Deep learning in neural networks: An overview
In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the d...
Uloženo v:
| Vydáno v: | Neural networks Ročník 61; s. 85 - 117 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Ltd
01.01.2015
|
| Témata: | |
| ISSN: | 0893-6080, 1879-2782, 1879-2782 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks. |
|---|---|
| AbstractList | In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks. In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks. |
| Author | Schmidhuber, Jürgen |
| Author_xml | – sequence: 1 givenname: Jürgen surname: Schmidhuber fullname: Schmidhuber, Jürgen email: juergen@idsia.ch organization: The Swiss AI Lab IDSIA, Istituto Dalle Molle di Studi sull’Intelligenza Artificiale, University of Lugano & SUPSI, Galleria 2, 6928 Manno-Lugano, Switzerland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25462637$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkDtPwzAURi0EoqXwDxDKyJLgR-IHAxIqT6kSC8yW49wgl9QpdgLi3-OqwMAA013O-aR7DtCu7z0gdExwQTDhZ8vCw-hhKCgmZYFVgTHbQVMihcqpkHQXTbFULOdY4gk6iHGJMeayZPtoQquSU87EFOVXAOusAxO888-Z81laDaZLZ3jvw0s8zy591r9BeHPwfoj2WtNFOPq6M_R0c_04v8sXD7f388tFbhmnQy5s1QjJGqVaYUByyYlqLQFZ0VIoMC3hjNSGG1VJqAjnNREU16RqylYxZtgMnW5316F_HSEOeuWiha4zHvox6qTQMj0pqoSefKFjvYJGr4NbmfChv19MQLkFbOhjDND-IATrTUm91NuSelNSY6VTyaSd_9KsG8zgej8E47r_5IutDClSChd0tA68hcYFsINuevf3wCe6so8- |
| CitedBy_id | crossref_primary_10_1109_JSEN_2020_3019668 crossref_primary_10_1007_s11548_020_02141_y crossref_primary_10_1016_j_aitf_2025_100014 crossref_primary_10_1016_j_fluid_2022_113597 crossref_primary_10_1109_ACCESS_2020_2965769 crossref_primary_10_3390_aerospace10090758 crossref_primary_10_1016_j_physa_2022_127456 crossref_primary_10_1007_s00521_022_07313_2 crossref_primary_10_1016_j_cma_2024_117187 crossref_primary_10_1145_3729215 crossref_primary_10_1016_j_actaastro_2020_03_007 crossref_primary_10_1016_j_eswa_2020_113488 crossref_primary_10_1061__ASCE_WR_1943_5452_0001223 crossref_primary_10_1109_TAFFC_2018_2890471 crossref_primary_10_1371_journal_pone_0262708 crossref_primary_10_1088_2632_2153_ad9431 crossref_primary_10_1093_mnras_stz189 crossref_primary_10_12677_me_2024_123062 crossref_primary_10_1007_s11042_021_10857_5 crossref_primary_10_1109_TIT_2022_3229845 crossref_primary_10_1016_j_enggeo_2021_106198 crossref_primary_10_1093_jamia_ocae049 crossref_primary_10_3390_s22103863 crossref_primary_10_1016_j_advengsoft_2022_103370 crossref_primary_10_1016_j_mtcomm_2024_111221 crossref_primary_10_1016_j_jksuci_2022_11_008 crossref_primary_10_1038_s41570_020_0189_9 crossref_primary_10_1016_j_procir_2021_11_241 crossref_primary_10_1007_s11063_015_9478_6 crossref_primary_10_1109_TIP_2017_2691802 crossref_primary_10_1016_j_compind_2015_12_001 crossref_primary_10_3390_s19071502 crossref_primary_10_1007_s00500_020_04954_0 crossref_primary_10_1109_ACCESS_2022_3204041 crossref_primary_10_1016_j_mtcomm_2025_113705 crossref_primary_10_1007_s10489_016_0815_x crossref_primary_10_3389_fenrg_2021_751066 crossref_primary_10_1007_s10107_021_01653_y crossref_primary_10_1016_j_jiec_2022_12_022 crossref_primary_10_1109_TCSI_2023_3330323 crossref_primary_10_1038_s42256_019_0070_z crossref_primary_10_1007_s13218_018_0559_3 crossref_primary_10_1016_j_acra_2018_02_018 crossref_primary_10_1109_TGRS_2018_2888485 crossref_primary_10_1109_TNNLS_2018_2839655 crossref_primary_10_56093_ijas_v90i2_98996 crossref_primary_10_1016_j_compbiolchem_2020_107377 crossref_primary_10_32604_cmc_2022_027475 crossref_primary_10_3389_fgene_2022_864724 crossref_primary_10_1007_s10699_022_09833_5 crossref_primary_10_1017_eds_2022_11 crossref_primary_10_3389_fbioe_2019_00102 crossref_primary_10_1038_s41598_025_85473_6 crossref_primary_10_3389_fcvm_2022_949454 crossref_primary_10_3390_electronics13234794 crossref_primary_10_1109_ACCESS_2023_3270562 crossref_primary_10_1016_j_renene_2019_07_100 crossref_primary_10_3389_fncom_2019_00005 crossref_primary_10_3389_fncom_2019_00006 crossref_primary_10_1109_MITP_2021_3073665 crossref_primary_10_3389_fcdhc_2025_1547689 crossref_primary_10_1016_j_amc_2023_127986 crossref_primary_10_1016_j_isatra_2018_01_013 crossref_primary_10_1109_TNNLS_2017_2741598 crossref_primary_10_1016_j_ijmecsci_2024_109141 crossref_primary_10_1175_WAF_D_18_0206_1 crossref_primary_10_1007_s40692_020_00166_5 crossref_primary_10_3390_ijms22116032 crossref_primary_10_1016_j_actamat_2017_05_014 crossref_primary_10_1002_adfm_202305261 crossref_primary_10_1093_bib_bbad442 crossref_primary_10_1016_j_jaut_2025_103457 crossref_primary_10_3390_electronics12112453 crossref_primary_10_3233_IDA_163196 crossref_primary_10_1016_j_najef_2023_101895 crossref_primary_10_1108_PAR_08_2022_0121 crossref_primary_10_1002_wat2_1495 crossref_primary_10_1080_17434440_2020_1813566 crossref_primary_10_5194_acp_20_3439_2020 crossref_primary_10_1007_s12206_018_0610_1 crossref_primary_10_3390_biom10091249 crossref_primary_10_3390_a11080112 crossref_primary_10_1016_j_snb_2025_138638 crossref_primary_10_1109_ACCESS_2019_2922973 crossref_primary_10_1016_j_renene_2025_123790 crossref_primary_10_1117_1_JRS_16_036512 crossref_primary_10_1016_j_cogsys_2018_04_011 crossref_primary_10_1007_s10586_017_1460_9 crossref_primary_10_3847_1538_3881_ac5ea2 crossref_primary_10_1108_OIR_10_2018_0332 crossref_primary_10_1007_s11465_021_0629_3 crossref_primary_10_1002_advs_202200630 crossref_primary_10_3389_fphar_2023_1182465 crossref_primary_10_1109_TITS_2023_3318417 crossref_primary_10_1038_srep44037 crossref_primary_10_1016_j_specom_2015_07_006 crossref_primary_10_1088_1361_6382_ac0455 crossref_primary_10_3390_ma12172745 crossref_primary_10_1016_j_cogsys_2018_04_006 crossref_primary_10_1016_j_compenvurbsys_2022_101757 crossref_primary_10_1016_j_neunet_2020_05_015 crossref_primary_10_1016_j_autcon_2019_102840 crossref_primary_10_1007_s11770_022_0976_9 crossref_primary_10_1016_j_isprsjprs_2025_07_005 crossref_primary_10_1007_s00521_019_04506_0 crossref_primary_10_1007_s11222_025_10712_9 crossref_primary_10_47880_inf2604_04 crossref_primary_10_1109_TNNLS_2018_2844173 crossref_primary_10_1109_ACCESS_2020_2987101 crossref_primary_10_1109_TNNLS_2018_2882456 crossref_primary_10_3390_en13205447 crossref_primary_10_1007_s10661_025_14322_w crossref_primary_10_1016_j_neunet_2020_05_006 crossref_primary_10_1134_S0361768818060105 crossref_primary_10_1016_j_neunet_2020_05_008 crossref_primary_10_1007_s00371_024_03579_w crossref_primary_10_3389_fenvs_2022_1054235 crossref_primary_10_1016_j_bej_2023_108990 crossref_primary_10_1007_s00138_020_01157_3 crossref_primary_10_1007_s42102_023_00113_9 crossref_primary_10_1080_10590501_2018_1537563 crossref_primary_10_3390_ijgi10070442 crossref_primary_10_1111_wej_12849 crossref_primary_10_2166_hydro_2022_055 crossref_primary_10_1186_s12903_021_01513_3 crossref_primary_10_1007_s40815_023_01544_8 crossref_primary_10_1016_j_enganabound_2024_03_006 crossref_primary_10_1016_j_eswa_2021_115966 crossref_primary_10_4018_IJTHI_293202 crossref_primary_10_17721_2519_481X_2025_86_08 crossref_primary_10_1016_j_bspc_2019_03_009 crossref_primary_10_1111_exsy_13754 crossref_primary_10_1038_s41467_021_26107_z crossref_primary_10_3389_feart_2022_1026479 crossref_primary_10_1007_s00247_021_05057_0 crossref_primary_10_1007_s12559_022_10080_w crossref_primary_10_1103_PhysRevApplied_20_054040 crossref_primary_10_1016_j_neuroimage_2020_116551 crossref_primary_10_1155_2019_3409525 crossref_primary_10_1016_j_cub_2019_02_034 crossref_primary_10_1016_j_solcom_2023_100061 crossref_primary_10_1109_ACCESS_2021_3077294 crossref_primary_10_1016_j_enganabound_2024_03_019 crossref_primary_10_1093_g3journal_jkab228 crossref_primary_10_4018_IJSI_289595 crossref_primary_10_1021_jasms_4c00318 crossref_primary_10_3390_math10132245 crossref_primary_10_1038_s41598_024_73357_0 crossref_primary_10_3390_sym12122018 crossref_primary_10_1007_s11432_018_9596_5 crossref_primary_10_1016_j_marpetgeo_2019_08_045 crossref_primary_10_1007_s11227_020_03200_6 crossref_primary_10_1007_s11831_021_09569_8 crossref_primary_10_1190_geo2019_0252_1 crossref_primary_10_1016_j_aej_2025_03_031 crossref_primary_10_1016_j_solener_2019_01_096 crossref_primary_10_3233_JIFS_233498 crossref_primary_10_3390_s20154064 crossref_primary_10_1007_s12190_024_02146_9 crossref_primary_10_1186_s41044_016_0002_4 crossref_primary_10_1016_j_knosys_2022_108174 crossref_primary_10_1121_10_0002656 crossref_primary_10_1007_s10598_023_09574_5 crossref_primary_10_1007_s44202_025_00425_5 crossref_primary_10_3390_app11041403 crossref_primary_10_1016_j_neucom_2023_126520 crossref_primary_10_3390_rs15194806 crossref_primary_10_1016_j_arcontrol_2019_07_003 crossref_primary_10_1002_cem_3194 crossref_primary_10_1109_ACCESS_2020_2994248 crossref_primary_10_1080_15376494_2019_1681037 crossref_primary_10_1016_j_jfranklin_2019_10_014 crossref_primary_10_1016_j_tust_2018_04_002 crossref_primary_10_1038_s42256_020_00255_1 crossref_primary_10_3390_s21155232 crossref_primary_10_1007_s00500_016_2468_4 crossref_primary_10_1002_minf_201501008 crossref_primary_10_1007_s00056_022_00421_7 crossref_primary_10_1016_j_ins_2021_01_064 crossref_primary_10_1103_PhysRevApplied_7_034013 crossref_primary_10_1007_s00285_024_02081_0 crossref_primary_10_1016_j_jclepro_2024_143781 crossref_primary_10_1016_j_jag_2021_102389 crossref_primary_10_1109_ACCESS_2018_2877687 crossref_primary_10_3390_math10152651 crossref_primary_10_1371_journal_pone_0279540 crossref_primary_10_1109_ACCESS_2020_3034849 crossref_primary_10_1016_j_compfluid_2024_106421 crossref_primary_10_3390_electronics9071120 crossref_primary_10_1155_2023_5499645 crossref_primary_10_3389_fncom_2019_00055 crossref_primary_10_1016_j_cobeha_2018_12_010 crossref_primary_10_3390_buildings14061613 crossref_primary_10_1016_j_cpsurg_2021_100987 crossref_primary_10_1016_j_cpsurg_2021_100986 crossref_primary_10_1016_j_nucengdes_2024_113655 crossref_primary_10_1007_s10489_021_02416_0 crossref_primary_10_1080_01443615_2023_2171778 crossref_primary_10_1016_j_cmpb_2023_107887 crossref_primary_10_1007_s10712_020_09609_1 crossref_primary_10_1016_j_media_2016_02_005 crossref_primary_10_1016_j_srs_2025_100257 crossref_primary_10_1121_10_0003959 crossref_primary_10_3390_ijms20112801 crossref_primary_10_1051_matecconf_201928304011 crossref_primary_10_1016_j_neunet_2020_05_034 crossref_primary_10_1103_PhysRevD_104_124057 crossref_primary_10_3390_rs13214467 crossref_primary_10_1088_2634_4386_ac734a crossref_primary_10_1109_ACCESS_2020_2971586 crossref_primary_10_1007_s12517_022_09536_y crossref_primary_10_1177_09544070251351665 crossref_primary_10_1109_ACCESS_2020_2983568 crossref_primary_10_3390_jimaging5030033 crossref_primary_10_1109_JIOT_2022_3194881 crossref_primary_10_1016_j_dajour_2023_100172 crossref_primary_10_1029_2018WR024463 crossref_primary_10_1109_ACCESS_2021_3136155 crossref_primary_10_1587_transinf_2020EDP7093 crossref_primary_10_2478_jagi_2018_0002 crossref_primary_10_1109_TNNLS_2020_3043196 crossref_primary_10_1007_s11069_021_05202_w crossref_primary_10_1146_annurev_bioeng_071516_044442 crossref_primary_10_1016_j_enbuild_2020_109807 crossref_primary_10_1007_s42452_019_1044_9 crossref_primary_10_1016_j_ins_2021_01_037 crossref_primary_10_1016_j_measurement_2019_07_039 crossref_primary_10_1146_annurev_biophys_102622_084607 crossref_primary_10_1088_1361_648X_ad258b crossref_primary_10_1016_j_trip_2024_101278 crossref_primary_10_1016_j_measurement_2022_110748 crossref_primary_10_1177_0959651821991361 crossref_primary_10_1016_j_ast_2020_106435 crossref_primary_10_1186_s12859_017_1859_6 crossref_primary_10_1016_j_bica_2016_11_002 crossref_primary_10_1177_21501319241245847 crossref_primary_10_1080_07391102_2023_2229444 crossref_primary_10_1016_j_compag_2017_12_037 crossref_primary_10_1111_bcpt_70104 crossref_primary_10_1016_j_eswa_2025_127453 crossref_primary_10_3390_math11224639 crossref_primary_10_1109_JIOT_2023_3296116 crossref_primary_10_1007_s00432_019_03098_5 crossref_primary_10_1007_s11340_021_00787_6 crossref_primary_10_3390_s20185273 crossref_primary_10_1109_ACCESS_2024_3356611 crossref_primary_10_1016_j_rser_2018_09_012 crossref_primary_10_1111_exsy_12494 crossref_primary_10_3390_fi11010024 crossref_primary_10_1186_s42408_022_00165_0 crossref_primary_10_1016_j_compind_2023_103874 crossref_primary_10_1109_TNNLS_2021_3071367 crossref_primary_10_3103_S0747923918010073 crossref_primary_10_1038_s41598_024_56609_x crossref_primary_10_1109_TCDS_2018_2800167 crossref_primary_10_3390_geosciences13040115 crossref_primary_10_1002_adma_202208719 crossref_primary_10_1016_j_clinph_2018_06_024 crossref_primary_10_1134_S0005117923090047 crossref_primary_10_32604_cmes_2022_020583 crossref_primary_10_3389_fpls_2022_800161 crossref_primary_10_1016_j_knosys_2023_110333 crossref_primary_10_3389_fncom_2019_00011 crossref_primary_10_1007_s10570_021_03684_2 crossref_primary_10_1016_j_measurement_2019_07_058 crossref_primary_10_1016_j_rse_2025_114619 crossref_primary_10_3233_JIFS_222773 crossref_primary_10_3390_app10238450 crossref_primary_10_1016_j_autcon_2021_104116 crossref_primary_10_1016_j_petrol_2022_110338 crossref_primary_10_1371_journal_pone_0296070 crossref_primary_10_1016_j_commatsci_2020_109599 crossref_primary_10_3389_fdmed_2022_833191 crossref_primary_10_3389_fdata_2023_1243559 crossref_primary_10_1109_TGRS_2019_2918080 crossref_primary_10_1063_5_0235572 crossref_primary_10_36128_PRIW_VI53_1102 crossref_primary_10_1109_ACCESS_2022_3201878 crossref_primary_10_1109_ACCESS_2019_2893871 crossref_primary_10_3390_molecules28010175 crossref_primary_10_1016_j_scitotenv_2021_149508 crossref_primary_10_1145_3645088 crossref_primary_10_3103_S0146411619030052 crossref_primary_10_1109_TPEL_2018_2883947 crossref_primary_10_1016_j_jbi_2018_06_011 crossref_primary_10_1515_astro_2024_0010 crossref_primary_10_3389_fnagi_2019_00220 crossref_primary_10_3389_fpsyt_2020_00673 crossref_primary_10_1016_j_engappai_2024_109171 crossref_primary_10_1109_ACCESS_2025_3594735 crossref_primary_10_1186_s13638_023_02261_4 crossref_primary_10_1016_j_watres_2019_115350 crossref_primary_10_1016_j_jweia_2019_103983 crossref_primary_10_1016_j_physa_2024_129758 crossref_primary_10_1080_09540091_2021_1889975 crossref_primary_10_1109_ACCESS_2021_3061697 crossref_primary_10_1007_s11042_021_10809_z crossref_primary_10_1140_epjp_s13360_024_05107_0 crossref_primary_10_1016_j_neucom_2019_11_083 crossref_primary_10_1016_j_eswa_2018_02_010 crossref_primary_10_1186_s41824_020_00094_8 crossref_primary_10_1088_1742_6596_1454_1_012004 crossref_primary_10_1587_transinf_2019ICI0001 crossref_primary_10_3390_jpm13101466 crossref_primary_10_1016_j_conb_2017_08_020 crossref_primary_10_1016_j_media_2016_11_001 crossref_primary_10_1016_j_compchemeng_2023_108169 crossref_primary_10_1080_02664763_2022_2108386 crossref_primary_10_1002_pssa_202200321 crossref_primary_10_15407_kvt206_04_005 crossref_primary_10_1016_j_energy_2025_138195 crossref_primary_10_1016_j_ecoinf_2019_02_007 crossref_primary_10_1016_j_oret_2022_02_015 crossref_primary_10_3788_LOP251332 crossref_primary_10_3390_batteries11010032 crossref_primary_10_1111_1755_0998_13861 crossref_primary_10_1007_s10472_018_9601_2 crossref_primary_10_1109_TNNLS_2018_2808470 crossref_primary_10_1051_matecconf_201821003009 crossref_primary_10_1155_2017_5218247 crossref_primary_10_1155_2021_4812979 crossref_primary_10_1016_j_addma_2020_101183 crossref_primary_10_3389_fphy_2021_738112 crossref_primary_10_1016_j_fsigen_2021_102659 crossref_primary_10_3390_ph14121277 crossref_primary_10_1109_ACCESS_2020_3016938 crossref_primary_10_1109_TNNLS_2021_3054867 crossref_primary_10_1016_j_ecoinf_2019_02_011 crossref_primary_10_1038_s41570_023_00516_8 crossref_primary_10_1016_j_swevo_2016_08_003 crossref_primary_10_1038_s41598_018_27707_4 crossref_primary_10_1051_itmconf_20257003007 crossref_primary_10_1016_j_jcbs_2024_100728 crossref_primary_10_1145_3737648 crossref_primary_10_1007_s41870_022_00900_5 crossref_primary_10_1002_anie_202104405 crossref_primary_10_1007_s00521_023_08806_4 crossref_primary_10_3390_w14142174 crossref_primary_10_1177_1063293X21988944 crossref_primary_10_3390_informatics8030059 crossref_primary_10_1007_s11227_016_1766_z crossref_primary_10_1093_mnras_stac3009 crossref_primary_10_1145_3474841 crossref_primary_10_1016_j_procs_2016_08_166 crossref_primary_10_1016_j_ifacol_2020_12_582 crossref_primary_10_1088_1361_6528_ab967d crossref_primary_10_1109_TSG_2018_2805723 crossref_primary_10_1002_adma_202208683 crossref_primary_10_1109_ACCESS_2020_3045424 crossref_primary_10_1016_j_envsoft_2023_105778 crossref_primary_10_1016_j_jallcom_2020_157709 crossref_primary_10_1002_cpe_5480 crossref_primary_10_1038_s41598_024_73140_1 crossref_primary_10_1016_j_knosys_2017_07_023 crossref_primary_10_1051_0004_6361_201731344 crossref_primary_10_1016_j_amjmed_2023_07_019 crossref_primary_10_3390_agriculture13071283 crossref_primary_10_3390_informatics8030053 crossref_primary_10_1016_j_trb_2018_10_020 crossref_primary_10_1016_j_infsof_2021_106542 crossref_primary_10_1177_0165551519865488 crossref_primary_10_1016_j_advwatres_2020_103715 crossref_primary_10_1631_FITEE_2200065 crossref_primary_10_1109_MVT_2018_2811185 crossref_primary_10_1016_j_neunet_2017_02_013 crossref_primary_10_1109_ACCESS_2019_2938410 crossref_primary_10_1016_j_snb_2022_132925 crossref_primary_10_1016_j_jece_2023_111849 crossref_primary_10_1038_s41467_022_35032_8 crossref_primary_10_1109_ACCESS_2021_3107687 crossref_primary_10_1177_0735633118757015 crossref_primary_10_1007_s00366_022_01736_0 crossref_primary_10_1109_JOE_2017_2767106 crossref_primary_10_1186_s13321_019_0341_z crossref_primary_10_1109_TMM_2023_3258141 crossref_primary_10_3390_rs16030492 crossref_primary_10_2196_11966 crossref_primary_10_1016_j_compag_2020_105391 crossref_primary_10_1016_j_srs_2025_100206 crossref_primary_10_3103_S0147688221060113 crossref_primary_10_1109_TWC_2020_2979138 crossref_primary_10_3390_math10152764 crossref_primary_10_1029_2022WR032299 crossref_primary_10_1093_jge_gxae045 crossref_primary_10_1016_j_neunet_2023_07_046 crossref_primary_10_1016_j_jksuci_2024_102016 crossref_primary_10_1109_ACCESS_2019_2926426 crossref_primary_10_5194_tc_13_2421_2019 crossref_primary_10_3390_atoms12020010 crossref_primary_10_3390_math10152747 crossref_primary_10_3389_fchem_2019_00782 crossref_primary_10_3390_sym12040495 crossref_primary_10_1016_j_brainres_2019_146457 crossref_primary_10_1038_s41467_019_12920_0 crossref_primary_10_1016_j_cej_2021_132442 crossref_primary_10_1140_epjb_e2019_100100_8 crossref_primary_10_1016_j_buildenv_2021_108201 crossref_primary_10_1109_TMI_2017_2715285 crossref_primary_10_1016_j_neunet_2023_07_032 crossref_primary_10_1007_s11517_019_02029_3 crossref_primary_10_1007_s40789_023_00579_4 crossref_primary_10_1109_ACCESS_2018_2794765 crossref_primary_10_1007_s10462_024_10931_y crossref_primary_10_1007_s12524_018_0891_y crossref_primary_10_3390_agronomy13020342 crossref_primary_10_1016_j_jcmds_2025_100116 crossref_primary_10_1016_j_asoc_2021_107424 crossref_primary_10_1029_2022GC010453 crossref_primary_10_1007_s12145_021_00674_7 crossref_primary_10_1038_s41467_021_24904_0 crossref_primary_10_1080_16843703_2021_1992072 crossref_primary_10_3390_s23084028 crossref_primary_10_1016_j_imu_2021_100723 crossref_primary_10_1007_s13218_015_0381_0 crossref_primary_10_3390_s21010052 crossref_primary_10_1109_TCAD_2020_3019993 crossref_primary_10_1038_s42256_020_0217_y crossref_primary_10_1371_journal_pone_0171410 crossref_primary_10_1109_TCYB_2017_2768570 crossref_primary_10_1007_s13351_016_6081_3 crossref_primary_10_3390_rs13173378 crossref_primary_10_1111_2041_210X_70074 crossref_primary_10_1109_TNNLS_2019_2919662 crossref_primary_10_1080_10095020_2017_1373955 crossref_primary_10_1016_j_chaos_2021_111446 crossref_primary_10_1109_ACCESS_2019_2946870 crossref_primary_10_1002_cpe_6764 crossref_primary_10_1080_09502386_2021_1895247 crossref_primary_10_11610_isij_4714 crossref_primary_10_1007_s10549_019_05281_1 crossref_primary_10_1016_j_nima_2021_166277 crossref_primary_10_1093_jge_gxy015 crossref_primary_10_1007_s11036_020_01586_4 crossref_primary_10_1016_j_ast_2022_107449 crossref_primary_10_1016_j_enconman_2024_118549 crossref_primary_10_1002_minf_202100247 crossref_primary_10_5194_amt_16_481_2023 crossref_primary_10_3389_fncom_2022_1017284 crossref_primary_10_1093_jge_gxy012 crossref_primary_10_1109_ACCESS_2019_2907261 crossref_primary_10_1109_ACCESS_2021_3090196 crossref_primary_10_1155_2018_3869106 crossref_primary_10_3847_1538_4357_abf7ba crossref_primary_10_1109_TAC_2019_2919101 crossref_primary_10_1002_cpe_6767 crossref_primary_10_1109_ACCESS_2019_2945545 crossref_primary_10_3390_biomedicines10123205 crossref_primary_10_1080_2326263X_2017_1330611 crossref_primary_10_4018_IJSSCI_2020070102 crossref_primary_10_1088_1757_899X_1055_1_012120 crossref_primary_10_1097_SS_0000000000000180 crossref_primary_10_1109_TIM_2018_2813841 crossref_primary_10_1016_j_eswa_2020_113420 crossref_primary_10_1016_j_uclim_2021_100834 crossref_primary_10_1002_sam_11716 crossref_primary_10_1007_s10208_020_09461_0 crossref_primary_10_1016_j_advwatres_2020_103787 crossref_primary_10_1016_j_ins_2016_01_082 crossref_primary_10_3390_rs12233895 crossref_primary_10_1016_j_neunet_2021_02_011 crossref_primary_10_1287_ited_2021_0256 crossref_primary_10_3390_agriculture12101707 crossref_primary_10_3390_math11102234 crossref_primary_10_1007_s00216_020_02627_3 crossref_primary_10_5194_amt_10_3547_2017 crossref_primary_10_1109_TPEL_2020_3012136 crossref_primary_10_1038_s41467_020_19817_3 crossref_primary_10_3389_fonc_2024_1433196 crossref_primary_10_1080_02723646_2021_1928871 crossref_primary_10_1155_2020_1971945 crossref_primary_10_1016_j_jai_2022_100004 crossref_primary_10_1016_j_artint_2021_103546 crossref_primary_10_1038_s41598_017_07103_0 crossref_primary_10_3389_fpls_2023_1120189 crossref_primary_10_1007_s00521_025_11025_8 crossref_primary_10_1016_j_neunet_2021_02_026 crossref_primary_10_1016_j_neunet_2021_02_024 crossref_primary_10_1088_2634_4386_ac0a5b crossref_primary_10_1088_1742_6596_2010_1_012155 crossref_primary_10_3390_soilsystems4020032 crossref_primary_10_3390_s21041139 crossref_primary_10_1016_j_compbiolchem_2024_108169 crossref_primary_10_1016_j_rineng_2025_106345 crossref_primary_10_3390_math11102241 crossref_primary_10_1007_s40684_022_00417_z crossref_primary_10_1016_j_asr_2020_05_046 crossref_primary_10_1109_JSTARS_2016_2621011 crossref_primary_10_3390_rs12060953 crossref_primary_10_1002_aisy_202200105 crossref_primary_10_1088_1361_6463_ad8ce7 crossref_primary_10_1016_j_ergon_2017_02_004 crossref_primary_10_1093_mnras_stz272 crossref_primary_10_1109_ACCESS_2020_3044173 crossref_primary_10_1109_TAES_2020_2999163 crossref_primary_10_1109_ACCESS_2020_3001046 crossref_primary_10_1007_s00146_024_01891_6 crossref_primary_10_1016_j_compchemeng_2025_109068 crossref_primary_10_1371_journal_pone_0306094 crossref_primary_10_1016_j_neunet_2019_07_009 crossref_primary_10_3233_XST_230429 crossref_primary_10_3390_en14020413 crossref_primary_10_3390_en18154122 crossref_primary_10_3390_w13192664 crossref_primary_10_1007_s10064_022_02615_0 crossref_primary_10_1021_acs_jcim_5b00238 crossref_primary_10_1007_s00521_022_07910_1 crossref_primary_10_4018_IJGHPC_2018070101 crossref_primary_10_3390_app14177907 crossref_primary_10_1109_ACCESS_2019_2958895 crossref_primary_10_1109_TIP_2017_2696744 crossref_primary_10_3390_f16071180 crossref_primary_10_1016_j_clnu_2020_02_013 crossref_primary_10_3390_w11020200 crossref_primary_10_1007_s11135_020_01037_y crossref_primary_10_1016_j_pmcj_2017_12_005 crossref_primary_10_1287_mksc_2021_1329 crossref_primary_10_1016_j_ophtha_2020_12_020 crossref_primary_10_1111_micc_12542 crossref_primary_10_1007_s11663_023_02753_0 crossref_primary_10_1038_s41467_023_40192_2 crossref_primary_10_1038_s41598_021_81786_4 crossref_primary_10_1109_ACCESS_2022_3204004 crossref_primary_10_4000_questionsdecommunication_11040 crossref_primary_10_1016_j_neunet_2019_07_021 crossref_primary_10_1007_s11042_020_09167_z crossref_primary_10_1109_TCYB_2017_2712188 crossref_primary_10_3390_app12010256 crossref_primary_10_1016_j_compbiomed_2020_104115 crossref_primary_10_1016_j_rpor_2017_08_005 crossref_primary_10_1016_j_neucom_2021_08_062 crossref_primary_10_3390_cancers12102791 crossref_primary_10_3390_coatings9070429 crossref_primary_10_1111_wej_12787 crossref_primary_10_1007_s11042_024_18316_7 crossref_primary_10_1146_annurev_biodatasci_122120_113218 crossref_primary_10_1007_s00414_021_02660_6 crossref_primary_10_1109_TR_2021_3105531 crossref_primary_10_1007_s42107_025_01485_7 crossref_primary_10_1007_s11634_021_00455_6 crossref_primary_10_1109_JPROC_2019_2897076 crossref_primary_10_1007_s10973_019_08789_2 crossref_primary_10_1063_5_0139707 crossref_primary_10_1007_s11282_023_00669_8 crossref_primary_10_3390_healthcare10081494 crossref_primary_10_1016_j_matpr_2020_10_624 crossref_primary_10_3233_JIFS_221389 crossref_primary_10_1088_1741_2552_ab260c crossref_primary_10_1016_j_scs_2021_103484 crossref_primary_10_1186_s13321_019_0391_2 crossref_primary_10_1016_j_camwa_2023_10_002 crossref_primary_10_1109_ACCESS_2020_2990607 crossref_primary_10_3390_rs16010068 crossref_primary_10_1016_j_enconman_2020_112700 crossref_primary_10_15754_jkpe_2017_39_1_005 crossref_primary_10_5194_hess_28_917_2024 crossref_primary_10_1109_TCYB_2022_3155646 crossref_primary_10_1051_e3sconf_202021601035 crossref_primary_10_1016_j_jmva_2019_06_005 crossref_primary_10_1038_srep21471 crossref_primary_10_1007_s00158_021_02861_y crossref_primary_10_3390_drones8100534 crossref_primary_10_3390_catal7100306 crossref_primary_10_1146_annurev_statistics_032921_013738 crossref_primary_10_1016_j_neunet_2022_11_035 