.09.003_br000615
  article-title: An unsolvable problem of elementary number theory
  publication-title: The American Journal of Mathematics
  doi: 10.2307/2371045
– volume: 13
  start-page: 431
  issue: 3
  year: 2002
  ident: 10.1016/j.neunet.2014.09.003_br001690
  article-title: The fastest and shortest algorithm for all well-defined problems
  publication-title: International Journal of Foundations of Computer Science
  doi: 10.1142/S0129054102001199
– year: 1977
  ident: 10.1016/j.neunet.2014.09.003_br001105
– volume: 21
  year: 1983
  ident: 10.1016/j.neunet.2014.09.003_br002245
  article-title: Theory formation by heuristic search
  publication-title: Machine Learning
– volume: 7
  start-page: 1
  year: 1964
  ident: 10.1016/j.neunet.2014.09.003_br003725
  article-title: A formal theory of inductive inference. Part I
  publication-title: Information and Control
  doi: 10.1016/S0019-9958(64)90223-2
– volume: 41
  start-page: 757
  issue: 10
  year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br000085
  article-title: Mixing floating- and fixed-point formats for neural network learning on neuroprocessors
  publication-title: Microprocessing and Microprogramming
  doi: 10.1016/0165-6074(96)00012-9
– ident: 10.1016/j.neunet.2014.09.003_br000635
– volume: 4
  start-page: 1
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br001170
  article-title: Neural networks and the bias/variance dilemma
  publication-title: Neural Computation
  doi: 10.1162/neco.1992.4.1.1
– ident: 10.1016/j.neunet.2014.09.003_br001030
  doi: 10.1109/IJCNN.2008.4633916
– year: 2010
  ident: 10.1016/j.neunet.2014.09.003_br001160
– volume: 194
  start-page: 431
  year: 1976
  ident: 10.1016/j.neunet.2014.09.003_br004305
  article-title: How patterned neural connections can be set up by self-organization
  publication-title: Proceedings of the Royal Society of London. Series B
  doi: 10.1098/rspb.1976.0087
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.neunet.2014.09.003_br001615
  article-title: Long short-term memory
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– year: 2003
  ident: 10.1016/j.neunet.2014.09.003_br002870
– volume: 49
  start-page: 409
  year: 1952
  ident: 10.1016/j.neunet.2014.09.003_br001530
  article-title: Methods of conjugate gradients for solving linear systems
  publication-title: Journal of Research of the National Bureau of Standards
  doi: 10.6028/jres.049.044
– volume: 6
  start-page: 163
  issue: 2
  year: 1963
  ident: 10.1016/j.neunet.2014.09.003_br001050
  article-title: A rapidly convergent descent method for minimization
  publication-title: The Computer Journal
  doi: 10.1093/comjnl/6.2.163
– ident: 10.1016/j.neunet.2014.09.003_br001090
– year: 2014
  ident: 10.1016/j.neunet.2014.09.003_br000800
– year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br002185
  article-title: Automatic learning rate maximization by on-line estimation of the Hessian’s eigenvectors
– year: 1805
  ident: 10.1016/j.neunet.2014.09.003_br002220
– year: 1965
  ident: 10.1016/j.neunet.2014.09.003_br004255
– ident: 10.1016/j.neunet.2014.09.003_br000875
– start-page: 2849
  year: 2008
  ident: 10.1016/j.neunet.2014.09.003_br001950
  article-title: SpiNNaker: mapping neural networks onto a massively-parallel chip multiprocessor
– ident: 10.1016/j.neunet.2014.09.003_br003625
– start-page: 190
  year: 1991
  ident: 10.1016/j.neunet.2014.09.003_br000960
  article-title: The recurrent cascade-correlation learning algorithm
– volume: 121
  start-page: 471
  year: 1997
  ident: 10.1016/j.neunet.2014.09.003_br001850
  article-title: Serial order: a parallel distributed processing approach
  publication-title: Advances in Psychology
  doi: 10.1016/S0166-4115(97)80111-2
– volume: 14
  start-page: 409
  issue: 1
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br002565
  article-title: A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between on- and off-center inputs
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.14-01-00409.1994
– start-page: 396
  year: 1990
  ident: 10.1016/j.neunet.2014.09.003_br002165
  article-title: Handwritten digit recognition with a back-propagation network
– start-page: 340
  year: 1990
  ident: 10.1016/j.neunet.2014.09.003_br000560
  article-title: Operational fault tolerance of CMAC networks
– volume: 13
  start-page: 382
  year: 1971
  ident: 10.1016/j.neunet.2014.09.003_br002885
  article-title: Über die Berechnung von Ableitungen
  publication-title: Wissenschaftliche Zeitschrift der Technischen Hochschule für Chemie
– volume: 6
  start-page: 57
  issue: 1
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br000090
  article-title: An efficient implementation of BP on RISC-based workstations
  publication-title: Neurocomputing
  doi: 10.1016/0925-2312(94)90034-5
– volume: 6
  start-page: 4650
  issue: 5
  year: 2010
  ident: 10.1016/j.neunet.2014.09.003_br003355
  article-title: Metalearning
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.4650
– volume: 18
  start-page: 173
  issue: 2
  year: 2006
  ident: 10.1016/j.neunet.2014.09.003_br003465
  article-title: Developmental robotics, optimal artificial curiosity, creativity, music, and the fine arts
  publication-title: Connection Science
  doi: 10.1080/09540090600768658
– volume: 14
  start-page: 1569
  issue: 6
  year: 2003
  ident: 10.1016/j.neunet.2014.09.003_br001770
  article-title: Simple model of spiking neurons
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2003.820440
– volume: 60
  start-page: 91
  year: 2004
  ident: 10.1016/j.neunet.2014.09.003_br002375
  article-title: Distinctive image features from scale-invariant key-points
  publication-title: International Journal of Computer Vision
  doi: 10.1023/B:VISI.0000029664.99615.94
– year: 1975
  ident: 10.1016/j.neunet.2014.09.003_br001645
– volume: 6
  issue: 8
  year: 2010
  ident: 10.1016/j.neunet.2014.09.003_br002230
  article-title: Reinforcement learning on slow features of high-dimensional input streams
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1000894
– volume: 22
  start-page: 159
  year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br002455
  article-title: Average reward reinforcement learning: Foundations, algorithms, and empirical results
  publication-title: Machine Learning
  doi: 10.1007/BF00114727
– year: 1957
  ident: 10.1016/j.neunet.2014.09.003_br000335
– volume: 6
  start-page: 215
  issue: 2
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br003900
  article-title: TD-gammon, a self-teaching backgammon program, achieves master-level play
  publication-title: Neural Computation
  doi: 10.1162/neco.1994.6.2.215
– volume: 3
  start-page: 349
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br002695
  article-title: A focused back-propagation algorithm for temporal sequence recognition
  publication-title: Complex Systems
– ident: 10.1016/j.neunet.2014.09.003_br000680
– volume: 5
  start-page: 565
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br002730
  article-title: Non-linear neurons in the low noise limit: a factorial code maximises information transfer
  publication-title: Networks
  doi: 10.1088/0954-898X/5/4/008
– ident: 10.1016/j.neunet.2014.09.003_br003090
– year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br003490
  article-title: PowerPlay: training an increasingly general problem solver by continually searching for the simplest still unsolvable problem
  publication-title: Frontiers in Psychology
  doi: 10.3389/fpsyg.2013.00313
– volume: 1
  year: 1988
  ident: 10.1016/j.neunet.2014.09.003_br004145
  article-title: Generalization of backpropagation with application to a recurrent gas market model
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(88)90007-X
– volume: 11
  start-page: 436
  issue: 2
  year: 2000
  ident: 10.1016/j.neunet.2014.09.003_br002930
  article-title: Constructive neural network learning algorithms for multi-category pattern classification
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.839013
– volume: 17
  start-page: 419
  issue: 5
  year: 2001
  ident: 10.1016/j.neunet.2014.09.003_br000535
  article-title: Efficient large-scale sequence comparison by locality-sensitive hashing
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.5.419
– ident: 10.1016/j.neunet.2014.09.003_br001335
  doi: 10.1145/1143844.1143891
– year: 1988
  ident: 10.1016/j.neunet.2014.09.003_br002000
– volume: 4
  start-page: 323
  year: 1974
  ident: 10.1016/j.neunet.2014.09.003_br002750
  article-title: Learning automata—a survey
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
  doi: 10.1109/TSMC.1974.5408453
– volume: 1
  start-page: 1
  year: 1965
  ident: 10.1016/j.neunet.2014.09.003_br002015
  article-title: Three approaches to the quantitative definition of information
  publication-title: Problems of Information Transmission
– volume: 22
  start-page: 436
  issue: 3
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br002510
  article-title: Noise injection into inputs in back-propagation learning
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
  doi: 10.1109/21.155944
– ident: 10.1016/j.neunet.2014.09.003_br001205
– year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br003445
– ident: 10.1016/j.neunet.2014.09.003_br003925
– volume: 21
  start-page: 215
  year: 1979
  ident: 10.1016/j.neunet.2014.09.003_br001265
  article-title: Generalized cross-validation as a method for choosing a good ridge parameter
  publication-title: Technometrics
  doi: 10.1080/00401706.1979.10489751
– volume: 13
  start-page: 227
  year: 2000
  ident: 10.1016/j.neunet.2014.09.003_br000850
  article-title: Hierarchical reinforcement learning with the MAXQ value function decomposition
  publication-title: Journal of Artificial Intelligence Research (JAIR)
  doi: 10.1613/jair.639
– ident: 10.1016/j.neunet.2014.09.003_br003285
  doi: 10.21437/Interspeech.2014-80
– year: 1997
  ident: 10.1016/j.neunet.2014.09.003_br000040
– volume: 6
  start-page: 621
  year: 1774
  ident: 10.1016/j.neunet.2014.09.003_br002135
  article-title: Mémoire sur la probabilité des causes par les évènements
  publication-title: Mémoires de l’Academie Royale des Sciences Presentés par Divers Savan
– ident: 10.1016/j.neunet.2014.09.003_br001080
– ident: 10.1016/j.neunet.2014.09.003_br001240
– ident: 10.1016/j.neunet.2014.09.003_br001305
– volume: 15
  start-page: 319
  issue: 1
  year: 2001
  ident: 10.1016/j.neunet.2014.09.003_br000260
  article-title: Infinite-horizon policy-gradient estimation
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.806
– start-page: 1061
  year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br002050
  article-title: Evolving large-scale neural networks for vision-based reinforcement learning
– volume: 6
  start-page: 219
  issue: 2
  year: 1998
  ident: 10.1016/j.neunet.2014.09.003_br004220
  article-title: HQ-learning
  publication-title: Adaptive Behavior
  doi: 10.1177/105971239700600202
– ident: 10.1016/j.neunet.2014.09.003_br000900
– start-page: 164
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br001470
  article-title: Second order derivatives for network pruning: optimal brain surgeon
– year: 1997
  ident: 10.1016/j.neunet.2014.09.003_br002295
– ident: 10.1016/j.neunet.2014.09.003_br003405
  doi: 10.1109/IJCNN.1990.137723
– year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br000200
– start-page: 271
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br000750
  article-title: Feudal reinforcement learning
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: 10.1016/j.neunet.2014.09.003_br002925
  article-title: A survey on transfer learning
  publication-title: The IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2009.191
– volume: 5
  start-page: 603
  year: 1991
  ident: 10.1016/j.neunet.2014.09.003_br000540
  article-title: Bayesian back-propagation
  publication-title: Complex Systems
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br001555
  article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2012.2205597
– volume: 25
  start-page: 805
  issue: 3
  year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br000610
  article-title: Enhanced gradient for training restricted Boltzmann machines
  publication-title: Neural Computation
  doi: 10.1162/NECO_a_00397
– ident: 10.1016/j.neunet.2014.09.003_br000465
– start-page: 241
  issue: 16
  year: 2003
  ident: 10.1016/j.neunet.2014.09.003_br002980
  article-title: Kalman filters improve LSTM network performance in problems unsolvable by traditional recurrent nets
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(02)00219-8
– volume: 22
  start-page: 207
  issue: 2
  year: 2000
  ident: 10.1016/j.neunet.2014.09.003_br003965
  article-title: Optimal linear combination of neural networks for improving classification performance
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.825759
– volume: 308
  start-page: 529
  year: 2005
  ident: 10.1016/j.neunet.2014.09.003_br000385
  article-title: Parallel and serial neural mechanisms for visual search in macaque area V4
  publication-title: Science
  doi: 10.1126/science.1109676
– year: 1987
  ident: 10.1016/j.neunet.2014.09.003_br000840
– volume: 45
  start-page: 434
  issue: 2
  year: 1997
  ident: 10.1016/j.neunet.2014.09.003_br000340
  article-title: A blind source separation technique using second-order statistics
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/78.554307
– volume: 35
  start-page: 1847
  issue: 8
  year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br002095
  article-title: Deep hierarchies in the primate visual cortex: what can we learn for computer vision?
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2012.272
– start-page: 315
  year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br002520
  article-title: Learning to use selective attention and short-term memory in sequential tasks
– start-page: 1
  year: 2000
  ident: 10.1016/j.neunet.2014.09.003_br000845
  article-title: Ensemble methods in machine learning
– year: 1999
  ident: 10.1016/j.neunet.2014.09.003_br003970
– ident: 10.1016/j.neunet.2014.09.003_br001945
  doi: 10.1109/CEC.2010.5586547
– volume: 7
  start-page: 877
  year: 2006
  ident: 10.1016/j.neunet.2014.09.003_br004195
  article-title: Evolutionary function approximation for reinforcement learning
  publication-title: Journal of Machine Learning Research
– year: 1970
  ident: 10.1016/j.neunet.2014.09.003_br004025
  article-title: Applications of pattern recognition technology
– ident: 10.1016/j.neunet.2014.09.003_br000520
– volume: 9
  start-page: 1127
  issue: 5
  year: 1997
  ident: 10.1016/j.neunet.2014.09.003_br000405
  article-title: Analysis of dynamical recognizers
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.5.1127
– volume: 22
  start-page: 59
  issue: 1–3
  year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br003935
  article-title: Feature-based methods for large scale dynamic programming
  publication-title: Machine Learning
  doi: 10.1007/BF00114724
– start-page: 873
  year: 2007
  ident: 10.1016/j.neunet.2014.09.003_br002200
  article-title: Sparse deep belief net model for visual area V2
– volume: 1
  start-page: 233
  issue: 3
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br003655
  article-title: Combining explanation-based and neural learning: An algorithm and empirical results
  publication-title: Connection Science
  doi: 10.1080/09540098908915640
– volume: Vol. 43
  year: 1990
  ident: 10.1016/j.neunet.2014.09.003_br001475
– volume: 7
  start-page: 115
  year: 1943
  ident: 10.1016/j.neunet.2014.09.003_br002525
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bulletin of Mathematical Biophysics
  doi: 10.1007/BF02478259
– volume: 14
  start-page: 1080
  issue: 3
  year: 1986
  ident: 10.1016/j.neunet.2014.09.003_br003195
  article-title: Stochastic complexity and modeling
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176350051
– ident: 10.1016/j.neunet.2014.09.003_br002895
– ident: 10.1016/j.neunet.2014.09.003_br002910
– volume: 1
  start-page: 270
  issue: 2
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br004300
  article-title: A learning algorithm for continually running fully recurrent networks
  publication-title: Neural Computation
  doi: 10.1162/neco.1989.1.2.270
– volume: 21
  start-page: 105
  year: 1988
  ident: 10.1016/j.neunet.2014.09.003_br002335
  article-title: Self-organization in a perceptual network
  publication-title: IEEE Computer
  doi: 10.1109/2.36
– start-page: 199
  year: 2006
  ident: 10.1016/j.neunet.2014.09.003_br003470
  article-title: Gödel machines: Fully self-referential optimal universal self-improvers
– start-page: 177
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br001455
  article-title: Comparing biases for minimal network construction with back-propagation
– volume: 2
  start-page: 164
  year: 1944
  ident: 10.1016/j.neunet.2014.09.003_br002260
  article-title: A method for the solution of certain problems in least squares
  publication-title: Quarterly of Applied Mathematics
  doi: 10.1090/qam/10666
– ident: 10.1016/j.neunet.2014.09.003_br003685
  doi: 10.1109/ICDAR.2003.1227801
– volume: 40
  start-page: 63
  issue: 1
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br002605
  article-title: Explanation-based learning: A problem solving perspective
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(89)90047-7
– year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br003775
  article-title: A recurrent network that performs a contextsensitive prediction task
– volume: 4
  start-page: 173
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br002825
  article-title: Simplifying neural networks by soft weight sharing
  publication-title: Neural Computation
  doi: 10.1162/neco.1992.4.4.473
– volume: 12
  start-page: 91
  issue: 5
  year: 2010
  ident: 10.1016/j.neunet.2014.09.003_br001825
  article-title: Modeling spiking neural networks on SpiNNaker
  publication-title: Computing in Science and Engineering
  doi: 10.1109/MCSE.2010.112
– year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br003180
– volume: 6
  start-page: 182
  issue: 1
  year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br000150
  article-title: Gradient descent learning algorithms overview: A general dynamical systems perspective
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.363438
– volume: 14
  start-page: 715
  issue: 4
  year: 2002
  ident: 10.1016/j.neunet.2014.09.003_br004315
  article-title: Slow feature analysis: Unsupervised learning of invariances
  publication-title: Neural Computation
  doi: 10.1162/089976602317318938
– volume: 9
  start-page: 1015
  issue: 5
  year: 1997
  ident: 10.1016/j.neunet.2014.09.003_br001960
  article-title: Reduction of the Hodgkin–Huxley equations to a single-variable threshold model
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.5.1015
– start-page: 467
  year: 1684
  ident: 10.1016/j.neunet.2014.09.003_br002240
  article-title: Nova methodus pro maximis et minimis, itemque tangentibus, quae nec fractas, nec irrationales quantitates moratur, et singulare pro illis calculi genus
  publication-title: Acta Eruditorum
– volume: 7
  start-page: 923
  issue: 5
  year: 1990
  ident: 10.1016/j.neunet.2014.09.003_br002460
  article-title: Preattentive texture discrimination with early vision mechanisms
  publication-title: Journal of the Optical Society of America A
  doi: 10.1364/JOSAA.7.000923
– ident: 10.1016/j.neunet.2014.09.003_br003915
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br001665
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(89)90020-8
– year: 1969
  ident: 10.1016/j.neunet.2014.09.003_br000530
– ident: 10.1016/j.neunet.2014.09.003_br001895
– volume: 37
  start-page: 233
  year: 1991
  ident: 10.1016/j.neunet.2014.09.003_br002070
  article-title: Nonlinear principal component analysis using autoassociative neural networks
  publication-title: AIChE Journal
  doi: 10.1002/aic.690370209
– year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br004230
– start-page: 598
  year: 1990
  ident: 10.1016/j.neunet.2014.09.003_br002175
  article-title: Optimal brain damage
– start-page: 847
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br002655
  article-title: The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems
– ident: 10.1016/j.neunet.2014.09.003_br002940
– start-page: 2852
  year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br000620
  article-title: Deep neural networks segment neuronal membranes in electron microscopy images
– year: 1984
  ident: 10.1016/j.neunet.2014.09.003_br000980
– volume: 5
  start-page: 279
  issue: 2
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br003085
  article-title: Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.279191
– volume: 1
  start-page: 61
  issue: 1
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br002840
  article-title: Neural networks, principal components, and subspaces
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065789000475
– year: 2001
  ident: 10.1016/j.neunet.2014.09.003_br001860
– start-page: 21
  year: 1988
  ident: 10.1016/j.neunet.2014.09.003_br002155
  article-title: A theoretical framework for back-propagation
– ident: 10.1016/j.neunet.2014.09.003_br001210
  doi: 10.1109/IJCNN.1989.118645
– start-page: 11
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br004425
  article-title: Developing population codes by minimizing description length
– volume: 14
  start-page: 2709
  issue: 11
  year: 2002
  ident: 10.1016/j.neunet.2014.09.003_br003680
  article-title: Training a single sigmoidal neuron is hard
  publication-title: Neural Computation
  doi: 10.1162/089976602760408035
– volume: 36
  start-page: 111
  year: 1974
  ident: 10.1016/j.neunet.2014.09.003_br003795
  article-title: Cross-validatory choice and assessment of statistical predictions
  publication-title: Journal of the Royal Statistical Society B
  doi: 10.1111/j.2517-6161.1974.tb00994.x
– start-page: 500
  year: 1991
  ident: 10.1016/j.neunet.2014.09.003_br003420
  article-title: Reinforcement learning in Markovian and non-Markovian environments
– volume: 45
  start-page: 2673
  year: 1997
  ident: 10.1016/j.neunet.2014.09.003_br003575
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/78.650093
– year: 1974
  ident: 10.1016/j.neunet.2014.09.003_br004130
– volume: 31
  start-page: 1
  year: 1978
  ident: 10.1016/j.neunet.2014.09.003_br000430
  article-title: Learning processes in multilayer threshold nets
  publication-title: Biological Cybernetics
  doi: 10.1007/BF00337365
– start-page: 87
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br003510
  article-title: Continuous history compression
– volume: 1
  start-page: 295
  issue: 3
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br000210
  article-title: Unsupervised learning
  publication-title: Neural Computation
  doi: 10.1162/neco.1989.1.3.295
– volume: 2
  start-page: 1019
  issue: 11
  year: 1999
  ident: 10.1016/j.neunet.2014.09.003_br003160
  article-title: Hierarchical models of object recognition in cortex
  publication-title: Nature Neuroscience
  doi: 10.1038/14819
– ident: 10.1016/j.neunet.2014.09.003_br001510
– volume: 6
  start-page: 842
  issue: 5
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br003675
  article-title: Loading deep networks is hard
  publication-title: Neural Computation
  doi: 10.1162/neco.1994.6.5.842
– start-page: 189
  year: 2003
  ident: 10.1016/j.neunet.2014.09.003_br003225
  article-title: Hardware spiking neural network with run-time reconfigurable connectivity in an autonomous robot
– volume: 22
  start-page: 3207
  issue: 12
  year: 2010
  ident: 10.1016/j.neunet.2014.09.003_br000630
  article-title: Deep big simple neural nets for handwritten digit recogntion
  publication-title: Neural Computation
  doi: 10.1162/NECO_a_00052
– year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br002660
  article-title: Architecture selection strategies for neural networks: Application to corporate bond rating prediction
– start-page: 52
  year: 1990
  ident: 10.1016/j.neunet.2014.09.003_br003395
  article-title: Learning algorithms for networks with internal and external feedback
– ident: 10.1016/j.neunet.2014.09.003_br003070
  doi: 10.1109/IJCNN.2002.1007449
– volume: 287
  start-page: 239
  issue: 1
  year: 2002
  ident: 10.1016/j.neunet.2014.09.003_br002225
  article-title: Neural circuits for pattern recognition with small total wire length
  publication-title: Theoretical Computer Science
  doi: 10.1016/S0304-3975(02)00097-X
– year: 2001
  ident: 10.1016/j.neunet.2014.09.003_br002075
– year: 2014
  ident: 10.1016/j.neunet.2014.09.003_br003645
  article-title: Learning deep and wide: A spectral method for learning deep networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2014.2308519
– ident: 10.1016/j.neunet.2014.09.003_br001345
– ident: 10.1016/j.neunet.2014.09.003_br002390
– start-page: 323
  year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br004170
  article-title: Adaptive back-propagation in on-line learning of multilayer networks
– year: 2014
  ident: 10.1016/j.neunet.2014.09.003_br002300
  article-title: Deep learning based imaging data completion for improved brain disease diagnosis
– year: 2005
  ident: 10.1016/j.neunet.2014.09.003_br001405
– start-page: 318
  year: 1986
  ident: 10.1016/j.neunet.2014.09.003_br003260
  article-title: Learning internal representations by error propagation
– volume: 3
  start-page: 210
  year: 1959
  ident: 10.1016/j.neunet.2014.09.003_br003315
  article-title: Some studies in machine learning using the game of checkers
  publication-title: IBM Journal of Research and Development
  doi: 10.1147/rd.33.0210
– volume: 5
  issue: 73
  year: 2011
  ident: 10.1016/j.neunet.2014.09.003_br001740
  article-title: Neuromorphic silicon neuron circuits
  publication-title: Frontiers in Neuroscience
– volume: 117
  start-page: 500
  issue: 4
  year: 1952
  ident: 10.1016/j.neunet.2014.09.003_br001630
  article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.1952.sp004764
– volume: 2
  start-page: 261
  issue: 2–3
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br002115
  article-title: Clustering properties of hierarchical self-organizing maps
  publication-title: Journal of Mathematical Imaging and Vision
  doi: 10.1007/BF00118594
– volume: 12
  start-page: 574
  issue: 2
  year: 2011
  ident: 10.1016/j.neunet.2014.09.003_br004325
  article-title: On-line driver distraction detection using long short-term memory
  publication-title: IEEE Transactions on Intelligent Transportation Systems (TITS)
  doi: 10.1109/TITS.2011.2119483
– volume: 10
  start-page: 99
  year: 2002
  ident: 10.1016/j.neunet.2014.09.003_br003770
  article-title: Evolving neural networks through augmenting topologies
  publication-title: Evolutionary Computation
  doi: 10.1162/106365602320169811
– volume: 5
  start-page: 59
  issue: 1
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br000545
  article-title: A constructive algorithm that converges for real-valued input patterns
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065794000074
– start-page: 23
  year: 2001
  ident: 10.1016/j.neunet.2014.09.003_br003075
  article-title: Dynamical neural networks for control
– volume: 7
  start-page: 375
  issue: 2
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br003135
  article-title: Stock performance modeling using neural networks: a comparative study with regression models
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(94)90030-2
– volume: 47
  start-page: 1642
  issue: 4
  year: 2014
  ident: 10.1016/j.neunet.2014.09.003_br004405
  article-title: Neural network language models for off-line handwriting recognition
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2013.10.020
– volume: 14
  start-page: 629
  issue: 6–7
  year: 2001
  ident: 10.1016/j.neunet.2014.09.003_br002345
  article-title: Orientation-selective aVLSI spiking neurons
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(01)00054-5
– ident: 10.1016/j.neunet.2014.09.003_br001275
  doi: 10.1007/3-540-45110-2_105
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.neunet.2014.09.003_br001565
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Computation
  doi: 10.1162/neco.2006.18.7.1527
– ident: 10.1016/j.neunet.2014.09.003_br002530
  doi: 10.1109/IJCNN.2000.861532
– year: 1980
  ident: 10.1016/j.neunet.2014.09.003_br003710
– volume: 22
  start-page: 1521
  issue: 13–14
  year: 2008
  ident: 10.1016/j.neunet.2014.09.003_br002515
  article-title: A system for robotic heart surgery that learns to tie knots using recurrent neural networks
  publication-title: Advanced Robotics
  doi: 10.1163/156855308X360604
– year: 2006
  ident: 10.1016/j.neunet.2014.09.003_br000400
– year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br003270
– start-page: 115
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br003175
  article-title: Learning sequential tasks by incrementally adding higher orders
– volume: 24
  start-page: 767
  issue: 7
  year: 2011
  ident: 10.1016/j.neunet.2014.09.003_br001125
  article-title: Increasing robustness against background noise: visual pattern recognition by a neocognitron
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2011.03.017
– volume: 24
  start-page: 377
  year: 1987
  ident: 10.1016/j.neunet.2014.09.003_br000425
  article-title: Occam’s razor
  publication-title: Information Processing Letters
  doi: 10.1016/0020-0190(87)90114-1
– volume: 40
  start-page: 18
  year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br001135
  article-title: Training multi-layered neural network neocognitron
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2013.01.001
– volume: 8
  start-page: 549
  issue: 4
  year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br001910
  article-title: Generalizations of principal component analysis, optimization problems, and neural networks
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(94)00098-7
– start-page: 1
  year: 2006
  ident: 10.1016/j.neunet.2014.09.003_br003365
  article-title: Implementing synaptic plasticity in a VLSI spiking neural network model
– start-page: 151
  year: 1986
  ident: 10.1016/j.neunet.2014.09.003_br003265
  article-title: Feature discovery by competitive learning
– ident: 10.1016/j.neunet.2014.09.003_br002445
  doi: 10.2991/agi.2010.22
– volume: 5
  start-page: 402
  issue: 3
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br000165
  article-title: Neural networks for fingerprint recognition
  publication-title: Neural Computation
  doi: 10.1162/neco.1993.5.3.402
– volume: 36
  start-page: 287
  issue: 3
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br000695
  article-title: Independent component analysis—a new concept?