crossref_primary_10_1063_1_5142089 crossref_primary_10_3390_s21186273 crossref_primary_10_1016_j_neunet_2022_02_012 crossref_primary_10_1016_j_nima_2017_06_020 crossref_primary_10_1002_wcms_70016 crossref_primary_10_3390_en18174564 crossref_primary_10_1111_faf_12666 crossref_primary_10_1007_s40996_023_01156_0 crossref_primary_10_3390_agriculture11020131 crossref_primary_10_1016_j_fuel_2020_120006 crossref_primary_10_1109_JOE_2017_2752757 crossref_primary_10_1016_j_aei_2021_101289 crossref_primary_10_1016_j_eswa_2020_113386 crossref_primary_10_1016_j_pnucene_2024_105568 crossref_primary_10_1016_j_ebiom_2019_07_001 crossref_primary_10_1016_j_oceaneng_2021_108956 crossref_primary_10_3390_app13031639 crossref_primary_10_24171_j_phrp_2020_11_4_13 crossref_primary_10_1002_ett_4117 crossref_primary_10_1016_j_neubiorev_2022_104621 crossref_primary_10_1109_TII_2018_2822680 crossref_primary_10_1103_PhysRevResearch_2_023300 crossref_primary_10_1016_j_ifacol_2021_10_007 crossref_primary_10_1049_2023_1052063 crossref_primary_10_1155_2021_8893795 crossref_primary_10_1016_j_sigpro_2023_108977 crossref_primary_10_1080_17483107_2019_1673834 crossref_primary_10_1038_srep19133 crossref_primary_10_3390_s19071644 crossref_primary_10_2139_ssrn_5264276 crossref_primary_10_26634_jip_8_4_18394 crossref_primary_10_1016_j_compeleceng_2022_108279 crossref_primary_10_1109_ACCESS_2022_3152200 crossref_primary_10_1016_j_chaos_2023_113809 crossref_primary_10_26634_jic_8_1_17698 crossref_primary_10_1145_3453155 crossref_primary_10_1088_1361_6501_ab50f0 crossref_primary_10_3389_fmars_2021_637759 crossref_primary_10_3390_s20185322 crossref_primary_10_1007_s42452_020_03239_3 crossref_primary_10_1111_exsy_12525 crossref_primary_10_4018_IJAMC_292504 crossref_primary_10_1063_1_5143382 crossref_primary_10_1109_TGRS_2021_3072381 crossref_primary_10_1016_j_nucengdes_2024_113551 crossref_primary_10_1007_s00779_019_01261_w crossref_primary_10_1016_j_cirpj_2022_11_004 crossref_primary_10_1109_ACCESS_2022_3217217 crossref_primary_10_1007_s43452_024_00922_9 crossref_primary_10_3390_s20102778 crossref_primary_10_1097_IAE_0000000000003535 crossref_primary_10_1109_ACCESS_2022_3178847 crossref_primary_10_1134_S0005117920070048 crossref_primary_10_3390_brainsci13010021 crossref_primary_10_3390_s18113960 crossref_primary_10_1111_opo_12909 crossref_primary_10_1016_j_jag_2023_103279 crossref_primary_10_1016_j_neunet_2018_07_010 crossref_primary_10_1007_s11222_024_10500_x crossref_primary_10_1016_j_engstruct_2025_119621 crossref_primary_10_1016_j_bspc_2021_103094 crossref_primary_10_1016_j_neunet_2018_07_013 crossref_primary_10_1016_j_comcom_2021_07_014 crossref_primary_10_1063_5_0025881 crossref_primary_10_1007_s10660_019_09371_6 crossref_primary_10_1002_cite_202100051 crossref_primary_10_32604_cmc_2023_030818 crossref_primary_10_1007_s11661_020_06008_4 crossref_primary_10_1155_2019_1879746 crossref_primary_10_3390_s20061756 crossref_primary_10_1016_j_jnca_2019_02_009 crossref_primary_10_1016_j_renene_2023_119200 crossref_primary_10_1016_j_gassur_2024_08_024 crossref_primary_10_1016_j_artint_2021_103457 crossref_primary_10_1007_s00603_017_1197_z crossref_primary_10_1093_bib_bbac202 crossref_primary_10_1109_TNSE_2021_3102667 crossref_primary_10_1002_adma_202201345 crossref_primary_10_1016_j_astropartphys_2019_03_001 crossref_primary_10_1016_j_eiar_2025_108130 crossref_primary_10_1002_aisy_202500147 crossref_primary_10_3390_su122310090 crossref_primary_10_1016_j_artmed_2020_101954 crossref_primary_10_12677_JISP_2018_74023 crossref_primary_10_1002_acm2_13001 crossref_primary_10_1016_j_resplu_2024_100829 crossref_primary_10_1177_1071181320641417 crossref_primary_10_1186_s13321_020_00454_3 crossref_primary_10_1016_j_scriptamat_2020_10_026 crossref_primary_10_1007_s41060_025_00822_y crossref_primary_10_1002_prot_70005 crossref_primary_10_3390_pr9122166 crossref_primary_10_1016_j_sna_2023_115003 crossref_primary_10_3233_ICA_210652 crossref_primary_10_1186_s13635_020_00109_8 crossref_primary_10_1109_TSMC_2019_2920390 crossref_primary_10_1007_s11071_019_05430_7 crossref_primary_10_3390_en16155790 crossref_primary_10_1073_pnas_2201854119 crossref_primary_10_1002_nme_70034 crossref_primary_10_1016_j_enbuild_2019_109402 crossref_primary_10_1371_journal_pone_0212368 crossref_primary_10_1016_j_ijepes_2025_110793 crossref_primary_10_1016_j_commatsci_2021_110356 crossref_primary_10_1016_j_artmed_2020_101963 crossref_primary_10_1016_j_compchemeng_2022_108125 crossref_primary_10_1109_ACCESS_2020_3040780 crossref_primary_10_3390_electronics12071561 crossref_primary_10_3390_s21041330 crossref_primary_10_1016_j_measurement_2020_108809 crossref_primary_10_1016_j_physa_2025_130529 crossref_primary_10_1186_s12957_025_03874_3 crossref_primary_10_1016_j_neunet_2025_108127 crossref_primary_10_3390_hydrology10020050 crossref_primary_10_1016_j_conbuildmat_2022_129503 crossref_primary_10_1016_j_compfluid_2019_03_022 crossref_primary_10_1016_j_ijfatigue_2019_02_043 crossref_primary_10_1186_s40360_018_0282_6 crossref_primary_10_1016_j_jprocont_2023_103127 crossref_primary_10_1007_s10845_020_01581_2 crossref_primary_10_1016_j_oceaneng_2023_114536 crossref_primary_10_3390_s21072411 crossref_primary_10_1016_j_saa_2023_122355 crossref_primary_10_1016_j_jclepro_2019_06_084 crossref_primary_10_1016_j_jhydrol_2021_126586 crossref_primary_10_3389_frobt_2019_00153 crossref_primary_10_1007_s12145_025_01745_9 crossref_primary_10_1134_S0361768820080265 crossref_primary_10_3390_app122211502 crossref_primary_10_3390_s19071693 crossref_primary_10_1007_s00586_022_07176_0 crossref_primary_10_1007_s11042_020_08769_x crossref_primary_10_1016_j_mineng_2023_108028 crossref_primary_10_1016_j_envsoft_2023_105854 crossref_primary_10_1109_LGRS_2021_3128965 crossref_primary_10_1016_j_matpr_2021_01_611 crossref_primary_10_1016_j_dsp_2017_07_023 crossref_primary_10_1016_j_ppnp_2023_104084 crossref_primary_10_1080_13675567_2017_1384451 crossref_primary_10_1364_JOCN_403056 crossref_primary_10_7759_cureus_41840 crossref_primary_10_1016_j_compbiomed_2017_03_024 crossref_primary_10_1007_s42979_023_02236_8 crossref_primary_10_1016_j_jml_2019_03_006 crossref_primary_10_1007_s12599_018_0544_2 crossref_primary_10_1080_13658816_2019_1599895 crossref_primary_10_1109_JIOT_2020_2993567 crossref_primary_10_1109_JSYST_2022_3232942 crossref_primary_10_3389_fnagi_2022_1027224 crossref_primary_10_3390_sym13101942 crossref_primary_10_1016_j_neunet_2019_04_005 crossref_primary_10_1016_j_oceaneng_2022_113395 crossref_primary_10_1109_ACCESS_2018_2846609 crossref_primary_10_1109_LGRS_2020_2972313 crossref_primary_10_1109_ACCESS_2015_2479620 crossref_primary_10_1016_j_ins_2022_10_022 crossref_primary_10_1016_j_neunet_2019_04_009 crossref_primary_10_1109_JSEN_2020_3006400 crossref_primary_10_1002_asi_24025 crossref_primary_10_1038_s41598_022_13984_7 crossref_primary_10_3390_app10041546 crossref_primary_10_1007_s10772_021_09859_3 crossref_primary_10_1016_j_eswa_2019_113090 crossref_primary_10_1038_s41598_018_20521_y crossref_primary_10_3390_app11125541 crossref_primary_10_1007_s11684_019_0726_4 crossref_primary_10_1109_TGRS_2020_3015826 crossref_primary_10_1016_j_oceaneng_2023_114511 crossref_primary_10_1109_TGRS_2021_3119537 crossref_primary_10_3390_photonics10030271 crossref_primary_10_1016_j_neunet_2019_04_013 crossref_primary_10_3390_w17091263 crossref_primary_10_1016_j_neunet_2019_04_019 crossref_primary_10_1016_j_applthermaleng_2024_122870 crossref_primary_10_1088_1361_6501_ac856d crossref_primary_10_1007_s11831_021_09557_y crossref_primary_10_1109_JBHI_2021_3093649 crossref_primary_10_1109_JSEN_2019_2937740 crossref_primary_10_1109_LRA_2018_2850224 crossref_primary_10_1186_s12911_019_0988_4 crossref_primary_10_3390_app11209705 crossref_primary_10_3390_photonics9020069 crossref_primary_10_1016_j_compeleceng_2024_109290 crossref_primary_10_3390_photonics10030278 crossref_primary_10_1515_tjj_2018_0049 crossref_primary_10_3390_rs15174299 crossref_primary_10_1109_TITS_2020_2973736 crossref_primary_10_3390_e25020353 crossref_primary_10_1109_TMECH_2018_2834622 crossref_primary_10_1109_JSTARS_2018_2793849 crossref_primary_10_1016_j_neunet_2019_04_024 crossref_primary_10_1175_MWR_D_18_0391_1 crossref_primary_10_1007_s00138_021_01271_w crossref_primary_10_1016_j_bspc_2022_104224 crossref_primary_10_3390_bdcc7010016 crossref_primary_10_1016_j_atech_2022_100091 crossref_primary_10_1038_s41540_024_00341_9 crossref_primary_10_3390_s20061771 crossref_primary_10_1016_j_cirpj_2020_02_004 crossref_primary_10_1016_j_swevo_2022_101120 crossref_primary_10_3390_app13020923 crossref_primary_10_3390_diagnostics6020024 crossref_primary_10_1002_ange_202008366 crossref_primary_10_1007_s11135_025_02114_w crossref_primary_10_1515_revneuro_2024_0088 crossref_primary_10_1002_adom_202201959 crossref_primary_10_1016_j_patcog_2021_107936 crossref_primary_10_1177_2399808317710132 crossref_primary_10_1007_s11069_022_05356_1 crossref_primary_10_3389_fnins_2020_578126 crossref_primary_10_1016_j_irfa_2024_103769 crossref_primary_10_3390_rs13051011 crossref_primary_10_1016_j_neucom_2023_126438 crossref_primary_10_3390_rs13193976 crossref_primary_10_1109_TII_2017_2739340 crossref_primary_10_3390_act12030117 crossref_primary_10_1038_s41598_019_55861_w crossref_primary_10_1146_annurev_vision_091718_014731 crossref_primary_10_1111_raq_12464 crossref_primary_10_1109_TII_2020_3044576 crossref_primary_10_3389_frwa_2021_786016 crossref_primary_10_1016_j_ymssp_2018_05_050 crossref_primary_10_1007_s11222_020_09989_9 crossref_primary_10_1007_s11277_022_09848_y crossref_primary_10_1080_01431161_2025_2452313 crossref_primary_10_1016_j_engappai_2023_106975 crossref_primary_10_1109_TSC_2020_2975799 crossref_primary_10_1109_ACCESS_2019_2909807 crossref_primary_10_1007_s11042_023_17769_6 crossref_primary_10_1007_s13042_017_0736_y crossref_primary_10_1002_fld_4911 crossref_primary_10_1109_ACCESS_2022_3170042 crossref_primary_10_1016_j_knosys_2016_07_019 crossref_primary_10_1109_COMST_2018_2844341 crossref_primary_10_1155_2024_9480522 crossref_primary_10_1007_s11517_022_02759_x crossref_primary_10_1016_j_compbiomed_2022_105215 crossref_primary_10_1109_TCI_2022_3201390 crossref_primary_10_1093_comjnl_bxz062 crossref_primary_10_1016_j_irbm_2020_12_002 crossref_primary_10_1016_j_envres_2023_117601 crossref_primary_10_1146_annurev_vision_120522_031739 crossref_primary_10_3390_su10114312 crossref_primary_10_1002_mp_13264 crossref_primary_10_1007_s00220_025_05238_0 crossref_primary_10_1103_PhysRevB_106_035131 crossref_primary_10_1515_npprj_2022_0013 crossref_primary_10_3389_fsufs_2020_00051 crossref_primary_10_1109_COMST_2019_2943405 crossref_primary_10_2118_214681_PA crossref_primary_10_1371_journal_pone_0197992 crossref_primary_10_3389_frai_2020_550890 crossref_primary_10_1007_s10799_021_00336_6 crossref_primary_10_1080_01431161_2021_1887539 crossref_primary_10_1016_j_matdes_2018_11_060 crossref_primary_10_1109_ACCESS_2021_3054468 crossref_primary_10_1007_s10494_019_00028_w crossref_primary_10_1007_s42985_023_00231_5 crossref_primary_10_1016_j_atech_2022_100042 crossref_primary_10_1016_j_trc_2019_05_021 crossref_primary_10_1364_PRJ_411825 crossref_primary_10_1016_j_ebiom_2023_104820 crossref_primary_10_1002_qre_2797 crossref_primary_10_1093_iti_liad016 crossref_primary_10_1016_j_eswa_2024_123947 crossref_primary_10_3389_fninf_2020_575999 crossref_primary_10_1038_s41598_024_80286_5 crossref_primary_10_1016_j_ccr_2025_216460 crossref_primary_10_1016_j_patcog_2021_107978 crossref_primary_10_1109_TBME_2022_3141308 crossref_primary_10_1088_1475_7516_2025_02_004 crossref_primary_10_1007_s00530_022_00951_5 crossref_primary_10_3390_app13053097 crossref_primary_10_1007_s11663_021_02299_z crossref_primary_10_1049_rsn2_12510 crossref_primary_10_1016_j_nucengdes_2023_112423 crossref_primary_10_1038_s41598_022_21451_6 crossref_primary_10_1145_3396949 crossref_primary_10_1016_j_neucom_2019_02_047 crossref_primary_10_1016_j_compchemeng_2020_107123 crossref_primary_10_1007_s00521_025_11039_2 crossref_primary_10_1109_ACCESS_2020_2972859 crossref_primary_10_1016_j_bspc_2019_101663 crossref_primary_10_1093_jas_skz092 crossref_primary_10_1109_TSM_2020_2994357 crossref_primary_10_1007_s00371_016_1220_5 crossref_primary_10_3390_axioms10030139 crossref_primary_10_1016_j_ifacol_2021_06_037 crossref_primary_10_1016_j_molcel_2020_04_020 crossref_primary_10_1109_ACCESS_2019_2916935 crossref_primary_10_1088_1361_6501_adda70 crossref_primary_10_3390_buildings15132291 crossref_primary_10_1016_j_eswa_2025_128583 crossref_primary_10_1080_15732479_2020_1811991 crossref_primary_10_1007_s11269_024_04069_3 crossref_primary_10_3390_socsci12070398 crossref_primary_10_1016_j_pnucene_2019_103133 crossref_primary_10_1109_TEM_2020_2978528 crossref_primary_10_1016_j_engappai_2024_109105 crossref_primary_10_1016_j_neucom_2019_02_051 crossref_primary_10_1007_s11936_020_00838_6 crossref_primary_10_1111_cgf_13536 crossref_primary_10_1002_arp_1763 crossref_primary_10_1038_s41528_025_00425_4 crossref_primary_10_1038_s41598_018_21758_3 crossref_primary_10_1016_j_ins_2018_09_029 crossref_primary_10_1016_j_buildenv_2021_108148 crossref_primary_10_3390_s17020414 crossref_primary_10_1016_j_applthermaleng_2017_12_063 crossref_primary_10_1002_aic_16489 crossref_primary_10_1007_s10462_020_09845_2 crossref_primary_10_3390_en11081988 crossref_primary_10_1016_j_ipm_2019_03_004 crossref_primary_10_1007_s00371_020_01799_4 crossref_primary_10_1038_s42003_021_01697_y crossref_primary_10_1108_IDD_02_2020_0019 crossref_primary_10_1016_j_aei_2023_102337 crossref_primary_10_3390_math9192405 crossref_primary_10_3390_app9112331 crossref_primary_10_1063_5_0235654 crossref_primary_10_1002_aic_16473 crossref_primary_10_3390_s21155192 crossref_primary_10_1038_s41551_023_01045_x crossref_primary_10_1016_j_petrol_2020_107159 crossref_primary_10_1186_s40537_018_0135_6 crossref_primary_10_1007_s00170_021_08369_5 crossref_primary_10_1016_j_rse_2021_112750 crossref_primary_10_3390_rs15010182 crossref_primary_10_1002_er_5429 crossref_primary_10_1016_j_pnucene_2019_103110 crossref_primary_10_1016_j_patrec_2017_08_023 crossref_primary_10_3389_fped_2023_1203289 crossref_primary_10_1016_j_chaos_2025_117131 crossref_primary_10_1002_cem_3318 crossref_primary_10_1007_s00500_016_2442_1 crossref_primary_10_1016_j_ins_2018_09_001 crossref_primary_10_1098_rsos_201886 crossref_primary_10_1016_j_heliyon_2022_e10567 crossref_primary_10_1016_j_eswa_2022_116977 crossref_primary_10_1186_s12859_022_04689_9 crossref_primary_10_1109_ACCESS_2023_3249108 crossref_primary_10_3389_fnins_2019_01275 crossref_primary_10_3389_fbioe_2020_562677 crossref_primary_10_1016_j_conbuildmat_2025_142080 crossref_primary_10_1016_j_ins_2018_09_059 crossref_primary_10_32604_cmc_2022_021271 crossref_primary_10_1016_j_jece_2025_117826 crossref_primary_10_1016_j_cosrev_2020_100288 crossref_primary_10_1162_netn_a_00082 crossref_primary_10_1016_j_ins_2017_01_013 crossref_primary_10_1016_j_compbiomed_2025_110788 crossref_primary_10_1109_TEM_2020_2977222 crossref_primary_10_1007_s11766_022_4319_7 crossref_primary_10_1016_j_engstruct_2023_116083 crossref_primary_10_1002_cpe_5595 crossref_primary_10_1080_10293523_2020_1870860 crossref_primary_10_1109_LPT_2017_2742553 crossref_primary_10_1111_ajae_12442 crossref_primary_10_1007_s12652_020_02172_y crossref_primary_10_1016_j_ijnonlinmec_2022_104023 crossref_primary_10_1109_THMS_2019_2912447 crossref_primary_10_3390_encyclopedia3020049 crossref_primary_10_3390_mi15101258 crossref_primary_10_1089_jamp_2022_0051 crossref_primary_10_1021_jacs_1c08211 crossref_primary_10_3390_s19051112 crossref_primary_10_3233_JIFS_211944 crossref_primary_10_1534_g3_116_033654 crossref_primary_10_1088_2634_4386_accd8f crossref_primary_10_1016_j_conb_2018_08_003 crossref_primary_10_1007_s12524_018_0892_x crossref_primary_10_1016_j_jobe_2021_102536 crossref_primary_10_3390_computers12050091 crossref_primary_10_1088_2634_4386_ac4918 crossref_primary_10_1099_mgen_0_000317 crossref_primary_10_1016_j_cmpb_2019_03_019 crossref_primary_10_1109_TSMC_2023_3257416 crossref_primary_10_1190_geo2023_0742_1 crossref_primary_10_1007_s11036_019_01310_x crossref_primary_10_1109_JSTARS_2021_3065569 crossref_primary_10_1016_j_elspec_2022_147243 crossref_primary_10_1088_1402_4896_acd4fa crossref_primary_10_1016_j_jhydrol_2022_127656 crossref_primary_10_1016_j_cej_2023_145562 crossref_primary_10_3390_e24111539 crossref_primary_10_1364_JOSAB_573751 crossref_primary_10_3390_molecules27092982 crossref_primary_10_1016_j_optlaseng_2020_106245 crossref_primary_10_1109_LGRS_2019_2953754 crossref_primary_10_1093_mnras_stab3770 crossref_primary_10_1002_int_22982 crossref_primary_10_1190_geo2019_0468_1 crossref_primary_10_1016_j_neucom_2019_02_037 crossref_primary_10_1371_journal_pone_0157028 crossref_primary_10_1142_S021964922350003X crossref_primary_10_1016_j_artmed_2024_102769 crossref_primary_10_3390_jsan6040026 crossref_primary_10_1016_j_enconman_2022_116026 crossref_primary_10_1016_j_crfs_2025_100986 crossref_primary_10_1016_j_matdes_2019_108411 crossref_primary_10_1016_j_ringps_2021_100015 crossref_primary_10_1007_s00170_021_08462_9 crossref_primary_10_1007_s12145_023_00950_8 crossref_primary_10_1088_1361_6463_ac6d24 crossref_primary_10_1177_1094342020953196 crossref_primary_10_1109_TBME_2018_2890167 crossref_primary_10_1038_s41598_025_04858_9 crossref_primary_10_3390_su16145940 crossref_primary_10_32604_cmes_2022_020601 crossref_primary_10_1007_s00521_022_07208_2 crossref_primary_10_1016_j_arcontrol_2021_05_002 crossref_primary_10_1038_s41598_025_92378_x crossref_primary_10_1109_ACCESS_2019_2956170 crossref_primary_10_3390_w14182910 crossref_primary_10_4018_IJSESD_313966 crossref_primary_10_3390_electronics9010193 crossref_primary_10_1063_5_0131067 crossref_primary_10_3390_su11040997 crossref_primary_10_1016_j_trc_2017_08_001 crossref_primary_10_1177_03611981211018693 crossref_primary_10_1088_1361_6501_abc6e3 crossref_primary_10_1109_ACCESS_2022_3219832 crossref_primary_10_1007_s11042_020_09714_8 crossref_primary_10_1007_s11837_024_06408_6 crossref_primary_10_1063_1_5136251 crossref_primary_10_1007_s11023_019_09512_8 crossref_primary_10_3390_coatings12111619 crossref_primary_10_1016_j_rineng_2025_105104 crossref_primary_10_1016_j_asoc_2020_106181 crossref_primary_10_1038_s41598_023_33222_y crossref_primary_10_1080_02773945_2024_2343264 crossref_primary_10_1109_TFUZZ_2018_2857725 crossref_primary_10_3390_electronics9010180 crossref_primary_10_1016_j_rpor_2020_03_015 crossref_primary_10_1016_j_asoc_2021_107314 crossref_primary_10_3390_jmse10030311 crossref_primary_10_1016_j_bspc_2023_105475 crossref_primary_10_1177_1420326X241244721 crossref_primary_10_1016_j_ecoinf_2021_101322 crossref_primary_10_1039_D0QO00946F crossref_primary_10_1016_j_physrep_2022_04_001 crossref_primary_10_7717_peerj_6842 crossref_primary_10_3390_electronics9091514 crossref_primary_10_1088_1741_2552_ab0b82 crossref_primary_10_3390_rs16091562 crossref_primary_10_1080_00207721_2018_1552771 crossref_primary_10_1016_j_engstruct_2021_112735 crossref_primary_10_1016_j_optlaseng_2022_107298 crossref_primary_10_1016_j_ijpe_2018_06_010 crossref_primary_10_1161_JAHA_119_014717 crossref_primary_10_1088_1742_6596_1854_1_012047 crossref_primary_10_1038_nbt_4106 crossref_primary_10_1016_j_drudis_2020_06_001 crossref_primary_10_1109_TMI_2016_2532122 crossref_primary_10_3390_ijgi9110632 crossref_primary_10_1371_journal_pstr_0000182 crossref_primary_10_1093_bib_bbac191 crossref_primary_10_3390_en18030746 crossref_primary_10_1145_3450963 crossref_primary_10_1016_j_scitotenv_2023_169699 crossref_primary_10_3389_fnins_2023_1154252 crossref_primary_10_1177_1748006X19866546 crossref_primary_10_1016_j_aei_2021_101315 crossref_primary_10_1190_geo2019_0250_1 crossref_primary_10_2478_arsa_2023_0009 crossref_primary_10_3390_app10061994 crossref_primary_10_1109_TGRS_2022_3229362 crossref_primary_10_1016_j_isprsjprs_2021_08_017 crossref_primary_10_3390_rs13234868 crossref_primary_10_1109_JIOT_2022_3151667 crossref_primary_10_1017_S1431927619001041 crossref_primary_10_1016_j_procir_2018_02_010 crossref_primary_10_1007_s11042_022_12963_4 crossref_primary_10_1016_j_neucom_2018_11_079 crossref_primary_10_1155_2016_1010459 crossref_primary_10_1109_JIOT_2022_3161050 crossref_primary_10_1016_j_neuroscience_2020_07_040 crossref_primary_10_1007_s00009_022_02138_8 crossref_primary_10_1109_TASLP_2019_2913087 crossref_primary_10_1109_ACCESS_2019_2899990 crossref_primary_10_1109_ACCESS_2022_3177595 crossref_primary_10_1007_s10462_022_10237_x crossref_primary_10_1515_eng_2018_0043 crossref_primary_10_1016_j_ddtec_2020_09_003 crossref_primary_10_1016_j_measurement_2020_107567 crossref_primary_10_1007_s10107_021_01629_y crossref_primary_10_1016_j_ecoinf_2021_101353 crossref_primary_10_1007_s11831_022_09765_0 crossref_primary_10_1016_j_mser_2025_101085 crossref_primary_10_1007_s00521_021_06621_3 crossref_primary_10_1016_j_neuroimage_2017_04_061 crossref_primary_10_1109_TSE_2018_2792473 crossref_primary_10_1007_s11265_023_01894_4 crossref_primary_10_1109_TNNLS_2017_2782266 crossref_primary_10_1007_s10009_020_00560_5 crossref_primary_10_3390_en18154004 crossref_primary_10_1007_s11042_021_11135_0 crossref_primary_10_1016_j_fuel_2021_122538 crossref_primary_10_1080_16549716_2017_1337325 crossref_primary_10_1146_annurev_biodatasci_080917_013516 crossref_primary_10_1016_j_jmsy_2020_06_018 crossref_primary_10_1093_mnras_stz131 crossref_primary_10_1109_ACCESS_2019_2897327 crossref_primary_10_1049_rsn2_12536 crossref_primary_10_1016_j_ress_2023_109850 crossref_primary_10_1080_13675567_2025_2517639 crossref_primary_10_1016_j_aeue_2019_02_011 crossref_primary_10_1109_TNNLS_2018_2890787 crossref_primary_10_1134_S1063739725600347 crossref_primary_10_1016_j_csbj_2021_10_009 crossref_primary_10_1016_j_cmpb_2022_106874 crossref_primary_10_1088_1742_6596_1085_2_022002 crossref_primary_10_2147_IJN_S344208 crossref_primary_10_1016_j_cej_2022_137221 crossref_primary_10_1016_j_jedc_2020_103895 crossref_primary_10_3390_buildings14113509 crossref_primary_10_1111_epi_13907 crossref_primary_10_2135_tppj2019_03_0006 crossref_primary_10_1007_s11356_021_12658_7 crossref_primary_10_1016_j_renene_2018_02_081 crossref_primary_10_1371_journal_pone_0319476 crossref_primary_10_3390_ma18030714 crossref_primary_10_1029_2023EA003186 crossref_primary_10_1016_j_neuroimage_2017_04_041 crossref_primary_10_1109_TNNLS_2017_2726119 crossref_primary_10_1007_s13369_025_10257_z crossref_primary_10_1016_j_engappai_2021_104610 crossref_primary_10_1016_j_jbiomech_2019_109490 crossref_primary_10_1016_j_biombioe_2025_108366 crossref_primary_10_3390_su11236755 crossref_primary_10_1016_j_eja_2019_01_004 crossref_primary_10_1016_j_engstruct_2022_113915 crossref_primary_10_1016_j_procs_2017_05_101 crossref_primary_10_1017_pasa_2023_32 crossref_primary_10_1016_j_conb_2015_12_001 crossref_primary_10_1109_TBME_2019_2945231 crossref_primary_10_1016_j_jcp_2018_08_036 crossref_primary_10_1109_JBHI_2018_2795545 crossref_primary_10_1007_s12613_023_2670_1 crossref_primary_10_1016_j_finel_2023_104068 crossref_primary_10_1175_JTECH_D_19_0146_1 crossref_primary_10_3390_su14074083 crossref_primary_10_1186_s40708_023_00188_6 crossref_primary_10_1016_j_optlastec_2022_108780 crossref_primary_10_1002_cam4_4042 crossref_primary_10_7554_eLife_59161 crossref_primary_10_1016_j_compag_2025_110761 crossref_primary_10_1016_j_drudis_2017_08_010 crossref_primary_10_3390_rs15081960 crossref_primary_10_1186_s42400_020_00053_7 crossref_primary_10_1007_s00146_021_01287_w crossref_primary_10_1016_j_jappgeo_2022_104846 crossref_primary_10_1093_jme_tjz065 crossref_primary_10_1186_s13059_018_1459_4 crossref_primary_10_1093_mnras_stad141 crossref_primary_10_1016_j_neubiorev_2017_01_002 crossref_primary_10_3390_computers5040028 crossref_primary_10_1088_1674_4527_21_5_119 crossref_primary_10_1016_j_cie_2019_06_052 crossref_primary_10_1190_geo2020_0313_1 crossref_primary_10_1016_j_amc_2024_128910 crossref_primary_10_1109_JSTARS_2025_3557956 crossref_primary_10_1016_j_engappai_2025_111173 crossref_primary_10_1016_j_engappai_2025_111172 crossref_primary_10_1049_iet_rsn_2016_0632 crossref_primary_10_1051_itmconf_20224301020 crossref_primary_10_1016_j_eswa_2022_118254 crossref_primary_10_1016_j_jmva_2020_104696 crossref_primary_10_56294_dm2025994 crossref_primary_10_1007_s00521_018_03980_2 crossref_primary_10_1016_j_compchemeng_2025_109382 crossref_primary_10_1016_j_imu_2025_101659 crossref_primary_10_3390_buildings11090409 crossref_primary_10_3389_fdata_2021_642182 crossref_primary_10_1080_01691864_2017_1365009 crossref_primary_10_1007_s42979_025_03739_2 crossref_primary_10_5194_tc_15_1551_2021 crossref_primary_10_3389_fphy_2018_00051 crossref_primary_10_1007_s12145_023_01207_0 crossref_primary_10_1080_19393555_2021_1883777 crossref_primary_10_1016_j_pss_2022_105579 crossref_primary_10_3390_en13153987 crossref_primary_10_1140_epjp_s13360_025_06072_y crossref_primary_10_1111_mice_13381 crossref_primary_10_1371_journal_pcbi_1005403 crossref_primary_10_1002_adpr_202300253 crossref_primary_10_1016_j_engappai_2025_111184 crossref_primary_10_1080_17486025_2021_1975048 crossref_primary_10_1088_1757_899X_768_7_072055 crossref_primary_10_1016_j_apsusc_2018_12_255 crossref_primary_10_3390_s22228739 crossref_primary_10_3390_s21186172 crossref_primary_10_1007_s40304_022_00329_z crossref_primary_10_1007_s10973_018_7722_9 crossref_primary_10_3390_buildings11040165 crossref_primary_10_3390_bdcc5040060 crossref_primary_10_1038_s41598_025_02015_w crossref_primary_10_1088_1757_899X_768_7_072040 crossref_primary_10_1016_j_joi_2017_12_004 crossref_primary_10_1371_journal_pone_0214866 crossref_primary_10_1007_s10462_022_10289_z crossref_primary_10_1109_LSP_2020_2966888 crossref_primary_10_3390_electronics9101708 crossref_primary_10_1016_j_neunet_2017_07_015 crossref_primary_10_1016_j_jhydrol_2021_126877 crossref_primary_10_1109_TIFS_2019_2919950 crossref_primary_10_1016_j_procs_2025_04_642 crossref_primary_10_1109_ACCESS_2022_3206449 crossref_primary_10_1038_s41467_021_23087_y crossref_primary_10_1088_2515_7620_ac371f crossref_primary_10_1016_j_optcom_2024_131471 crossref_primary_10_1080_19648189_2022_2102081 crossref_primary_10_3389_fenrg_2020_00115 crossref_primary_10_1016_j_renene_2022_07_109 crossref_primary_10_1007_s10668_023_03212_1 crossref_primary_10_3390_signals3020025 crossref_primary_10_1016_j_image_2022_116710 crossref_primary_10_1093_ajhp_zxaa218 crossref_primary_10_1029_2022RG000788 crossref_primary_10_1016_j_vlsi_2020_01_003 crossref_primary_10_1016_j_buildenv_2019_04_029 crossref_primary_10_1007_s42401_021_00105_x crossref_primary_10_1289_EHP8495 crossref_primary_10_1109_TBCAS_2016_2525823 crossref_primary_10_32604_cmc_2022_028570 crossref_primary_10_1007_s11612_018_0425_7 crossref_primary_10_3390_rs12142229 crossref_primary_10_1016_j_eswa_2020_113699 crossref_primary_10_1007_s42979_024_02851_z crossref_primary_10_1016_j_eswa_2020_113696 crossref_primary_10_1088_1361_6463_abf61e crossref_primary_10_1109_ACCESS_2019_2891073 crossref_primary_10_1371_journal_pone_0266042 crossref_primary_10_1007_s00706_023_03076_1 crossref_primary_10_3390_sym14051006 crossref_primary_10_1016_j_jbiomech_2019_109544 crossref_primary_10_1016_j_sysarc_2024_103112 crossref_primary_10_3390_electronics12173614 crossref_primary_10_1016_j_ijpharm_2023_123280 crossref_primary_10_3389_fenvs_2025_1573579 crossref_primary_10_1002_eom2_12330 crossref_primary_10_1007_s11042_023_17337_y crossref_primary_10_1016_j_scitotenv_2023_169540 crossref_primary_10_3390_diagnostics11091672 crossref_primary_10_1007_s13369_016_2387_9 crossref_primary_10_1016_j_chempr_2018_06_011 crossref_primary_10_1137_20M1384154 crossref_primary_10_1016_j_oceaneng_2025_121723 crossref_primary_10_1053_j_gastro_2018_06_037 crossref_primary_10_1155_2021_7171816 crossref_primary_10_1021_acsenergylett_5c00411 crossref_primary_10_1029_2021SW002985 crossref_primary_10_3390_land11111905 crossref_primary_10_1007_s12652_020_01834_1 crossref_primary_10_1038_srep46479 crossref_primary_10_1007_s13202_021_01425_6 crossref_primary_10_1016_j_mechmachtheory_2018_11_005 crossref_primary_10_34133_adi_0089 crossref_primary_10_1038_s41586_018_0337_2 crossref_primary_10_1111_jbl_12198 crossref_primary_10_1016_j_asoc_2022_109779 crossref_primary_10_1142_S0219649222500174 crossref_primary_10_1109_ACCESS_2018_2873942 crossref_primary_10_1063_5_0267896 crossref_primary_10_1016_j_ascom_2021_100535 crossref_primary_10_32604_cmc_2023_039528 crossref_primary_10_3390_app14167148 crossref_primary_10_1088_1757_899X_768_7_072002 crossref_primary_10_1016_j_jksus_2020_101263 crossref_primary_10_1109_LGRS_2016_2517178 crossref_primary_10_1038_s41598_023_27986_6 crossref_primary_10_1109_MCAS_2020_3027222 crossref_primary_10_1186_s12911_019_0747_6 crossref_primary_10_3390_pr7030151 crossref_primary_10_1302_2046_3758_129_BJR_2023_0070_R2 crossref_primary_10_3390_agronomy12020356 crossref_primary_10_1016_j_compchemeng_2023_108306 crossref_primary_10_1007_s12583_022_1803_1 crossref_primary_10_1126_sciadv_adr2082 crossref_primary_10_1016_j_oceaneng_2022_113287 crossref_primary_10_1088_1742_6596_2171_1_012065 crossref_primary_10_3233_IA_210081 crossref_primary_10_1109_ACCESS_2020_3006143 crossref_primary_10_3390_rs9090951 crossref_primary_10_1080_00036811_2018_1466277 crossref_primary_10_1016_j_ocemod_2024_102386 crossref_primary_10_3389_fninf_2025_1553035 crossref_primary_10_1007_s41062_024_01385_w crossref_primary_10_1016_j_patrec_2016_05_018 crossref_primary_10_1007_s00521_023_08474_4 crossref_primary_10_1109_TPAMI_2017_2756936 crossref_primary_10_1007_s11263_023_01784_z crossref_primary_10_3389_frma_2018_00021 crossref_primary_10_1109_ACCESS_2018_2836917 crossref_primary_10_1016_j_ymssp_2020_106738 crossref_primary_10_1109_TC_2021_3119180 crossref_primary_10_1109_TII_2020_2969709 crossref_primary_10_2174_0115748936299646240625092734 crossref_primary_10_3389_fninf_2019_00018 crossref_primary_10_1109_TCDS_2017_2714170 crossref_primary_10_1007_s10489_018_1393_x crossref_primary_10_1111_ocr_12520 crossref_primary_10_2514_1_J059600 crossref_primary_10_1109_TMI_2019_2913184 crossref_primary_10_1016_j_future_2019_02_013 crossref_primary_10_1371_journal_pone_0268658 crossref_primary_10_3390_electronics13132572 crossref_primary_10_1177_1748006X241252469 crossref_primary_10_1016_j_inffus_2024_102299 crossref_primary_10_3390_rs15174188 crossref_primary_10_2174_1574893617666220609114052 crossref_primary_10_1038_s41438_021_00560_9 crossref_primary_10_1016_j_ijggc_2025_104394 crossref_primary_10_1029_2024WR039764 crossref_primary_10_1016_j_jfoodeng_2023_111931 crossref_primary_10_3390_electronics8040411 crossref_primary_10_3390_molecules26226761 crossref_primary_10_1038_s41377_022_00844_2 crossref_primary_10_3233_JIFS_210503 crossref_primary_10_1155_2020_6535834 crossref_primary_10_5194_adgeo_45_13_2018 crossref_primary_10_3390_app12157711 crossref_primary_10_1016_j_compchemeng_2022_108038 crossref_primary_10_1109_ACCESS_2020_2971348 crossref_primary_10_1109_ACCESS_2019_2926234 crossref_primary_10_1016_j_compbiomed_2018_05_013 crossref_primary_10_1021_acs_iecr_7b01233 crossref_primary_10_3390_rs9090927 crossref_primary_10_1007_s12145_021_00624_3 crossref_primary_10_1088_1741_2552_aaaf82 crossref_primary_10_1093_bjps_axz003 crossref_primary_10_1007_s00521_020_04923_6 crossref_primary_10_1016_j_ymssp_2017_03_034 crossref_primary_10_1016_j_ifacol_2017_08_1217 crossref_primary_10_1017_pds_2021_573 crossref_primary_10_3390_app14114619 crossref_primary_10_1038_s41467_025_56345_4 crossref_primary_10_1109_ACCESS_2023_3257767 crossref_primary_10_1088_1402_4896_ad92ae crossref_primary_10_1109_TEVC_2021_3137369 crossref_primary_10_1016_j_oceaneng_2019_106282 crossref_primary_10_1109_TCSS_2022_3223999 crossref_primary_10_3390_agriculture13030540 crossref_primary_10_1007_s10796_025_10581_7 crossref_primary_10_1002_vnl_22233 crossref_primary_10_1007_s11783_024_1814_5 crossref_primary_10_1016_j_jhydrol_2022_128958 crossref_primary_10_1073_pnas_2221704120 crossref_primary_10_1016_j_neunet_2017_07_002 crossref_primary_10_1007_s13753_019_00233_1 crossref_primary_10_1016_j_neucom_2016_12_089 crossref_primary_10_1016_j_media_2018_04_002 crossref_primary_10_1016_j_jmsy_2023_08_020 crossref_primary_10_3389_fcvm_2023_1185172 crossref_primary_10_3390_s20185051 crossref_primary_10_3390_app13020814 crossref_primary_10_3390_vehicles4020036 crossref_primary_10_1016_j_neucom_2019_07_100 crossref_primary_10_1155_2023_8585839 crossref_primary_10_1109_TNSE_2021_3107186 crossref_primary_10_1016_j_engfracmech_2024_110239 crossref_primary_10_1016_j_compstruc_2016_05_003 crossref_primary_10_1016_j_watres_2018_11_063 crossref_primary_10_1016_j_rse_2018_06_034 crossref_primary_10_1007_s11517_025_03295_0 crossref_primary_10_1016_j_crmeth_2023_100415 crossref_primary_10_1016_j_tics_2021_03_016 crossref_primary_10_1016_j_compbiomed_2022_105338 crossref_primary_10_1109_TLT_2019_2922356 crossref_primary_10_1016_j_crmeth_2023_100413 crossref_primary_10_1002_sam_11440 crossref_primary_10_3390_ai1040031 crossref_primary_10_1016_j_neucom_2018_08_093 crossref_primary_10_3390_s20185040 crossref_primary_10_1007_s10586_024_04830_8 crossref_primary_10_1088_2632_2153_abae76 crossref_primary_10_3390_s22197118 crossref_primary_10_1016_j_artmed_2023_102738 crossref_primary_10_3847_1538_4365_add0b8 crossref_primary_10_3390_w12030816 crossref_primary_10_1016_j_commatsci_2021_110623 crossref_primary_10_1007_s00500_019_03961_0 crossref_primary_10_1016_j_ecolind_2025_113684 crossref_primary_10_1038_s41567_020_0929_2 crossref_primary_10_1109_ACCESS_2020_3032411 crossref_primary_10_1155_2019_4683982 crossref_primary_10_1111_rssa_12813 crossref_primary_10_1108_IR_08_2023_0191 crossref_primary_10_1177_0361198119851085 crossref_primary_10_1038_s41467_025_60502_0 crossref_primary_10_3389_fpls_2020_558126 crossref_primary_10_3390_plants13010135 crossref_primary_10_3390_app9152980 crossref_primary_10_1007_s40725_021_00138_7 crossref_primary_10_1016_j_biosystemseng_2018_04_018 crossref_primary_10_1007_s13369_020_04758_2 crossref_primary_10_1016_j_automatica_2023_111092 crossref_primary_10_12688_f1000research_52026_2 crossref_primary_10_12688_f1000research_52026_1 crossref_primary_10_1016_j_apm_2025_116105 crossref_primary_10_1016_j_neucom_2017_05_016 crossref_primary_10_1109_MIS_2017_3121556 crossref_primary_10_1016_j_energy_2021_122949 crossref_primary_10_1007_s00115_018_0557_6 crossref_primary_10_1016_j_jksuci_2022_07_014 crossref_primary_10_1016_j_cherd_2022_12_001 crossref_primary_10_1016_j_mechmachtheory_2022_105090 crossref_primary_10_1016_j_enbuild_2020_110525 crossref_primary_10_3390_fi15050179 crossref_primary_10_1109_COMST_2020_2970550 crossref_primary_10_3390_forecast3030033 crossref_primary_10_1002_er_5331 crossref_primary_10_1007_s10489_025_06607_x crossref_primary_10_3390_pr11020443 crossref_primary_10_1016_j_knosys_2019_04_013 crossref_primary_10_1007_s00521_021_05878_y crossref_primary_10_1016_j_isprsjprs_2019_05_001 crossref_primary_10_1016_j_isprsjprs_2021_11_015 crossref_primary_10_1007_s12046_022_02027_6 crossref_primary_10_1016_j_bspc_2023_105192 crossref_primary_10_1093_ajhp_zxaf038 crossref_primary_10_3390_app8101943 crossref_primary_10_3389_fnagi_2021_632138 crossref_primary_10_1016_j_cose_2018_07_015 crossref_primary_10_3390_f15030482 crossref_primary_10_1002_widm_1363 crossref_primary_10_1155_2021_5595026 crossref_primary_10_3390_su12166574 crossref_primary_10_1186_s40708_021_00133_5 crossref_primary_10_1007_s11042_016_4342_x crossref_primary_10_3390_prosthesis5040083 crossref_primary_10_1016_j_commatsci_2021_110709 crossref_primary_10_1080_10888438_2015_1104688 crossref_primary_10_1016_j_image_2022_116695 crossref_primary_10_1109_ACCESS_2019_2916833 crossref_primary_10_1007_s00521_024_10405_w crossref_primary_10_1016_j_cosrev_2020_100339 crossref_primary_10_1002_widm_1394 crossref_primary_10_3390_s18082640 crossref_primary_10_1007_s11704_017_6518_6 crossref_primary_10_3389_fdata_2021_782902 crossref_primary_10_3390_app142210356 crossref_primary_10_1016_j_chemolab_2019_103850 crossref_primary_10_3390_rs11111325 crossref_primary_10_1088_2632_2153_acccd5 crossref_primary_10_1016_j_cropro_2023_106342 crossref_primary_10_1016_j_cej_2022_136064 crossref_primary_10_1016_j_engappai_2020_103700 crossref_primary_10_1016_j_bspc_2018_12_027 crossref_primary_10_1109_JSTARS_2016_2618891 crossref_primary_10_1007_s00170_018_03259_9 crossref_primary_10_1016_j_soildyn_2021_106656 crossref_primary_10_1002_mp_15988 crossref_primary_10_1016_j_engappai_2024_109498 crossref_primary_10_1016_j_pocean_2023_103190 crossref_primary_10_1109_ACCESS_2021_3071273 crossref_primary_10_1007_s00034_019_01141_x crossref_primary_10_1007_s11192_018_2944_y crossref_primary_10_1016_j_jallcom_2023_171891 crossref_primary_10_1016_j_scs_2024_105508 crossref_primary_10_1109_MIM_2021_9400952 crossref_primary_10_3390_antib9020012 crossref_primary_10_3389_fcell_2023_1124775 crossref_primary_10_1360_SSV_2023_0297 crossref_primary_10_1016_j_aquaeng_2025_102570 crossref_primary_10_1093_comjnl_bxy008 crossref_primary_10_1016_j_solener_2018_01_005 crossref_primary_10_1017_cts_2020_513 crossref_primary_10_1029_2022RS007548 crossref_primary_10_1155_2019_5296123 crossref_primary_10_1016_j_ins_2018_03_014 crossref_primary_10_1109_TGRS_2020_3046757 crossref_primary_10_1088_1742_6596_1544_1_012106 crossref_primary_10_1016_j_microc_2025_113605 crossref_primary_10_1080_09540091_2019_1674245 crossref_primary_10_3390_met11081289 crossref_primary_10_3847_1538_4357_aaae00 crossref_primary_10_1158_1078_0432_CCR_18_0385 crossref_primary_10_1016_j_ecoser_2018_04_004 crossref_primary_10_1080_10400435_2020_1743381 crossref_primary_10_1007_s12559_017_9514_0 crossref_primary_10_1109_ACCESS_2018_2865532 crossref_primary_10_1109_TCE_2022_3188806 crossref_primary_10_1038_s41598_023_33298_6 crossref_primary_10_1016_j_patrec_2019_05_001 crossref_primary_10_1016_j_resourpol_2019_101470 crossref_primary_10_1088_1741_2552_aaf12e crossref_primary_10_1109_JIOT_2018_2842229 crossref_primary_10_1177_0309133318825284 crossref_primary_10_1016_j_neucom_2016_12_027 crossref_primary_10_1088_1367_2630_ab68fc crossref_primary_10_1016_j_bspc_2020_102024 crossref_primary_10_1016_j_jvcir_2019_03_017 crossref_primary_10_1016_j_asoc_2018_05_023 crossref_primary_10_1016_j_expneurol_2021_113608 crossref_primary_10_3389_fmats_2021_816309 crossref_primary_10_1016_j_snb_2023_135230 crossref_primary_10_1109_TCBB_2022_3140873 crossref_primary_10_1016_j_aquaculture_2018_04_064 crossref_primary_10_1016_j_automatica_2021_110007 crossref_primary_10_1016_j_apr_2023_101980 crossref_primary_10_1371_journal_pone_0257901 crossref_primary_10_1016_j_neucom_2016_12_038 crossref_primary_10_1016_j_neunet_2023_02_017 crossref_primary_10_1002_cem_3006 crossref_primary_10_1088_1757_899X_272_1_012002 crossref_primary_10_3390_polym16233358 crossref_primary_10_1016_j_ejmech_2025_117432 crossref_primary_10_1109_TR_2018_2839718 crossref_primary_10_1088_1361_6560_ac3d15 crossref_primary_10_1016_j_anucene_2024_111151 crossref_primary_10_1080_09540091_2022_2067124 crossref_primary_10_1016_j_inffus_2019_02_010 crossref_primary_10_1088_1755_1315_945_1_012073 crossref_primary_10_1016_j_neucom_2021_12_107 crossref_primary_10_1007_s11760_023_02787_6 crossref_primary_10_1631_FITEE_2200253 crossref_primary_10_1016_j_elerap_2019_100879 crossref_primary_10_1016_j_fuel_2025_136736 crossref_primary_10_1109_TNNLS_2022_3175419 crossref_primary_10_1016_j_compchemeng_2021_107365 crossref_primary_10_1016_j_future_2018_07_006 crossref_primary_10_1186_s13059_020_01977_6 crossref_primary_10_1007_s42979_020_00345_2 crossref_primary_10_1111_mice_13448 crossref_primary_10_3390_en17143440 crossref_primary_10_1007_s12145_024_01355_x crossref_primary_10_1093_bib_bbad153 crossref_primary_10_3390_s24185977 crossref_primary_10_1155_2024_3986400 crossref_primary_10_1007_s11269_022_03414_8 crossref_primary_10_1016_j_physa_2024_129909 crossref_primary_10_1371_journal_pcbi_1005350 crossref_primary_10_1016_j_conbuildmat_2023_133970 crossref_primary_10_1016_j_microrel_2021_114181 crossref_primary_10_1063_5_0160979 crossref_primary_10_3390_agriculture13010008 crossref_primary_10_1109_ACCESS_2020_3026540 crossref_primary_10_1007_s44196_025_00844_1 crossref_primary_10_1016_j_est_2023_109701 crossref_primary_10_1029_2023JD040418 crossref_primary_10_1190_geo2018_0699_1 crossref_primary_10_1016_j_engappai_2020_103761 crossref_primary_10_1137_22M1490831 crossref_primary_10_1098_rsta_2024_0228 crossref_primary_10_1016_j_eswa_2020_113657 crossref_primary_10_1002_smll_202102972 crossref_primary_10_1016_j_aei_2024_102367 crossref_primary_10_1016_j_aei_2024_102362 crossref_primary_10_1016_j_neunet_2024_106948 crossref_primary_10_1109_ACCESS_2024_3368423 crossref_primary_10_3390_s19245501 crossref_primary_10_1016_j_asoc_2021_107687 crossref_primary_10_3390_electronics13112188 crossref_primary_10_1016_j_asoc_2018_05_015 crossref_primary_10_1016_j_bjps_2022_01_037 crossref_primary_10_1109_MITS_2019_2907629 crossref_primary_10_1016_j_imavis_2017_06_003 crossref_primary_10_1134_S0005117919080095 crossref_primary_10_1177_09544097251367798 crossref_primary_10_1155_2018_7024309 crossref_primary_10_1371_journal_pone_0262448 crossref_primary_10_1016_j_autcon_2018_06_007 crossref_primary_10_1016_j_patrec_2020_06_016 crossref_primary_10_1002_qj_3978 crossref_primary_10_34133_plantphenomics_0153 crossref_primary_10_1016_j_conbuildmat_2023_132606 crossref_primary_10_5194_hess_22_5639_2018 crossref_primary_10_1016_j_nucengdes_2023_112711 crossref_primary_10_1093_mnras_stz3056 crossref_primary_10_3390_rs12142203 crossref_primary_10_1016_j_eswa_2020_113673 crossref_primary_10_1016_j_engappai_2020_103785 crossref_primary_10_1016_j_ress_2022_108528 crossref_primary_10_1061_JAEEEZ_ASENG_4576 crossref_primary_10_15252_msb_20156651 crossref_primary_10_1109_TEMC_2017_2784833 crossref_primary_10_1007_s42107_023_00748_5 crossref_primary_10_1109_ACCESS_2020_3026579 crossref_primary_10_1109_TIM_2022_3150592 crossref_primary_10_3390_su12166516 crossref_primary_10_1080_01431161_2020_1742946 crossref_primary_10_1109_TMI_2020_3027547 crossref_primary_10_1016_j_gsf_2019_10_004 crossref_primary_10_1364_AO_57_008258 crossref_primary_10_3233_JAE_210197 crossref_primary_10_1109_ACCESS_2019_2923993 crossref_primary_10_3389_fnins_2024_1331677 crossref_primary_10_1121_10_0005047 crossref_primary_10_3390_info15020082 crossref_primary_10_1007_s11053_023_10200_9 crossref_primary_10_1016_j_renene_2020_02_004 crossref_primary_10_1177_10742484221136758 crossref_primary_10_1016_j_engfracmech_2019_106642 crossref_primary_10_1016_j_neucom_2020_05_113 crossref_primary_10_1103_PhysRevApplied_22_024046 crossref_primary_10_1049_iet_ipr_2016_0526 crossref_primary_10_3390_s22041367 crossref_primary_10_1007_s00530_025_01886_3 crossref_primary_10_1016_j_compag_2020_105535 crossref_primary_10_1007_s40314_024_02660_3 crossref_primary_10_1109_JSEN_2022_3163664 crossref_primary_10_1088_1755_1315_352_1_012005 crossref_primary_10_1007_s13369_017_2907_2 crossref_primary_10_1016_j_ins_2025_121933 crossref_primary_10_1147_JRD_2017_2716598 crossref_primary_10_1109_ACCESS_2024_3351600 crossref_primary_10_1109_TNNLS_2018_2890658 crossref_primary_10_1002_widm_1312 crossref_primary_10_1259_bjr_20210527 crossref_primary_10_1007_s11280_018_0600_3 crossref_primary_10_1109_TIA_2022_3227137 crossref_primary_10_2118_204093_PA crossref_primary_10_1016_j_asr_2024_09_007 crossref_primary_10_1007_s11042_022_11978_1 crossref_primary_10_1186_s40537_024_00898_6 crossref_primary_10_1016_j_jds_2023_10_025 crossref_primary_10_1016_j_ecolmodel_2023_110499 crossref_primary_10_1109_ACCESS_2022_3188111 crossref_primary_10_1155_2021_6644652 crossref_primary_10_1587_transfun_E99_A_1971 crossref_primary_10_3390_en11113029 crossref_primary_10_1080_2573234X_2018_1506687 crossref_primary_10_1016_j_inffus_2018_07_007 crossref_primary_10_1002_celc_202400024 crossref_primary_10_1016_j_procs_2021_03_021 crossref_primary_10_1016_j_knosys_2025_113751 crossref_primary_10_1093_jas_sky014 crossref_primary_10_1080_16864360_2016_1273580 crossref_primary_10_3390_land12040879 crossref_primary_10_1007_s11042_023_18032_8 crossref_primary_10_1155_2024_8899192 crossref_primary_10_1007_s12559_018_9596_3 crossref_primary_10_1088_1402_4896_ad8d17 crossref_primary_10_1177_00219983221134929 crossref_primary_10_3390_math8101784 crossref_primary_10_1177_2319510X221136682 crossref_primary_10_1007_s12540_023_01552_1 crossref_primary_10_1016_j_clnu_2021_11_027 crossref_primary_10_1038_s41598_019_46620_y crossref_primary_10_1186_s12986_023_00746_z crossref_primary_10_4018_IJISP_2020070104 crossref_primary_10_1007_s11804_024_00540_0 crossref_primary_10_1109_JIOT_2019_2954503 crossref_primary_10_1080_2150704X_2017_1420265 crossref_primary_10_1109_ACCESS_2019_2946657 crossref_primary_10_1016_j_mtcomm_2022_103193 crossref_primary_10_1049_iet_ipr_2019_1690 crossref_primary_10_3390_ijerph17020453 crossref_primary_10_1186_s12859_021_04466_0 crossref_primary_10_1016_j_neucom_2017_02_046 crossref_primary_10_1016_j_comcom_2019_01_004 crossref_primary_10_1016_j_egyr_2023_01_092 crossref_primary_10_1016_j_neunet_2021_08_020 crossref_primary_10_1088_1757_899X_884_1_012084 crossref_primary_10_1111_bjh_15780 crossref_primary_10_1016_j_eswa_2015_08_038 crossref_primary_10_1080_11663081_2023_2269432 crossref_primary_10_1016_j_envsoft_2018_10_004 crossref_primary_10_1109_TKDE_2019_2954510 crossref_primary_10_1016_j_pnucene_2025_105625 crossref_primary_10_3390_app11125727 crossref_primary_10_3390_robotics9010001 crossref_primary_10_1155_2020_8866406 crossref_primary_10_1080_19392699_2024_2341952 crossref_primary_10_3390_min12050566 crossref_primary_10_1016_j_epsr_2022_108598 crossref_primary_10_1109_ACCESS_2019_2914181 crossref_primary_10_1109_TNSRE_2020_2966290 crossref_primary_10_1016_j_cor_2020_104926 crossref_primary_10_1007_s42979_021_00540_9 crossref_primary_10_1136_postgradmedj_2020_139620 crossref_primary_10_3390_s22020693 crossref_primary_10_1016_j_neucom_2017_02_050 crossref_primary_10_3233_IDT_190035 crossref_primary_10_1007_s00521_020_04746_5 crossref_primary_10_1007_s10207_022_00579_6 crossref_primary_10_1016_j_apenergy_2017_03_064 crossref_primary_10_1103_PhysRevResearch_1_033063 crossref_primary_10_1007_s11042_019_07831_7 crossref_primary_10_1016_j_neucom_2017_11_073 crossref_primary_10_1080_01431161_2018_1508917 crossref_primary_10_1016_j_crme_2019_11_002 crossref_primary_10_3390_s22052065 crossref_primary_10_3390_rs16173241 crossref_primary_10_1109_TIFS_2020_3036242 crossref_primary_10_3390_rs12213654 crossref_primary_10_3390_agriengineering6030117 crossref_primary_10_1088_0004_637X_808_1_16 crossref_primary_10_1155_2018_3813029 crossref_primary_10_1016_j_artmed_2023_102654 crossref_primary_10_32604_csse_2023_046730 crossref_primary_10_3390_jsan12020021 crossref_primary_10_1109_ACCESS_2019_2953772 crossref_primary_10_4271_05_18_04_0028 crossref_primary_10_1155_2021_9952450 crossref_primary_10_1109_ACCESS_2020_2995276 crossref_primary_10_1166_jmihi_2021_3448 crossref_primary_10_1007_s40194_022_01349_7 crossref_primary_10_1016_j_iot_2025_101561 crossref_primary_10_1016_j_neucom_2017_11_062 crossref_primary_10_1109_TG_2018_2846639 crossref_primary_10_1007_s11071_019_04915_9 crossref_primary_10_1007_s40005_017_0332_x crossref_primary_10_1016_j_neucom_2017_02_029 crossref_primary_10_1109_TETCI_2018_2829919 crossref_primary_10_3390_coatings12020225 crossref_primary_10_1109_TETC_2017_2681655 crossref_primary_10_1016_j_jnoncrysol_2022_121640 crossref_primary_10_1109_TIP_2017_2766358 crossref_primary_10_1109_JIOT_2023_3298633 crossref_primary_10_3390_rs16173215 crossref_primary_10_3390_w15132485 crossref_primary_10_1007_s13042_020_01097_4 crossref_primary_10_3389_fmats_2022_970970 crossref_primary_10_1016_j_omtn_2021_08_016 crossref_primary_10_1002_smll_202100491 crossref_primary_10_3389_fpls_2024_1410249 crossref_primary_10_1007_s41062_025_02050_6 crossref_primary_10_3390_math7060494 crossref_primary_10_1016_j_isatra_2019_03_017 crossref_primary_10_1109_TGRS_2023_3298020 crossref_primary_10_3390_atmos16080928 crossref_primary_10_1016_j_artmed_2019_03_005 crossref_primary_10_1016_j_jappgeo_2021_104434 crossref_primary_10_1631_FITEE_1700714 crossref_primary_10_3390_buildings12010015 crossref_primary_10_1016_j_bushor_2021_02_008 crossref_primary_10_3367_UFNr_2025_02_039872 crossref_primary_10_1007_s10994_019_05864_5 crossref_primary_10_1016_j_compeleceng_2025_110395 crossref_primary_10_3233_JIFS_221188 crossref_primary_10_1109_ACCESS_2019_2922617 crossref_primary_10_1007_s12574_020_00496_4 crossref_primary_10_1002_elps_70015 crossref_primary_10_1016_j_heliyon_2021_e06047 crossref_primary_10_1080_22797254_2022_2117650 crossref_primary_10_1007_s00500_021_05994_w crossref_primary_10_1109_TCBB_2022_3201295 crossref_primary_10_1016_j_neunet_2019_10_014 crossref_primary_10_3390_molecules26185629 crossref_primary_10_1007_s10458_019_09421_1 crossref_primary_10_1016_j_worlddev_2019_104839 crossref_primary_10_1007_s10994_021_06050_2 crossref_primary_10_1016_j_health_2022_100054 crossref_primary_10_1007_s11269_021_03051_7 crossref_primary_10_1016_j_neucom_2021_03_110 crossref_primary_10_1016_j_isatra_2020_01_038 crossref_primary_10_1007_s12530_021_09401_5 crossref_primary_10_1016_j_eswa_2020_113570 crossref_primary_10_3390_en14112983 crossref_primary_10_3390_lubricants12110364 crossref_primary_10_1016_j_compbiomed_2021_105111 crossref_primary_10_1109_ACCESS_2017_2770178 crossref_primary_10_4103_digm_digm_16_18 crossref_primary_10_1016_j_neucom_2019_07_075 crossref_primary_10_3390_app12073641 crossref_primary_10_3390_s23073453 crossref_primary_10_1002_suco_202000029 crossref_primary_10_1016_j_ultramic_2018_03_004 crossref_primary_10_3390_s18051339 crossref_primary_10_1371_journal_pone_0300133 crossref_primary_10_1186_s13040_022_00311_z crossref_primary_10_2118_198288_PA crossref_primary_10_1016_j_petrol_2022_110296 crossref_primary_10_1016_j_jnca_2020_102852 crossref_primary_10_1002_aelm_201901255 crossref_primary_10_1007_s00521_023_08558_1 crossref_primary_10_1109_TCYB_2016_2536638 crossref_primary_10_1186_s13677_020_00162_1 crossref_primary_10_1016_S0893_6080_17_30270_8 crossref_primary_10_1007_s11042_018_5730_1 crossref_primary_10_1016_j_tics_2021_06_001 crossref_primary_10_1109_ACCESS_2018_2816605 crossref_primary_10_3390_en14123659 crossref_primary_10_1049_iet_cvi_2018_5590 crossref_primary_10_1093_bib_bby077 crossref_primary_10_1016_j_cjche_2020_10_044 crossref_primary_10_1155_2021_6659063 crossref_primary_10_1364_AO_476488 crossref_primary_10_1002_for_3057 crossref_primary_10_63345_sjaibt_v2_i3_104 crossref_primary_10_3390_electronics10040512 crossref_primary_10_1016_j_ifacol_2021_08_395 crossref_primary_10_1109_TSM_2019_2945482 crossref_primary_10_3390_s24051693 crossref_primary_10_1016_j_jbi_2020_103427 crossref_primary_10_1002_hbm_24428 crossref_primary_10_1186_s40537_024_00955_0 crossref_primary_10_3390_life12101504 crossref_primary_10_1016_j_healun_2020_04_009 crossref_primary_10_1016_j_neucom_2019_07_025 crossref_primary_10_3389_frai_2020_524339 crossref_primary_10_1109_ACCESS_2020_3007599 crossref_primary_10_1016_j_apradiso_2022_110311 crossref_primary_10_1214_20_AOS2034 crossref_primary_10_1109_TVLSI_2019_2923722 crossref_primary_10_12677_AAM_2023_126280 