  publication-title: Signal Processing
  doi: 10.1016/0165-1684(94)90029-9
– volume: 13
  start-page: 1331
  issue: 6
  year: 2002
  ident: 10.1016/j.neunet.2014.09.003_br003115
  article-title: The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2002.804221
– ident: 10.1016/j.neunet.2014.09.003_br003370
  doi: 10.1007/978-3-642-15825-4_10
– volume: 46
  start-page: 77
  year: 1990
  ident: 10.1016/j.neunet.2014.09.003_br003035
  article-title: Recursive distributed representation
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(90)90005-K
– year: 1977
  ident: 10.1016/j.neunet.2014.09.003_br003910
– ident: 10.1016/j.neunet.2014.09.003_br001005
  doi: 10.1007/978-3-540-74695-9_23
– volume: 31
  issue: 5
  year: 2009
  ident: 10.1016/j.neunet.2014.09.003_br001350
  article-title: A novel connectionist system for improved unconstrained handwriting recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2008.137
– ident: 10.1016/j.neunet.2014.09.003_br002495
– volume: 18
  start-page: 620
  issue: 2
  year: 2010
  ident: 10.1016/j.neunet.2014.09.003_br004235
  article-title: Recurrent policy gradients
  publication-title: Logic Journal of IGPL
  doi: 10.1093/jigpal/jzp049
– volume: 4
  start-page: 575
  year: 2003
  ident: 10.1016/j.neunet.2014.09.003_br000185
  article-title: The principled design of large-scale recursive neural network architectures—DAG-RNNs and the protein structure prediction problem
  publication-title: Journal of Machine Learning Research
– start-page: 8609
  year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br000730
  article-title: Improving deep neural networks for LVCSR using rectified linear units and dropout
– volume: 381
  start-page: 607
  issue: 6583
  year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br002850
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
  doi: 10.1038/381607a0
– ident: 10.1016/j.neunet.2014.09.003_br002475
  doi: 10.1109/ICASSP.2014.6853982
– volume: 9
  start-page: 123
  issue: 1
  year: 1997
  ident: 10.1016/j.neunet.2014.09.003_br003280
  article-title: Partial BFGS update and efficient step-length calculation for three-layer neural networks
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.1.123
– year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br000055
  article-title: A new learning algorithm for blind signal separation
– start-page: 473
  issue: 7
  year: 1976
  ident: 10.1016/j.neunet.2014.09.003_br001725
  article-title: Sequential GMDH algorithm and its application to river flow prediction
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
  doi: 10.1109/TSMC.1976.4309532
– volume: 35
  start-page: 1915
  issue: 8
  year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br000975
  article-title: Learning hierarchical features for scene labeling
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2012.231
– year: 1961
  ident: 10.1016/j.neunet.2014.09.003_br003040
– volume: 7
  start-page: 687
  issue: 4
  year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br003785
  article-title: A single spike suffices: the simplest form of stochastic resonance in model neurons
  publication-title: Network: Computation in Neural Systems
  doi: 10.1088/0954-898X/7/4/005
– start-page: 189
  year: 2000
  ident: 10.1016/j.neunet.2014.09.003_br001175
  article-title: Recurrent nets that time and count
– year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br002755
– volume: 13
  start-page: 547
  year: 1966
  ident: 10.1016/j.neunet.2014.09.003_br000580
  article-title: On the length of programs for computing finite binary sequences
  publication-title: Journal of the ACM
  doi: 10.1145/321356.321363
– year: 2006
  ident: 10.1016/j.neunet.2014.09.003_br002180
  article-title: Off-road obstacle avoidance through end-to-end learning
– volume: 352
  start-page: 1177
  year: 1997
  ident: 10.1016/j.neunet.2014.09.003_br001560
  article-title: Generative models for discovering sparse distributed representations
  publication-title: Philosophical Transactions of the Royal Society B
  doi: 10.1098/rstb.1997.0101
– volume: 9
  start-page: 41
  issue: 1
  year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br002855
  article-title: Extraction of rules from discrete-time recurrent neural networks
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(95)00086-0
– year: 1990
  ident: 10.1016/j.neunet.2014.09.003_br003390
– start-page: 967
  year: 1991
  ident: 10.1016/j.neunet.2014.09.003_br003415
  article-title: Learning to generate sub-goals for action sequences
– volume: 310
  start-page: 863
  issue: 5749
  year: 2005
  ident: 10.1016/j.neunet.2014.09.003_br001685
  article-title: Fast readout of object identity from macaque inferior temporal cortex
  publication-title: Science
  doi: 10.1126/science.1117593
– volume: 1
  start-page: 4
  issue: 1
  year: 1990
  ident: 10.1016/j.neunet.2014.09.003_br002745
  article-title: Identification and control of dynamical systems using neural networks
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.80202
– start-page: 155
  year: 1991
  ident: 10.1016/j.neunet.2014.09.003_br000440
  article-title: The Tempo 2 algorithm: adjusting time-delays by supervised learning
– ident: 10.1016/j.neunet.2014.09.003_br004350
  doi: 10.1109/CVPR.2014.98
– year: 1999
  ident: 10.1016/j.neunet.2014.09.003_br003570
– start-page: 4
  year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br002085
  article-title: Imagenet classification with deep convolutional neural networks
– start-page: 499
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br003550
  article-title: Unsupervised discrimination of clustered data via optimization of binary information gain
– ident: 10.1016/j.neunet.2014.09.003_br001295
  doi: 10.21437/Interspeech.2014-483
– year: 1999
  ident: 10.1016/j.neunet.2014.09.003_br001700
  article-title: Sparse code shrinkage: denoising by maximum likelihood estimation
– year: 1988
  ident: 10.1016/j.neunet.2014.09.003_br001845
– year: 1991
  ident: 10.1016/j.neunet.2014.09.003_br000455
– volume: 33
  start-page: 11515
  issue: 28
  year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br001970
  article-title: Emergence of dynamic memory traces in cortical microcircuit models through STDP
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.5044-12.2013
– ident: 10.1016/j.neunet.2014.09.003_br000740
  doi: 10.1145/1276958.1277155
– volume: 7
  issue: 272
  year: 2014
  ident: 10.1016/j.neunet.2014.09.003_br002770
  article-title: Event-driven contrastive divergence for spiking neuromorphic systems
  publication-title: Frontiers in Neuroscience
– ident: 10.1016/j.neunet.2014.09.003_br004065
– volume: 65
  start-page: 386
  issue: 6
  year: 1958
  ident: 10.1016/j.neunet.2014.09.003_br003235
  article-title: The perceptron: a probabilistic model for information storage and organization in the brain
  publication-title: Psychological Review
  doi: 10.1037/h0042519
– volume: 40
  start-page: 1098
  year: 1952
  ident: 10.1016/j.neunet.2014.09.003_br001680
  article-title: A method for construction of minimum-redundancy codes
  publication-title: Proceedings IRE
  doi: 10.1109/JRPROC.1952.273898
– ident: 10.1016/j.neunet.2014.09.003_br001940
  doi: 10.1109/CVPR.2014.249
– volume: 335
  start-page: 23
  issue: 1273
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br002985
  article-title: Organization and functions of cells responsive to faces in the temporal cortex [and discussion]
  publication-title: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences
  doi: 10.1098/rstb.1992.0003
– year: 2014
  ident: 10.1016/j.neunet.2014.09.003_br003835
– start-page: 875
  year: 1991
  ident: 10.1016/j.neunet.2014.09.003_br004110
  article-title: Generalization by weight-elimination with application to forecasting
– volume: 5
  start-page: 289
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br003130
  article-title: Redundancy reduction as a strategy for unsupervised learning
  publication-title: Neural Computation
  doi: 10.1162/neco.1993.5.2.289
– start-page: 38
  year: 2001
  ident: 10.1016/j.neunet.2014.09.003_br001055
  article-title: Evolution of spiking neural controllers for autonomous vision-based robots
– volume: 9
  start-page: 159
  issue: 2
  year: 2001
  ident: 10.1016/j.neunet.2014.09.003_br001445
  article-title: Completely derandomized self-adaptation in evolution strategies
  publication-title: Evolutionary Computation
  doi: 10.1162/106365601750190398
– volume: 16
  start-page: 146
  issue: 2
  year: 1976
  ident: 10.1016/j.neunet.2014.09.003_br002330
  article-title: Taylor expansion of the accumulated rounding error
  publication-title: BIT Numerical Mathematics
  doi: 10.1007/BF01931367
– year: 2001
  ident: 10.1016/j.neunet.2014.09.003_br001705
– year: 1985
  ident: 10.1016/j.neunet.2014.09.003_br000715
  article-title: A representation for the adaptive generation of simple sequential programs
– volume: 3
  start-page: 115
  year: 2002
  ident: 10.1016/j.neunet.2014.09.003_br001190
  article-title: Learning precise timing with LSTM recurrent networks
  publication-title: Journal of Machine Learning Research
– volume: 24
  start-page: 2248
  issue: 11
  year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br004355
  article-title: The limits of feedforward vision: Recurrent processing promotes robust object recognition when objects are degraded
  publication-title: Journal of Cognitive Neuroscience
  doi: 10.1162/jocn_a_00282
– ident: 10.1016/j.neunet.2014.09.003_br001225
  doi: 10.1109/ICIP.2013.6738831
– volume: 31
  start-page: 377
  year: 1979
  ident: 10.1016/j.neunet.2014.09.003_br000720
  article-title: Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation
  publication-title: Numerische Mathematik
  doi: 10.1007/BF01404567
– start-page: 627
  year: 1991
  ident: 10.1016/j.neunet.2014.09.003_br002700
  article-title: Discovering discrete distributed representations with iterative competitive learning
– year: 2001
  ident: 10.1016/j.neunet.2014.09.003_br000375
– year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br002635
– volume: 36
  start-page: 1249
  issue: 9
  year: 2000
  ident: 10.1016/j.neunet.2014.09.003_br000410
  article-title: A survey of computational complexity results in systems and control
  publication-title: Automatica
  doi: 10.1016/S0005-1098(00)00050-9
– volume: 18
  start-page: 415
  issue: 2
  year: 2006
  ident: 10.1016/j.neunet.2014.09.003_br000965
  article-title: A simple Hebbian/anti-Hebbian network learns the sparse, independent components of natural images
  publication-title: Neural Computation
  doi: 10.1162/089976606775093891
– volume: 30
  start-page: 947
  issue: 10
  year: 1960
  ident: 10.1016/j.neunet.2014.09.003_br001925
  article-title: Gradient theory of optimal flight paths
  publication-title: ARS Journal
  doi: 10.2514/8.5282
– year: 1987
  ident: 10.1016/j.neunet.2014.09.003_br003375
– start-page: 909
  year: 2006
  ident: 10.1016/j.neunet.2014.09.003_br003860
  article-title: Cross-entropy optimization for independent process analysis
– volume: 25
  start-page: 109
  issue: 2
  year: 1997
  ident: 10.1016/j.neunet.2014.09.003_br004125
  article-title: Learning recognition and segmentation using the cresceptron
  publication-title: International Journal of Computer Vision
  doi: 10.1023/A:1007967800668
– year: 1986
  ident: 10.1016/j.neunet.2014.09.003_br001840
– ident: 10.1016/j.neunet.2014.09.003_br001600
– ident: 10.1016/j.neunet.2014.09.003_br002215
– start-page: 194
  year: 1986
  ident: 10.1016/j.neunet.2014.09.003_br003715
  article-title: Parallel distributed processing: Explorations in the microstructure of cognition
– volume: Vol. 1502
  year: 1998
  ident: 10.1016/j.neunet.2014.09.003_br001900
  article-title: Computation in recurrent neural networks: from counters to iterated function systems
– ident: 10.1016/j.neunet.2014.09.003_br000550
– start-page: 253
  year: 2004
  ident: 10.1016/j.neunet.2014.09.003_br000745
  article-title: Locality-sensitive hashing scheme based on p-stable distributions
– year: 1687
  ident: 10.1016/j.neunet.2014.09.003_br002795
– ident: 10.1016/j.neunet.2014.09.003_br000195
– volume: 61
  start-page: 241
  issue: 4
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br003200
  article-title: Self-organizing semantic maps
  publication-title: Biological Cybernetics
  doi: 10.1007/BF00203171
– start-page: 2729
  year: 2011
  ident: 10.1016/j.neunet.2014.09.003_br003875
  article-title: Learning invariance through imitation
– start-page: 325
  year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br004185
  article-title: Evolutionary computation for reinforcement learning
– volume: 28
  start-page: 41
  issue: 1
  year: 1997
  ident: 10.1016/j.neunet.2014.09.003_br000565
  article-title: Multitask learning
  publication-title: Machine Learning
  doi: 10.1023/A:1007379606734
– ident: 10.1016/j.neunet.2014.09.003_br001015
  doi: 10.21437/Interspeech.2014-445
– volume: 114
  start-page: 679
  year: 1965
  ident: 10.1016/j.neunet.2014.09.003_br002010
  article-title: On the representation of continuous functions of several variables by superposition of continuous functions of one variable and addition
  publication-title: Doklady Akademii Nauk SSSR
– volume: 19
  start-page: 2229
  issue: 59
  year: 1987
  ident: 10.1016/j.neunet.2014.09.003_br003015
  article-title: Generalization of back-propagation to recurrent neural networks
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.59.2229
– volume: 33
  start-page: 9565
  issue: 23
  year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br000480