crossref_primary_10_1016_j_bspc_2019_101819 crossref_primary_10_1016_j_clineuro_2020_105892 crossref_primary_10_1016_j_tplants_2018_07_004 crossref_primary_10_1140_epje_s10189_024_00435_6 crossref_primary_10_1186_s41065_016_0012_2 crossref_primary_10_3390_agronomy14020363 crossref_primary_10_1002_ange_202104405 crossref_primary_10_1002_cepa_2004 crossref_primary_10_1016_j_neucom_2018_05_134 crossref_primary_10_1109_TG_2018_2799997 crossref_primary_10_1007_s12194_017_0433_2 crossref_primary_10_1016_j_acra_2022_05_015 crossref_primary_10_1109_TNSM_2023_3262246 crossref_primary_10_1007_s11063_021_10716_2 crossref_primary_10_1007_s00366_021_01584_4 crossref_primary_10_1177_0040517520935984 crossref_primary_10_1109_JSAC_2023_3322795 crossref_primary_10_3389_feart_2023_1136346 crossref_primary_10_1186_s40537_015_0031_2 crossref_primary_10_3390_rs12101667 crossref_primary_10_1016_j_neucom_2018_05_117 crossref_primary_10_71204_f1dbs667 crossref_primary_10_1016_j_neucom_2018_05_114 crossref_primary_10_1155_2019_9283584 crossref_primary_10_3390_w17010068 crossref_primary_10_1007_s40430_025_05681_z crossref_primary_10_1109_ACCESS_2022_3214842 crossref_primary_10_3233_JIFS_192116 crossref_primary_10_3390_ma13071557 crossref_primary_10_3390_s18082484 crossref_primary_10_3390_app122211760 crossref_primary_10_1016_j_apenergy_2017_12_009 crossref_primary_10_3389_frwa_2023_1287357 crossref_primary_10_1063_5_0059010 crossref_primary_10_1155_2021_9614520 crossref_primary_10_1016_j_jqsrt_2018_07_011 crossref_primary_10_3390_app11167547 crossref_primary_10_1016_j_compag_2021_106454 crossref_primary_10_3390_app14114730 crossref_primary_10_3390_rs15041101 crossref_primary_10_3390_hydrology10070151 crossref_primary_10_1016_j_ast_2024_109760 crossref_primary_10_1016_j_scitotenv_2022_155324 crossref_primary_10_3390_s18093149 crossref_primary_10_3390_s20030812 crossref_primary_10_1109_ACCESS_2022_3185747 crossref_primary_10_1016_j_artmed_2018_08_008 crossref_primary_10_1109_TASE_2022_3183610 crossref_primary_10_3390_agronomy10121926 crossref_primary_10_1016_j_egyr_2023_09_175 crossref_primary_10_1016_j_jhydrol_2022_128835 crossref_primary_10_3390_pr9101848 crossref_primary_10_1007_s11063_016_9536_8 crossref_primary_10_1016_j_inffus_2025_103123 crossref_primary_10_1007_s10040_024_02770_6 crossref_primary_10_3390_rs9090878 crossref_primary_10_1038_s42004_024_01220_4 crossref_primary_10_1038_s42256_021_00418_8 crossref_primary_10_1007_s11042_020_09641_8 crossref_primary_10_1080_13658816_2025_2526041 crossref_primary_10_1016_j_clinph_2021_09_018 crossref_primary_10_1016_j_jad_2023_04_034 crossref_primary_10_1109_TIE_2017_2767540 crossref_primary_10_1016_j_compstruct_2020_112514 crossref_primary_10_1016_j_inffus_2022_08_010 crossref_primary_10_3389_fncom_2018_00052 crossref_primary_10_1109_ACCESS_2020_3033848 crossref_primary_10_1038_s42256_020_0158_5 crossref_primary_10_1109_LSENS_2018_2884735 crossref_primary_10_3389_fncom_2018_00056 crossref_primary_10_1109_ACCESS_2018_2890507 crossref_primary_10_1587_nolta_10_304 crossref_primary_10_1111_2041_210X_13992 crossref_primary_10_1016_j_heliyon_2023_e16812 crossref_primary_10_1080_21642583_2020_1836526 crossref_primary_10_1103_PhysRevApplied_11_064043 crossref_primary_10_3390_app14156540 crossref_primary_10_1016_j_apacoust_2023_109613 crossref_primary_10_1002_adfm_202302929 crossref_primary_10_1016_j_compag_2021_106478 crossref_primary_10_1007_s10559_021_00397_z crossref_primary_10_3390_s24123832 crossref_primary_10_1007_s11042_019_7353_6 crossref_primary_10_1155_2021_4222881 crossref_primary_10_1007_s10207_022_00624_4 crossref_primary_10_1051_matecconf_201926704008 crossref_primary_10_1016_j_cemconcomp_2022_104725 crossref_primary_10_1016_j_compbiomed_2022_105458 crossref_primary_10_3233_JIFS_211784 crossref_primary_10_3390_electronics7100222 crossref_primary_10_1088_2632_2153_ad56fa crossref_primary_10_1016_j_neucom_2017_11_034 crossref_primary_10_1016_j_matcom_2019_12_013 crossref_primary_10_3390_photonics11080702 crossref_primary_10_1038_s42256_022_00600_6 crossref_primary_10_1088_1361_665X_acee37 crossref_primary_10_1016_j_compag_2021_106480 crossref_primary_10_1016_j_psep_2022_05_055 crossref_primary_10_1080_19942060_2021_1966837 crossref_primary_10_3390_electronics13214225 crossref_primary_10_1109_TMI_2016_2570123 crossref_primary_10_1093_biomet_asaa033 crossref_primary_10_1007_s00521_020_04804_y crossref_primary_10_3390_app13020710 crossref_primary_10_1007_s40808_020_00974_9 crossref_primary_10_3390_info15100656 crossref_primary_10_1002_stc_2943 crossref_primary_10_1007_s11063_018_9858_9 crossref_primary_10_1016_j_autcon_2018_09_001 crossref_primary_10_1016_j_jhydrol_2020_125164 crossref_primary_10_1007_s00521_024_10838_3 crossref_primary_10_1109_JIOT_2018_2872122 crossref_primary_10_3390_s18093109 crossref_primary_10_1109_JSEN_2020_3026647 crossref_primary_10_3390_s22228830 crossref_primary_10_3788_LOP241633 crossref_primary_10_1145_3629979 crossref_primary_10_1287_isre_2021_1072 crossref_primary_10_1111_exsy_12394 crossref_primary_10_3847_1538_3881_aaae05 crossref_primary_10_1186_s12864_025_11234_4 crossref_primary_10_3390_s23020902 crossref_primary_10_1016_j_bios_2019_111336 crossref_primary_10_1016_j_physa_2019_123510 crossref_primary_10_1017_S0263574719000985 crossref_primary_10_1088_1742_6596_1486_2_022024 crossref_primary_10_1016_j_media_2018_07_010 crossref_primary_10_1002_widm_1248 crossref_primary_10_1016_j_hlife_2025_03_005 crossref_primary_10_1109_TNSM_2021_3050955 crossref_primary_10_1016_j_advengsoft_2017_11_006 crossref_primary_10_1007_s00500_019_04061_9 crossref_primary_10_1002_widm_1255 crossref_primary_10_1038_srep14149 crossref_primary_10_1051_0004_6361_202452704 crossref_primary_10_1002_mp_12110 crossref_primary_10_1109_JPROC_2018_2871057 crossref_primary_10_3390_app14209470 crossref_primary_10_3390_info10040144 crossref_primary_10_1002_gamm_202100002 crossref_primary_10_1007_s10462_025_11136_7 crossref_primary_10_1016_j_jhydrol_2022_127440 crossref_primary_10_1088_1748_3190_aaa787 crossref_primary_10_5772_dmht_19 crossref_primary_10_1155_2021_8919320 crossref_primary_10_1121_10_0002911 crossref_primary_10_2196_27113 crossref_primary_10_1016_j_acvd_2024_08_008 crossref_primary_10_1016_j_eswa_2023_122498 crossref_primary_10_1016_j_sna_2025_116237 crossref_primary_10_1007_s11277_017_5069_3 crossref_primary_10_1016_j_icarus_2019_01_017 crossref_primary_10_1103_49t8_mh9k crossref_primary_10_1038_s41534_019_0140_4 crossref_primary_10_3390_electronics12153256 crossref_primary_10_3390_s23042326 crossref_primary_10_1016_j_culher_2025_03_005 crossref_primary_10_1134_S1054661822010059 crossref_primary_10_1186_s40323_022_00234_8 crossref_primary_10_3390_s23042320 crossref_primary_10_1002_wcms_1564 crossref_primary_10_1016_j_neunet_2020_02_010 crossref_primary_10_1109_ACCESS_2019_2916717 crossref_primary_10_1016_j_neunet_2020_02_011 crossref_primary_10_3390_en15134602 crossref_primary_10_3389_fpubh_2022_924432 crossref_primary_10_3748_wjg_v28_i20_2152 crossref_primary_10_1016_j_eswa_2025_127032 crossref_primary_10_1080_03019233_2019_1699358 crossref_primary_10_1002_cjce_23750 crossref_primary_10_1016_j_commatsci_2022_111391 crossref_primary_10_1016_j_heliyon_2023_e22601 crossref_primary_10_1109_TCYB_2022_3161664 crossref_primary_10_1049_iet_rpg_2018_5520 crossref_primary_10_1371_journal_pone_0306385 crossref_primary_10_1002_widm_1257 crossref_primary_10_1016_j_neunet_2020_02_005 crossref_primary_10_1016_j_ejcon_2021_01_008 crossref_primary_10_1109_TIM_2022_3225035 crossref_primary_10_1080_0142159X_2024_2407129 crossref_primary_10_1016_j_jisa_2021_102949 crossref_primary_10_1097_MD_0000000000038478 crossref_primary_10_1109_JLT_2020_3016712 crossref_primary_10_3390_f13122041 crossref_primary_10_1016_j_ufug_2023_127943 crossref_primary_10_1002_rnc_6121 crossref_primary_10_1007_s10898_025_01505_5 crossref_primary_10_1007_s11242_019_01352_5 crossref_primary_10_1088_1742_6596_1126_1_012035 crossref_primary_10_1007_s41688_018_0025_2 crossref_primary_10_1080_02770903_2020_1742352 crossref_primary_10_3389_fonc_2022_894978 crossref_primary_10_1109_JSTSP_2020_2987728 crossref_primary_10_3390_electronics10243176 crossref_primary_10_1088_1478_3975_ab7731 crossref_primary_10_3103_S1060992X1704004X crossref_primary_10_1038_s41598_021_91761_8 crossref_primary_10_1177_2399808319862571 crossref_primary_10_3390_genes11060614 crossref_primary_10_1002_wcms_1581 crossref_primary_10_1002_pssa_201700875 crossref_primary_10_1007_s10458_021_09534_6 crossref_primary_10_3390_diagnostics13010161 crossref_primary_10_3390_nu14214614 crossref_primary_10_3389_fphar_2022_844293 crossref_primary_10_1016_j_compeleceng_2024_110040 crossref_primary_10_1038_s41524_017_0028_9 crossref_primary_10_1016_j_ijggc_2024_104147 crossref_primary_10_1016_j_energy_2019_115873 crossref_primary_10_1109_TASE_2021_3077689 crossref_primary_10_1177_1747954119859683 crossref_primary_10_1007_s00521_021_06347_2 crossref_primary_10_1088_1361_665X_ad508e crossref_primary_10_3389_fncom_2018_00102 crossref_primary_10_3390_app13116826 crossref_primary_10_1038_s41598_025_12719_8 crossref_primary_10_1016_j_physd_2021_133014 crossref_primary_10_1080_01614940_2024_2338131 crossref_primary_10_1002_cepa_2053 crossref_primary_10_1016_j_patcog_2025_112184 crossref_primary_10_1007_s00521_019_04663_2 crossref_primary_10_1016_j_bspc_2025_107640 crossref_primary_10_1016_j_jmsy_2023_05_026 crossref_primary_10_3390_math11061358 crossref_primary_10_1186_s13059_020_01978_5 crossref_primary_10_1016_j_solener_2024_112499 crossref_primary_10_1016_j_neucom_2018_08_003 crossref_primary_10_1109_TCC_2019_2950400 crossref_primary_10_1016_j_atmosenv_2022_119347 crossref_primary_10_3103_S1060992X24700061 crossref_primary_10_32708_uutfd_891274 crossref_primary_10_1016_j_egyr_2021_07_053 crossref_primary_10_1177_17085381231153216 crossref_primary_10_1007_s00521_020_05035_x crossref_primary_10_1016_j_eswa_2023_121183 crossref_primary_10_1016_j_jcp_2019_02_002 crossref_primary_10_1063_1_5129306 crossref_primary_10_1109_ACCESS_2020_2971319 crossref_primary_10_1029_2018WR023333 crossref_primary_10_1080_10106049_2021_1939441 crossref_primary_10_1007_s11837_020_04361_8 crossref_primary_10_1016_j_jhydrol_2018_11_069 crossref_primary_10_1371_journal_pone_0195065 crossref_primary_10_3390_en14185871 crossref_primary_10_1016_j_scitotenv_2019_02_263 crossref_primary_10_1002_mco2_115 crossref_primary_10_1002_wcms_1593 crossref_primary_10_1016_j_jenvman_2021_111979 crossref_primary_10_1016_j_epsr_2023_109216 crossref_primary_10_1016_j_jmmm_2019_165434 crossref_primary_10_1016_j_isatra_2021_07_030 crossref_primary_10_1002_ep_14004 crossref_primary_10_1016_j_eswa_2020_113526 crossref_primary_10_1109_JIOT_2019_2916143 crossref_primary_10_3390_su15021122 crossref_primary_10_1051_matecconf_201822604042 crossref_primary_10_1016_j_conbuildmat_2023_131423 crossref_primary_10_1155_2022_5292134 crossref_primary_10_1016_j_apergo_2018_08_014 crossref_primary_10_1007_s11600_023_01207_0 crossref_primary_10_3390_fi10070056 crossref_primary_10_1016_j_conb_2019_02_004 crossref_primary_10_1080_13683500_2023_2300030 crossref_primary_10_3389_fcomp_2021_750428 crossref_primary_10_3390_ai6030046 crossref_primary_10_1088_1742_5468_ac9830 crossref_primary_10_1109_ACCESS_2020_3012037 crossref_primary_10_1162_neco_a_00990 crossref_primary_10_1080_01431161_2024_2368930 crossref_primary_10_1109_ACCESS_2020_2991767 crossref_primary_10_1080_14786451_2020_1803862 crossref_primary_10_1016_j_algal_2021_102256 crossref_primary_10_1016_j_engappai_2020_103647 crossref_primary_10_1080_10106049_2022_2068675 crossref_primary_10_3390_app132111966 crossref_primary_10_1038_s42005_025_02255_2 crossref_primary_10_1093_mnras_stad1767 crossref_primary_10_1109_TIE_2017_2774777 crossref_primary_10_3390_w17182735 crossref_primary_10_1016_j_neucom_2024_128791 crossref_primary_10_1051_e3sconf_202341201069 crossref_primary_10_1061__ASCE_CO_1943_7862_0002354 crossref_primary_10_1109_ACCESS_2019_2922554 crossref_primary_10_3390_s22041464 crossref_primary_10_3389_fphys_2021_683025 crossref_primary_10_1016_j_xphs_2021_01_032 crossref_primary_10_1162_neco_a_00984 crossref_primary_10_1093_bib_bbad299 crossref_primary_10_1016_j_watres_2019_115058 crossref_primary_10_1016_j_ejor_2017_11_054 crossref_primary_10_1016_j_neunet_2023_11_063 crossref_primary_10_1109_TNSE_2020_2966504 crossref_primary_10_1016_j_patcog_2022_108879 crossref_primary_10_1049_iet_cvi_2016_0355 crossref_primary_10_1186_s12862_022_01978_y crossref_primary_10_1177_21925682241261342 crossref_primary_10_1016_j_apacoust_2021_108626 crossref_primary_10_1007_s11432_017_9405_6 crossref_primary_10_1177_01655515221111000 crossref_primary_10_1109_ACCESS_2019_2909579 crossref_primary_10_1109_TCSI_2023_3296602 crossref_primary_10_1109_ACCESS_2020_3012053 crossref_primary_10_1093_jge_gxz007 crossref_primary_10_1007_s42250_025_01239_7 crossref_primary_10_1109_ACCESS_2019_2909586 crossref_primary_10_1007_s10489_022_03219_7 crossref_primary_10_1080_17460441_2021_1918096 crossref_primary_10_1109_TEM_2022_3201434 crossref_primary_10_1007_s40808_018_0543_9 crossref_primary_10_1109_TMI_2020_3045295 crossref_primary_10_3390_rs14235950 crossref_primary_10_1007_s00521_021_06765_2 crossref_primary_10_1016_j_jestch_2020_07_001 crossref_primary_10_1007_JHEP07_2025_210 crossref_primary_10_1007_s10489_022_03624_y crossref_primary_10_1007_s40808_020_01041_z crossref_primary_10_1007_s10489_024_05541_8 crossref_primary_10_1007_s00138_021_01224_3 crossref_primary_10_1080_24725854_2022_2062627 crossref_primary_10_1002_widm_1211 crossref_primary_10_1016_j_langsci_2017_04_003 crossref_primary_10_1364_AO_504023 crossref_primary_10_3390_s21041027 crossref_primary_10_1016_j_commatsci_2022_111379 crossref_primary_10_1088_0256_307X_40_12_125201 crossref_primary_10_1016_j_patrec_2018_02_010 crossref_primary_10_1109_ACCESS_2024_3349418 crossref_primary_10_1007_s12555_018_0140_8 crossref_primary_10_1109_ACCESS_2022_3191643 crossref_primary_10_1016_j_ecolind_2023_110020 crossref_primary_10_1109_TPEL_2020_2980240 crossref_primary_10_1146_annurev_anchem_091520_091450 crossref_primary_10_1007_s42001_024_00340_0 crossref_primary_10_1016_j_giec_2022_12_001 crossref_primary_10_1002_widm_1200 crossref_primary_10_1016_j_compbiomed_2025_110937 crossref_primary_10_1016_j_compag_2019_105002 crossref_primary_10_1016_j_egyr_2023_01_108 crossref_primary_10_1109_TCDS_2017_2685338 crossref_primary_10_1007_s11063_023_11261_w crossref_primary_10_1016_j_jallcom_2020_153880 crossref_primary_10_22581_muet1982_2003_19 crossref_primary_10_1145_3447523 crossref_primary_10_3390_jox14040101 crossref_primary_10_1007_s12665_022_10375_z crossref_primary_10_1016_j_measurement_2019_107139 crossref_primary_10_3390_ijms24054557 crossref_primary_10_1016_j_coal_2020_103416 crossref_primary_10_3390_ijgi10100645 crossref_primary_10_1016_j_cherd_2022_03_022 crossref_primary_10_1038_s41467_020_20519_z crossref_primary_10_1038_s42005_021_00549_9 crossref_primary_10_3390_info8040147 crossref_primary_10_1016_j_neuron_2015_03_031 crossref_primary_10_1007_s00371_018_1499_5 crossref_primary_10_1016_j_heliyon_2022_e11623 crossref_primary_10_1109_TSMC_2017_2754287 crossref_primary_10_1103_PhysRevApplied_17_024040 crossref_primary_10_1007_s00500_019_03901_y crossref_primary_10_1007_s11538_020_00851_7 crossref_primary_10_5194_jm_39_183_2020 crossref_primary_10_1109_TNNLS_2018_2890550 crossref_primary_10_1109_TSMC_2017_2701797 crossref_primary_10_1109_ACCESS_2019_2947855 crossref_primary_10_1088_1748_3190_aaef1d crossref_primary_10_1109_ACCESS_2019_2963092 crossref_primary_10_1016_j_measurement_2019_02_022 crossref_primary_10_3390_diagnostics12071564 crossref_primary_10_1055_s_0042_1742388 crossref_primary_10_1049_iet_ipr_2019_0241 crossref_primary_10_1177_2192568220973984 crossref_primary_10_1109_ACCESS_2019_2899721 crossref_primary_10_1109_ACCESS_2020_3025325 crossref_primary_10_1146_annurev_clinpsy_032816_044949 crossref_primary_10_1093_schbul_sbac173 crossref_primary_10_1109_MCAS_2019_2945210 crossref_primary_10_1016_j_neunet_2023_11_039 crossref_primary_10_1007_s10845_020_01543_8 crossref_primary_10_1016_j_asoc_2021_107587 crossref_primary_10_3390_s21041054 crossref_primary_10_1109_ACCESS_2018_2854918 crossref_primary_10_1186_s40359_025_03197_8 crossref_primary_10_1186_s12938_019_0714_6 crossref_primary_10_1007_s00521_022_07797_y crossref_primary_10_3390_s21030973 crossref_primary_10_3390_s21030972 crossref_primary_10_3390_agriculture12071033 crossref_primary_10_1007_s13385_021_00271_4 crossref_primary_10_1016_j_eswa_2023_121956 crossref_primary_10_1016_j_elerap_2021_101058 crossref_primary_10_1016_j_ins_2017_12_022 crossref_primary_10_1016_j_patrec_2016_11_011 crossref_primary_10_3390_s22031237 crossref_primary_10_3390_plants10122643 crossref_primary_10_1109_JSTARS_2019_2956318 crossref_primary_10_1145_3057729 crossref_primary_10_1371_journal_pone_0202652 crossref_primary_10_1016_j_trc_2022_103706 crossref_primary_10_1109_JSAC_2021_3087259 crossref_primary_10_1016_j_egyr_2023_08_076 crossref_primary_10_1016_j_matdes_2024_112932 crossref_primary_10_3390_electronics11111754 crossref_primary_10_1109_TITS_2018_2836141 crossref_primary_10_1088_1674_1056_28_3_038701 crossref_primary_10_1063_5_0023540 crossref_primary_10_1016_j_patcog_2022_108586 crossref_primary_10_1109_TSC_2023_3323647 crossref_primary_10_3390_s18030769 crossref_primary_10_1016_j_engappai_2024_107844 crossref_primary_10_1016_j_jag_2025_104840 crossref_primary_10_1016_j_comcom_2020_05_040 crossref_primary_10_1109_TCSII_2023_3260248 crossref_primary_10_3390_jmse10111709 crossref_primary_10_1080_03461238_2019_1633394 crossref_primary_10_1016_j_apenergy_2024_122815 crossref_primary_10_1155_2023_1363639 crossref_primary_10_1016_j_neunet_2018_01_009 crossref_primary_10_1007_s11116_021_10214_3 crossref_primary_10_1109_MS_2017_79 crossref_primary_10_1016_j_procs_2024_04_121 crossref_primary_10_1016_j_jpdc_2017_06_006 crossref_primary_10_3389_fnins_2020_00779 crossref_primary_10_1007_s10479_025_06754_x crossref_primary_10_1016_j_techsoc_2020_101396 crossref_primary_10_1109_TCCN_2022_3168725 crossref_primary_10_3390_rs12111729 crossref_primary_10_3103_S0027134924702291 crossref_primary_10_1109_COMST_2020_2965856 crossref_primary_10_2196_43154 crossref_primary_10_1016_j_catena_2024_108086 crossref_primary_10_1088_1755_1315_242_5_052044 crossref_primary_10_3389_fnbot_2021_784514 crossref_primary_10_1007_s12650_018_0519_x crossref_primary_10_1137_18M1165748 crossref_primary_10_1016_j_procs_2019_08_236 crossref_primary_10_1016_j_procir_2024_10_063 crossref_primary_10_3390_rs13122288 crossref_primary_10_1080_10106049_2022_2136255 crossref_primary_10_3390_app11093952 crossref_primary_10_1088_1757_899X_1238_1_012065 crossref_primary_10_1002_rmb2_12284 crossref_primary_10_1186_s40537_025_01108_7 crossref_primary_10_1016_j_ejro_2023_100484 crossref_primary_10_1038_s41576_019_0122_6 crossref_primary_10_1111_aab_12927 crossref_primary_10_3390_s20092533 crossref_primary_10_1016_j_compbiomed_2021_104323 crossref_primary_10_1002_adfm_201601353 crossref_primary_10_1016_j_geoen_2023_211727 crossref_primary_10_1016_j_compbiomed_2023_107194 crossref_primary_10_1038_s41598_024_70341_6 crossref_primary_10_1155_2020_5735496 crossref_primary_10_1155_2019_4895891 crossref_primary_10_1016_j_biteb_2022_100976 crossref_primary_10_1002_bit_28503 crossref_primary_10_1016_j_compag_2020_105815 crossref_primary_10_1016_j_displa_2023_102454 crossref_primary_10_3389_fneur_2018_00989 crossref_primary_10_1186_s40537_024_00967_w crossref_primary_10_3390_agronomy11040749 crossref_primary_10_1016_j_neucom_2018_12_084 crossref_primary_10_1016_j_neubiorev_2022_104921 crossref_primary_10_1111_peps_12529 crossref_primary_10_1109_TBME_2019_2895663 crossref_primary_10_1109_TGRS_2019_2928715 crossref_primary_10_1051_epjconf_201817301009 crossref_primary_10_32604_cmc_2024_057456 crossref_primary_10_1109_JIOT_2019_2952146 crossref_primary_10_1109_ACCESS_2020_3012196 crossref_primary_10_1007_s12668_020_00795_1 crossref_primary_10_1080_00140139_2024_2308705 crossref_primary_10_2478_amns_2023_2_00107 crossref_primary_10_3390_app13031313 crossref_primary_10_1371_journal_pone_0191473 crossref_primary_10_1002_rmb2_12266 crossref_primary_10_1017_asb_2025_10 crossref_primary_10_1016_j_procs_2020_05_079 crossref_primary_10_3390_atmos14121788 crossref_primary_10_1016_j_jenvman_2025_125158 crossref_primary_10_1145_3063593 crossref_primary_10_1140_epja_s10050_025_01661_y crossref_primary_10_1186_s40537_023_00787_4 crossref_primary_10_1515_kern_2021_0034 crossref_primary_10_5194_acp_18_9597_2018 crossref_primary_10_1109_JSAC_2021_3087225 crossref_primary_10_1109_TFUZZ_2019_2911494 crossref_primary_10_1038_s42003_024_06214_5 crossref_primary_10_1016_j_jbi_2020_103565 crossref_primary_10_1038_s41598_023_42719_5 crossref_primary_10_32604_cmes_2023_030278 crossref_primary_10_1016_j_advengsoft_2021_103066 crossref_primary_10_1109_ACCESS_2019_2953698 crossref_primary_10_3390_su13095304 crossref_primary_10_1016_j_eswa_2023_120649 crossref_primary_10_1080_14697688_2022_2062431 crossref_primary_10_1109_LGRS_2018_2861218 crossref_primary_10_1186_s13635_021_00118_1 crossref_primary_10_1007_s42994_024_00169_1 crossref_primary_10_1007_s00500_017_2618_3 crossref_primary_10_1109_JIOT_2022_3158701 crossref_primary_10_1109_TCYB_2019_2897162 crossref_primary_10_1155_2021_8867776 crossref_primary_10_2166_wcc_2025_660 crossref_primary_10_1002_wics_1500 crossref_primary_10_1155_2021_6473833 crossref_primary_10_1088_2631_7990_ad35fe crossref_primary_10_1289_EHP6076 crossref_primary_10_1109_ACCESS_2020_2966645 crossref_primary_10_3390_app13031332 crossref_primary_10_1016_j_compbiomed_2019_103565 crossref_primary_10_1029_2017SW001763 crossref_primary_10_2196_15992 crossref_primary_10_1109_TIM_2020_3018568 crossref_primary_10_1016_j_neucom_2020_02_113 crossref_primary_10_1016_j_neunet_2019_09_008 crossref_primary_10_1016_j_jag_2018_05_025 crossref_primary_10_1016_j_neunet_2019_09_007 crossref_primary_10_1155_2017_5705693 crossref_primary_10_3390_ijerph18189752 crossref_primary_10_1016_j_prosdent_2019_05_026 crossref_primary_10_3390_s23115255 crossref_primary_10_1016_j_ifacol_2020_12_937 crossref_primary_10_1109_TETCI_2018_2858761 crossref_primary_10_1016_j_csbj_2021_06_017 crossref_primary_10_1038_s41467_019_12750_0 crossref_primary_10_3390_rs12244075 crossref_primary_10_1016_j_epsr_2022_108887 crossref_primary_10_1155_2021_1563844 crossref_primary_10_1088_1751_8121_ac58d1 crossref_primary_10_1007_s11356_025_36405_4 crossref_primary_10_1016_j_jksuci_2021_07_011 crossref_primary_10_3390_s19092034 crossref_primary_10_1016_j_csbj_2022_03_035 crossref_primary_10_3389_frai_2022_871863 crossref_primary_10_3390_ijgi9010015 crossref_primary_10_1134_S102745102201013X crossref_primary_10_1109_JPROC_2020_2989782 crossref_primary_10_1007_s11229_024_04702_z crossref_primary_10_3390_w11071327 crossref_primary_10_1155_2022_6593850 crossref_primary_10_1007_s00521_019_04550_w crossref_primary_10_1016_j_jestch_2025_102160 crossref_primary_10_1111_ijpo_12494 crossref_primary_10_3390_electronics11172749 crossref_primary_10_1109_ACCESS_2020_3044652 crossref_primary_10_1016_j_commatsci_2021_110881 crossref_primary_10_1109_TIE_2018_2875660 crossref_primary_10_1016_j_asoc_2019_105759 crossref_primary_10_3390_jimaging10040086 crossref_primary_10_3390_diagnostics12081850 crossref_primary_10_1145_3498333 crossref_primary_10_1016_j_cosrev_2021_100370 crossref_primary_10_1016_j_engappai_2021_104351 crossref_primary_10_1109_ACCESS_2021_3086586 crossref_primary_10_1016_j_cma_2022_114740 crossref_primary_10_1016_j_cosrev_2021_100374 crossref_primary_10_1109_ACCESS_2020_2985769 crossref_primary_10_1016_j_seppur_2022_123086 crossref_primary_10_17816_phf679547 crossref_primary_10_1007_s10915_020_01200_5 crossref_primary_10_1016_j_earscirev_2019_02_023 crossref_primary_10_3390_healthcare11192675 crossref_primary_10_3390_s23083963 crossref_primary_10_1155_2019_3823515 crossref_primary_10_1186_s12938_018_0496_2 crossref_primary_10_3390_en17184689 crossref_primary_10_1016_j_commatsci_2021_110899 crossref_primary_10_1109_ACCESS_2020_2972464 crossref_primary_10_3233_JIFS_212945 crossref_primary_10_5194_tc_17_4675_2023 crossref_primary_10_1016_j_procs_2016_07_455 crossref_primary_10_1109_TNNLS_2021_3098866 crossref_primary_10_1109_ACCESS_2019_2916648 crossref_primary_10_1007_s42452_020_2327_x crossref_primary_10_1186_s40561_018_0057_y crossref_primary_10_1007_s11042_017_4364_z crossref_primary_10_1016_j_ast_2023_108283 crossref_primary_10_1016_j_compag_2019_104878 crossref_primary_10_1109_TCSII_2019_2924663 crossref_primary_10_1016_j_eswa_2021_115528 crossref_primary_10_1109_TII_2016_2601521 crossref_primary_10_1016_j_scitotenv_2021_147356 crossref_primary_10_1016_j_ces_2024_121165 crossref_primary_10_1145_3674839 crossref_primary_10_1108_EC_09_2024_0896 crossref_primary_10_1016_j_cmpb_2021_105940 crossref_primary_10_1016_j_rser_2023_113576 crossref_primary_10_1007_s12559_023_10113_y crossref_primary_10_1007_s41062_025_02103_w crossref_primary_10_3390_app13116819 crossref_primary_10_3390_ijms22073605 crossref_primary_10_1016_j_jobe_2021_103299 crossref_primary_10_1007_s00392_022_02012_3 crossref_primary_10_3390_jmse11010021 crossref_primary_10_1080_19401493_2025_2499689 crossref_primary_10_1177_15533506221139965 crossref_primary_10_3389_fmed_2022_935080 crossref_primary_10_1049_iet_com_2019_0243 crossref_primary_10_1016_j_knosys_2019_03_020 crossref_primary_10_3233_JIFS_182682 crossref_primary_10_1177_1550147719868669 crossref_primary_10_1016_j_techfore_2020_120323 crossref_primary_10_1109_TGRS_2021_3116154 crossref_primary_10_1016_j_actaastro_2020_05_027 crossref_primary_10_1016_j_knosys_2019_03_025 crossref_primary_10_1109_TMI_2017_2655486 crossref_primary_10_3390_s19040804 crossref_primary_10_3832_ifor3705_014 crossref_primary_10_3390_app12125881 crossref_primary_10_1016_j_enbuild_2019_06_034 crossref_primary_10_1016_j_jhydrol_2024_131219 crossref_primary_10_1007_s11276_025_03985_5 crossref_primary_10_2514_1_I011638 crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_014 crossref_primary_10_1016_j_jbi_2020_103500 crossref_primary_10_1088_1361_6560_ac6ebc crossref_primary_10_1016_j_knosys_2019_03_018 crossref_primary_10_1016_j_patcog_2019_107024 crossref_primary_10_1016_j_rcim_2020_101991 crossref_primary_10_1016_j_neucom_2015_09_116 crossref_primary_10_1007_s11277_021_08207_7 crossref_primary_10_1016_j_neunet_2020_03_008 crossref_primary_10_1109_JIOT_2019_2961958 crossref_primary_10_1109_JLT_2020_2993271 crossref_primary_10_1016_j_jece_2023_109928 crossref_primary_10_3390_app12136517 crossref_primary_10_1016_j_jmst_2018_11_018 crossref_primary_10_3390_jmse9090999 crossref_primary_10_1016_j_patcog_2017_09_043 crossref_primary_10_1016_j_physa_2019_123288 crossref_primary_10_3390_computers13090229 crossref_primary_10_1016_j_neunet_2020_03_010 crossref_primary_10_1002_dac_4797 crossref_primary_10_1007_s11707_023_1089_3 crossref_primary_10_1176_appi_ajp_2016_16101169 crossref_primary_10_1177_1176934318821072 crossref_primary_10_3390_jmse12060922 crossref_primary_10_3390_f14050913 crossref_primary_10_1099_mgen_0_001231 crossref_primary_10_1109_TGRS_2017_2777868 crossref_primary_10_32604_phyton_2023_025343 crossref_primary_10_1038_s41598_020_65950_w crossref_primary_10_1016_j_asoc_2023_110405 crossref_primary_10_1016_j_neunet_2020_03_016 crossref_primary_10_1038_s41568_020_00327_9 crossref_primary_10_1007_s42979_023_02246_6 crossref_primary_10_54392_irjmt24617 crossref_primary_10_1016_j_enbuild_2025_115440 crossref_primary_10_1164_rccm_201912_2436LE crossref_primary_10_5802_crmeca_188 crossref_primary_10_3390_rs13122257 crossref_primary_10_1016_j_enganabound_2024_106054 crossref_primary_10_1016_j_optlastec_2022_109013 crossref_primary_10_1016_j_apmate_2025_100331 crossref_primary_10_3390_app12052408 crossref_primary_10_1016_j_diii_2023_06_011 crossref_primary_10_1016_j_ymssp_2018_03_025 crossref_primary_10_3390_s19092018 crossref_primary_10_1109_JIOT_2021_3070042 crossref_primary_10_1016_j_tsep_2025_104125 crossref_primary_10_1109_ACCESS_2023_3339561 crossref_primary_10_1109_ACCESS_2022_3222311 crossref_primary_10_4018_IJERTCS_2019100101 crossref_primary_10_2174_1574893613666181109130430 crossref_primary_10_1038_s41598_025_03607_2 crossref_primary_10_1016_j_cosrev_2021_100395 crossref_primary_10_3390_s21113819 crossref_primary_10_1016_j_ymssp_2018_03_011 crossref_primary_10_1186_s43067_023_00081_6 crossref_primary_10_1016_j_ymeth_2018_07_007 crossref_primary_10_3389_fmicb_2022_925454 crossref_primary_10_1109_TNNLS_2020_2966031 crossref_primary_10_3390_ma12060983 crossref_primary_10_4018_IJCCE_2017010102 crossref_primary_10_1016_j_ymssp_2023_110635 crossref_primary_10_3390_su11051262 crossref_primary_10_1186_s13007_024_01239_7 crossref_primary_10_3390_a14090272 crossref_primary_10_3390_su15108034 crossref_primary_10_1109_TKDE_2018_2828431 crossref_primary_10_3390_agronomy12061459 crossref_primary_10_1002_ima_23188 crossref_primary_10_1186_s41044_018_0029_9 crossref_primary_10_3390_app7060526 crossref_primary_10_1109_TGRS_2019_2911993 crossref_primary_10_1080_01431161_2021_1995074 crossref_primary_10_1080_01969722_2016_1276771 crossref_primary_10_1088_1742_6596_1994_1_012015 crossref_primary_10_1109_JSTARS_2020_3046053 crossref_primary_10_3390_en14113004 crossref_primary_10_1088_2632_2153_add3bc crossref_primary_10_3390_s24113276 crossref_primary_10_1002_jmri_26658 crossref_primary_10_1088_1742_6596_1994_1_012021 crossref_primary_10_1111_ssqu_12629 crossref_primary_10_3389_fnins_2025_1577029 crossref_primary_10_3390_ma15155232 crossref_primary_10_1016_j_canrad_2021_08_020 crossref_primary_10_1109_TII_2021_3065930 crossref_primary_10_1007_s11042_020_08945_z crossref_primary_10_1016_j_cosrev_2021_100413 crossref_primary_10_1016_j_psep_2021_09_033 crossref_primary_10_1109_ACCESS_2023_3236189 crossref_primary_10_1016_j_compmedimag_2020_101810 crossref_primary_10_1016_j_tics_2020_09_002 crossref_primary_10_1088_1361_6528_ac8109 crossref_primary_10_1007_s00521_019_04311_9 crossref_primary_10_1016_j_asoc_2023_110324 crossref_primary_10_1016_j_addma_2025_104888 crossref_primary_10_3389_fcell_2020_572195 crossref_primary_10_1007_s11063_018_9883_8 crossref_primary_10_1109_JIOT_2020_2972337 crossref_primary_10_1109_ACCESS_2019_2946479 crossref_primary_10_7717_peerj_cs_2590 crossref_primary_10_1016_j_chaos_2023_113359 crossref_primary_10_3390_agriculture11050388 crossref_primary_10_1016_j_future_2019_01_049 crossref_primary_10_1177_1475921720924320 crossref_primary_10_1016_j_cognition_2020_104365 crossref_primary_10_1109_ACCESS_2020_2989396 crossref_primary_10_3389_fimag_2024_1336829 crossref_primary_10_1016_j_jvcir_2019_02_001 crossref_primary_10_1016_j_mineng_2023_108400 crossref_primary_10_1007_s40687_022_00351_1 crossref_primary_10_1186_s12874_025_02463_y crossref_primary_10_3390_ani13121916 crossref_primary_10_1007_s00068_020_01444_8 crossref_primary_10_1016_j_cej_2021_132893 crossref_primary_10_1177_09544070211036321 crossref_primary_10_1016_j_cmpb_2016_12_004 crossref_primary_10_3390_biom12040508 crossref_primary_10_1016_j_neucom_2024_128609 crossref_primary_10_1016_j_sedgeo_2020_105790 crossref_primary_10_1109_JTEHM_2019_2948604 crossref_primary_10_3390_rs15082135 crossref_primary_10_3390_w11091808 crossref_primary_10_3847_1538_4357_ad46fd crossref_primary_10_1016_j_envadv_2025_100653 crossref_primary_10_1109_TVT_2020_3041521 crossref_primary_10_1002_er_4698 crossref_primary_10_1016_j_jag_2024_103707 crossref_primary_10_1016_j_compag_2023_108434 crossref_primary_10_1109_TMM_2019_2907052 crossref_primary_10_1016_j_cma_2019_112737 crossref_primary_10_1016_j_asoc_2019_105820 crossref_primary_10_1016_j_cma_2019_112739 crossref_primary_10_1109_MTS_2018_2876216 crossref_primary_10_1155_2019_1306039 crossref_primary_10_1016_j_applthermaleng_2024_123906 crossref_primary_10_1145_3648609 crossref_primary_10_1002_minf_202300327 crossref_primary_10_3389_fnins_2021_629000 crossref_primary_10_1016_j_imavis_2023_104812 crossref_primary_10_3390_electronics10131580 crossref_primary_10_3390_app9183876 crossref_primary_10_1007_s00530_023_01232_5 crossref_primary_10_1016_j_tree_2015_12_013 crossref_primary_10_1080_1062936X_2018_1497702 crossref_primary_10_1016_j_future_2020_03_042 crossref_primary_10_1109_TRO_2019_2959161 crossref_primary_10_1007_s00170_020_06289_4 crossref_primary_10_1007_s11831_021_09551_4 crossref_primary_10_1109_TAES_2021_3079571 crossref_primary_10_1007_s41066_017_0048_3 crossref_primary_10_1016_j_ijepes_2020_106054 crossref_primary_10_1109_TMI_2019_2910760 crossref_primary_10_7595_management_fon_2017_0023 crossref_primary_10_1007_s10845_021_01906_9 crossref_primary_10_1109_ACCESS_2021_3085216 crossref_primary_10_1016_j_apenergy_2018_09_160 crossref_primary_10_7759_s44389_025_04619_9 crossref_primary_10_1109_ACCESS_2022_3170685 crossref_primary_10_3390_app9030372 crossref_primary_10_1016_j_cogsys_2022_09_005 crossref_primary_10_1007_s13205_025_04518_9 crossref_primary_10_1016_j_cja_2023_09_024 crossref_primary_10_1016_j_cmpb_2018_01_011 crossref_primary_10_1016_j_eswa_2025_128279 crossref_primary_10_1016_j_ymssp_2018_12_009 crossref_primary_10_1109_ACCESS_2021_3109861 crossref_primary_10_3390_met8080612 crossref_primary_10_1007_s00521_021_06709_w crossref_primary_10_1190_geo2019_0434_1 crossref_primary_10_1186_s12859_020_03688_y crossref_primary_10_1016_j_arth_2018_02_067 crossref_primary_10_1007_s10509_019_3651_8 crossref_primary_10_1007_s11760_024_03483_9 crossref_primary_10_3390_s20236978 crossref_primary_10_34133_ehs_0259 crossref_primary_10_1109_TMC_2017_2757023 crossref_primary_10_1051_shsconf_202419802003 crossref_primary_10_1016_j_asoc_2019_105854 crossref_primary_10_1111_1748_5967_70034 crossref_primary_10_1007_s12559_020_09761_1 crossref_primary_10_1007_s41062_024_01620_4 crossref_primary_10_1016_j_chemolab_2019_04_008 crossref_primary_10_1007_s00521_020_05189_8 crossref_primary_10_3390_rs14081803 crossref_primary_10_1002_mp_14861 crossref_primary_10_2174_0123520965293198240418063311 crossref_primary_10_3390_electronics11172634 crossref_primary_10_1088_2632_2153_ad360d crossref_primary_10_1109_ACCESS_2019_2897028 crossref_primary_10_3390_ijms24032026 crossref_primary_10_1016_j_fuel_2024_130985 crossref_primary_10_1016_j_neucom_2024_128650 crossref_primary_10_1016_j_csbj_2020_11_036 crossref_primary_10_3390_en12214035 crossref_primary_10_1016_j_measen_2022_100593 crossref_primary_10_1371_journal_pcbi_1009949 crossref_primary_10_1007_s00170_022_09916_4 crossref_primary_10_1109_TNNLS_2016_2582798 crossref_primary_10_3390_pr12040664 crossref_primary_10_1088_1742_6596_1105_1_012043 crossref_primary_10_1016_j_compag_2020_105739 crossref_primary_10_1016_j_cageo_2020_104484 crossref_primary_10_1016_j_jvcir_2021_103255 crossref_primary_10_1038_s41586_019_0912_1 crossref_primary_10_3390_app10010014 crossref_primary_10_1109_TGRS_2023_3247880 crossref_primary_10_1007_s10846_020_01227_8 crossref_primary_10_1016_j_isatra_2021_11_024 crossref_primary_10_1109_ACCESS_2019_2947714 crossref_primary_10_1007_s10815_021_02123_2 crossref_primary_10_3390_electronics10172081 crossref_primary_10_1093_erae_jbz033 crossref_primary_10_1038_s41378_022_00350_w crossref_primary_10_1186_s40535_018_0052_y crossref_primary_10_3389_fphy_2020_00200 crossref_primary_10_1016_j_healthplace_2021_102601 crossref_primary_10_1109_TIP_2020_2999211 crossref_primary_10_1007_s00603_020_02314_w crossref_primary_10_1007_s41939_024_00672_4 crossref_primary_10_1038_s41598_020_69814_1 crossref_primary_10_1051_shsconf_202214706003 crossref_primary_10_1007_s42979_021_00856_6 crossref_primary_10_1016_j_optcom_2023_129451 crossref_primary_10_3390_math10234610 crossref_primary_10_1007_s42452_021_04579_4 crossref_primary_10_1109_JSTARS_2022_3216998 crossref_primary_10_1016_j_compind_2018_12_012 crossref_primary_10_1016_j_energy_2024_133028 crossref_primary_10_1007_s11042_025_20616_5 crossref_primary_10_1021_acsomega_5c03316 crossref_primary_10_1016_j_neunet_2019_09_035 crossref_primary_10_1007_s10389_025_02444_x crossref_primary_10_1287_ijoc_2022_0136 crossref_primary_10_1111_jgh_15415 crossref_primary_10_1371_journal_pone_0288836 crossref_primary_10_1016_j_is_2019_03_005 crossref_primary_10_3847_1538_3881_aac16d crossref_primary_10_1016_j_jfranklin_2023_12_026 crossref_primary_10_1016_j_snb_2021_129872 crossref_primary_10_1016_j_compind_2018_12_005 crossref_primary_10_1016_j_jstrokecerebrovasdis_2019_104441 crossref_primary_10_1145_3224421 crossref_primary_10_1109_MSP_2018_2884869 crossref_primary_10_1049_iet_rsn_2018_0003 crossref_primary_10_1109_ACCESS_2020_2979999 crossref_primary_10_3390_ijerph19159754 crossref_primary_10_1109_TNNLS_2021_3089134 crossref_primary_10_1007_s42107_022_00495_z crossref_primary_10_1016_j_pnpbp_2021_110405 crossref_primary_10_1016_j_neunet_2018_10_002 crossref_primary_10_1016_j_apenergy_2017_08_014 crossref_primary_10_1016_j_comnet_2020_107784 crossref_primary_10_3389_fpsyt_2020_551299 crossref_primary_10_1016_j_jsames_2024_104815 crossref_primary_10_1007_s00500_022_07528_4 crossref_primary_10_1063_1_5042040 crossref_primary_10_1007_s00521_022_07353_8 crossref_primary_10_1140_epja_s10050_025_01555_z crossref_primary_10_1088_2399_6528_aca45e crossref_primary_10_1109_LWC_2023_3309479 crossref_primary_10_1109_LGRS_2022_3204747 crossref_primary_10_1016_j_fuel_2023_128756 crossref_primary_10_1080_01431161_2018_1468106 crossref_primary_10_1108_IR_12_2018_0248 crossref_primary_10_1016_j_ymssp_2017_06_027 crossref_primary_10_3389_fbuil_2022_1049616 crossref_primary_10_1080_09540091_2022_2133082 crossref_primary_10_3390_s19020344 crossref_primary_10_3390_s23115209 crossref_primary_10_1371_journal_pone_0192726 crossref_primary_10_1111_iej_14014 crossref_primary_10_1016_j_apenergy_2025_126157 crossref_primary_10_1007_s10853_024_09866_0 crossref_primary_10_1016_j_cag_2018_12_003 crossref_primary_10_1088_2634_4386_ac0242 crossref_primary_10_1155_2018_8125126 crossref_primary_10_2478_ebtj_2018_0012 crossref_primary_10_1016_j_jqsrt_2018_03_004 crossref_primary_10_1038_srep42703 crossref_primary_10_1088_1361_6463_aae223 crossref_primary_10_1088_1748_9326_ab1b7d crossref_primary_10_1155_2019_7230194 crossref_primary_10_3390_s19020350 crossref_primary_10_1016_j_econmod_2019_09_009 crossref_primary_10_1016_j_compbiomed_2023_107253 crossref_primary_10_1038_s41591_022_02010_y crossref_primary_10_1177_1470785320972526 crossref_primary_10_3390_sym13112140 crossref_primary_10_1155_2018_8954878 crossref_primary_10_1109_JPHOT_2019_2936426 crossref_primary_10_1007_s10489_019_01526_0 crossref_primary_10_1007_s10710_019_09354_4 crossref_primary_10_1016_j_jpdc_2020_01_003 crossref_primary_10_3390_info12090374 crossref_primary_10_3390_math9040322 crossref_primary_10_3390_s22124370 crossref_primary_10_1038_s41598_022_11210_y crossref_primary_10_1002_hbm_25013 crossref_primary_10_1007_s12652_021_03210_z crossref_primary_10_1007_s00500_020_04754_6 crossref_primary_10_1177_0278364917690592 crossref_primary_10_3390_encyclopedia2030102 crossref_primary_10_3390_s18010302 crossref_primary_10_3390_sym13112157 crossref_primary_10_1016_j_ijsolstr_2024_112692 crossref_primary_10_1016_j_nanoen_2023_108656 crossref_primary_10_1007_s42786_018_00007_1 crossref_primary_10_1016_j_neucom_2021_06_007 crossref_primary_10_1016_j_neunet_2023_05_044 crossref_primary_10_1016_j_isprsjprs_2019_04_015 crossref_primary_10_1007_s11042_020_09056_5 crossref_primary_10_1109_COMST_2019_2926625 crossref_primary_10_1145_3190618 crossref_primary_10_1109_TSM_2017_2750719 crossref_primary_10_1007_s11548_019_01979_1 crossref_primary_10_1186_s12872_024_04374_0 crossref_primary_10_1007_s40333_016_0049_0 crossref_primary_10_3389_fnins_2021_654003 crossref_primary_10_3390_app10196685 crossref_primary_10_1016_j_apenergy_2021_116652 crossref_primary_10_1088_1361_6501_acc602 crossref_primary_10_1080_23249676_2020_1831976 crossref_primary_10_1016_j_media_2016_07_007 crossref_primary_10_2196_27806 crossref_primary_10_1016_j_neucom_2022_06_089 crossref_primary_10_1007_s41324_022_00458_1 crossref_primary_10_1051_matecconf_201816401015 crossref_primary_10_3390_ijerph191912358 crossref_primary_10_1016_j_eswa_2020_114226 crossref_primary_10_3389_fnins_2023_1301214 crossref_primary_10_3390_s22020450 crossref_primary_10_1007_s00521_017_3039_z crossref_primary_10_1016_j_cose_2022_102662 crossref_primary_10_3390_app13085012 crossref_primary_10_1016_j_istruc_2025_108988 crossref_primary_10_1007_s11042_022_13155_w crossref_primary_10_1109_ACCESS_2019_2892083 crossref_primary_10_1016_j_compbiomed_2021_104460 crossref_primary_10_1088_2631_8695_adbc48 crossref_primary_10_1109_TPDS_2020_3011893 crossref_primary_10_59389_modular_1550067 crossref_primary_10_1016_j_cedpsych_2024_102323 crossref_primary_10_1038_s41598_018_27033_9 crossref_primary_10_15407_kvt194_04_041 crossref_primary_10_1016_j_compenvurbsys_2023_101967 crossref_primary_10_1016_j_jobe_2025_113903 crossref_primary_10_1016_j_asoc_2018_08_030 crossref_primary_10_1007_s00521_022_06972_5 crossref_primary_10_1109_ACCESS_2020_3007776 crossref_primary_10_1016_j_jclepro_2024_144589 crossref_primary_10_1088_1741_2552_ab7c8d crossref_primary_10_1145_3444691 crossref_primary_10_1016_j_isprsjprs_2021_06_010 crossref_primary_10_1287_mnsc_2022_01448 crossref_primary_10_1038_s41598_024_80647_0 crossref_primary_10_1155_2020_9868017 crossref_primary_10_1145_3544014 crossref_primary_10_1109_TVLSI_2023_3336804 crossref_primary_10_1145_3380940 crossref_primary_10_1016_j_physa_2018_09_136 crossref_primary_10_3390_s21144845 crossref_primary_10_1016_j_ergon_2025_103752 crossref_primary_10_1109_TAES_2020_3046315 crossref_primary_10_1109_TIFS_2023_3293959 crossref_primary_10_3389_fonc_2022_908873 crossref_primary_10_1109_TMI_2016_2546227 crossref_primary_10_1016_j_heliyon_2023_e23374 crossref_primary_10_1080_17460441_2017_1280024 crossref_primary_10_1145_3503509 crossref_primary_10_1016_j_neucom_2022_06_055 crossref_primary_10_1108_MAEM_05_2023_0005 crossref_primary_10_1002_adfm_202214271 crossref_primary_10_1016_j_jcp_2023_112624 crossref_primary_10_1002_tpg2_20554 crossref_primary_10_1002_prs_12122 crossref_primary_10_1007_s11042_022_12793_4 crossref_primary_10_1109_LSP_2019_2941368 crossref_primary_10_1016_j_combustflame_2019_08_014 crossref_primary_10_1109_TAES_2018_2874139 crossref_primary_10_1007_s12145_020_00508_y crossref_primary_10_4018_IJCVIP_2017040101 crossref_primary_10_1088_1757_899X_435_1_012056 crossref_primary_10_1109_ACCESS_2022_3164676 crossref_primary_10_1016_j_cose_2022_102695 crossref_primary_10_1109_TVLSI_2019_2940943 crossref_primary_10_5194_acp_23_13413_2023 crossref_primary_10_1016_j_ymssp_2016_02_007 crossref_primary_10_1109_TCBB_2016_2616469 crossref_primary_10_3390_s18030693 crossref_primary_10_12677_bp_2025_151004 crossref_primary_10_1016_j_eswa_2023_120541 crossref_primary_10_1007_s13202_021_01087_4 crossref_primary_10_1109_JSTARS_2022_3198475 crossref_primary_10_1007_s10462_019_09719_2 crossref_primary_10_3389_fnins_2023_1124089 crossref_primary_10_1016_j_cmpb_2020_105316 crossref_primary_10_1080_24751839_2023_2239617 crossref_primary_10_1002_aisy_202000219 crossref_primary_10_1016_j_petrol_2017_09_020 crossref_primary_10_3934_bdia_2017014 crossref_primary_10_1371_journal_pone_0192684 crossref_primary_10_1007_s11245_023_09919_0 crossref_primary_10_1186_s13007_019_0457_1 crossref_primary_10_1109_TETCI_2019_2928344 crossref_primary_10_1109_ACCESS_2020_2995087 crossref_primary_10_1109_COMST_2020_2986024 crossref_primary_10_1002_kin_21759 crossref_primary_10_1109_ACCESS_2020_3007727 crossref_primary_10_1007_s11263_016_0932_3 crossref_primary_10_1016_j_compbiomed_2018_09_009 crossref_primary_10_1016_j_engappai_2019_07_018 crossref_primary_10_3390_pr11051527 crossref_primary_10_1063_5_0276455 crossref_primary_10_3390_bdcc9050115 crossref_primary_10_1007_s12530_018_9227_y crossref_primary_10_14778_3415478_3415482 crossref_primary_10_1007_s42979_021_00640_6 crossref_primary_10_1007_s11069_020_04041_5 crossref_primary_10_4018_IJSKD_2020040104 crossref_primary_10_3390_textiles1020013 crossref_primary_10_1016_j_engappai_2021_104208 crossref_primary_10_1017_S0021859618000436 crossref_primary_10_3390_make4020020 crossref_primary_10_1016_j_atech_2025_101406 crossref_primary_10_3389_fnsys_2021_697129 crossref_primary_10_1038_s41598_017_05300_5 crossref_primary_10_1016_j_marpetgeo_2024_106706 crossref_primary_10_1145_3326338 crossref_primary_10_1371_journal_pcbi_1012012 crossref_primary_10_3390_app12136699 crossref_primary_10_3390_bdcc9050127 crossref_primary_10_1145_3568020 crossref_primary_10_3389_fphar_2019_00042 crossref_primary_10_5194_acp_24_6477_2024 crossref_primary_10_1007_s10015_020_00602_w crossref_primary_10_1002_dac_5944 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121075 crossref_primary_10_1016_j_jterra_2023_03_002 crossref_primary_10_1016_j_matcom_2023_01_002 crossref_primary_10_1016_j_str_2022_03_011 crossref_primary_10_1007_s42102_024_00122_2 crossref_primary_10_1088_1741_2552_acec14 crossref_primary_10_1016_j_cortex_2017_09_019 crossref_primary_10_1016_j_pmatsci_2025_101495 crossref_primary_10_3390_su12114471 crossref_primary_10_1016_j_ijmedinf_2025_105888 crossref_primary_10_1016_j_sysarc_2025_103555 crossref_primary_10_1140_epjc_s10052_020_8030_7 crossref_primary_10_1093_police_paz035 crossref_primary_10_1007_s42486_020_00045_z crossref_primary_10_1016_j_enggeo_2021_106489 crossref_primary_10_1371_journal_pone_0203897 crossref_primary_10_3389_fncom_2021_627357 crossref_primary_10_1007_s00500_019_03916_5 crossref_primary_10_1016_j_jvs_2025_03_198 crossref_primary_10_1038_s41598_025_93465_9 crossref_primary_10_3390_e19070299 crossref_primary_10_3390_diagnostics9030104 crossref_primary_10_1007_s11468_025_03061_w crossref_primary_10_1016_j_specom_2017_06_006 crossref_primary_10_1108_RPJ_02_2024_0102 crossref_primary_10_17221_74_2024_PPS crossref_primary_10_1038_s41573_019_0050_3 crossref_primary_10_1007_s11192_020_03797_8 crossref_primary_10_1016_j_knosys_2020_106314 crossref_primary_10_1109_TAMD_2015_2496248 crossref_primary_10_1016_j_measurement_2021_109548 crossref_primary_10_7717_peerj_cs_745 crossref_primary_10_1109_ACCESS_2020_3029139 crossref_primary_10_1080_0952813X_2015_1042534 crossref_primary_10_1016_j_rse_2019_111425 crossref_primary_10_1109_TGRS_2021_3106681 crossref_primary_10_1186_s13244_023_01541_3 crossref_primary_10_1109_ACCESS_2023_3302179 crossref_primary_10_1016_j_compag_2018_06_006 crossref_primary_10_1109_TCOMM_2021_3070892 crossref_primary_10_1016_j_atmosres_2020_105269 crossref_primary_10_1145_3485133 crossref_primary_10_1109_TITS_2019_2897341 crossref_primary_10_1016_j_physa_2019_123360 crossref_primary_10_1007_s10343_022_00764_6 crossref_primary_10_1007_s00146_022_01515_x crossref_primary_10_1108_K_04_2023_0637 crossref_primary_10_1109_TCCN_2017_2755007 crossref_primary_10_1016_j_compag_2022_107453 crossref_primary_10_1061__ASCE_IS_1943_555X_0000545 crossref_primary_10_1016_j_compag_2018_06_039 crossref_primary_10_1109_ACCESS_2019_2916557 crossref_primary_10_3390_app9050843 crossref_primary_10_1109_TCDS_2022_3150019 crossref_primary_10_1001_jamanetworkopen_2018_1018 crossref_primary_10_3233_JIFS_212814 crossref_primary_10_1097_RCT_0000000000000928 crossref_primary_10_1177_15353702211000310 crossref_primary_10_1016_j_jvcir_2017_01_001 crossref_primary_10_1016_j_commatsci_2021_110784 crossref_primary_10_1109_TCYB_2019_2904742 crossref_primary_10_3390_s19092173 crossref_primary_10_1109_TETCI_2019_2910243 crossref_primary_10_1038_s41598_020_66505_9 crossref_primary_10_1145_3197978 crossref_primary_10_1016_j_ecolind_2021_108287 crossref_primary_10_1016_j_ipm_2019_01_002 crossref_primary_10_3390_en12040660 crossref_primary_10_1080_01431161_2022_2133579 crossref_primary_10_3758_s13421_025_01755_4 crossref_primary_10_3390_electronics10202495 crossref_primary_10_1016_j_jwpe_2020_101389 crossref_primary_10_1007_s12652_021_03129_5 crossref_primary_10_1016_j_jcp_2025_114161 crossref_primary_10_1016_j_energy_2018_04_192 crossref_primary_10_1016_j_jbi_2020_103627 crossref_primary_10_1007_s10812_025_01862_9 crossref_primary_10_1007_s13218_015_0366_z crossref_primary_10_1016_j_daach_2025_e00453 crossref_primary_10_1007_s00521_022_06910_5 crossref_primary_10_3390_s19153434 crossref_primary_10_1016_j_wfumbo_2023_100013 crossref_primary_10_1155_2024_9981657 crossref_primary_10_3390_agriculture15121257 crossref_primary_10_3390_jmse11112194 crossref_primary_10_1016_j_neunet_2018_09_012 crossref_primary_10_1016_j_compchemeng_2019_106580 crossref_primary_10_1093_comnet_cnz044 crossref_primary_10_3389_fpls_2021_616689 crossref_primary_10_1109_TCYB_2019_2898553 crossref_primary_10_3390_pr8111480 crossref_primary_10_1007_s11042_022_13097_3 crossref_primary_10_1108_JSFE_07_2016_0011 crossref_primary_10_1371_journal_pone_0231055 crossref_primary_10_1007_s10291_021_01154_7 crossref_primary_10_1109_ACCESS_2020_2972372 crossref_primary_10_3390_e20030198 crossref_primary_10_1155_2017_9512370 crossref_primary_10_1016_j_jvcir_2019_102585 crossref_primary_10_3390_s19153424 crossref_primary_10_1049_rpg2_12336 crossref_primary_10_3390_app15062877 crossref_primary_10_1016_j_compchemeng_2019_106575 crossref_primary_10_3390_s21227767 crossref_primary_10_1016_j_neunet_2018_09_009 crossref_primary_10_1016_j_ymssp_2023_110535 crossref_primary_10_3390_app9224813 crossref_primary_10_3390_data3040063 crossref_primary_10_1016_j_scs_2022_103716 crossref_primary_10_3390_info14100537 crossref_primary_10_1007_s11548_021_02492_0 crossref_primary_10_3390_rs13122375 crossref_primary_10_1007_s11042_019_08252_2 crossref_primary_10_3233_JIFS_182587 crossref_primary_10_1002_prot_25868 crossref_primary_10_1016_j_compag_2022_107411 crossref_primary_10_1111_aor_13004 crossref_primary_10_1016_j_oceaneng_2023_115402 crossref_primary_10_1111_mice_13061 crossref_primary_10_3390_app122010468 crossref_primary_10_1016_j_heliyon_2023_e23324 crossref_primary_10_1111_tgis_12317 crossref_primary_10_1097_IAE_0000000000002621 crossref_primary_10_1002_advs_201801339 crossref_primary_10_1007_s11227_019_03050_x crossref_primary_10_7467_KSAE_2025_33_3_185 crossref_primary_10_1177_2399808319892599 crossref_primary_10_1016_j_icheatmasstransfer_2019_104368 crossref_primary_10_1016_S0893_6080_16_30179_4 crossref_primary_10_1103_PhysRevE_110_064116 crossref_primary_10_3389_fonc_2023_1117420 crossref_primary_10_3389_fpubh_2020_587937 crossref_primary_10_1016_j_engappai_2021_104295 crossref_primary_10_1093_comnet_cnz018 crossref_primary_10_1007_s00521_019_04695_8 crossref_primary_10_1016_j_scitotenv_2021_149861 crossref_primary_10_1109_ACCESS_2020_3006499 crossref_primary_10_1109_ACCESS_2021_3067302 crossref_primary_10_1177_20552076221149529 crossref_primary_10_1007_s11831_021_09686_4 crossref_primary_10_1109_TCDS_2019_2894561 crossref_primary_10_1016_j_isatra_2017_03_017 crossref_primary_10_1016_j_jpainsymman_2019_12_374 crossref_primary_10_1016_j_jvs_2023_05_024 crossref_primary_10_3390_app12094384 crossref_primary_10_5194_hess_26_1727_2022 crossref_primary_10_1109_ACCESS_2020_3031438 crossref_primary_10_3390_rs14215345 crossref_primary_10_1007_s00521_023_08577_y crossref_primary_10_3390_s18124147 crossref_primary_10_1109_ACCESS_2020_2973704 crossref_primary_10_3390_rs9111106 crossref_primary_10_1007_s11548_018_1860_1 