  article-title: Matching recall and storage in sequence learning with spiking neural networks
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.4098-12.2013
– volume: 304
  start-page: 78
  year: 2004
  ident: 10.1016/j.neunet.2014.09.003_br001800
  article-title: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
  publication-title: Science
  doi: 10.1126/science.1091277
– volume: 50
  start-page: 461
  year: 2003
  ident: 10.1016/j.neunet.2014.09.003_br004020
  article-title: A training algorithm for classification of high-dimensional data
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(02)00635-5
– year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br002620
– volume: 5
  start-page: 197
  year: 1990
  ident: 10.1016/j.neunet.2014.09.003_br003350
  article-title: The strength of weak learnability
  publication-title: Machine Learning
  doi: 10.1007/BF00116037
– volume: 306
  start-page: 50
  issue: 6
  year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br002480
  article-title: The human brain project
  publication-title: Scientific American
  doi: 10.1038/scientificamerican0612-50
– volume: Vol. 7700
  year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br002645
– start-page: 153
  year: 2007
  ident: 10.1016/j.neunet.2014.09.003_br000360
  article-title: Greedy layer-wise training of deep networks
– volume: 71
  start-page: 856
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br001980
  article-title: Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.1994.71.3.856
– ident: 10.1016/j.neunet.2014.09.003_br002370
  doi: 10.1109/ICCV.1999.790410
– volume: 94
  start-page: 295
  issue: 1
  year: 2005
  ident: 10.1016/j.neunet.2014.09.003_br000775
  article-title: Neurodynamics of biased competition and cooperation for attention: a model with spiking neurons
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.01095.2004
– start-page: 265
  year: 2006
  ident: 10.1016/j.neunet.2014.09.003_br002765
  article-title: High dimensional classification with Bayesian neural networks and Dirichlet diffusion trees
– ident: 10.1016/j.neunet.2014.09.003_br000510
  doi: 10.1109/ICASSP.2014.6854518
– start-page: 1453
  year: 2011
  ident: 10.1016/j.neunet.2014.09.003_br003755
  article-title: The German traffic sign recognition benchmark: A multi-class classification competition
– ident: 10.1016/j.neunet.2014.09.003_br004375
– volume: 11
  start-page: 431
  issue: 2
  year: 1963
  ident: 10.1016/j.neunet.2014.09.003_br002485
  article-title: An algorithm for least-squares estimation of nonlinear parameters
  publication-title: Journal of the Society for Industrial & Applied Mathematics
  doi: 10.1137/0111030
– volume: 70
  start-page: 75
  issue: 1
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br001655
  article-title: Generative learning structures and processes for generalized connectionist networks
  publication-title: Information Sciences
  doi: 10.1016/0020-0255(93)90049-R
– year: 2009
  ident: 10.1016/j.neunet.2014.09.003_br001480
– year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br001785
  article-title: Genetic L-system programming
– start-page: 491
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br002725
  article-title: Synaptic weight noise during MLP learning enhances fault-tolerance, generalisation and learning trajectory
– start-page: 15
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br003690
  article-title: Evolving virtual creatures
  doi: 10.1145/192161.192167
– year: 1999
  ident: 10.1016/j.neunet.2014.09.003_br000810
  article-title: The loading problem for pyramidal neural networks
  publication-title: Electronic Journal on Mathematics of Computation
– start-page: 950
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br002090
  article-title: A simple weight decay can improve generalization
– start-page: 29
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br002650
  article-title: Fast learning in multi-resolution hierarchies
– ident: 10.1016/j.neunet.2014.09.003_br002205
  doi: 10.1145/1553374.1553453
– start-page: 831
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br004000
  article-title: Principles of risk minimization for learning theory
– volume: 4
  start-page: 234
  issue: 2
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br003430
  article-title: Learning complex, extended sequences using the principle of history compression
  publication-title: Neural Computation
  doi: 10.1162/neco.1992.4.2.234
– volume: 4
  start-page: 863
  issue: 6
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br003435
  article-title: Learning factorial codes by predictability minimization
  publication-title: Neural Computation
  doi: 10.1162/neco.1992.4.6.863
– volume: SMC-13
  start-page: 834
  year: 1983
  ident: 10.1016/j.neunet.2014.09.003_br000235
  article-title: Neuronlike adaptive elements that can solve difficult learning control problems
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
  doi: 10.1109/TSMC.1983.6313077
– start-page: 2348
  year: 2011
  ident: 10.1016/j.neunet.2014.09.003_br001325
  article-title: Practical variational inference for neural networks
– volume: J62-A
  start-page: 658
  issue: 10
  year: 1979
  ident: 10.1016/j.neunet.2014.09.003_br001115
  article-title: Neural network model for a mechanism of pattern recognition unaffected by shift in position—Neocognitron
  publication-title: Transactions of the IECE
– start-page: 244
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br000575
  article-title: A fast stochastic error-descent algorithm for supervised learning and optimization
– volume: 210C
  start-page: 78
  year: 2014
  ident: 10.1016/j.neunet.2014.09.003_br000190
  article-title: The dropout learning algorithm
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2014.02.004
– volume: 1
  start-page: 145
  issue: 2
  year: 1986
  ident: 10.1016/j.neunet.2014.09.003_br000785
  article-title: Explanation-based learning: an alternative view
  publication-title: Machine Learning
  doi: 10.1007/BF00114116
– ident: 10.1016/j.neunet.2014.09.003_br003210
– year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br001885
– volume: 14
  start-page: 1723
  issue: 7
  year: 2002
  ident: 10.1016/j.neunet.2014.09.003_br003545
  article-title: Fast curvature matrix–vector products for second-order gradient descent
  publication-title: Neural Computation
  doi: 10.1162/08997660260028683
– start-page: 107
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br002710
  article-title: Skeletonization: A technique for trimming the fat from a network via relevance assessment
– ident: 10.1016/j.neunet.2014.09.003_br003580
  doi: 10.1016/B978-1-55860-307-3.50045-9
– year: 2014
  ident: 10.1016/j.neunet.2014.09.003_br003865
– year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br004270
– year: 1908
  ident: 10.1016/j.neunet.2014.09.003_br001425
– volume: 3
  start-page: 331
  issue: 4
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br000240
  article-title: Accelerated backpropagation learning: two optimization methods
  publication-title: Complex Systems
– volume: 22
  start-page: 283
  year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br002975
  article-title: Incremental multi-step Q-learning
  publication-title: Machine Learning
  doi: 10.1007/BF00114731
– volume: 21
  start-page: 682
  issue: 4
  year: 2008
  ident: 10.1016/j.neunet.2014.09.003_br003005
  article-title: Reinforcement learning of motor skills with policy gradients
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2008.02.003
– volume: 1
  start-page: 445
  issue: 6
  year: 1961
  ident: 10.1016/j.neunet.2014.09.003_br001045
  article-title: Impulses and physiological states in theoretical models of nerve membrane
  publication-title: Biophysical Journal
  doi: 10.1016/S0006-3495(61)86902-6
– volume: 28
  start-page: 2449
  year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br000855
  article-title: Deep architectures for protein contact map prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts475
– volume: 13
  start-page: 43
  issue: 3
  year: 1968
  ident: 10.1016/j.neunet.2014.09.003_br001745
  article-title: The group method of data handling—a rival of the method of stochastic approximation
  publication-title: Soviet Automatic Control
– start-page: 429
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br003380
  article-title: Accelerated learning in back-propagation nets
– start-page: 735
  year: 2010
  ident: 10.1016/j.neunet.2014.09.003_br002490
  article-title: Deep learning via Hessian-free optimization
– start-page: 649
  year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br001820
  article-title: Effects of noise on convergence and generalization in recurrent networks
– ident: 10.1016/j.neunet.2014.09.003_br004150
  doi: 10.1109/IJCNN.1989.118583
– ident: 10.1016/j.neunet.2014.09.003_br000145
  doi: 10.1109/IROS.2003.1250667
– volume: 7
  start-page: 783
  issue: 5
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br002590
  article-title: Perturbation response in feedforward networks
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(94)90100-7
– ident: 10.1016/j.neunet.2014.09.003_br002625
  doi: 10.1109/ICASSP.2010.5495651
– ident: 10.1016/j.neunet.2014.09.003_br003825
  doi: 10.1145/1569901.1569976
– volume: 7
  start-page: 565
  year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br000765
  article-title: Competition and multiple cause models
  publication-title: Neural Computation
  doi: 10.1162/neco.1995.7.3.565
– ident: 10.1016/j.neunet.2014.09.003_br002145
– volume: 8
  start-page: 38
  year: 2014
  ident: 10.1016/j.neunet.2014.09.003_br003140
  article-title: Stochastic variational learning in recurrent spiking networks
  publication-title: Frontiers in Computational Neuroscience
– volume: 17
  year: 1987
  ident: 10.1016/j.neunet.2014.09.003_br004140
  article-title: Building and understanding adaptive systems: A statistical/numerical approach to factory automation and brain research
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
  doi: 10.1109/TSMC.1987.289329
– ident: 10.1016/j.neunet.2014.09.003_br001955
– start-page: 215
  year: 2010
  ident: 10.1016/j.neunet.2014.09.003_br000905
  article-title: Free-energy based reinforcement learning for vision-based navigation with high-dimensional sensory inputs
– ident: 10.1016/j.neunet.2014.09.003_br003495
  doi: 10.1007/978-3-642-22887-2_25
– volume: 15
  start-page: 194
  issue: 2
  year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br003790
  article-title: Emergence of a ‘visual number sense’ in hierarchical generative models
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.2996
– year: 2001
  ident: 10.1016/j.neunet.2014.09.003_br000555
– ident: 10.1016/j.neunet.2014.09.003_br002945
– year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br000380
– start-page: 22
  year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br000470
  article-title: Linear least-squares algorithms for temporal difference learning
  publication-title: Machine Learning
– year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br000685
– volume: 2
  start-page: 625
  year: 1988
  ident: 10.1016/j.neunet.2014.09.003_br003720
  article-title: Accelerated learning in layered neural networks
  publication-title: Complex Systems
– volume: 4
  start-page: 77
  issue: 6
  year: 1991
  ident: 10.1016/j.neunet.2014.09.003_br003665
  article-title: Turing computability with neural nets
  publication-title: Applied Mathematics Letters
  doi: 10.1016/0893-9659(91)90080-F
– volume: 14
  start-page: 179
  issue: 2
  year: 1990
  ident: 10.1016/j.neunet.2014.09.003_br000920
  article-title: Finding structure in time
  publication-title: Cognitive Science
  doi: 10.1207/s15516709cog1402_1
– year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br002190
– volume: 62
  start-page: 193
  year: 1990
  ident: 10.1016/j.neunet.2014.09.003_br003250
  article-title: Development of feature detectors by self-organization: A network model
  publication-title: Biological Cybernetics
  doi: 10.1007/BF00198094
– volume: 21
  start-page: 858
  issue: 5
  year: 2010
  ident: 10.1016/j.neunet.2014.09.003_br003065
  article-title: A convolutional learning system for object classification in 3-D LIDAR data
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2010.2044802
– volume: 4
  start-page: 882
  issue: 5
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br000395
  article-title: Curvature-driven smoothing: A learning algorithm for feed-forward networks
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.248466
– ident: 10.1016/j.neunet.2014.09.003_br004015
– year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br001580
– start-page: 968
  year: 1999
  ident: 10.1016/j.neunet.2014.09.003_br000130
  article-title: Gradient descent for general reinforcement learning
– volume: 23
  start-page: 819
  issue: 7
  year: 2010
  ident: 10.1016/j.neunet.2014.09.003_br004360
  article-title: Evolving spiking neural networks for audiovisual information processing
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2010.04.009
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.neunet.2014.09.003_br001570
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: 10.1016/j.neunet.2014.09.003_br000625
  doi: 10.1007/978-3-642-40763-5_51
– volume: Vol. 8150
  start-page: 246
  year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br003055
  article-title: Voxel classification based on triplanar convolutional neural networks applied to cartilage segmentation in knee MRI
– volume: 11
  start-page: 195