crossref_primary_10_1016_j_sigpro_2018_02_010 crossref_primary_10_1007_s11760_019_01510_8 crossref_primary_10_1109_ACCESS_2017_2678990 crossref_primary_10_3389_fncom_2021_670489 crossref_primary_10_1007_s00170_018_2869_x crossref_primary_10_3390_rs14215334 crossref_primary_10_1007_s00500_022_07037_4 crossref_primary_10_1016_j_measurement_2019_05_074 crossref_primary_10_1177_0959651820965447 crossref_primary_10_1002_cjce_23507 crossref_primary_10_1038_s41598_020_64466_7 crossref_primary_10_1109_TITS_2017_2706963 crossref_primary_10_1177_16878132231156789 crossref_primary_10_4103_jomfp_JOMFP_215_19 crossref_primary_10_4103_mgr_MEDGASRES_D_24_00113 crossref_primary_10_1007_s11063_022_11055_6 crossref_primary_10_1145_3526194 crossref_primary_10_1109_ACCESS_2018_2886343 crossref_primary_10_1002_prot_25824 crossref_primary_10_1007_s00466_022_02252_0 crossref_primary_10_1007_s10660_019_09389_w crossref_primary_10_2118_203951_PA crossref_primary_10_1109_TSMC_2021_3113823 crossref_primary_10_3390_en10111830 crossref_primary_10_1016_j_dsp_2021_103014 crossref_primary_10_1007_s10825_020_01538_x crossref_primary_10_1007_s13762_017_1591_9 crossref_primary_10_1186_s13638_021_01896_5 crossref_primary_10_3390_ma13225227 crossref_primary_10_3389_finsc_2023_1016277 crossref_primary_10_1002_lpor_202000348 crossref_primary_10_1186_s12859_020_03783_0 crossref_primary_10_1186_s12911_023_02268_3 crossref_primary_10_20965_jaciii_2020_p0568 crossref_primary_10_1016_j_electacta_2025_146503 crossref_primary_10_1016_j_bspc_2023_105052 crossref_primary_10_12677_AAM_2023_127329 crossref_primary_10_1515_nanoph_2022_0109 crossref_primary_10_3390_sym11070892 crossref_primary_10_3390_app9204475 crossref_primary_10_1007_s12652_021_03284_9 crossref_primary_10_1016_j_fuel_2022_124622 crossref_primary_10_1007_s42757_024_0214_1 crossref_primary_10_3389_fpls_2021_682230 crossref_primary_10_1016_j_drudis_2019_07_006 crossref_primary_10_1016_j_jvolgeores_2022_107615 crossref_primary_10_1016_j_mineng_2023_108508 crossref_primary_10_1109_TSP_2020_2985303 crossref_primary_10_26634_jpr_9_1_18858 crossref_primary_10_1109_JSEN_2018_2876411 crossref_primary_10_3390_s25144473 crossref_primary_10_1088_1741_2552_ab3471 crossref_primary_10_1109_TBME_2018_2849502 crossref_primary_10_3233_JIFS_230692 crossref_primary_10_1093_comjnl_bxy126 crossref_primary_10_3389_fneur_2025_1661049 crossref_primary_10_1007_s11063_022_10948_w crossref_primary_10_3390_rs13142799 crossref_primary_10_1002_int_22504 crossref_primary_10_1186_s12859_017_1663_3 crossref_primary_10_1007_s11282_020_00497_0 crossref_primary_10_1109_TMI_2016_2553401 crossref_primary_10_1088_2634_4386_add293 crossref_primary_10_7759_cureus_44591 crossref_primary_10_1016_j_mechmat_2022_104309 crossref_primary_10_3390_molecules27144568 crossref_primary_10_1007_s00500_021_06067_8 crossref_primary_10_1038_s41578_022_00434_z crossref_primary_10_3390_s22041656 crossref_primary_10_1177_0142331218778324 crossref_primary_10_3390_s23218711 crossref_primary_10_1016_j_jmsy_2020_08_009 crossref_primary_10_1007_s10559_020_00240_x crossref_primary_10_1007_s11517_017_1638_6 crossref_primary_10_1007_s13748_020_00225_z crossref_primary_10_1109_ACCESS_2020_3017089 crossref_primary_10_2514_1_G002357 crossref_primary_10_1016_j_asoc_2021_107760 crossref_primary_10_1145_3677034 crossref_primary_10_3390_s18010292 crossref_primary_10_1080_10298436_2023_2180641 crossref_primary_10_3390_diagnostics13183007 crossref_primary_10_1371_journal_pone_0219302 crossref_primary_10_1080_15472450_2020_1746909 crossref_primary_10_1007_s12065_023_00829_z crossref_primary_10_1038_s41467_019_12954_4 crossref_primary_10_1016_j_optlastec_2025_113597 crossref_primary_10_1109_ACCESS_2018_2888978 crossref_primary_10_3390_en15239072 crossref_primary_10_1016_j_compchemeng_2019_106519 crossref_primary_10_1088_1757_899X_998_1_012065 crossref_primary_10_1109_JLT_2023_3269957 crossref_primary_10_1016_j_physa_2019_123344 crossref_primary_10_1109_ACCESS_2019_2921096 crossref_primary_10_1090_mcom_3781 crossref_primary_10_2478_otmcj_2020_0002 crossref_primary_10_1016_j_jhydrol_2024_131047 crossref_primary_10_1371_journal_pone_0276767 crossref_primary_10_1007_s00034_023_02562_5 crossref_primary_10_1016_j_rser_2021_110992 crossref_primary_10_1088_1361_6501_abb7a0 crossref_primary_10_1016_j_compgeo_2022_105120 crossref_primary_10_1016_j_measurement_2021_110622 crossref_primary_10_1002_mp_13649 crossref_primary_10_1109_ACCESS_2019_2898238 crossref_primary_10_1016_j_addma_2025_104782 crossref_primary_10_1080_02648725_2023_2196476 crossref_primary_10_1007_s12596_024_02325_8 crossref_primary_10_1016_j_cma_2024_117462 crossref_primary_10_1016_j_jcp_2020_109309 crossref_primary_10_1088_1742_6596_1828_1_012042 crossref_primary_10_1093_pnasnexus_pgae456 crossref_primary_10_1029_2020GL091236 crossref_primary_10_1016_j_future_2019_09_018 crossref_primary_10_1016_j_rcsop_2023_100317 crossref_primary_10_1016_j_neunet_2022_04_004 crossref_primary_10_1038_s41598_023_38163_0 crossref_primary_10_1016_j_optcom_2019_03_013 crossref_primary_10_1007_s00779_022_01684_y crossref_primary_10_1080_0952813X_2023_2165721 crossref_primary_10_1007_s00521_017_3240_0 crossref_primary_10_1016_j_compbiomed_2019_103584 crossref_primary_10_1103_PhysRevApplied_17_014016 crossref_primary_10_1007_s11571_023_09977_5 crossref_primary_10_1016_j_procs_2020_02_247 crossref_primary_10_1016_j_jmst_2025_04_050 crossref_primary_10_1088_2040_8986_ad4801 crossref_primary_10_1186_s43088_024_00537_2 crossref_primary_10_1002_ente_202201033 crossref_primary_10_1007_s11030_021_10237_z crossref_primary_10_1016_j_phrs_2023_106706 crossref_primary_10_1016_j_future_2019_09_021 crossref_primary_10_3389_fphar_2020_572372 crossref_primary_10_1080_01431161_2018_1553322 crossref_primary_10_1016_j_eswa_2018_12_031 crossref_primary_10_1016_j_ijengsci_2020_103376 crossref_primary_10_1109_ACCESS_2017_2784096 crossref_primary_10_1155_2023_6098519 crossref_primary_10_1631_jzus_A2300273 crossref_primary_10_3389_fninf_2021_715131 crossref_primary_10_1016_j_neunet_2022_04_028 crossref_primary_10_1016_j_nanoen_2025_111261 crossref_primary_10_1111_iej_14127 crossref_primary_10_1177_1475921719873112 crossref_primary_10_1080_13467581_2024_2328634 crossref_primary_10_1109_ACCESS_2019_2953490 crossref_primary_10_3233_AIS_200546 crossref_primary_10_1016_j_ijinfomgt_2018_10_010 crossref_primary_10_3390_diagnostics12122943 crossref_primary_10_1007_s41939_025_00942_9 crossref_primary_10_3233_JIFS_169530 crossref_primary_10_1007_s00521_019_04349_9 crossref_primary_10_3390_toxins17040171 crossref_primary_10_2196_13139 crossref_primary_10_1016_j_enbuild_2020_110232 crossref_primary_10_1016_j_smrv_2019_07_007 crossref_primary_10_1109_LWC_2019_2909893 crossref_primary_10_1007_s13198_025_02975_2 crossref_primary_10_1523_JNEUROSCI_1503_22_2022 crossref_primary_10_1038_s41597_024_03249_5 crossref_primary_10_1016_j_saa_2024_125692 crossref_primary_10_1007_s42461_023_00768_4 crossref_primary_10_2516_stet_2024063 crossref_primary_10_1007_s00226_020_01245_7 crossref_primary_10_1016_j_eswa_2018_12_055 crossref_primary_10_1029_2020WR028095 crossref_primary_10_1002_nsg_70000 crossref_primary_10_1109_TIFS_2020_3005304 crossref_primary_10_1016_j_compag_2020_105868 crossref_primary_10_1186_s13321_021_00533_z crossref_primary_10_3390_s23146294 crossref_primary_10_1016_j_micpro_2020_103333 crossref_primary_10_3934_publichealth_2024004 crossref_primary_10_1016_j_commatsci_2019_04_051 crossref_primary_10_1111_exsy_12927 crossref_primary_10_1016_j_knosys_2021_107446 crossref_primary_10_1109_TED_2022_3182282 crossref_primary_10_3390_met10070904 crossref_primary_10_1007_s10706_018_0511_1 crossref_primary_10_1007_s12652_017_0614_1 crossref_primary_10_1016_j_ymeth_2020_06_016 crossref_primary_10_1002_jbio_202000013 crossref_primary_10_1016_j_bspc_2020_102326 crossref_primary_10_1109_ACCESS_2020_2965284 crossref_primary_10_1109_TNNLS_2019_2920964 crossref_primary_10_3390_s18010209 crossref_primary_10_1016_j_dsp_2020_102742 crossref_primary_10_1088_1748_0221_15_06_P06008 crossref_primary_10_1007_s12532_024_00266_8 crossref_primary_10_1016_j_indcrop_2025_121308 crossref_primary_10_1016_j_jgsce_2023_205104 crossref_primary_10_1061__ASCE_CP_1943_5487_0000797 crossref_primary_10_3390_jcm11195772 crossref_primary_10_1016_j_jhydrol_2020_125734 crossref_primary_10_1080_15376494_2021_1880677 crossref_primary_10_1007_s41870_019_00362_2 crossref_primary_10_1016_j_vehcom_2019_100184 crossref_primary_10_1088_1402_4896_ad538e crossref_primary_10_1007_s12206_020_1002_x crossref_primary_10_1088_1742_6596_1902_1_012112 crossref_primary_10_3389_fncom_2020_583350 crossref_primary_10_1007_s11023_022_09596_9 crossref_primary_10_1002_advs_202503138 crossref_primary_10_1088_2632_2153_ac9a9d crossref_primary_10_1177_0003702818791939 crossref_primary_10_1145_2856820 crossref_primary_10_1002_iis2_13201 crossref_primary_10_1038_s44276_025_00135_4 crossref_primary_10_3390_rs14081791 crossref_primary_10_3390_s18092955 crossref_primary_10_1016_j_ijmst_2019_06_009 crossref_primary_10_1016_j_asoc_2020_107066 crossref_primary_10_1002_jbio_202200308 crossref_primary_10_3390_healthcare10101842 crossref_primary_10_3389_fphy_2025_1594819 crossref_primary_10_1186_s12859_022_04698_8 crossref_primary_10_1016_j_jobe_2025_112696 crossref_primary_10_1093_bib_bbad014 crossref_primary_10_4274_anatoljmed_2025_21939 crossref_primary_10_1038_s41598_017_13923_x crossref_primary_10_1088_1361_6633_aa8a02 crossref_primary_10_1088_1742_6596_1986_1_012099 crossref_primary_10_1007_s42979_024_03552_3 crossref_primary_10_1016_j_energy_2020_119321 crossref_primary_10_1038_s41524_019_0263_3 crossref_primary_10_1007_s11227_022_04661_7 crossref_primary_10_1016_j_advengsoft_2025_104037 crossref_primary_10_1080_15592324_2021_1970448 crossref_primary_10_1016_j_csbj_2020_02_006 crossref_primary_10_1016_j_cie_2019_106024 crossref_primary_10_1016_j_ultramic_2019_03_017 crossref_primary_10_32604_cmc_2020_013458 crossref_primary_10_1109_TNNLS_2016_2551748 crossref_primary_10_3390_app9183907 crossref_primary_10_1007_s11042_024_19674_y crossref_primary_10_1016_j_hpb_2024_05_006 crossref_primary_10_3847_1538_4357_ab07b4 crossref_primary_10_3389_fenvs_2016_00003 crossref_primary_10_2478_jaiscr_2018_0029 crossref_primary_10_1097_MD_0000000000042764 crossref_primary_10_1109_TGRS_2018_2812619 crossref_primary_10_3390_rs14081770 crossref_primary_10_1016_j_prosdent_2025_03_009 crossref_primary_10_1109_ACCESS_2022_3183803 crossref_primary_10_1017_ehs_2020_52 crossref_primary_10_1016_j_isprsjprs_2019_10_011 crossref_primary_10_1007_s11042_021_11838_4 crossref_primary_10_1155_2021_9927151 crossref_primary_10_1007_s11042_022_13143_0 crossref_primary_10_1038_s41598_019_39206_1 crossref_primary_10_1515_bmt_2020_0038 crossref_primary_10_1016_j_ast_2023_108425 crossref_primary_10_1007_s00521_022_07773_6 crossref_primary_10_1038_s41598_020_67178_0 crossref_primary_10_1088_1572_9494_ace17d crossref_primary_10_1088_1748_0221_11_12_C12004 crossref_primary_10_3390_en12091735 crossref_primary_10_1021_jacs_4c16325 crossref_primary_10_1007_s10664_020_09898_5 crossref_primary_10_1007_s00521_019_04481_6 crossref_primary_10_1109_TCYB_2018_2884315 crossref_primary_10_1109_ACCESS_2021_3121288 crossref_primary_10_1146_annurev_polisci_090216_023229 crossref_primary_10_1140_epja_s10050_022_00839_y crossref_primary_10_1007_s10452_022_09988_0 crossref_primary_10_1088_1361_6471_abcd1c crossref_primary_10_3390_s21030748 crossref_primary_10_1016_j_ijforecast_2017_09_008 crossref_primary_10_26599_OCEAN_2025_9470005 crossref_primary_10_1016_j_apradiso_2017_09_023 crossref_primary_10_1007_s11571_022_09845_8 crossref_primary_10_1109_LGRS_2019_2923540 crossref_primary_10_1016_j_biortech_2021_126276 crossref_primary_10_1109_JTEHM_2020_2999725 crossref_primary_10_1007_s40593_023_00375_w crossref_primary_10_3390_computers14070254 crossref_primary_10_3390_s20195670 crossref_primary_10_1029_2018EA000423 crossref_primary_10_1109_ACCESS_2024_3376441 crossref_primary_10_1007_s11682_022_00631_y crossref_primary_10_1007_s12517_021_08628_5 crossref_primary_10_1155_2024_6446405 crossref_primary_10_1007_s10494_022_00330_0 crossref_primary_10_1007_s10270_021_00893_y crossref_primary_10_1109_TPAMI_2019_2917685 crossref_primary_10_1016_j_camwa_2021_06_003 crossref_primary_10_1038_s41598_023_38351_y crossref_primary_10_1145_3110218 crossref_primary_10_1007_s11831_023_09948_3 crossref_primary_10_1007_JHEP04_2021_139 crossref_primary_10_1109_ACCESS_2018_2804930 crossref_primary_10_1007_s11042_023_15933_6 crossref_primary_10_1007_s00894_024_06177_8 crossref_primary_10_1109_ACCESS_2019_2927169 crossref_primary_10_1109_TII_2020_2990741 crossref_primary_10_1080_21580103_2022_2115561 crossref_primary_10_1007_s10921_022_00845_6 crossref_primary_10_1177_10775463231158739 crossref_primary_10_1088_1741_2552_abde8a crossref_primary_10_1016_j_gie_2020_04_039 crossref_primary_10_1016_j_eswa_2020_113275 crossref_primary_10_3390_app10165640 crossref_primary_10_3390_rs13204036 crossref_primary_10_3390_s24072056 crossref_primary_10_1145_3309706 crossref_primary_10_1109_ACCESS_2020_3029202 crossref_primary_10_1063_1_5134125 crossref_primary_10_1063_5_0253696 crossref_primary_10_1016_j_ejmp_2024_104498 crossref_primary_10_3390_sym12091430 crossref_primary_10_1109_TDSC_2021_3101311 crossref_primary_10_1016_j_humov_2019_06_008 crossref_primary_10_1088_1757_899X_873_1_012019 crossref_primary_10_1007_s10499_024_01697_9 crossref_primary_10_1007_s10916_018_0977_7 crossref_primary_10_1111_exsy_12644 crossref_primary_10_1103_PhysRevC_104_034608 crossref_primary_10_1186_s12859_021_04445_5 crossref_primary_10_1002_acm2_13337 crossref_primary_10_1038_s41598_019_51503_3 crossref_primary_10_1016_j_comcom_2022_09_012 crossref_primary_10_1137_18M1231559 crossref_primary_10_1016_j_compstruct_2023_117136 crossref_primary_10_1007_s10462_021_09967_1 crossref_primary_10_1088_2632_2153_abffe8 crossref_primary_10_1007_s00261_018_1517_0 crossref_primary_10_1016_j_chb_2024_108406 crossref_primary_10_3390_rs15204985 crossref_primary_10_4018_IJDWM_2020070107 crossref_primary_10_1177_0361198119838508 crossref_primary_10_3847_1538_3881_add46d crossref_primary_10_3390_rs11222651 crossref_primary_10_3389_fbioe_2020_00429 crossref_primary_10_1080_08839514_2020_1713454 crossref_primary_10_1007_s12564_021_09697_7 crossref_primary_10_1177_1748006X19867776 crossref_primary_10_1016_j_enggeo_2021_106381 crossref_primary_10_1109_TITS_2019_2909571 crossref_primary_10_1155_2019_3737265 crossref_primary_10_1007_s11042_021_10637_1 crossref_primary_10_1016_j_eswa_2023_120439 crossref_primary_10_3390_brainsci10020084 crossref_primary_10_3390_app13127272 crossref_primary_10_14361_dcs_2018_0110 crossref_primary_10_1007_s00773_022_00914_5 crossref_primary_10_1029_2018EA000466 crossref_primary_10_1007_s13042_020_01152_0 crossref_primary_10_1007_s10994_022_06286_6 crossref_primary_10_3390_rs15204997 crossref_primary_10_3390_technologies11040082 crossref_primary_10_2174_1874447802014010186 crossref_primary_10_1155_2017_3583610 crossref_primary_10_1007_s10489_021_02471_7 crossref_primary_10_3389_fonc_2022_1003639 crossref_primary_10_1016_j_icheatmasstransfer_2025_109506 crossref_primary_10_1016_j_neucom_2018_06_080 crossref_primary_10_1109_ACCESS_2022_3163247 crossref_primary_10_3390_rs15163924 crossref_primary_10_1109_TIFS_2019_2904413 crossref_primary_10_17694_bajece_1415025 crossref_primary_10_1017_qrd_2022_12 crossref_primary_10_1007_s11831_019_09368_2 crossref_primary_10_1016_j_neunet_2022_09_012 crossref_primary_10_1111_jerd_12844 crossref_primary_10_1016_j_neunet_2022_09_015 crossref_primary_10_1109_TITS_2020_3011700 crossref_primary_10_1088_1361_6579_aad948 crossref_primary_10_1007_s11042_017_4989_y crossref_primary_10_1016_j_gie_2020_04_071 crossref_primary_10_1038_s41598_023_32514_7 crossref_primary_10_3390_s19173784 crossref_primary_10_1631_FITEE_1700404 crossref_primary_10_1109_JSAC_2018_2864373 crossref_primary_10_1016_j_ejmp_2020_11_012 crossref_primary_10_1049_iet_rpg_2018_6257 crossref_primary_10_1007_s13246_020_00964_2 crossref_primary_10_1016_j_neucom_2018_06_078 crossref_primary_10_1121_10_0005535 crossref_primary_10_1016_j_rineng_2025_105178 crossref_primary_10_1016_j_sna_2021_112978 crossref_primary_10_1103_PhysRevResearch_5_033086 crossref_primary_10_1155_2023_3668689 crossref_primary_10_1186_s13638_017_0965_5 crossref_primary_10_1109_ACCESS_2022_3144078 crossref_primary_10_1145_2957754 crossref_primary_10_1016_j_ultramic_2024_114047 crossref_primary_10_1139_cgj_2020_0422 crossref_primary_10_1109_JIOT_2021_3101447 crossref_primary_10_1177_1475921720976941 crossref_primary_10_1109_ACCESS_2019_2930713 crossref_primary_10_3390_idr14060090 crossref_primary_10_1109_ACCESS_2017_2647851 crossref_primary_10_1016_j_bdr_2017_01_005 crossref_primary_10_1177_20539517211020775 crossref_primary_10_1007_s10462_024_10799_y crossref_primary_10_1121_10_0010045 crossref_primary_10_1117_1_JMI_10_5_055501 crossref_primary_10_1016_j_neucom_2017_07_037 crossref_primary_10_3390_agronomy11081480 crossref_primary_10_1109_JIOT_2022_3168317 crossref_primary_10_3389_fpubh_2022_933665 crossref_primary_10_1109_TNNLS_2020_3017434 crossref_primary_10_1007_s40747_021_00637_x crossref_primary_10_1111_raq_12559 crossref_primary_10_1016_j_oceaneng_2022_111094 crossref_primary_10_1016_j_tre_2023_103367 crossref_primary_10_1145_3520129 crossref_primary_10_3389_fenrg_2021_693252 crossref_primary_10_3390_cancers11010053 crossref_primary_10_1186_s40854_024_00629_z crossref_primary_10_1016_j_buildenv_2021_108428 crossref_primary_10_1371_journal_pone_0304017 crossref_primary_10_1007_s11042_019_08491_3 crossref_primary_10_1016_j_aei_2019_100980 crossref_primary_10_1016_j_jcp_2020_110085 crossref_primary_10_3390_s22197552 crossref_primary_10_3390_en16186745 crossref_primary_10_1061__ASCE_WR_1943_5452_0000992 crossref_primary_10_1016_j_cjche_2020_06_015 crossref_primary_10_1016_j_petrol_2019_04_016 crossref_primary_10_3390_math11092136 crossref_primary_10_1088_1361_6382_aab793 crossref_primary_10_1016_j_biosystemseng_2018_11_018 crossref_primary_10_3390_cancers17183003 crossref_primary_10_1007_s11356_022_24880_y crossref_primary_10_3390_s20061642 crossref_primary_10_1016_j_physa_2025_130835 crossref_primary_10_1002_agj2_21473 crossref_primary_10_1007_s10958_023_06519_6 crossref_primary_10_1016_j_eswa_2018_01_039 crossref_primary_10_3390_en16010495 crossref_primary_10_1016_j_jcp_2020_110074 crossref_primary_10_1061__ASCE_WR_1943_5452_0000983 crossref_primary_10_1007_s11431_023_2629_2 crossref_primary_10_1063_5_0246495 crossref_primary_10_1016_j_neucom_2018_06_038 crossref_primary_10_1038_s41596_020_0329_1 crossref_primary_10_1007_s12559_023_10124_9 crossref_primary_10_1016_j_neucom_2018_06_037 crossref_primary_10_1134_S0361768820010065 crossref_primary_10_3390_math12223483 crossref_primary_10_1016_j_compstruct_2022_116354 crossref_primary_10_1016_j_ejor_2019_11_007 crossref_primary_10_3390_electronics13030559 crossref_primary_10_1111_tgis_12620 crossref_primary_10_3390_app9081707 crossref_primary_10_1007_s11042_017_4749_z crossref_primary_10_1080_17445302_2020_1735844 crossref_primary_10_1007_s11548_019_01950_0 crossref_primary_10_1016_j_isprsjprs_2019_07_002 crossref_primary_10_3390_cancers16223879 crossref_primary_10_1007_s12369_021_00775_9 crossref_primary_10_1016_j_neucom_2017_07_069 crossref_primary_10_3390_risks6020041 crossref_primary_10_1007_s10044_019_00857_5 crossref_primary_10_1186_s12911_025_03115_3 crossref_primary_10_3390_agronomy12081786 crossref_primary_10_3390_s22197578 crossref_primary_10_1016_j_ifacol_2020_12_740 crossref_primary_10_1016_j_neucom_2018_06_025 crossref_primary_10_1371_journal_pone_0250093 crossref_primary_10_3390_jmse10070942 crossref_primary_10_3390_ijms22073425 crossref_primary_10_1016_j_knosys_2022_110220 crossref_primary_10_1080_09544828_2015_1135236 crossref_primary_10_3390_jmse11010200 crossref_primary_10_1109_ACCESS_2020_2973580 crossref_primary_10_1016_j_micpro_2023_104792 crossref_primary_10_1093_bib_bbx044 crossref_primary_10_1177_0959651820958208 crossref_primary_10_3390_s22166304 crossref_primary_10_1080_00986445_2020_1815715 crossref_primary_10_3390_mca26010017 crossref_primary_10_3389_fmolb_2022_869601 crossref_primary_10_1016_j_pce_2022_103284 crossref_primary_10_3390_app15073898 crossref_primary_10_1007_s12021_022_09617_z crossref_primary_10_1007_s11030_020_10165_4 crossref_primary_10_3390_s20164599 crossref_primary_10_3390_app13052877 crossref_primary_10_1002_lpor_202301367 crossref_primary_10_1016_j_chaos_2020_109838 crossref_primary_10_1177_14759217221098569 crossref_primary_10_1038_s41440_020_0498_x crossref_primary_10_1016_j_rineng_2023_101077 crossref_primary_10_1109_TCAD_2018_2858358 crossref_primary_10_1007_s40820_024_01489_z crossref_primary_10_1061__ASCE_MT_1943_5533_0003525 crossref_primary_10_1109_ACCESS_2023_3349132 crossref_primary_10_1155_2022_7123079 crossref_primary_10_1016_j_anucene_2021_108855 crossref_primary_10_3390_ma17184523 crossref_primary_10_3390_biom13081192 crossref_primary_10_1016_j_cmpb_2023_107683 crossref_primary_10_1109_TIP_2017_2725584 crossref_primary_10_1007_s10115_021_01649_2 crossref_primary_10_1007_s42484_024_00215_7 crossref_primary_10_1016_j_energy_2021_121271 crossref_primary_10_3390_app14020603 crossref_primary_10_1190_geo2019_0267_1 crossref_primary_10_1016_j_ymssp_2025_113259 crossref_primary_10_1088_1755_1315_774_1_012136 crossref_primary_10_1007_s11837_023_06042_8 crossref_primary_10_1016_j_future_2019_04_013 crossref_primary_10_1080_2150704X_2020_1807647 crossref_primary_10_3390_s19214768 crossref_primary_10_1213_ANE_0000000000006679 crossref_primary_10_3390_fi14020043 crossref_primary_10_1016_j_chemosphere_2024_142223 crossref_primary_10_1155_2021_1682163 crossref_primary_10_1109_ACCESS_2020_3005286 crossref_primary_10_1007_s11042_022_13085_7 crossref_primary_10_7717_peerj_cs_620 crossref_primary_10_1007_s11042_021_10935_8 crossref_primary_10_1186_s12916_025_03962_x crossref_primary_10_1007_s11063_017_9745_9 crossref_primary_10_3390_electronics9081188 crossref_primary_10_1016_j_catena_2021_105585 crossref_primary_10_1038_s41598_020_63662_9 crossref_primary_10_1109_ACCESS_2021_3079639 crossref_primary_10_1186_s12859_022_04860_2 crossref_primary_10_1080_19942060_2018_1448896 crossref_primary_10_3389_fmats_2021_754089 crossref_primary_10_1007_s00025_024_02222_3 crossref_primary_10_1109_TCCN_2022_3147203 crossref_primary_10_1029_2021GL094772 crossref_primary_10_1016_j_aap_2021_106322 crossref_primary_10_1109_TASE_2020_2967093 crossref_primary_10_1007_s11548_019_01928_y crossref_primary_10_1109_ACCESS_2021_3138167 crossref_primary_10_1016_j_cjca_2018_04_032 crossref_primary_10_1109_TVT_2021_3120267 crossref_primary_10_1016_j_ress_2022_108954 crossref_primary_10_1016_j_procs_2024_09_194 crossref_primary_10_1007_s00704_023_04439_8 crossref_primary_10_1371_journal_pone_0210829 crossref_primary_10_1080_24725854_2024_2443592 crossref_primary_10_1051_epjconf_202022602020 crossref_primary_10_1016_j_ijplas_2020_102867 crossref_primary_10_1016_j_cmpb_2023_107717 crossref_primary_10_1016_j_jmapro_2021_06_076 crossref_primary_10_1109_JBHI_2021_3092396 crossref_primary_10_3389_fenrg_2021_796528 crossref_primary_10_1109_TMI_2016_2528120 crossref_primary_10_1088_1742_5468_ab3985 crossref_primary_10_1155_2019_2970408 crossref_primary_10_1007_s11042_020_08716_w crossref_primary_10_3389_fimmu_2023_1105399 crossref_primary_10_3390_app14135913 crossref_primary_10_3390_jrfm17040132 crossref_primary_10_3390_s21113678 crossref_primary_10_1371_journal_pone_0249071 crossref_primary_10_1016_j_psep_2022_12_070 crossref_primary_10_1016_j_neunet_2019_06_004 crossref_primary_10_1061_JCCEE5_CPENG_6195 crossref_primary_10_1155_2022_4390413 crossref_primary_10_1016_j_ejmech_2024_116262 crossref_primary_10_1016_j_ymssp_2017_09_026 crossref_primary_10_1016_j_measurement_2020_108586 crossref_primary_10_1016_j_rser_2021_111902 crossref_primary_10_1016_j_istruc_2023_02_042 crossref_primary_10_1016_j_robot_2021_103731 crossref_primary_10_1016_j_jhydrol_2022_128420 crossref_primary_10_1109_TNNLS_2017_2762720 crossref_primary_10_3390_electronics10080920 crossref_primary_10_3389_fbioe_2023_1302911 crossref_primary_10_3389_fpls_2021_770916 crossref_primary_10_1007_s00449_022_02716_w crossref_primary_10_2174_0115701638314252241016165345 crossref_primary_10_3390_su16051925 crossref_primary_10_3390_e23040410 crossref_primary_10_1109_ACCESS_2019_2909295 crossref_primary_10_1016_j_neunet_2019_06_012 crossref_primary_10_1111_tgis_12598 crossref_primary_10_1016_j_jag_2024_103938 crossref_primary_10_3389_fnins_2022_857513 crossref_primary_10_1016_j_psep_2022_12_055 crossref_primary_10_3390_su12020625 crossref_primary_10_1109_ACCESS_2022_3170425 crossref_primary_10_1016_j_amc_2024_128577 crossref_primary_10_1029_2025JB031756 crossref_primary_10_1109_ACCESS_2020_2974903 crossref_primary_10_1007_s41060_025_00740_z crossref_primary_10_1111_jcmm_17889 crossref_primary_10_1016_j_mri_2019_05_037 crossref_primary_10_1186_s13742_016_0117_6 crossref_primary_10_1186_s12889_024_18221_6 crossref_primary_10_3390_app14073129 crossref_primary_10_1088_1757_899X_1022_1_012089 crossref_primary_10_1016_j_physrep_2019_09_005 crossref_primary_10_3390_agriculture15101077 crossref_primary_10_3390_rs15030731 crossref_primary_10_1109_ACCESS_2021_3102176 crossref_primary_10_1016_j_cma_2021_113763 crossref_primary_10_1049_cit2_12180 crossref_primary_10_1515_ijnes_2020_0068 crossref_primary_10_1103_PhysRevResearch_3_023051 crossref_primary_10_1145_3677374 crossref_primary_10_3390_pr12092009 crossref_primary_10_1016_j_compag_2018_12_028 crossref_primary_10_1016_j_imlet_2022_03_006 