  issue: 2–3
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br002425
  article-title: Using knowledge-based neural networks to improve algorithms: Refining the Chou–Fasman algorithm for protein folding
  publication-title: Machine Learning
  doi: 10.1007/BF00993077
– ident: 10.1016/j.neunet.2014.09.003_br002235
– volume: 14
  start-page: 1771
  issue: 8
  year: 2002
  ident: 10.1016/j.neunet.2014.09.003_br001545
  article-title: Training products of experts by minimizing contrastive divergence
  publication-title: Neural Computation
  doi: 10.1162/089976602760128018
– volume: 6
  start-page: 383
  issue: 4
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br000075
  article-title: Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network
  publication-title: Protein Engineering
  doi: 10.1093/protein/6.4.383
– year: 2006
  ident: 10.1016/j.neunet.2014.09.003_br003110
  article-title: Efficient learning of sparse representations with an energy-based model
– year: 2006
  ident: 10.1016/j.neunet.2014.09.003_br001485
– start-page: 73
  year: 2011
  ident: 10.1016/j.neunet.2014.09.003_br001735
  article-title: Keyword spotting in online handwritten documents containing text and non-text using BLSTM neural networks
– year: 1971
  ident: 10.1016/j.neunet.2014.09.003_br003125
– volume: 14
  start-page: 1347
  issue: 6
  year: 2002
  ident: 10.1016/j.neunet.2014.09.003_br000880
  article-title: Multiple model-based reinforcement learning
  publication-title: Neural Computation
  doi: 10.1162/089976602753712972
– volume: 14
  start-page: 3683
  year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br000930
  article-title: How to solve classification and regression problems on high-dimensional data with a supervised extension of slow feature analysis
  publication-title: Journal of Machine Learning Research
– volume: 24
  start-page: 1271
  issue: 5
  year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br003885
  article-title: Learning invariance from natural images inspired by observations in the primary visual cortex
  publication-title: Neural Computation
  doi: 10.1162/NECO_a_00268
– year: 1965
  ident: 10.1016/j.neunet.2014.09.003_br001760
– volume: 5
  start-page: 13
  issue: 4
  year: 2010
  ident: 10.1016/j.neunet.2014.09.003_br000095
  article-title: Deep machine learning—a new frontier in artificial intelligence research
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2010.938364
– year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br004085
– ident: 10.1016/j.neunet.2014.09.003_br001155
– volume: 24
  start-page: 647
  issue: 111
  year: 1970
  ident: 10.1016/j.neunet.2014.09.003_br003635
  article-title: Conditioning of quasi-Newton methods for function minimization
  publication-title: Mathematics of Computation
  doi: 10.1090/S0025-5718-1970-0274029-X
– start-page: 199
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br003890
  article-title: The evolution of mental models
– volume: 7
  start-page: 1329
  issue: 6
  year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br002310
  article-title: Learning long-term dependencies in NARX recurrent neural networks
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.548162
– volume: 36
  start-page: 81
  issue: 1
  year: 2000
  ident: 10.1016/j.neunet.2014.09.003_br003800
  article-title: When pyramidal neurons lock, when they respond chaotically, and when they like to synchronize
  publication-title: Neuroscience Research
  doi: 10.1016/S0168-0102(99)00108-X
– volume: 14
  start-page: 2531
  issue: 11
  year: 2002
  ident: 10.1016/j.neunet.2014.09.003_br002410
  article-title: Real-time computing without stable states: A new framework for neural computation based on perturbations
  publication-title: Neural Computation
  doi: 10.1162/089976602760407955
– volume: Vol. 4131
  start-page: 71
  year: 2006
  ident: 10.1016/j.neunet.2014.09.003_br003345
  article-title: Learning long term dependencies with recurrent neural networks
– year: 1974
  ident: 10.1016/j.neunet.2014.09.003_br003585
– volume: 1
  start-page: 44
  issue: 1
  year: 1990
  ident: 10.1016/j.neunet.2014.09.003_br002045
  article-title: Unsupervised learning in noise
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.80204
– ident: 10.1016/j.neunet.2014.09.003_br000950
  doi: 10.1109/IJCNN.1992.287238
– volume: 3
  start-page: 166
  issue: 8
  year: 2007
  ident: 10.1016/j.neunet.2014.09.003_br001085
  article-title: Slowness and sparseness lead to place, head-direction, and spatial-view cells
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.0030166
– volume: 32
  start-page: 41
  issue: 1
  year: 1998
  ident: 10.1016/j.neunet.2014.09.003_br001035
  article-title: The hierarchical hidden Markov model: analysis and applications
  publication-title: Machine Learning
  doi: 10.1023/A:1007469218079
– volume: 21
  start-page: 199
  issue: 3
  year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br002670
  article-title: The parti-game algorithm for variable resolution reinforcement learning in multidimensional state-spaces
  publication-title: Machine Learning
  doi: 10.1007/BF00993591
– volume: 4
  start-page: 461
  year: 1990
  ident: 10.1016/j.neunet.2014.09.003_br001965
  article-title: Designing neural networks using genetic algorithms with graph generation system
  publication-title: Complex Systems
– start-page: 1057
  year: 1999
  ident: 10.1016/j.neunet.2014.09.003_br003845
  article-title: Policy gradient methods for reinforcement learning with function approximation
– volume: 13
  start-page: 3406
  issue: 8
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br004440
  article-title: A spiking network model of short-term active memory
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.13-08-03406.1993
– ident: 10.1016/j.neunet.2014.09.003_br002970
– volume: 6
  start-page: 271
  issue: 3
  year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br003945
  article-title: Population dynamics and theta rhythm phase precession of hippocampal place cell firing: a spiking neuron model
  publication-title: Hippocampus
  doi: 10.1002/(SICI)1098-1063(1996)6:3<271::AID-HIPO5>3.3.CO;2-Q
– volume: 160
  start-page: 106
  year: 1962
  ident: 10.1016/j.neunet.2014.09.003_br001670
  article-title: Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex
  publication-title: Journal of Physiology (London)
  doi: 10.1113/jphysiol.1962.sp006837
– volume: Vol. 3944
  start-page: 28
  year: 2006
  ident: 10.1016/j.neunet.2014.09.003_br002760
  article-title: Classification with Bayesian neural networks
– year: 1985
  ident: 10.1016/j.neunet.2014.09.003_br002935
– start-page: 586
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br003150
  article-title: A direct adaptive method for faster backpropagation learning: The Rprop algorithm
– volume: 24
  start-page: 1
  issue: 1
  year: 1991
  ident: 10.1016/j.neunet.2014.09.003_br001880
  article-title: Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture
  publication-title: Signal Processing
  doi: 10.1016/0165-1684(91)90079-X
– ident: 10.1016/j.neunet.2014.09.003_br000275
  doi: 10.1007/978-3-642-04277-5_76
– volume: 17
  start-page: 140
  issue: 2
  year: 2007
  ident: 10.1016/j.neunet.2014.09.003_br000700
  article-title: Transformation of shape information in the ventral pathway
  publication-title: Current Opinion in Neurobiology
  doi: 10.1016/j.conb.2007.03.002
– volume: 43
  start-page: 59
  issue: 1
  year: 1982
  ident: 10.1016/j.neunet.2014.09.003_br001995
  article-title: Self-organized formation of topologically correct feature maps
  publication-title: Biological Cybernetics
  doi: 10.1007/BF00337288
– volume: 5
  start-page: 1063
  year: 2004
  ident: 10.1016/j.neunet.2014.09.003_br003300
  article-title: Reinforcement learning with factored states and actions
  publication-title: Journal of Machine Learning Research
– volume: 20
  start-page: 1417
  issue: 9
  year: 2009
  ident: 10.1016/j.neunet.2014.09.003_br003610
  article-title: Caviar: A 45 k neuron, 5 m synapse, 12 g connects/s AER hardware sensory–processing–learning–actuating system for high-speed visual object recognition and tracking
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2009.2023653
– year: 1961
  ident: 10.1016/j.neunet.2014.09.003_br001865
– start-page: 393
  year: 2010
  ident: 10.1016/j.neunet.2014.09.003_br001235
  article-title: Exponential natural evolution strategies
– volume: 4
  start-page: 175
  issue: 1
  year: 2008
  ident: 10.1016/j.neunet.2014.09.003_br002030
  article-title: Multi-layered GMDH-type neural network self-selecting optimum neural network architecture and its application to 3-dimensional medical image recognition of blood vessels
  publication-title: International Journal of Innovative Computing, Information and Control
– start-page: 2588
  year: 2003
  ident: 10.1016/j.neunet.2014.09.003_br001715
  article-title: Neuroevolution for reinforcement learning using evolution strategies
– start-page: 552
  year: 2005
  ident: 10.1016/j.neunet.2014.09.003_br001230
  article-title: A novel approach for the implementation of large scale spiking neural networks on FPGA hardware
– volume: 22
  start-page: 1473
  issue: 6
  year: 2010
  ident: 10.1016/j.neunet.2014.09.003_br002535
  article-title: Learning to represent spatial transformations with factored higher-order Boltzmann machines
  publication-title: Neural Computation
  doi: 10.1162/neco.2010.01-09-953
– year: 2003
  ident: 10.1016/j.neunet.2014.09.003_br000005
– volume: 30
  start-page: 20
  issue: 4
  year: 1999
  ident: 10.1016/j.neunet.2014.09.003_br001110
  article-title: Phoneme boundary estimation using bidirectional recurrent neural networks and its applications
  publication-title: Systems and Computers in Japan
  doi: 10.1002/(SICI)1520-684X(199904)30:4<20::AID-SCJ3>3.0.CO;2-E
– volume: 10
  start-page: 1659
  issue: 9
  year: 1997
  ident: 10.1016/j.neunet.2014.09.003_br002400
  article-title: Networks of spiking neurons: the third generation of neural network models
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(97)00011-7
– year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br003905
  article-title: Lecture 6.5—RmsProp: Divide the gradient by a running average of its recent magnitude
  publication-title: COURSERA: Neural Networks for Machine Learning
– ident: 10.1016/j.neunet.2014.09.003_br002060
– volume: 5
  start-page: 156
  issue: 2
  year: 1960
  ident: 10.1016/j.neunet.2014.09.003_br003805
  article-title: Conditional Markov processes
  publication-title: Theory of Probability and Its Applications
  doi: 10.1137/1105015
– volume: 4
  start-page: 1107
  year: 2003
  ident: 10.1016/j.neunet.2014.09.003_br002110
  article-title: Least-squares policy iteration
  publication-title: Journal of Machine Learning Research
– volume: 12
  start-page: 197
  issue: 3–4
  year: 2000
  ident: 10.1016/j.neunet.2014.09.003_br000435
  article-title: Context-free and context-sensitive dynamics in recurrent neural networks
  publication-title: Connection Science
  doi: 10.1080/095400900750060122
– ident: 10.1016/j.neunet.2014.09.003_br001165
  doi: 10.21437/Interspeech.2014-151
– ident: 10.1016/j.neunet.2014.09.003_br003120
– volume: 5
  start-page: 473
  issue: 1
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br001935
  article-title: Robustness in multilayer perceptrons
  publication-title: Neural Computation
  doi: 10.1162/neco.1993.5.3.473
– volume: 2
  start-page: 219
  issue: 3
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br004365
  article-title: Sequential behavior and learning in evolved dynamical neural networks
  publication-title: Adaptive Behavior
  doi: 10.1177/105971239400200301
– year: 1980
  ident: 10.1016/j.neunet.2014.09.003_br002805
– ident: 10.1016/j.neunet.2014.09.003_br000970
  doi: 10.21437/Interspeech.2014-443
– ident: 10.1016/j.neunet.2014.09.003_br001330
– year: 2014
  ident: 10.1016/j.neunet.2014.09.003_br001920
  article-title: Neucube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.01.006
– year: 1991
  ident: 10.1016/j.neunet.2014.09.003_br003025
– volume: 15
  start-page: 937
  year: 1999
  ident: 10.1016/j.neunet.2014.09.003_br000160
  article-title: Exploiting the past and the future in protein secondary structure prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/15.11.937
– volume: 47
  start-page: 25
  year: 2014
  ident: 10.1016/j.neunet.2014.09.003_br001040
  article-title: Training restricted Boltzmann machines: an introduction
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2013.05.025
– volume: 6
  start-page: 837
  issue: 4
  year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br000180
  article-title: Learning in linear networks: a survey
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.392248
– start-page: 1609
  year: 2008
  ident: 10.1016/j.neunet.2014.09.003_br003855
  article-title: A convergent O(n) algorithm for off-policy temporal-difference learning with linear function approximation
– year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br003480
– ident: 10.1016/j.neunet.2014.09.003_br003830
– volume: 3
  start-page: 213
  year: 2002
  ident: 10.1016/j.neunet.2014.09.003_br000475
  article-title: R-MAX—a general polynomial time algorithm for near-optimal reinforcement learning
  publication-title: Journal of Machine Learning Research
– start-page: 221
  year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br004010
  article-title: Learning fine motion by using the hierarchical extended Kohonen map
– volume: 40
  start-page: 1063
  issue: 6
  year: 2003
  ident: 10.1016/j.neunet.2014.09.003_br003620
  article-title: Learning in spiking neural networks by reinforcement of stochastic synaptic transmission
  publication-title: Neuron
  doi: 10.1016/S0896-6273(03)00761-X
– ident: 10.1016/j.neunet.2014.09.003_br003400
– start-page: 577
  year: 2008
  ident: 10.1016/j.neunet.2014.09.003_br001340
  article-title: Unconstrained on-line handwriting recognition with recurrent neural networks
– year: 1991
  ident: 10.1016/j.neunet.2014.09.003_br001810
  article-title: Delayed reinforcement learning with multiple time scale hierarchical backpropagated adaptive critics
– volume: 4
  start-page: 273
  issue: 4
  year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br004385
  article-title: A developmental approach to structural self-organization in reservoir computing
  publication-title: IEEE Transactions on Autonomous Mental Development
  doi: 10.1109/TAMD.2012.2182765
– start-page: 625
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br001100
  article-title: A growing neural gas network learns topologies
– year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br001400
– volume: 4
  start-page: 8
  year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br003245
  article-title: Mitosis detection in breast cancer histological images—an ICPR 2012 contest
  publication-title: Journal of Pathology Informatics
  doi: 10.4103/2153-3539.112693
– start-page: 241
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br004280
  article-title: Training recurrent networks using the extended Kalman filter
– volume: 22
  start-page: 1744
  issue: 11
  year: 2011
  ident: 10.1016/j.neunet.2014.09.003_br000595
  article-title: Learning speaker-specific characteristics with a deep neural architecture
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2011.2167240
– volume: 33
  start-page: 105
  issue: 1
  year: 1998
  ident: 10.1016/j.neunet.2014.09.003_br004225
  article-title: Fast online Q(λ)
  publication-title: Machine Learning
  doi: 10.1023/A:1007562800292
– start-page: 151
  year: 1990
  ident: 10.1016/j.neunet.2014.09.003_br003670
  article-title: Speeding up back-propagation
– volume: IT-24
  start-page: 422
  issue: 5
  year: 1978
  ident: 10.1016/j.neunet.2014.09.003_br003730
  article-title: Complexity-based induction systems
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1978.1055913
– ident: 10.1016/j.neunet.2014.09.003_br000590
– start-page: 190
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br002810
  article-title: How to evolve autonomous robots: Different approaches in evolutionary robotics
– start-page: 162
  year: 1991
  ident: 10.1016/j.neunet.2014.09.003_br000825
  article-title: A theory for neural networks with time delays
– start-page: 196
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br003520
  article-title: Planning simple trajectories using neural subgoal generators
– start-page: 275
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br002705
  article-title: Induction of multiscale temporal structure
– start-page: 345
  year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br001775
  article-title: Reinforcement learning algorithm for partially observable Markov decision problems
– ident: 10.1016/j.neunet.2014.09.003_br002055
  doi: 10.1145/1830483.1830596
– volume: 6
  start-page: 203
  issue: 1
  year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br002715
  article-title: Fast neural net simulation with a DSP processor array
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.363436
– volume: 14
  start-page: 2497
  issue: 10
  year: 2002
  ident: 10.1016/j.neunet.2014.09.003_br003975
  article-title: Many-layered learning
  publication-title: Neural Computation
  doi: 10.1162/08997660260293319
– volume: 6
  start-page: 127
  issue: 1
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br000390
  article-title: A learning algorithm for multilayered neural networks based on linear least squares problems
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80077-2
– start-page: 534
  year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br004215
  article-title: Solving POMDPs with Levin search and EIRA
– volume: 58
  start-page: 1233
  issue: 6
  year: 1987
  ident: 10.1016/j.neunet.2014.09.003_br001835
  article-title: An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.1987.58.6.1233
– start-page: 2310
  year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br003750
  article-title: Compete to compute
– volume: 6
  start-page: 163
  issue: 2
  year: 1997
  ident: 10.1016/j.neunet.2014.09.003_br003325
  article-title: Experiments with reinforcement learning in problems with continuous state and action spaces
  publication-title: Adaptive Behavior
  doi: 10.1177/105971239700600201
– volume: 15
  start-page: 185
  issue: 2
  year: 2009
  ident: 10.1016/j.neunet.2014.09.003_br003765
  article-title: A hypercube-based encoding for evolving large-scale neural networks
  publication-title: Artificial Life
  doi: 10.1162/artl.2009.15.2.15202
– volume: 4
  start-page: 203
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br004380
  article-title: A review of evolutionary artificial neural networks
  publication-title: International Journal of Intelligent Systems
– ident: 10.1016/j.neunet.2014.09.003_br000120
– ident: 10.1016/j.neunet.2014.09.003_br000945
  doi: 10.1109/ICASSP.2013.6637694
– year: 1997
  ident: 10.1016/j.neunet.2014.09.003_br002610
– volume: 8
  start-page: 773
  issue: 4
  year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br003500
  article-title: Semilinear predictability minimization produces well-known feature detectors
  publication-title: Neural Computation
  doi: 10.1162/neco.1996.8.4.773
– volume: 50
  start-page: 105
  issue: C
  year: 2003
  ident: 10.1016/j.neunet.2014.09.003_br001720
  article-title: Empirical evaluation of the improved Rprop learning algorithm
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00700-7
– year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br003230
  article-title: The ‘moving targets’ training method
– year: 1696
  ident: 10.1016/j.neunet.2014.09.003_br002290
– start-page: 241
  year: 1969
  ident: 10.1016/j.neunet.2014.09.003_br004050
  article-title: PROW: a step toward automatic program writing
– start-page: 1061
  year: 2000
  ident: 10.1016/j.neunet.2014.09.003_br002685
  article-title: Robust reinforcement learning
– volume: 36
  year: 1980
  ident: 10.1016/j.neunet.2014.09.003_br002915
  article-title: On associative memory
  publication-title: Biological Cybernetics
  doi: 10.1007/BF00337019
– ident: 10.1016/j.neunet.2014.09.003_br003030
– volume: 16
  start-page: 955
  issue: 7
  year: 2003
  ident: 10.1016/j.neunet.2014.09.003_br000585
  article-title: Incremental training of first order recurrent neural networks to predict a context-sensitive language
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(03)00054-6
– volume: 11
  start-page: 5
  issue: 1
  year: 1999
  ident: 10.1016/j.neunet.2014.09.003_br003220
  article-title: A recurrent neural network that learns to count
  publication-title: Connection Science
  doi: 10.1080/095400999116340
– start-page: 357
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br002800
  article-title: The truck backer-upper: An example of self learning in neural networks
– ident: 10.1016/j.neunet.2014.09.003_br003695
– start-page: 309
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br004095
  article-title: Induction of finite-state automata using second-order recurrent networks
– ident: 10.1016/j.neunet.2014.09.003_br000125
  doi: 10.1016/B978-1-55860-377-6.50013-X
– volume: 8
  start-page: 279
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br004090
  article-title: Q-learning
  publication-title: Machine Learning
  doi: 10.1007/BF00992698
– volume: 5
  start-page: 117
  issue: 1
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br000420
  article-title: Training a 3-node neural network is NP-complete
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80010-3
– start-page: 15
  year: 2006
  ident: 10.1016/j.neunet.2014.09.003_br004165
  article-title: Backwards differentiation in AD and neural nets: Past links and new opportunities
– volume: 5
  start-page: 123
  issue: 2
  year: 1997
  ident: 10.1016/j.neunet.2014.09.003_br003305
  article-title: Probabilistic incremental program evolution
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.1997.5.2.123
– ident: 10.1016/j.neunet.2014.09.003_br001320
– year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br002105
– year: 1967
  ident: 10.1016/j.neunet.2014.09.003_br001765
– volume: 4
  start-page: 491
  year: 1990
  ident: 10.1016/j.neunet.2014.09.003_br004285
  article-title: An efficient gradient-based algorithm for on-line training of recurrent network trajectories
  publication-title: Neural Computation
– start-page: 1
  year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br003190
  article-title: A unified approach to evolving plasticity and neural geometry
– volume: 268
  start-page: 1158
  year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br001550
  article-title: The wake-sleep algorithm for unsupervised neural networks
  publication-title: Science
  doi: 10.1126/science.7761831
– start-page: 1050
  year: 1998
  ident: 10.1016/j.neunet.2014.09.003_br003060
  article-title: Multi-time models for temporally abstract planning
– start-page: 689
  year: 2011
  ident: 10.1016/j.neunet.2014.09.003_br003045
  article-title: Sum–product networks: A new deep architecture
– ident: 10.1016/j.neunet.2014.09.003_br003155
– volume: 2
  start-page: 53
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br000175
  article-title: Neural networks and principal component analysis: learning from examples without local minima
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(89)90014-2
– volume: 3
  start-page: 14
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br002785
  article-title: Maximally fault tolerant neural networks
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.105414
– volume: 8
  start-page: 1541
  issue: 7
  year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br000170
  article-title: Hybrid modeling, HMM/NN architectures, and protein applications
  publication-title: Neural Computation
  doi: 10.1162/neco.1996.8.7.1541
– volume: 5
  start-page: 3698
  issue: 11
  year: 2010
  ident: 10.1016/j.neunet.2014.09.003_br002995
  article-title: Policy gradient methods
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.3698
– volume: 147
  start-page: 5
  issue: 1
  year: 2003
  ident: 10.1016/j.neunet.2014.09.003_br002440
  article-title: On the undecidability of probabilistic planning and related stochastic optimization problems
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(02)00378-8
– volume: 64
  start-page: 152
  issue: 4
  year: 2009
  ident: 10.1016/j.neunet.2014.09.003_br001515
  article-title: Neuroevolution strategies for episodic reinforcement learning
  publication-title: Journal of Algorithms
  doi: 10.1016/j.jalgor.2009.04.002
– year: 1990
  ident: 10.1016/j.neunet.2014.09.003_br001855
– volume: 47
  start-page: 329
  issue: 3
  year: 1982
  ident: 10.1016/j.neunet.2014.09.003_br002990
  article-title: Visual neurones responsive to faces in the monkey temporal cortex
  publication-title: Experimental Brain Research
  doi: 10.1007/BF00239352
– year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br000660
– start-page: 267
  year: 1973
  ident: 10.1016/j.neunet.2014.09.003_br000020
  article-title: Information theory and an extension of the maximum likelihood principle
– volume: 24
  start-page: 123
  year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br000485
  article-title: Bagging predictors
  publication-title: Machine Learning
  doi: 10.1007/BF00058655
– year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br000460
– start-page: 279
  year: 1990
  ident: 10.1016/j.neunet.2014.09.003_br002005
  article-title: Self-organizing hierarchical feature maps
– volume: 17
  start-page: 126
  issue: 2
  year: 2001
  ident: 10.1016/j.neunet.2014.09.003_br001520
  article-title: A hierarchical unsupervised growing neural network for clustering gene expression patterns
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.2.126
– volume: 5
  start-page: 552
  issue: 5
  year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br002355
  article-title: Shape representation in the inferior temporal cortex of monkeys
  publication-title: Current Biology
  doi: 10.1016/S0960-9822(95)00108-4
– volume: 4
  start-page: 12
  issue: 4
  year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br004035
  article-title: On the computational complexity of stochastic controller optimization in POMDPs
  publication-title: ACM Transactions on Computation Theory
  doi: 10.1145/2382559.2382563
– start-page: 362
  year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br002340
  article-title: Learning policies for partially observable environments: scaling up
– volume: 14
  start-page: 321
  issue: 3
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br003650
  article-title: Combining symbolic and neural learning
  publication-title: Machine Learning
  doi: 10.1007/BF00993982
– volume: 47
  issue: 5
  year: 2005
  ident: 10.1016/j.neunet.2014.09.003_br001245
  article-title: Reinforcing the driving quality of soccer playing robots by anticipation
  publication-title: IT—Information Technology
  doi: 10.1524/itit.2005.47.5_2005.250
– ident: 10.1016/j.neunet.2014.09.003_br001435
  doi: 10.1109/ROBOT.2004.1302446
– year: 2001
  ident: 10.1016/j.neunet.2014.09.003_br001795