crossref_primary_10_1140_epjp_s13360_024_05412_8 crossref_primary_10_3390_math11244894 crossref_primary_10_3103_S105261882010009X crossref_primary_10_3390_app11136136 crossref_primary_10_3390_s23135850 crossref_primary_10_1007_s10681_022_02992_3 crossref_primary_10_1016_j_stueduc_2020_100872 crossref_primary_10_1007_s11104_024_06866_6 crossref_primary_10_1016_j_sna_2024_115195 crossref_primary_10_1080_09540091_2018_1443317 crossref_primary_10_3390_math10020181 crossref_primary_10_3390_pr13092700 crossref_primary_10_1155_2020_9657372 crossref_primary_10_1016_j_future_2018_05_050 crossref_primary_10_1016_j_cej_2021_130011 crossref_primary_10_1088_1742_6596_1405_1_012001 crossref_primary_10_1109_ACCESS_2021_3115494 crossref_primary_10_1007_s10772_018_09577_3 crossref_primary_10_1016_j_ultrasmedbio_2024_12_010 crossref_primary_10_1016_j_trgeo_2024_101359 crossref_primary_10_1155_adce_7678622 crossref_primary_10_1016_j_ndteint_2018_09_010 crossref_primary_10_1016_j_talanta_2025_128742 crossref_primary_10_3390_math11092166 crossref_primary_10_1016_j_scitotenv_2023_166960 crossref_primary_10_3390_electronics12040985 crossref_primary_10_1007_s41324_022_00482_1 crossref_primary_10_1038_s42003_019_0437_z crossref_primary_10_1007_s13198_017_0649_x crossref_primary_10_3390_su13010104 crossref_primary_10_1109_TITS_2018_2829165 crossref_primary_10_1146_annurev_nucl_101917_021019 crossref_primary_10_1016_j_eswa_2016_05_033 crossref_primary_10_1016_j_jrmge_2024_11_003 crossref_primary_10_3389_fcomm_2023_1129082 crossref_primary_10_3390_app10196856 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120112 crossref_primary_10_1088_1741_2552_ac7976 crossref_primary_10_1038_s41598_021_02387_9 crossref_primary_10_3390_ijms222312882 crossref_primary_10_3390_rs12081289 crossref_primary_10_1017_asb_2019_33 crossref_primary_10_1016_j_atech_2025_101093 crossref_primary_10_1080_01431161_2024_2440135 crossref_primary_10_1080_01691864_2019_1586760 crossref_primary_10_1002_ana_27229 crossref_primary_10_1007_s00170_024_12950_z crossref_primary_10_1109_TAI_2021_3067574 crossref_primary_10_1016_j_patcog_2019_04_007 crossref_primary_10_1162_neco_a_01742 crossref_primary_10_1016_j_patcog_2019_04_009 crossref_primary_10_1103_PhysRevApplied_10_054001 crossref_primary_10_3389_fmats_2021_786502 crossref_primary_10_1007_s11390_021_1048_y crossref_primary_10_3390_app13105843 crossref_primary_10_1080_10696679_2020_1860683 crossref_primary_10_1049_iet_ipr_2018_5442 crossref_primary_10_3389_fpsyg_2022_839619 crossref_primary_10_3390_app11136101 crossref_primary_10_1155_2020_8846589 crossref_primary_10_1109_TCBB_2022_3231466 crossref_primary_10_1016_j_engappai_2019_103312 crossref_primary_10_1109_LCOMM_2021_3093451 crossref_primary_10_1365_s40702_022_00919_z crossref_primary_10_3390_ijgi10050279 crossref_primary_10_1007_s10489_021_02555_4 crossref_primary_10_1016_j_chemolab_2024_105242 crossref_primary_10_1016_j_cor_2023_106264 crossref_primary_10_1177_09544089211064464 crossref_primary_10_1016_j_foodcont_2020_107184 crossref_primary_10_23919_JSEE_2023_000142 crossref_primary_10_3390_pr13092711 crossref_primary_10_1103_PhysRevE_103_022404 crossref_primary_10_1007_s40808_024_01988_3 crossref_primary_10_1371_journal_pone_0184059 crossref_primary_10_1109_TGRS_2019_2913095 crossref_primary_10_3233_IDT_220063 crossref_primary_10_3390_su13137131 crossref_primary_10_1016_j_neunet_2020_08_022 crossref_primary_10_1016_j_engappai_2017_01_013 crossref_primary_10_1109_LAWP_2021_3069713 crossref_primary_10_1016_j_aei_2021_101427 crossref_primary_10_1080_23738871_2019_1701693 crossref_primary_10_3390_robotics7020025 crossref_primary_10_1016_j_rser_2021_111977 crossref_primary_10_1007_s12469_019_00213_0 crossref_primary_10_1587_transinf_2019EDP7188 crossref_primary_10_1049_cit2_12114 crossref_primary_10_1007_s00521_019_04196_8 crossref_primary_10_3233_JIFS_169438 crossref_primary_10_1038_s41563_019_0338_z crossref_primary_10_1016_j_psychres_2018_12_026 crossref_primary_10_1016_j_jcp_2024_113486 crossref_primary_10_1063_5_0222403 crossref_primary_10_1088_2632_2153_ab5639 crossref_primary_10_5194_amt_17_6485_2024 crossref_primary_10_3390_s23042051 crossref_primary_10_1109_TMC_2019_2959772 crossref_primary_10_1002_advs_202203899 crossref_primary_10_1109_JSTARS_2020_2977655 crossref_primary_10_1016_j_knosys_2021_107134 crossref_primary_10_1038_s10038_020_00832_7 crossref_primary_10_3390_s21010280 crossref_primary_10_1016_j_neucom_2020_07_154 crossref_primary_10_1088_1361_6579_abe524 crossref_primary_10_1109_TIM_2022_3184357 crossref_primary_10_3390_e24070878 crossref_primary_10_1007_s11947_025_03822_9 crossref_primary_10_1016_j_pnmrs_2025_101561 crossref_primary_10_1139_er_2018_0034 crossref_primary_10_1016_j_ins_2020_10_023 crossref_primary_10_1089_cmb_2024_0491 crossref_primary_10_1109_ACCESS_2023_3273317 crossref_primary_10_1016_j_micpro_2023_104804 crossref_primary_10_1039_C9SC02452B crossref_primary_10_1016_j_measurement_2022_112346 crossref_primary_10_3390_app7111141 crossref_primary_10_1016_j_advwatres_2020_103545 crossref_primary_10_1016_j_aei_2021_101448 crossref_primary_10_1016_j_envsoft_2021_104992 crossref_primary_10_1016_j_talanta_2024_126693 crossref_primary_10_1007_s13369_020_04839_2 crossref_primary_10_3390_rs15204923 crossref_primary_10_1016_j_ijfatigue_2019_105458 crossref_primary_10_1007_s11042_017_4798_3 crossref_primary_10_1080_0952813X_2025_2519324 crossref_primary_10_1016_j_neucom_2021_09_071 crossref_primary_10_1111_mafi_12413 crossref_primary_10_1016_j_neucom_2021_09_072 crossref_primary_10_1109_JSTARS_2020_2988324 crossref_primary_10_3389_fsens_2021_654357 crossref_primary_10_1109_TPDS_2020_3003307 crossref_primary_10_1109_TSTE_2018_2888548 crossref_primary_10_1145_3466171 crossref_primary_10_1177_17562848221093873 crossref_primary_10_1016_j_device_2025_100907 crossref_primary_10_1016_j_envres_2021_112207 crossref_primary_10_1140_epjs_s11734_021_00207_9 crossref_primary_10_1007_s12024_017_9906_1 crossref_primary_10_1029_2018GL078202 crossref_primary_10_3390_w12051369 crossref_primary_10_1038_s41598_025_94173_0 crossref_primary_10_3389_fnsys_2021_784404 crossref_primary_10_1016_j_trc_2022_103566 crossref_primary_10_3934_math_2025283 crossref_primary_10_1007_s11227_019_03026_x crossref_primary_10_1016_j_neucom_2020_11_055 crossref_primary_10_1080_23270012_2019_1570365 crossref_primary_10_3390_su152015029 crossref_primary_10_1016_j_jobe_2023_107605 crossref_primary_10_1007_s11042_024_20230_x crossref_primary_10_3389_fchem_2021_787194 crossref_primary_10_1002_hbm_26561 crossref_primary_10_1093_sysbio_syz014 crossref_primary_10_1109_ACCESS_2019_2912896 crossref_primary_10_3390_s21092987 crossref_primary_10_3390_app15126546 crossref_primary_10_1016_j_eehl_2022_06_001 crossref_primary_10_1016_j_mtcomm_2025_113863 crossref_primary_10_1038_s41529_018_0058_x crossref_primary_10_1016_j_paerosci_2021_100725 crossref_primary_10_1134_S0005117917050083 crossref_primary_10_3390_life13091878 crossref_primary_10_1016_j_neucom_2015_06_008 crossref_primary_10_1109_COMST_2020_2988293 crossref_primary_10_1049_el_2016_3060 crossref_primary_10_1155_2022_8951961 crossref_primary_10_3390_rs10050719 crossref_primary_10_1007_s13042_021_01306_8 crossref_primary_10_4018_IJSSMET_2020040103 crossref_primary_10_1016_j_cogsys_2016_06_002 crossref_primary_10_1007_s11053_025_10473_2 crossref_primary_10_1007_s10291_025_01821_z crossref_primary_10_3390_sym14020251 crossref_primary_10_1109_LGRS_2017_2766840 crossref_primary_10_1016_j_measurement_2022_112384 crossref_primary_10_3233_ICA_180580 crossref_primary_10_1016_j_measurement_2017_07_017 crossref_primary_10_1017_jfm_2022_1020 crossref_primary_10_3390_s21010220 crossref_primary_10_1007_s42243_024_01197_3 crossref_primary_10_3390_cells10112924 crossref_primary_10_1016_j_camwa_2025_05_004 crossref_primary_10_1016_j_compbiomed_2023_107024 crossref_primary_10_3390_pr13072298 crossref_primary_10_1007_s41939_023_00335_w crossref_primary_10_32604_cmc_2022_030490 crossref_primary_10_1093_jge_gxac009 crossref_primary_10_3390_w14030466 crossref_primary_10_1002_qj_4882 crossref_primary_10_3390_electronics13010004 crossref_primary_10_1016_j_anucene_2018_05_054 crossref_primary_10_1109_ACCESS_2021_3061440 crossref_primary_10_3390_app12105217 crossref_primary_10_1038_s41598_025_85440_1 crossref_primary_10_1016_j_icheatmasstransfer_2018_07_001 crossref_primary_10_1007_s00365_023_09620_w crossref_primary_10_1016_j_rser_2018_04_013 crossref_primary_10_3847_1538_4365_accd6a crossref_primary_10_1109_LGRS_2019_2909312 crossref_primary_10_1371_journal_pone_0294460 crossref_primary_10_1016_j_geosus_2025_100375 crossref_primary_10_1080_09603123_2020_1793918 crossref_primary_10_1049_cit2_12144 crossref_primary_10_1002_anie_201804736 crossref_primary_10_1049_iet_smt_2017_0528 crossref_primary_10_2478_picbe_2025_0133 crossref_primary_10_3389_fgene_2019_00166 crossref_primary_10_3390_s20216350 crossref_primary_10_1002_aqc_3189 crossref_primary_10_1016_j_neucom_2020_02_067 crossref_primary_10_1145_3569576 crossref_primary_10_1016_j_neucom_2020_02_065 crossref_primary_10_3389_fncom_2020_00014 crossref_primary_10_3390_a10040117 crossref_primary_10_1007_s10278_025_01482_x crossref_primary_10_1007_s00170_019_03817_9 crossref_primary_10_1002_ps_8473 crossref_primary_10_1007_s10664_024_10521_0 crossref_primary_10_1109_ACCESS_2020_3020978 crossref_primary_10_1007_s11277_022_09513_4 crossref_primary_10_1109_TNNLS_2020_2979670 crossref_primary_10_1016_j_epidem_2019_05_004 crossref_primary_10_4000_brussels_1522 crossref_primary_10_4000_brussels_1523 crossref_primary_10_1016_j_jpdc_2019_10_004 crossref_primary_10_1016_j_icheatmasstransfer_2025_109440 crossref_primary_10_1016_j_jhtm_2019_11_003 crossref_primary_10_1109_ACCESS_2019_2931990 crossref_primary_10_1021_jasms_0c00035 crossref_primary_10_1016_j_neucom_2020_02_053 crossref_primary_10_1016_j_neucom_2020_02_052 crossref_primary_10_2174_1574893618666230406085947 crossref_primary_10_1039_D3MH00039G crossref_primary_10_1080_01431161_2021_1947540 crossref_primary_10_3390_pr10112348 crossref_primary_10_7595_management_fon_2020_0002 crossref_primary_10_1186_s40069_025_00815_y crossref_primary_10_1109_COMST_2019_2938259 crossref_primary_10_1016_j_patcog_2019_07_006 crossref_primary_10_3390_rs13081568 crossref_primary_10_1016_j_eswa_2022_117272 crossref_primary_10_1109_LGRS_2019_2922326 crossref_primary_10_1063_5_0266874 crossref_primary_10_1186_s13677_024_00682_0 crossref_primary_10_1016_j_neunet_2022_10_013 crossref_primary_10_1016_j_neunet_2019_03_005 crossref_primary_10_1038_s42256_023_00785_4 crossref_primary_10_1016_j_psep_2023_02_081 crossref_primary_10_1016_j_neunet_2019_03_006 crossref_primary_10_1038_s43586_023_00198_y crossref_primary_10_1371_journal_pone_0306701 crossref_primary_10_1016_j_optlastec_2025_113828 crossref_primary_10_1002_ece3_11605 crossref_primary_10_3390_nano11102672 crossref_primary_10_1007_s11432_019_3018_6 crossref_primary_10_1177_14613484241287620 crossref_primary_10_1002_hyp_13807 crossref_primary_10_1016_j_envpol_2017_10_040 crossref_primary_10_1007_s12525_021_00475_2 crossref_primary_10_1016_j_neunet_2022_10_023 crossref_primary_10_3390_s23104692 crossref_primary_10_1007_s00521_020_05679_9 crossref_primary_10_1016_j_jher_2021_01_006 crossref_primary_10_1111_nrm_12248 crossref_primary_10_3390_en16083567 crossref_primary_10_3390_app12147125 crossref_primary_10_1146_annurev_biodatasci_080917_013343 crossref_primary_10_1109_ACCESS_2021_3121366 crossref_primary_10_1002_jhm_13295 crossref_primary_10_1016_j_livsci_2022_104935 crossref_primary_10_1007_s44163_024_00188_3 crossref_primary_10_1109_ACCESS_2022_3217457 crossref_primary_10_1007_s40857_021_00259_w crossref_primary_10_3390_a17060243 crossref_primary_10_1016_j_anucene_2023_110113 crossref_primary_10_3390_math9222921 crossref_primary_10_3233_JIFS_210043 crossref_primary_10_1017_eds_2023_41 crossref_primary_10_1371_journal_pone_0202337 crossref_primary_10_1007_s42979_021_00651_3 crossref_primary_10_1109_ACCESS_2020_3019933 crossref_primary_10_1016_j_neunet_2019_12_022 crossref_primary_10_1016_j_isprsjprs_2022_02_002 crossref_primary_10_2118_223950_PA crossref_primary_10_4103_jpi_jpi_24_19 crossref_primary_10_1155_2019_3956749 crossref_primary_10_1177_01423312231157118 crossref_primary_10_1016_j_indmarman_2023_09_012 crossref_primary_10_1155_2020_3701067 crossref_primary_10_1002_adom_202300215 crossref_primary_10_3390_s25133904 crossref_primary_10_1007_s11517_020_02275_w crossref_primary_10_1016_j_asoc_2019_02_006 crossref_primary_10_1155_2019_6509357 crossref_primary_10_1016_j_future_2018_11_011 crossref_primary_10_1016_j_optlaseng_2022_107161 crossref_primary_10_1016_j_iot_2022_100620 crossref_primary_10_1007_s11709_024_1124_9 crossref_primary_10_3389_fmars_2024_1341191 crossref_primary_10_1287_inte_2022_1144 crossref_primary_10_1038_s41377_024_01394_5 crossref_primary_10_1093_jamia_ocae136 crossref_primary_10_1109_ACCESS_2022_3164440 crossref_primary_10_1007_s44186_025_00355_9 crossref_primary_10_1002_tee_23452 crossref_primary_10_3390_ijerph19031470 crossref_primary_10_4000_brussels_1519 crossref_primary_10_1016_j_jhydrol_2023_129116 crossref_primary_10_1177_00368504221086362 crossref_primary_10_1016_j_jappgeo_2025_105688 crossref_primary_10_1109_ACCESS_2019_2955995 crossref_primary_10_1007_s00521_022_06889_z crossref_primary_10_1016_j_cma_2020_112989 crossref_primary_10_1016_j_matdes_2022_111397 crossref_primary_10_3390_s23031185 crossref_primary_10_1109_TPDS_2020_3047638 crossref_primary_10_1371_journal_pone_0228928 crossref_primary_10_1109_ACCESS_2017_2784352 crossref_primary_10_1016_j_ccr_2024_216329 crossref_primary_10_1007_s41870_024_01853_7 crossref_primary_10_1007_s40030_018_0291_x crossref_primary_10_1007_s11431_021_1964_0 crossref_primary_10_5194_amt_15_1829_2022 crossref_primary_10_1007_s00521_021_06361_4 crossref_primary_10_1080_01605682_2019_1582588 crossref_primary_10_1109_TWC_2019_2945951 crossref_primary_10_3390_s21175774 crossref_primary_10_1016_j_neucom_2015_03_110 crossref_primary_10_1007_s00521_022_07894_y crossref_primary_10_1016_j_jngse_2022_104807 crossref_primary_10_1016_j_conbuildmat_2020_120371 crossref_primary_10_1016_j_isprsjprs_2018_05_005 crossref_primary_10_1007_s10462_021_10058_4 crossref_primary_10_32604_cmc_2023_043013 crossref_primary_10_1007_s12559_019_09691_7 crossref_primary_10_1177_00220221231196321 crossref_primary_10_1016_j_cscm_2023_e02800 crossref_primary_10_1016_j_ipm_2024_103656 crossref_primary_10_1145_3459082 crossref_primary_10_1155_2022_1068554 crossref_primary_10_1109_TCAD_2022_3213211 crossref_primary_10_1016_j_neucom_2017_04_044 crossref_primary_10_1145_3007787_3001178 crossref_primary_10_1109_TDSC_2019_2946250 crossref_primary_10_1038_s41598_020_71926_7 crossref_primary_10_1007_s11023_018_9480_7 crossref_primary_10_1016_j_pnucene_2022_104542 crossref_primary_10_1007_s00521_025_11313_3 crossref_primary_10_1109_LWC_2022_3207348 crossref_primary_10_7717_peerj_cs_515 crossref_primary_10_1016_j_ejmp_2017_07_024 crossref_primary_10_3390_s16111858 crossref_primary_10_1080_08839514_2018_1526704 crossref_primary_10_1016_j_ifacol_2018_11_660 crossref_primary_10_1038_s41433_023_02914_0 crossref_primary_10_1007_s00425_025_04797_9 crossref_primary_10_1016_j_ces_2020_115956 crossref_primary_10_3389_frwa_2021_740044 crossref_primary_10_3390_diagnostics13233506 crossref_primary_10_3390_biom11121793 crossref_primary_10_1016_j_cma_2022_115741 crossref_primary_10_1007_s00521_020_05008_0 crossref_primary_10_3390_sym11091066 crossref_primary_10_1038_s41598_019_56527_3 crossref_primary_10_1002_jbmr_4879 crossref_primary_10_1016_j_image_2021_116139 crossref_primary_10_1002_adfm_202009602 crossref_primary_10_1007_s10396_021_01116_z crossref_primary_10_3390_s21144686 crossref_primary_10_1016_j_ifacol_2016_11_099 crossref_primary_10_32604_cmc_2023_044366 crossref_primary_10_1007_s00436_022_07752_9 crossref_primary_10_1016_j_cie_2025_111102 crossref_primary_10_1364_JOCN_10_0000D1 crossref_primary_10_1007_s11229_018_01949_1 crossref_primary_10_1016_j_apradiso_2020_109221 crossref_primary_10_1109_LCSYS_2021_3086672 crossref_primary_10_2478_ijssis_2024_0027 crossref_primary_10_3390_bioengineering12050453 crossref_primary_10_1007_s00521_020_04790_1 crossref_primary_10_1016_j_istruc_2020_11_056 crossref_primary_10_1038_s43588_023_00428_z crossref_primary_10_1126_scirobotics_aav3150 crossref_primary_10_1109_TIT_2022_3146620 crossref_primary_10_1016_j_future_2024_107655 crossref_primary_10_1002_rnc_5304 crossref_primary_10_3390_land11010004 crossref_primary_10_1016_j_bspc_2018_01_011 crossref_primary_10_25300_MISQ_2024_18340 crossref_primary_10_1109_ACCESS_2017_2772334 crossref_primary_10_5194_hess_22_6005_2018 crossref_primary_10_5194_amt_15_6521_2022 crossref_primary_10_1016_j_cities_2021_103393 crossref_primary_10_1016_j_patcog_2017_06_009 crossref_primary_10_1109_TCDS_2022_3176888 crossref_primary_10_1109_TNNLS_2019_2910073 crossref_primary_10_1109_TIM_2019_2894044 crossref_primary_10_1016_j_jksuci_2023_03_017 crossref_primary_10_1049_iet_stg_2019_0258 crossref_primary_10_1016_j_compfluid_2020_104665 crossref_primary_10_3390_math10060993 crossref_primary_10_1134_S1995080220120343 crossref_primary_10_1007_s12524_019_01063_w crossref_primary_10_1016_j_ijforecast_2020_10_004 crossref_primary_10_1016_j_eswa_2021_115227 crossref_primary_10_1038_s44172_025_00437_y crossref_primary_10_1007_s10489_024_06128_z crossref_primary_10_1016_j_matpr_2021_02_626 crossref_primary_10_1109_ACCESS_2019_2930634 crossref_primary_10_2514_1_J059905 crossref_primary_10_1007_s10694_023_01457_w crossref_primary_10_1186_s13040_019_0200_5 crossref_primary_10_1002_ecj_12224 crossref_primary_10_1038_s41746_023_00811_0 crossref_primary_10_1016_j_jneumeth_2021_109400 crossref_primary_10_1016_j_asoc_2017_01_015 crossref_primary_10_1155_2022_1911345 crossref_primary_10_1109_TGRS_2017_2692281 crossref_primary_10_1080_00207543_2025_2454329 crossref_primary_10_1016_j_chb_2024_108381 crossref_primary_10_1016_j_irbm_2020_06_001 crossref_primary_10_1038_s41467_025_62602_3 crossref_primary_10_1007_s13369_024_09035_0 crossref_primary_10_3390_s22155786 crossref_primary_10_3390_rs13061055 crossref_primary_10_1016_j_compbiomed_2017_04_006 crossref_primary_10_3389_fncom_2020_00063 crossref_primary_10_1016_j_physrep_2021_08_002 crossref_primary_10_1016_j_cortex_2019_02_022 crossref_primary_10_1016_j_strusafe_2019_101906 crossref_primary_10_1146_annurev_control_061920_103228 crossref_primary_10_1109_TETC_2020_2983007 crossref_primary_10_1016_j_compbiomed_2024_109174 crossref_primary_10_3390_su12020658 crossref_primary_10_1002_mrm_27198 crossref_primary_10_1016_j_jag_2021_102456 crossref_primary_10_1088_1742_6596_2070_1_012001 crossref_primary_10_1155_2021_2553199 crossref_primary_10_3390_rs14102406 crossref_primary_10_1109_ACCESS_2022_3194260 crossref_primary_10_3389_fdgth_2021_648190 crossref_primary_10_7717_peerj_cs_2669 crossref_primary_10_3847_1538_4365_ad434f crossref_primary_10_1016_j_cma_2020_112906 crossref_primary_10_1007_s00521_021_05950_7 crossref_primary_10_3390_app132112004 crossref_primary_10_1016_j_eswa_2023_121692 crossref_primary_10_1016_j_neucom_2021_01_106 crossref_primary_10_3389_frobt_2015_00036 crossref_primary_10_1007_s00701_020_04447_x crossref_primary_10_1016_j_ast_2024_109320 crossref_primary_10_1088_1361_6560_aab000 crossref_primary_10_1109_TPDS_2021_3090328 crossref_primary_10_11004_kosacs_2024_15_6_048 crossref_primary_10_3389_frobt_2015_00039 crossref_primary_10_3390_electronics10192407 crossref_primary_10_1007_s11430_020_9793_5 crossref_primary_10_1016_j_advnut_2025_100398 crossref_primary_10_3390_inventions8030076 crossref_primary_10_1002_aelm_202100465 crossref_primary_10_1016_j_engstruct_2023_115723 crossref_primary_10_1016_j_renene_2019_07_033 crossref_primary_10_3390_medicina56070364 crossref_primary_10_1007_s00521_022_07129_0 crossref_primary_10_1080_24725838_2025_2469076 crossref_primary_10_1109_TCDS_2016_2543839 crossref_primary_10_1007_s13369_020_05117_x crossref_primary_10_1016_j_actamat_2021_117341 crossref_primary_10_1016_j_ces_2020_115935 crossref_primary_10_1029_2021JB023830 crossref_primary_10_1109_TIP_2019_2948286 crossref_primary_10_1109_ACCESS_2019_2924798 crossref_primary_10_1177_1550147717707896 crossref_primary_10_1007_s00500_016_2039_8 crossref_primary_10_1002_cphc_202200657 crossref_primary_10_1365_s40702_020_00586_y crossref_primary_10_1007_s13347_020_00393_9 crossref_primary_10_1016_j_plantsci_2019_03_020 crossref_primary_10_1016_j_acags_2025_100285 crossref_primary_10_3390_electronics14132718 crossref_primary_10_1016_j_apenergy_2020_114879 crossref_primary_10_3390_rs13061139 crossref_primary_10_1038_s41598_020_64455_w crossref_primary_10_1371_journal_pone_0276562 crossref_primary_10_1016_j_techfore_2024_123542 crossref_primary_10_1109_JOE_2020_2967108 crossref_primary_10_1186_s43067_023_00108_y crossref_primary_10_1016_j_ecoenv_2022_113400 crossref_primary_10_1002_ecj_12142 crossref_primary_10_1109_TSP_2019_2918992 crossref_primary_10_3390_e25091274 crossref_primary_10_3390_s19214702 crossref_primary_10_1371_journal_pone_0264586 crossref_primary_10_1108_IJICC_06_2017_0066 crossref_primary_10_1016_j_eswa_2024_124933 crossref_primary_10_1016_j_apenergy_2018_07_011 crossref_primary_10_3390_w12071942 crossref_primary_10_1007_s12517_024_12142_9 crossref_primary_10_3390_en11102623 crossref_primary_10_1007_s00170_022_08811_2 crossref_primary_10_3390_cells10020472 crossref_primary_10_1016_j_tust_2020_103677 crossref_primary_10_1109_ACCESS_2020_2989052 crossref_primary_10_3390_s21124205 crossref_primary_10_1017_jfm_2019_62 crossref_primary_10_1029_2020JD032759 crossref_primary_10_3390_su12062570 crossref_primary_10_1016_j_asoc_2021_107920 crossref_primary_10_3390_s22155834 crossref_primary_10_1016_j_geogeo_2025_100361 crossref_primary_10_1016_j_measurement_2025_117314 crossref_primary_10_1016_j_is_2016_03_011 crossref_primary_10_1109_ACCESS_2022_3196920 crossref_primary_10_1016_j_ultras_2022_106743 crossref_primary_10_1016_j_asoc_2025_113378 crossref_primary_10_1007_s42417_025_01943_1 crossref_primary_10_1016_j_jhydrol_2019_124482 crossref_primary_10_1080_13658816_2020_1805116 crossref_primary_10_1093_comnet_cny012 crossref_primary_10_1145_3563330 crossref_primary_10_1007_s10479_021_04505_2 crossref_primary_10_1016_j_ress_2022_108813 crossref_primary_10_1109_ACCESS_2019_2935463 crossref_primary_10_1007_s11423_018_09644_1 crossref_primary_10_1016_j_ymssp_2023_110306 crossref_primary_10_1016_j_neucom_2023_02_001 crossref_primary_10_1111_jfpp_14955 crossref_primary_10_1089_hs_2019_0122 crossref_primary_10_1016_j_cogsys_2019_09_027 crossref_primary_10_1109_TCSS_2019_2910599 crossref_primary_10_1155_2022_6460838 crossref_primary_10_1002_int_22785 crossref_primary_10_3390_encyclopedia3010024 crossref_primary_10_1007_s11023_020_09538_3 crossref_primary_10_1155_2021_5587756 crossref_primary_10_1109_JPROC_2021_3060483 crossref_primary_10_1016_j_asoc_2023_110463 crossref_primary_10_1016_j_psep_2025_107783 crossref_primary_10_1063_5_0042662 crossref_primary_10_1109_ACCESS_2022_3183606 crossref_primary_10_1016_j_neunet_2018_04_016 crossref_primary_10_1007_s11042_022_12316_1 crossref_primary_10_1109_TGRS_2017_2776357 crossref_primary_10_1093_ppmgov_gvz014 crossref_primary_10_1016_j_cor_2018_04_007 crossref_primary_10_1109_TSUSC_2018_2809665 crossref_primary_10_1080_00207543_2021_1962558 crossref_primary_10_1186_s13636_017_0109_1 crossref_primary_10_3390_s22155814 crossref_primary_10_1007_s00521_025_11433_w crossref_primary_10_1016_j_measurement_2023_113218 crossref_primary_10_1007_s00227_018_3318_y crossref_primary_10_1007_s00466_020_01868_4 crossref_primary_10_3390_rs14081950 crossref_primary_10_1155_2020_6380486 crossref_primary_10_1109_ACCESS_2015_2513822 crossref_primary_10_1016_j_spl_2018_02_017 crossref_primary_10_1016_j_ijfatigue_2023_107997 crossref_primary_10_3390_s21061951 crossref_primary_10_1007_s00521_022_07428_6 crossref_primary_10_1109_ACCESS_2019_2898028 crossref_primary_10_1016_j_aftran_2025_100028 crossref_primary_10_1080_23311916_2021_2018791 crossref_primary_10_1007_s00521_021_06565_8 crossref_primary_10_1007_s00521_018_3415_3 crossref_primary_10_1007_s11427_018_9342_2 crossref_primary_10_3390_app14177880 crossref_primary_10_1016_j_comcom_2018_04_010 crossref_primary_10_23919_JSEE_2023_000032 crossref_primary_10_1109_TGRS_2019_2963262 crossref_primary_10_1186_s12911_023_02159_7 crossref_primary_10_3390_ani13010165 crossref_primary_10_1371_journal_pone_0276503 crossref_primary_10_3390_vetsci9110620 crossref_primary_10_3389_fnins_2022_1031732 crossref_primary_10_2196_77890 crossref_primary_10_1007_s11242_025_02190_4 crossref_primary_10_1016_j_cose_2023_103168 crossref_primary_10_1515_teme_2019_0024 crossref_primary_10_1016_j_neucom_2016_11_100 crossref_primary_10_1007_s11277_019_06410_1 crossref_primary_10_1016_j_neucom_2025_130122 crossref_primary_10_1016_j_est_2022_106052 crossref_primary_10_1111_raq_12726 crossref_primary_10_1007_s12559_020_09773_x crossref_primary_10_1088_1742_6596_803_1_012177 crossref_primary_10_1002_aisy_201900084 crossref_primary_10_1016_j_jnca_2021_103107 crossref_primary_10_1109_TSUSC_2023_3303422 crossref_primary_10_1016_j_imu_2022_101123 crossref_primary_10_1007_JHEP01_2017_110 crossref_primary_10_1186_s12911_021_01462_5 crossref_primary_10_3390_app13052815 crossref_primary_10_3390_s20236854 crossref_primary_10_1142_S0129055X24300115 crossref_primary_10_1016_j_matlet_2023_134663 crossref_primary_10_1109_TIT_2022_3189760 crossref_primary_10_1007_s11063_019_09986_8 crossref_primary_10_1007_s10489_022_03539_8 crossref_primary_10_1088_1475_7516_2024_08_031 crossref_primary_10_1007_s00521_022_07953_4 crossref_primary_10_1177_00405175221130773 crossref_primary_10_1016_j_autcon_2017_05_001 crossref_primary_10_1109_TSMC_2019_2951789 crossref_primary_10_1016_j_compchemeng_2022_107956 crossref_primary_10_1007_s00500_020_04877_w crossref_primary_10_1016_j_infsof_2023_107307 crossref_primary_10_1049_iet_ipr_2018_5351 crossref_primary_10_3390_ma15186269 crossref_primary_10_1016_j_ress_2024_110089 crossref_primary_10_1080_10920277_2022_2123361 crossref_primary_10_3390_rs12040625 crossref_primary_10_1016_j_biortech_2022_128445 crossref_primary_10_1089_bioe_2021_0030 crossref_primary_10_1002_cem_3503 crossref_primary_10_1016_j_ins_2016_07_007 crossref_primary_10_1016_j_cllc_2021_02_004 crossref_primary_10_1016_j_eswa_2022_118548 crossref_primary_10_1007_s10489_021_02770_z crossref_primary_10_3390_ma16030932 crossref_primary_10_1016_j_neucom_2019_11_119 crossref_primary_10_1007_s11042_020_09244_3 crossref_primary_10_1017_S0140525X16001837 crossref_primary_10_1016_j_heliyon_2024_e26888 crossref_primary_10_3390_diagnostics14100995 crossref_primary_10_3390_pr10091716 crossref_primary_10_1109_JPROC_2021_3054628 crossref_primary_10_1109_ACCESS_2022_3151170 crossref_primary_10_1016_j_neucom_2019_05_082 crossref_primary_10_1016_j_cad_2020_102947 crossref_primary_10_1080_21681163_2017_1344933 crossref_primary_10_1016_j_neucom_2019_11_113 crossref_primary_10_1016_j_ijthermalsci_2023_108573 crossref_primary_10_1109_TEVC_2017_2682274 crossref_primary_10_1007_s40135_019_00218_9 crossref_primary_10_1016_j_energy_2018_01_177 crossref_primary_10_1109_TAP_2018_2874430 crossref_primary_10_1016_j_neuroimage_2025_121380 crossref_primary_10_1007_s13218_021_00705_x crossref_primary_10_1016_j_apsb_2018_09_010 crossref_primary_10_1016_j_neunet_2019_12_005 crossref_primary_10_1109_TCBB_2020_3025579 crossref_primary_10_1016_j_neunet_2019_12_004 crossref_primary_10_1016_j_watres_2022_118908 crossref_primary_10_1016_j_buildenv_2019_106535 crossref_primary_10_1016_j_jvs_2023_08_121 crossref_primary_10_1016_j_swevo_2018_03_011 crossref_primary_10_1109_TITS_2022_3149268 crossref_primary_10_1016_j_aci_2018_06_002 crossref_primary_10_1049_cmu2_12800 crossref_primary_10_1016_j_compstruct_2023_117073 crossref_primary_10_1016_j_sbi_2018_02_004 crossref_primary_10_1016_j_neunet_2019_12_003 crossref_primary_10_1145_3624775 crossref_primary_10_3390_ijerph192114300 crossref_primary_10_1186_s13550_025_01238_2 crossref_primary_10_1109_TNNLS_2021_3056762 crossref_primary_10_1002_adom_202203104 crossref_primary_10_1016_j_msea_2022_142738 crossref_primary_10_1109_ACCESS_2020_2968982 crossref_primary_10_3389_fncom_2022_1001803 crossref_primary_10_1016_j_measurement_2020_108603 crossref_primary_10_1155_2022_9962972 crossref_primary_10_1007_s10115_025_02499_y crossref_primary_10_1007_s12553_020_00495_6 crossref_primary_10_1016_j_commatsci_2022_111783 crossref_primary_10_1016_j_neunet_2019_12_014 crossref_primary_10_1115_1_4068679 crossref_primary_10_3390_rs13081506 crossref_primary_10_1038_s41562_023_01559_z crossref_primary_10_1007_s00500_015_1599_3 crossref_primary_10_1007_s12559_023_10209_5 crossref_primary_10_1007_s11042_024_20507_1 crossref_primary_10_1016_j_powtec_2022_117939 crossref_primary_10_1259_bjr_20170545 crossref_primary_10_29026_oea_2025_250021 crossref_primary_10_3847_1538_4357_aba95d crossref_primary_10_3389_frwa_2023_1217946 crossref_primary_10_1002_aisy_202200228 crossref_primary_10_1002_inc2_12013 crossref_primary_10_1155_2021_5575722 crossref_primary_10_1088_1361_6579_aa614e crossref_primary_10_1111_risa_70103 crossref_primary_10_3390_su14159056 crossref_primary_10_1016_j_neucom_2023_02_026 crossref_primary_10_1080_10584587_2020_1819042 crossref_primary_10_1016_j_neucom_2019_05_052 crossref_primary_10_1007_s10278_018_0107_6 crossref_primary_10_1007_s11306_018_1370_8 crossref_primary_10_1109_ACCESS_2019_2923417 crossref_primary_10_3389_fonc_2023_1213045 crossref_primary_10_1002_qj_3410 crossref_primary_10_3390_computers14070291 crossref_primary_10_1007_s10098_023_02477_4 crossref_primary_10_1007_s10994_019_05856_5 crossref_primary_10_1016_j_fluid_2024_114116 crossref_primary_10_1016_j_snb_2021_130915 crossref_primary_10_1007_s10278_018_0084_9 crossref_primary_10_1038_s41597_023_02695_x crossref_primary_10_1016_j_asoc_2024_111286 crossref_primary_10_1109_TCAD_2022_3197512 crossref_primary_10_1007_s42524_019_0040_5 crossref_primary_10_1007_s12206_021_1105_z crossref_primary_10_3390_sym14020372 crossref_primary_10_1080_0952813X_2022_2067249 crossref_primary_10_3847_1538_4357_ac5f43 crossref_primary_10_1080_10095020_2025_2522154 crossref_primary_10_1016_j_anucene_2022_109668 crossref_primary_10_1016_j_conengprac_2019_04_007 crossref_primary_10_1016_j_neucom_2023_02_040 crossref_primary_10_1177_02666669241276427 crossref_primary_10_1016_j_optlaseng_2019_04_020 crossref_primary_10_1007_s11517_018_1933_x crossref_primary_10_1016_j_colsurfb_2024_114041 crossref_primary_10_1016_j_cogsys_2017_08_004 crossref_primary_10_3390_app11136079 crossref_primary_10_1016_j_measurement_2020_108634 crossref_primary_10_1016_j_knosys_2018_07_044 crossref_primary_10_1109_JSYST_2020_3009403 crossref_primary_10_1109_ACCESS_2018_2793966 crossref_primary_10_1109_TCBB_2019_2937862 crossref_primary_10_1016_j_iot_2022_100674 crossref_primary_10_1016_j_watres_2024_122798 crossref_primary_10_1007_s00138_020_01060_x crossref_primary_10_3390_s20041070 crossref_primary_10_1038_s41598_018_27169_8 crossref_primary_10_1109_ACCESS_2019_2935416 crossref_primary_10_3847_1538_4365_acc248 crossref_primary_10_1016_j_eswa_2022_117222 crossref_primary_10_1371_journal_pone_0265808 crossref_primary_10_1016_j_istruc_2023_02_102 crossref_primary_10_1016_j_asoc_2024_111259 crossref_primary_10_1016_j_patrec_2021_06_004 crossref_primary_10_1007_s11229_019_02167_z crossref_primary_10_3390_en13123074 crossref_primary_10_3389_fncom_2022_859874 crossref_primary_10_1007_s10044_023_01182_8 crossref_primary_10_1089_brain_2019_0701 crossref_primary_10_3389_fgene_2019_00286 crossref_primary_10_1016_j_compeleceng_2020_106640 crossref_primary_10_3390_rs15020331 crossref_primary_10_3390_s25010251 crossref_primary_10_1007_s42452_022_05211_9 crossref_primary_10_3390_rs14153690 crossref_primary_10_1109_TCYB_2022_3176475 crossref_primary_10_1016_j_energy_2023_129580 crossref_primary_10_1016_j_engappai_2024_108704 crossref_primary_10_3390_su16020518 crossref_primary_10_1007_s11661_020_06099_z crossref_primary_10_1016_j_autcon_2021_103634 crossref_primary_10_1016_j_ces_2023_119425 crossref_primary_10_1051_epjconf_201817116005 crossref_primary_10_1016_j_jcp_2018_04_029 crossref_primary_10_1145_3072959_3073601 crossref_primary_10_1016_j_jaap_2024_106512 crossref_primary_10_1016_j_media_2018_03_006 crossref_primary_10_1186_s12859_018_2286_z crossref_primary_10_3390_su14031583 crossref_primary_10_3390_fi12110188 crossref_primary_10_1080_22797254_2018_1465361 crossref_primary_10_1109_TKDE_2018_2883613 crossref_primary_10_1016_j_jobe_2022_104023 crossref_primary_10_1016_j_jdent_2022_104115 crossref_primary_10_1049_enc2_12015 crossref_primary_10_1016_j_cose_2019_101655 crossref_primary_10_1016_j_future_2019_03_001 crossref_primary_10_1080_17460441_2021_1909567 crossref_primary_10_1016_j_measurement_2021_109020 crossref_primary_10_1016_j_procir_2020_01_135 crossref_primary_10_3390_nano12040633 crossref_primary_10_3390_en16134922 crossref_primary_10_1088_1361_6463_aac8a5 crossref_primary_10_2478_picbe_2025_0273 crossref_primary_10_3390_e25030427 crossref_primary_10_1016_j_envsoft_2024_106059 crossref_primary_10_1080_10618600_2019_1637747 crossref_primary_10_1108_AFR_08_2023_0105 crossref_primary_10_1016_j_ymssp_2021_108153 crossref_primary_10_1109_ACCESS_2023_3314660 crossref_primary_10_1016_j_comnet_2023_109662 crossref_primary_10_1016_j_ijfatigue_2022_106840 crossref_primary_10_1016_j_trc_2021_103432 crossref_primary_10_3390_s17010016 crossref_primary_10_1186_s42162_019_0082_2 crossref_primary_10_1109_ACCESS_2020_3031762 crossref_primary_10_1007_s00025_018_0790_0 crossref_primary_10_1109_LCOMM_2023_3245807 crossref_primary_10_1007_s13246_022_01139_x crossref_primary_10_1155_2023_4399512 crossref_primary_10_1016_j_ailsci_2022_100055 crossref_primary_10_3390_math10142489 crossref_primary_10_3389_fnins_2019_00692 crossref_primary_10_1051_e3sconf_202125302015 crossref_primary_10_1007_s13762_021_03565_y crossref_primary_10_1007_s12517_020_06241_6 crossref_primary_10_3390_app11135853 crossref_primary_10_1016_j_yofte_2019_101960 crossref_primary_10_1057_s41310_025_00295_2 crossref_primary_10_1007_s10015_020_00638_y crossref_primary_10_1016_j_neucom_2018_09_103 crossref_primary_10_1109_JSEN_2022_3219594 crossref_primary_10_1360_SSI_2024_0351 crossref_primary_10_1007_s00500_023_08069_0 crossref_primary_10_1016_j_nlp_2022_100001 crossref_primary_10_1038_s41598_020_76154_7 crossref_primary_10_1016_j_neucom_2024_128173 crossref_primary_10_1186_s40537_022_00626_y crossref_primary_10_1371_journal_pone_0168606 crossref_primary_10_1016_j_jbi_2021_103863 crossref_primary_10_3389_ftox_2023_1340860 crossref_primary_10_3390_s25061809 crossref_primary_10_3390_machines12120905 crossref_primary_10_1016_j_fuel_2022_126696 crossref_primary_10_1089_space_2017_0017 crossref_primary_10_1007_s00521_022_08017_3 crossref_primary_10_1016_j_comnet_2023_109681 crossref_primary_10_1063_5_0072913 crossref_primary_10_3390_rs14225876 crossref_primary_10_1002_jcc_27388 crossref_primary_10_1016_j_ijpsycho_2017_11_017 crossref_primary_10_1093_bib_bbaa356 crossref_primary_10_1109_ACCESS_2021_3105830 crossref_primary_10_3390_en15228629 crossref_primary_10_1016_j_jrmge_2025_02_023 crossref_primary_10_1016_j_semcancer_2020_08_006 crossref_primary_10_1038_s41598_019_38966_0 crossref_primary_10_1007_s00761_021_00917_8 crossref_primary_10_3233_JIFS_224565 crossref_primary_10_1016_j_cosrev_2023_100576 crossref_primary_10_7232_JKIIE_2015_41_5_439 crossref_primary_10_1186_s13173_017_0058_7 crossref_primary_10_1155_2017_3296874 crossref_primary_10_7717_peerj_cs_436 crossref_primary_10_1088_1475_7516_2022_01_045 crossref_primary_10_1093_logcom_exab005 crossref_primary_10_1094_MPMI_08_18_0221_FI crossref_primary_10_3390_app11031251 crossref_primary_10_1109_ACCESS_2018_2866197 crossref_primary_10_31083_j_jin_2018_04_0416 crossref_primary_10_1007_s11831_022_09807_7 crossref_primary_10_1080_09205071_2018_1553689 crossref_primary_10_1007_s10596_019_09929_1 crossref_primary_10_1016_j_engstruct_2024_119084 crossref_primary_10_1007_s11269_024_04074_6 crossref_primary_10_1016_j_cageo_2024_105593 crossref_primary_10_1007_s12652_019_01639_x crossref_primary_10_1016_j_neunet_2017_06_016 crossref_primary_10_1109_ACCESS_2021_3068343 crossref_primary_10_3390_agronomy12123051 crossref_primary_10_3390_cancers17071092 crossref_primary_10_1007_s12215_025_01245_1 crossref_primary_10_1007_s10586_023_04069_9 crossref_primary_10_1186_s13638_022_02153_z crossref_primary_10_3390_mi14040826 crossref_primary_10_5814_j_issn_1674_764x_2024_01_019 crossref_primary_10_1016_j_flowmeasinst_2022_102124 crossref_primary_10_1109_TVT_2019_2913988 crossref_primary_10_1155_2019_6565379 crossref_primary_10_3390_electronics14122378 crossref_primary_10_1016_j_measurement_2021_110073 crossref_primary_10_1080_14685248_2020_1757685 crossref_primary_10_1016_j_asej_2025_103525 crossref_primary_10_1088_1742_6596_1914_1_012051 crossref_primary_10_1109_JSEN_2024_3357512 crossref_primary_10_3390_systems11050256 crossref_primary_10_1007_s12546_024_09348_9 crossref_primary_10_1016_j_measurement_2021_109088 crossref_primary_10_1016_j_bica_2015_09_003 crossref_primary_10_3389_fnins_2019_00650 crossref_primary_10_1093_bib_bbaa374 crossref_primary_10_3390_app9194180 crossref_primary_10_1186_s13007_017_0265_4 crossref_primary_10_1016_j_media_2019_101534 crossref_primary_10_3389_fpsyg_2018_00345 crossref_primary_10_1108_DTA_06_2023_0230 crossref_primary_10_3390_hydrology12030060 crossref_primary_10_32604_cmc_2022_020866 crossref_primary_10_1016_j_porgcoat_2024_108279 crossref_primary_10_3390_nano13192720 crossref_primary_10_1016_j_compbiomed_2025_110064 crossref_primary_10_1016_j_compind_2018_01_021 crossref_primary_10_1016_j_knosys_2016_12_017 crossref_primary_10_3390_e26030262 crossref_primary_10_3390_jimaging4020041 crossref_primary_10_1016_j_knosys_2016_12_011 crossref_primary_10_1109_ACCESS_2018_2855437 crossref_primary_10_1080_00102202_2015_1102905 crossref_primary_10_1007_s11431_020_1726_5 crossref_primary_10_1186_s12859_021_04376_1 crossref_primary_10_1080_01430750_2022_2127889 crossref_primary_10_1007_s11277_023_10500_6 crossref_primary_10_1016_j_engappai_2023_107507 crossref_primary_10_3390_s23041764 crossref_primary_10_5572_KOSAE_2019_35_2_214 crossref_primary_10_1016_j_ajo_2019_02_028 crossref_primary_10_3390_s21093222 crossref_primary_10_1038_s41372_023_01719_z crossref_primary_10_1016_S2095_3119_17_61762_3 crossref_primary_10_1080_10255842_2020_1791836 crossref_primary_10_1186_s10033_021_00565_4 crossref_primary_10_1109_TPAMI_2021_3058891 crossref_primary_10_1109_JSTARS_2020_3039235 crossref_primary_10_1364_PRJ_432919 crossref_primary_10_1017_S1473550418000046 crossref_primary_10_1002_advs_201900808 crossref_primary_10_1016_j_culher_2017_11_008 crossref_primary_10_1016_j_inffus_2020_10_017 crossref_primary_10_1063_1_5049137 crossref_primary_10_32604_cmc_2022_025692 crossref_primary_10_1016_j_apradiso_2023_110973 crossref_primary_10_1007_s00228_025_03874_y crossref_primary_10_3390_su14020834 crossref_primary_10_1016_j_envsoft_2021_105159 crossref_primary_10_1016_j_compind_2018_01_005 crossref_primary_10_4018_IJMHCI_2019070104 crossref_primary_10_1145_3200904 crossref_primary_10_3390_app11188324 crossref_primary_10_1007_s00521_023_08957_4 crossref_primary_10_1080_10400419_2024_2361217 crossref_primary_10_1109_JSAC_2021_3126080 crossref_primary_10_1016_j_mtcomm_2024_108477 crossref_primary_10_1155_2021_2938386 crossref_primary_10_1016_j_inffus_2020_10_002 crossref_primary_10_1109_ACCESS_2020_3028185 crossref_primary_10_1016_j_knosys_2025_114484 crossref_primary_10_1038_s41598_018_33321_1 crossref_primary_10_1016_j_mtcomm_2024_108471 crossref_primary_10_1016_j_cma_2022_115616 crossref_primary_10_1016_j_measen_2025_101828 crossref_primary_10_3390_rs16224196 crossref_primary_10_1093_jamia_ocac222 crossref_primary_10_1016_j_cageo_2019_104312 crossref_primary_10_1016_j_molliq_2018_03_086 crossref_primary_10_1016_j_actbio_2023_08_047 crossref_primary_10_1016_j_csbj_2021_08_044 crossref_primary_10_1109_ACCESS_2021_3127211 crossref_primary_10_3390_rs10071066 crossref_primary_10_1016_j_isprsjprs_2021_01_016 crossref_primary_10_1109_TNSE_2022_3168533 crossref_primary_10_1109_TIP_2017_2783627 crossref_primary_10_4018_IJMDEM_2018070101 crossref_primary_10_3390_nano15161245 crossref_primary_10_1088_2515_7620_ac6657 crossref_primary_10_1016_j_cageo_2024_105531 crossref_primary_10_7232_JKIIE_2021_47_2_144 crossref_primary_10_1016_j_procs_2020_04_206 crossref_primary_10_1016_j_eswa_2021_115109 crossref_primary_10_3389_fnsys_2019_00025 crossref_primary_10_3389_fonc_2023_1103369 crossref_primary_10_1109_ACCESS_2019_2917545 crossref_primary_10_1109_TSMC_2021_3071880 crossref_primary_10_1007_s42979_024_02715_6 crossref_primary_10_1109_TPAMI_2016_2537340 crossref_primary_10_1109_ACCESS_2022_3187839 crossref_primary_10_1155_2022_4121956 crossref_primary_10_1016_j_cageo_2024_105535 crossref_primary_10_3390_rs11242898 crossref_primary_10_1007_s11277_021_09210_8 crossref_primary_10_1155_2022_7451152 crossref_primary_10_15446_dyna_v84n203_65267 crossref_primary_10_1007_s00521_019_04212_x crossref_primary_10_1080_01431161_2016_1171928 crossref_primary_10_1007_s42107_024_01198_3 crossref_primary_10_3390_sym12050774 crossref_primary_10_1007_s10707_021_00454_x crossref_primary_10_1007_s40747_023_01044_0 crossref_primary_10_1109_TNNLS_2021_3121248 crossref_primary_10_1007_s42979_022_01131_y crossref_primary_10_1109_TEMC_2017_2787769 crossref_primary_10_1038_s41598_025_15894_w crossref_primary_10_18617_liinc_v16i2_5536 crossref_primary_10_1007_s00330_023_09573_5 crossref_primary_10_1007_s00170_019_03557_w crossref_primary_10_1016_j_engfracmech_2022_108835 crossref_primary_10_1061__ASCE_ST_1943_541X_0003392 crossref_primary_10_1016_j_cscm_2024_e03084 crossref_primary_10_1109_TITS_2019_2896375 crossref_primary_10_1061__ASCE_ST_1943_541X_0003399 crossref_primary_10_1016_j_ecoinf_2017_10_008 crossref_primary_10_1109_TIV_2018_2886687 crossref_primary_10_1016_j_measen_2025_101866 crossref_primary_10_1016_j_ijepes_2023_109020 crossref_primary_10_3390_polym13091427 crossref_primary_10_3389_fgene_2019_00214 crossref_primary_10_1038_s41598_025_92396_9 crossref_primary_10_1080_09715010_2022_2050311 crossref_primary_10_1016_j_compag_2025_110117 crossref_primary_10_1016_j_ejmp_2022_06_016 crossref_primary_10_1177_1550147718805718 crossref_primary_10_1016_j_compag_2025_110115 crossref_primary_10_1007_s12204_021_2264_x crossref_primary_10_1016_j_energy_2022_124830 crossref_primary_10_1016_j_envsoft_2021_105112 crossref_primary_10_3390_rs15051451 crossref_primary_10_3390_su14020870 crossref_primary_10_1007_s12559_020_09716_6 crossref_primary_10_1016_j_jhydrol_2024_131680 crossref_primary_10_1371_journal_pntd_0010509 crossref_primary_10_15388_Amed_2023_30_1_2 crossref_primary_10_1007_s11227_020_03568_5 crossref_primary_10_1016_j_biosystems_2023_104936 crossref_primary_10_3390_fi16010014 crossref_primary_10_3390_mi13111800 crossref_primary_10_1039_C9SC06145B crossref_primary_10_1109_ACCESS_2019_2937993 crossref_primary_10_1016_j_ast_2019_105539 crossref_primary_10_1016_j_jnca_2021_103009 crossref_primary_10_1016_j_engappai_2025_110980 crossref_primary_10_1109_TGRS_2019_2952062 crossref_primary_10_1088_1361_6633_abb4c7 crossref_primary_10_1002_jrs_6224 crossref_primary_10_3390_electronics11193172 crossref_primary_10_1007_s10928_021_09785_6 crossref_primary_10_1109_TCYB_2020_3013251 crossref_primary_10_3389_fcomp_2020_00036 crossref_primary_10_1002_agj2_21733 crossref_primary_10_3390_molecules30051146 crossref_primary_10_1016_j_jmapro_2023_10_081 crossref_primary_10_1109_TCSII_2022_3181132 crossref_primary_10_1155_2022_2590940 crossref_primary_10_1016_j_anucene_2017_11_005 crossref_primary_10_1002_we_2379 crossref_primary_10_1016_j_oceaneng_2021_110456 crossref_primary_10_1061__ASCE_GM_1943_5622_0002024 crossref_primary_10_1111_1754_9485_13612 crossref_primary_10_1007_s00521_022_07834_w crossref_primary_10_1016_j_iswa_2023_200317 crossref_primary_10_3934_bdia_2022001 crossref_primary_10_3390_en14010228 crossref_primary_10_1016_j_scitotenv_2024_173720 crossref_primary_10_1007_s00371_023_02784_3 crossref_primary_10_1007_s11269_023_03524_x crossref_primary_10_1016_j_jobe_2025_113467 crossref_primary_10_1016_j_ultras_2022_106863 crossref_primary_10_1109_ACCESS_2019_2934018 crossref_primary_10_1016_j_nbt_2023_07_003 crossref_primary_10_1016_j_pce_2025_103876 crossref_primary_10_1109_ACCESS_2019_2937975 crossref_primary_10_1007_s10499_021_00747_w crossref_primary_10_1088_1361_6544_ac5463 crossref_primary_10_3390_s23052486 crossref_primary_10_1016_j_neunet_2018_12_005 crossref_primary_10_1109_TKDE_2022_3188497 crossref_primary_10_1007_s11694_021_00990_y crossref_primary_10_1080_15389588_2021_1900569 crossref_primary_10_1080_14783363_2018_1520597 crossref_primary_10_1016_j_ejrad_2022_110247 crossref_primary_10_1109_TCBB_2017_2677907 crossref_primary_10_1016_j_chemosphere_2024_141958 crossref_primary_10_1007_s00034_019_01041_0 crossref_primary_10_1088_1742_6596_1682_1_012042 crossref_primary_10_3390_app10082962 crossref_primary_10_1016_j_neunet_2018_12_002 crossref_primary_10_3390_math10162999 crossref_primary_10_1111_coin_12427 crossref_primary_10_3390_e21040432 crossref_primary_10_1109_JSTARS_2017_2672736 crossref_primary_10_1016_j_heliyon_2023_e19790 crossref_primary_10_1155_2022_7242667 crossref_primary_10_1007_s00521_022_07701_8 crossref_primary_10_3390_su132212384 crossref_primary_10_1007_s11063_021_10676_7 crossref_primary_10_1097_JHM_D_21_00149 crossref_primary_10_1109_ACCESS_2019_2909068 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122701 crossref_primary_10_1016_j_asoc_2017_10_010 crossref_primary_10_1007_s00371_020_01996_1 crossref_primary_10_1002_ima_22291 crossref_primary_10_3390_ma17153685 crossref_primary_10_2139_ssrn_3777526 crossref_primary_10_1109_ACCESS_2019_2946021 crossref_primary_10_1007_s13534_024_00391_2 crossref_primary_10_1007_s00521_017_3239_6 crossref_primary_10_3390_s21248237 crossref_primary_10_1109_MC_2015_367 crossref_primary_10_1515_amcs_2017_0046 crossref_primary_10_3390_math13010129 crossref_primary_10_1016_j_ins_2025_122623 crossref_primary_10_1016_j_optlastec_2023_110384 crossref_primary_10_1016_j_knosys_2021_107717 crossref_primary_10_1007_s11663_021_02363_8 crossref_primary_10_1007_s40687_020_00215_6 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120381 crossref_primary_10_3390_electronics13020427 crossref_primary_10_1016_j_istruc_2025_108388 crossref_primary_10_1016_j_patrec_2018_09_006 crossref_primary_10_1016_j_eswa_2021_115055 crossref_primary_10_1007_s00500_024_09789_7 crossref_primary_10_1007_s11063_022_10958_8 crossref_primary_10_1016_j_talanta_2025_127650 crossref_primary_10_1080_2326263X_2019_1651570 crossref_primary_10_1515_jisys_2016_0101 crossref_primary_10_1109_JEDS_2025_3561075 crossref_primary_10_1007_s12652_023_04536_6 crossref_primary_10_1016_j_neucom_2018_01_041 crossref_primary_10_1007_s00502_017_0516_0 crossref_primary_10_1016_j_neubiorev_2020_12_021 crossref_primary_10_1155_2017_2061827 crossref_primary_10_1007_s11548_018_1794_7 crossref_primary_10_3390_s23041794 crossref_primary_10_1007_s10462_019_09744_1 crossref_primary_10_1007_s10462_018_9626_2 crossref_primary_10_1155_2018_6972481 crossref_primary_10_1016_j_cell_2018_04_003 crossref_primary_10_3389_fmed_2025_1492709 crossref_primary_10_1016_j_jjcc_2023_04_020 crossref_primary_10_1016_j_eswa_2022_118848 crossref_primary_10_1186_s40708_025_00252_3 crossref_primary_10_1055_s_0044_1779317 crossref_primary_10_1111_risa_13425 crossref_primary_10_1016_j_ogla_2020_08_002 crossref_primary_10_1038_s41598_024_59625_z crossref_primary_10_1016_j_compind_2020_103359 crossref_primary_10_3390_diagnostics13020288 crossref_primary_10_1016_j_asoc_2018_09_010 crossref_primary_10_1016_j_asoc_2018_09_013 crossref_primary_10_3390_bioengineering6040104 crossref_primary_10_1016_j_imu_2022_101018 crossref_primary_10_1007_s11227_020_03186_1 crossref_primary_10_1007_s11042_023_17571_4 crossref_primary_10_1016_j_eswa_2016_04_018 crossref_primary_10_1016_j_conb_2019_10_008 crossref_primary_10_1103_PhysRevApplied_21_064025 crossref_primary_10_1049_sil2_12156 crossref_primary_10_1002_cnm_2920 crossref_primary_10_1109_ACCESS_2021_3082557 crossref_primary_10_3390_app14104107 crossref_primary_10_1038_s41591_018_0177_5 crossref_primary_10_13005_bpj_2042 crossref_primary_10_1007_s11042_018_6912_6 crossref_primary_10_1016_j_ecoinf_2018_09_007 crossref_primary_10_3390_fi11110243 crossref_primary_10_1016_j_techsoc_2022_102062 crossref_primary_10_1109_TIFS_2017_2779446 crossref_primary_10_3389_fmed_2021_629080 crossref_primary_10_1016_j_eswa_2024_124411 crossref_primary_10_3390_math13071057 crossref_primary_10_1109_ACCESS_2022_3149625 crossref_primary_10_1109_ACCESS_2020_3006711 crossref_primary_10_1007_s00146_020_01069_w crossref_primary_10_1016_j_solener_2020_03_104 crossref_primary_10_1007_s00500_021_05770_w crossref_primary_10_1016_j_actaastro_2019_09_023 crossref_primary_10_1016_j_sigpro_2021_108231 crossref_primary_10_1016_j_jclepro_2024_140715 crossref_primary_10_1016_j_neunet_2023_03_030 crossref_primary_10_1088_2632_2153_abe6d7 crossref_primary_10_1016_j_acha_2023_04_004 crossref_primary_10_1016_j_icte_2021_03_003 crossref_primary_10_1021_acsestair_4c00365 crossref_primary_10_1088_2632_2153_ac4f69 crossref_primary_10_1140_epjc_s10052_025_13892_w crossref_primary_10_1016_j_powtec_2018_03_032 crossref_primary_10_1109_TITS_2019_2929020 crossref_primary_10_1007_s10462_023_10466_8 crossref_primary_10_3390_data8020035 crossref_primary_10_1016_j_asoc_2018_09_040 crossref_primary_10_3892_ol_2018_7762 crossref_primary_10_5194_ms_13_485_2022 crossref_primary_10_3390_electronics13204070 crossref_primary_10_1017_wsc_2018_66 crossref_primary_10_1016_j_techsoc_2022_102040 crossref_primary_10_1016_j_respol_2022_104604 crossref_primary_10_1016_j_jnucmat_2024_155573 crossref_primary_10_1080_03610926_2023_2280522 crossref_primary_10_3390_s21217108 crossref_primary_10_1007_s41871_023_00206_5 crossref_primary_10_3390_atmos11080870 crossref_primary_10_1007_s11265_017_1288_9 crossref_primary_10_1016_j_heliyon_2024_e26789 crossref_primary_10_3389_fncom_2023_1113381 crossref_primary_10_1109_COMST_2019_2904897 crossref_primary_10_1002_cnm_2956 crossref_primary_10_1002_ece3_7656 crossref_primary_10_1109_TMM_2019_2919431 crossref_primary_10_3390_sym16020248 crossref_primary_10_1016_j_igie_2023_11_007 crossref_primary_10_1109_ACCESS_2019_2913953 crossref_primary_10_1016_j_eswa_2022_117549 crossref_primary_10_1016_j_mser_2024_100880 crossref_primary_10_1186_s40317_021_00247_x crossref_primary_10_5194_amt_17_2539_2024 crossref_primary_10_1080_01431161_2021_1975845 crossref_primary_10_1016_j_measurement_2025_118380 crossref_primary_10_1016_j_neucom_2015_07_061 crossref_primary_10_1016_j_cherd_2020_07_019 crossref_primary_10_1007_s11548_021_02333_0 crossref_primary_10_1364_AO_519402 crossref_primary_10_1016_j_mio_2016_04_002 crossref_primary_10_3389_fpubh_2021_727274 crossref_primary_10_3390_make3040044 crossref_primary_10_1109_ACCESS_2020_3047205 crossref_primary_10_3233_IDT_210058 crossref_primary_10_1016_j_artint_2018_03_002 crossref_primary_10_1016_j_asoc_2018_06_003 crossref_primary_10_1007_s40687_018_0160_2