– ident: 10.1016/j.neunet.2014.09.003_br000640
  doi: 10.1109/IJCNN.2011.6033458
– start-page: 387
  year: 2002
  ident: 10.1016/j.neunet.2014.09.003_br003615
  article-title: On the role of object-specific features for real world object recognition in biological vision
– volume: 59
  start-page: 5
  issue: 1
  year: 2005
  ident: 10.1016/j.neunet.2014.09.003_br004190
  article-title: Evolving keepaway soccer players through task decomposition
  publication-title: Machine Learning
  doi: 10.1007/s10994-005-0460-9
– year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br001215
– year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br003275
– ident: 10.1016/j.neunet.2014.09.003_br003960
  doi: 10.1145/2463372.2463484
– start-page: 29
  year: 1998
  ident: 10.1016/j.neunet.2014.09.003_br000985
  article-title: Enhanced multi-stream Kalman filter training for recurrent networks
– volume: 7
  start-page: 985
  issue: 6
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br001460
  article-title: Design and evolution of modular neural network architectures
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80155-8
– volume: 11
  start-page: 697
  issue: 3
  year: 2000
  ident: 10.1016/j.neunet.2014.09.003_br000110
  article-title: New results on recurrent network training: unifying the algorithms and accelerating convergence
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.846741
– year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br004005
– volume: 82
  start-page: 35
  issue: 1
  year: 1960
  ident: 10.1016/j.neunet.2014.09.003_br001905
  article-title: A new approach to linear filtering and prediction problems
  publication-title: Journal of Basic Engineering
  doi: 10.1115/1.3662552
– start-page: 1143
  year: 1998
  ident: 10.1016/j.neunet.2014.09.003_br002025
  article-title: GMDH neural network algorithm using the heuristic self-organization method and its application to the pattern identification problem
– start-page: 180
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br003810
  article-title: Time warping invariant neural networks
– volume: 22
  start-page: 203
  year: 1970
  ident: 10.1016/j.neunet.2014.09.003_br000015
  article-title: Statistical predictor identification
  publication-title: Annals of the Institute of Statistical Mathematics
  doi: 10.1007/BF02506337
– volume: Vol. 1524
  start-page: 373
  year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br002790
  article-title: How to train neural networks
– volume: 1
  start-page: 403
  issue: 4
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br003385
  article-title: A local learning algorithm for dynamic feedforward and recurrent networks
  publication-title: Connection Science
  doi: 10.1080/09540098908915650
– volume: 12
  start-page: 2519
  year: 2000
  ident: 10.1016/j.neunet.2014.09.003_br002405
  article-title: On the computational power of winner-take-all
  publication-title: Neural Computation
  doi: 10.1162/089976600300014827
– ident: 10.1016/j.neunet.2014.09.003_br000415
– year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br002435
– start-page: 282
  year: 1986
  ident: 10.1016/j.neunet.2014.09.003_br001575
  article-title: Learning and relearning in Boltzmann machines
– start-page: 737
  year: 1991
  ident: 10.1016/j.neunet.2014.09.003_br002845
  article-title: Data compression, feature extraction, and autoassociation in feedforward neural networks
– volume: 11
  start-page: 1
  issue: 1
  year: 2003
  ident: 10.1016/j.neunet.2014.09.003_br001440
  article-title: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)
  publication-title: Evolutionary Computation
  doi: 10.1162/106365603321828970
– ident: 10.1016/j.neunet.2014.09.003_br000655
  doi: 10.1109/IJCNN.2012.6252544
– year: 2006
  ident: 10.1016/j.neunet.2014.09.003_br001430
  article-title: Dimensionality reduction by learning an invariant mapping
– volume: 53
  start-page: 1563
  issue: 7
  year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br002385
  article-title: Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules
  publication-title: Journal of Chemical Information and Modeling
  doi: 10.1021/ci400187y
– year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br002905
  article-title: Intrinsically motivated learning of real world sensorimotor skills with developmental constraints
– start-page: 160
  year: 2008
  ident: 10.1016/j.neunet.2014.09.003_br000690
  article-title: A unified architecture for natural language processing: deep neural networks with multitask learning
– volume: 23
  year: 1976
  ident: 10.1016/j.neunet.2014.09.003_br001395
  article-title: Adaptive pattern classification and universal recoding, 2: feedback, expectation, olfaction, and illusions
  publication-title: Biological Cybernetics
  doi: 10.1007/BF00340335
– year: 2005
  ident: 10.1016/j.neunet.2014.09.003_br001695
– start-page: 61
  year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br003820
  article-title: A linear time natural evolution strategy for non-separable functions
– volume: 23
  start-page: 269
  issue: 3
  year: 1984
  ident: 10.1016/j.neunet.2014.09.003_br002250
  article-title: Why AM an EURISKO appear to work
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(84)90016-X
– volume: 23
  start-page: 551
  issue: 4
  year: 2010
  ident: 10.1016/j.neunet.2014.09.003_br003595
  article-title: Parameter-exploring policy gradients
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2009.12.004
– start-page: 428
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br000665
  article-title: Evolving recurrent dynamical networks for robot control
– start-page: 29
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br000290
  article-title: Improving the convergence of back-propagation learning with second order methods
– ident: 10.1016/j.neunet.2014.09.003_br003590
– year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br004180
– volume: 8
  start-page: 895
  issue: 5
  year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br002865
  article-title: Biologically plausible error-driven learning using local activation differences: The generalized recirculation algorithm
  publication-title: Neural Computation
  doi: 10.1162/neco.1996.8.5.895
– volume: 11
  start-page: 679
  issue: 3
  year: 1999
  ident: 10.1016/j.neunet.2014.09.003_br001620
  article-title: Feature extraction through LOCOCODE
  publication-title: Neural Computation
  doi: 10.1162/089976699300016629
– year: 2011
  ident: 10.1016/j.neunet.2014.09.003_br002360
– volume: 1
  start-page: 131
  issue: 1
  year: 1990
  ident: 10.1016/j.neunet.2014.09.003_br002500
  article-title: Three-dimensional neural net for learning visuomotor coordination of a robot arm
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.80212
– volume: 70
  start-page: 119
  issue: 1
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br003930
  article-title: Knowledge-based artificial neural networks
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(94)90105-8
– volume: 5
  start-page: 240
  issue: 2
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br000705
  article-title: Recurrent neural networks and robust time series prediction
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.279188
– year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br002305
– volume: 13
  start-page: 103
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br002665
  article-title: Prioritized sweeping: Reinforcement learning with less data and less time
  publication-title: Machine Learning
  doi: 10.1007/BF00993104
– start-page: 31
  year: 2011
  ident: 10.1016/j.neunet.2014.09.003_br001220
  article-title: Sequential constant size compressor for reinforcement learning
– ident: 10.1016/j.neunet.2014.09.003_br003870
– ident: 10.1016/j.neunet.2014.09.003_br004135
– volume: 16
  start-page: 299
  issue: 3
  year: 1967
  ident: 10.1016/j.neunet.2014.09.003_br000045
  article-title: A theory of adaptive pattern classifiers
  publication-title: IEEE Transactions on Electronic Computers
  doi: 10.1109/PGEC.1967.264666
– volume: 3
  start-page: 5
  issue: 1
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br002815
  article-title: Learning and evolution in neural networks
  publication-title: Adaptive Behavior
  doi: 10.1177/105971239400300102
– volume: 75
  start-page: 1515
  issue: 4
  year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br002450
  article-title: Model circuit of spiking neurons generating directional selectivity in simple cells
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.1996.75.4.1515
– volume: 31
  start-page: 152
  issue: 2
  year: 1988
  ident: 10.1016/j.neunet.2014.09.003_br001145
  article-title: Connectionist expert systems
  publication-title: Communications of the ACM
  doi: 10.1145/42372.42377
– volume: 27
  start-page: 37
  year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br000155
  article-title: Autoencoders, unsupervised learning, and deep architectures
  publication-title: Journal of Machine Learning Research
– ident: 10.1016/j.neunet.2014.09.003_br003010
– start-page: 1
  year: 2007
  ident: 10.1016/j.neunet.2014.09.003_br003105
  article-title: Unsupervised learning of invariant feature hierarchies with applications to object recognition
– volume: 1
  start-page: 295
  issue: 4
  year: 1988
  ident: 10.1016/j.neunet.2014.09.003_br001790
  article-title: Increased rates of convergence through learning rate adaptation
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(88)90003-2
– volume: 141
  start-page: 245
  issue: 4
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br003985
  article-title: Original approach for the localisation of objects in images
  publication-title: IEE Proceedings Vision, Image, and Signal Processing
  doi: 10.1049/ip-vis:19941301
– volume: 28
  start-page: 105
  year: 1997
  ident: 10.1016/j.neunet.2014.09.003_br003535
  article-title: Shifting inductive bias with success-story algorithm, adaptive Levin search, and incremental self-improvement
  publication-title: Machine Learning
  doi: 10.1023/A:1007383707642
– start-page: 115
  year: 1987
  ident: 10.1016/j.neunet.2014.09.003_br000220
  article-title: Learning receptive fields
– volume: 7
  start-page: 30
  issue: 1
  year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br002280
  article-title: Control of nonlinear dynamical systems using neural networks. II. Observability, identification, and control
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.478390
– start-page: 1335
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br004115
  article-title: Hierarchical chunking in classifier systems
– ident: 10.1016/j.neunet.2014.09.003_br002150
– volume: 24
  start-page: 23
  issue: 109
  year: 1970
  ident: 10.1016/j.neunet.2014.09.003_br001260
  article-title: A family of variable-metric methods derived by variational means
  publication-title: Mathematics of Computation
  doi: 10.1090/S0025-5718-1970-0258249-6
– volume: 14
  start-page: 97
  issue: 2
  year: 2005
  ident: 10.1016/j.neunet.2014.09.003_br000320
  article-title: Face localization and tracking in the neural abstraction pyramid
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-004-0444-x
– volume: XXVII
  start-page: 379
  year: 1948
  ident: 10.1016/j.neunet.2014.09.003_br003640
  article-title: A mathematical theory of communication (parts I and II)
  publication-title: Bell System Technical Journal
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– start-page: 207
  year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br003995
  article-title: Reinforcement learning in continuous state and action spaces
– volume: 54
  start-page: 211
  year: 2004
  ident: 10.1016/j.neunet.2014.09.003_br003460
  article-title: Optimal ordered problem solver
  publication-title: Machine Learning
  doi: 10.1023/B:MACH.0000015880.99707.b2
– ident: 10.1016/j.neunet.2014.09.003_br003605
  doi: 10.1109/IJCNN.2011.6033589
– volume: 59
  start-page: 257
  year: 1988
  ident: 10.1016/j.neunet.2014.09.003_br004040
  article-title: Accelerating the convergence of the back-propagation method
  publication-title: Biological Cybernetics
  doi: 10.1007/BF00332914
– start-page: 1554
  year: 1966
  ident: 10.1016/j.neunet.2014.09.003_br000255
  article-title: Statistical inference for probabilistic functions of finite state Markov chains
  publication-title: The Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177699147
– volume: 14
  start-page: 671
  issue: 6
  year: 2006
  ident: 10.1016/j.neunet.2014.09.003_br004320
  article-title: A GMDH neural network-based approach to robust fault diagnosis: Application to the DAMADICS benchmark problem
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2005.04.007
– start-page: 114
  year: 2010
  ident: 10.1016/j.neunet.2014.09.003_br001410
  article-title: Multi-dimensional deep memory atari-go players for parameter exploring policy gradients
– year: 1970
  ident: 10.1016/j.neunet.2014.09.003_br002325
– start-page: 23
  year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br003330
  article-title: Evolving neural control systems
  publication-title: IEEE Expert
  doi: 10.1109/64.393139
– start-page: 11
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br001585
  article-title: Keeping neural networks simple
– year: 2001
  ident: 10.1016/j.neunet.2014.09.003_br001490
– ident: 10.1016/j.neunet.2014.09.003_br002430
– volume: 11
  start-page: 625
  year: 2010
  ident: 10.1016/j.neunet.2014.09.003_br000925
  article-title: Why does unsupervised pre-training help deep learning?
  publication-title: Journal of Machine Learning Research
– year: 1997
  ident: 10.1016/j.neunet.2014.09.003_br002675
– start-page: 490
  year: 2006
  ident: 10.1016/j.neunet.2014.09.003_br002820
  article-title: Sampling strategies for bag-of-features image classification
– volume: 4
  start-page: 703
  issue: 2
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br002920
  article-title: On the information storage capacity of local learning rules
  publication-title: Neural Computation
  doi: 10.1162/neco.1992.4.5.703
– volume: 37
  start-page: 115
  year: 2014
  ident: 10.1016/j.neunet.2014.09.003_br004395
  article-title: Hierarchical spatiotemporal feature extraction using recurrent online clustering
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2013.07.013
– volume: 20
  start-page: 1165
  issue: 5
  year: 2008
  ident: 10.1016/j.neunet.2014.09.003_br004100
  article-title: Unsupervised learning of individuals and categories from images
  publication-title: Neural Computation
  doi: 10.1162/neco.2007.03-07-493
– start-page: 563
  year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br003555
  article-title: Tempering backpropagation networks: not all weights are created equal
– ident: 10.1016/j.neunet.2014.09.003_br001150
– start-page: 438
  year: 2004
  ident: 10.1016/j.neunet.2014.09.003_br000140
  article-title: Hierarchical reinforcement learning based on subgoal discovery and subpolicy specialization
– year: 1949
  ident: 10.1016/j.neunet.2014.09.003_br001495
– volume: 20
  start-page: 30
  issue: 1
  year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br000735
  article-title: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
  publication-title: IEEE Transactions on Audio, Speech and Language Processing
  doi: 10.1109/TASL.2011.2134090
– volume: 100
  start-page: 353
  issue: 4
  year: 1972
  ident: 10.1016/j.neunet.2014.09.003_br001990
  article-title: Correlation matrix memories
  publication-title: IEEE Transactions on Computers
  doi: 10.1109/TC.1972.5008975
– start-page: 545
  year: 2009
  ident: 10.1016/j.neunet.2014.09.003_br001365
  article-title: Offline handwriting recognition with multidimensional recurrent neural networks
– volume: 5
  issue: 2
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br004430
  article-title: Discrete recurrent neural networks for grammatical inference
  publication-title: IEEE Transactions on Neural Networks
– volume: Vol. 7700
  start-page: 687
  year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br004435
  article-title: Forecasting with recurrent neural networks: 12 tricks
– start-page: 364
  issue: 4
  year: 1971
  ident: 10.1016/j.neunet.2014.09.003_br001750
  article-title: Polynomial theory of complex systems
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
  doi: 10.1109/TSMC.1971.4308320
– volume: 11
  start-page: 1257
  issue: 11
  year: 1985
  ident: 10.1016/j.neunet.2014.09.003_br000205
  article-title: A 15 year perspective on automatic programming
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.1985.231877
– start-page: 471
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br001420
  article-title: Structural risk minimization for character recognition
– volume: 19
  start-page: 577
  issue: 92
  year: 1965
  ident: 10.1016/j.neunet.2014.09.003_br000505
  article-title: A class of methods for solving nonlinear simultaneous equations
  publication-title: Mathematics of Computation
  doi: 10.1090/S0025-5718-1965-0198670-6
– year: 1998
  ident: 10.1016/j.neunet.2014.09.003_br003540
– ident: 10.1016/j.neunet.2014.09.003_br001710
– volume: 4
  start-page: 448
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br002415
  article-title: A practical Bayesian framework for backprop networks
  publication-title: Neural Computation
  doi: 10.1162/neco.1992.4.3.448
– start-page: 2619
  year: 2004
  ident: 10.1016/j.neunet.2014.09.003_br001985
  article-title: Policy gradient reinforcement learning for fast quadrupedal locomotion
– ident: 10.1016/j.neunet.2014.09.003_br002505
  doi: 10.1109/ICIP.2013.6738559
– start-page: 472
  year: 1988
  ident: 10.1016/j.neunet.2014.09.003_br001650
  article-title: A network of neuron-like units that learns to perceive by generation as well as reweighting of its links
– volume: 1
  start-page: 427
  issue: 4
  year: 2001
  ident: 10.1016/j.neunet.2014.09.003_br000300
  article-title: Learning iterative image reconstruction in the neural abstraction pyramid
  publication-title: International Journal of Computational Intelligence and Applications
  doi: 10.1142/S1469026801000342
– start-page: 191
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br003440
  article-title: An introspective network that can learn to run its own weight change algorithm
– volume: 8
  start-page: 373
  issue: 6
  year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br000080
  article-title: Survey and critique of techniques for extracting rules from trained artificial neural networks
  publication-title: Knowledge-Based Systems
  doi: 10.1016/0950-7051(96)81920-4
– start-page: 121
  year: 2000
  ident: 10.1016/j.neunet.2014.09.003_br002575
  article-title: Cartesian genetic programming
– start-page: 35
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br002275
  article-title: Fast pruning using principal components
– volume: 9
  start-page: 1385
  issue: 8
  year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br000755
  article-title: Varieties of Helmholtz machine
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(96)00009-3
– volume: 9
  start-page: e1003037
  issue: 4
  year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br002780
  article-title: Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1003037
– year: 1998
  ident: 10.1016/j.neunet.2014.09.003_br002350
– start-page: 283
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br004160
  article-title: Neural networks, system identification, and control in the chemical industries
– volume: 22
  start-page: 247
  year: 1986
  ident: 10.1016/j.neunet.2014.09.003_br002130
  article-title: A self-optimizing, nonsymmetrical neural net for content addressable memory and pattern recognition
  publication-title: Physica D
  doi: 10.1016/0167-2789(86)90244-7
– volume: 9
  start-page: 265
  issue: 3
  year: 1973
  ident: 10.1016/j.neunet.2014.09.003_br002270
  article-title: Universal sequential search problems
  publication-title: Problems of Information Transmission
– volume: 46
  start-page: 2131
  issue: 4
  year: 1992
  ident: 10.1016/j.neunet.2014.09.003_br003565
  article-title: Learning by maximization the information transfer through nonlinear noisy neurons and “noise breakdown”
  publication-title: Physical Review A
  doi: 10.1103/PhysRevA.46.2131
– ident: 10.1016/j.neunet.2014.09.003_br000310
  doi: 10.1109/IJCNN.2003.1224004
– start-page: 87
  year: 1998
  ident: 10.1016/j.neunet.2014.09.003_br003215
  article-title: Recurrent neural networks can learn to implement symbol-sensitive counting
– year: 2014
  ident: 10.1016/j.neunet.2014.09.003_br001415
  article-title: Deep learning for real-time Atari game play using offline Monte-Carlo tree search planning
– year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br004415
– ident: 10.1016/j.neunet.2014.09.003_br001010
– ident: 10.1016/j.neunet.2014.09.003_br002555
– volume: 32
  start-page: 323
  year: 2012
  ident: 10.1016/j.neunet.2014.09.003_br003760
  article-title: Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2012.02.016
– volume: 7
  start-page: 669
  issue: 4
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br000500
  article-title: Signature verification using a Siamese time delay neural network
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
  doi: 10.1142/S0218001493000339
– start-page: 1973
  year: 1999
  ident: 10.1016/j.neunet.2014.09.003_br002950
  article-title: Evolving structure and function of neurocontrollers
– year: 1988
  ident: 10.1016/j.neunet.2014.09.003_br000955
– volume: 1
  start-page: 263
  issue: 2
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br002955
  article-title: Learning state space trajectories in recurrent neural networks
  publication-title: Neural Computation
  doi: 10.1162/neco.1989.1.2.263
– volume: 22
  start-page: 11
  year: 1996
  ident: 10.1016/j.neunet.2014.09.003_br002680
  article-title: Efficient reinforcement learning through symbiotic evolution
  publication-title: Machine Learning
  doi: 10.1007/BF00114722
– volume: 3
  start-page: 919
  issue: 9
  year: 2000
  ident: 10.1016/j.neunet.2014.09.003_br003740
  article-title: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity
  publication-title: Nature Neuroscience
  doi: 10.1038/78829
– volume: 2
  start-page: 417
  issue: 4
  year: 1995
  ident: 10.1016/j.neunet.2014.09.003_br002560
  article-title: Evolving mobile robots in simulated and real environments
  publication-title: Artificial Life
  doi: 10.1162/artl.1995.2.4.417
– volume: 55
  start-page: 252
  issue: 2
  year: 2013
  ident: 10.1016/j.neunet.2014.09.003_br004330
  article-title: Keyword spotting exploiting long short-term memory
  publication-title: Speech Communication
  doi: 10.1016/j.specom.2012.08.006
– volume: 4
  start-page: 207
  issue: 2
  year: 1991
  ident: 10.1016/j.neunet.2014.09.003_br002210
  article-title: A Gaussian potential function network with hierarchically self-organizing learning
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(91)90005-P
– ident: 10.1016/j.neunet.2014.09.003_br000265
– start-page: 27
  year: 1994
  ident: 10.1016/j.neunet.2014.09.003_br003335
  article-title: Unsupervised learning of mixtures of multiple causes in binary data
– volume: 1
  start-page: 103
  issue: 3
  year: 1936
  ident: 10.1016/j.neunet.2014.09.003_br003050
  article-title: Finite combinatory processes-formulation 1
  publication-title: The Journal of Symbolic Logic
  doi: 10.2307/2269031
– volume: 8
  start-page: 373
  issue: 4
  year: 1997
  ident: 10.1016/j.neunet.2014.09.003_br000065
  article-title: Dynamics of a recurrent network of spiking neurons before and following learning
  publication-title: Network: Computation in Neural Systems
  doi: 10.1088/0954-898X/8/4/003
– start-page: 1475
  year: 2002
  ident: 10.1016/j.neunet.2014.09.003_br000135
  article-title: Reinforcement learning with long short-term memory
– ident: 10.1016/j.neunet.2014.09.003_br002720
– volume: 1
  start-page: 365
  issue: 4
  year: 1989
  ident: 10.1016/j.neunet.2014.09.003_br000100
  article-title: Dynamic node creation in backpropagation neural networks
  publication-title: Connection Science
  doi: 10.1080/09540098908915647
– start-page: 79
  year: 1951
  ident: 10.1016/j.neunet.2014.09.003_br002100
  article-title: On information and sufficiency
  publication-title: The Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177729694
– start-page: 1096
  year: 2008
  ident: 10.1016/j.neunet.2014.09.003_br004030
  article-title: Extracting and composing robust features with denoising autoencoders
– ident: 10.1016/j.neunet.2014.09.003_br000650
  doi: 10.1109/CVPR.2012.6248110
– ident: 10.1016/j.neunet.2014.09.003_br002125
  doi: 10.1109/IJCNN.2010.5596468
– volume: 20
  start-page: 353
  issue: 3
  year: 2007
  ident: 10.1016/j.neunet.2014.09.003_br003780
  article-title: Online reservoir adaptation by intrinsic plasticity for backpropagation–decorrelation and echo state learning
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2007.04.011
– volume: 4
  start-page: 333
  issue: 4
  year: 1993
  ident: 10.1016/j.neunet.2014.09.003_br003100
  article-title: Multiprocessor and memory architecture of the neurocomputer SYNAPSE-1
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065793000274
– ident: 10.1016/j.neunet.2014.09.003_br002365
  doi: 10.1109/CIG.2009.5286504
– volume: 23
  start-page: 187
  year: 1976
  ident: 10.1016/j.neunet.2014.09.003_br001390
  article-title: Adaptive pattern classification and universal recoding, 1: parallel development and coding of neural feature detectors
  publication-title: Biological Cybernetics
  doi: 10.1007/BF00344744
SSID ssj0006843
Score 2.6697614
SecondaryResourceType review_article
Snippet In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 85
SubjectTerms Artificial Intelligence - classification
Artificial Intelligence - standards
Artificial Intelligence - trends
Deep learning
Evolutionary computation
Reinforcement learning
Supervised learning
Unsupervised learning
Title Deep learning in neural networks: An overview
URI https://dx.doi.org/10.1016/j.neunet.2014.09.003
https://www.ncbi.nlm.nih.gov/pubmed/25462637
https://www.proquest.com/docview/1662427875
Volume 61
WOSCitedRecordID wos000347595400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbNpode-n5sH0GFXhVsy3r1tk1T2lBCoSnszciSTHZJlSW7G_LzM7Ikb9MQ0hZ6MUZItqTPnhlJM_Mh9I5ZZbTVlNiupqSutCJtiOQCTVuEWHTbuj67_ldxeCinU_UtsfAtezoB4b28uFCL_wo1lAHYIXT2L-AeHgoFcA-gwxVgh-sfAf_RuUUmg-jDVULKSgDCR4fvZdoKDK6bw7HAPOdwulJzc0hz_HNmj9dthPcgHK5_2AtRm7_uGZTstz2DIZhl4znUyxtFCS8isdKui_JQCkUqIa8IzJg9PUm8SLiTdGcZ4zCvieW4QzDfhQHDEIJDXcwuW9CNGhqcA7-HjoR-wNoPLBDKttB2JZiSI7Q9-bI_PRg0LZfRKzJ3PIdG9v571991k-lx09KiNzGOHqL7aW2AJxHTR-iO84_Rg8y7gZMYfoJIgBhniPHM4wgxzsC9xxOPM8BP0Y9P-0d7n0mivSAGrIkVEYZZIalVqhPaSS5hjduZ0klW1UI53YEJXbaaa8WkYyXnLRihRVsyW3eKUk2foZE_9e4FwqDpWOusNtzo2kqniq4wjgtqoAmUjBHNM9KYlBM-UJOcNNn5b97EeWzCPDaFCrlkx4gMrRYxJ8ot9UWe7CbZddFea-D7uKXl24xNA2IvnGVp707XywaGXQWWGMHG6HkEbehLoHioOBUv__m9r9C9zW_zGo1WZ2v3Bt0156vZ8mwHbYmp3Ekf4yXMsIXA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+in+neural+networks%3A+An+overview&rft.jtitle=Neural+networks&rft.au=Schmidhuber%2C+J%C3%BCrgen&rft.date=2015-01-01&rft.pub=Elsevier+Ltd&rft.issn=0893-6080&rft.eissn=1879-2782&rft.volume=61&rft.spage=85&rft.epage=117&rft_id=info:doi/10.1016%2Fj.neunet.2014.09.003&rft.externalDocID=S0893608014002135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon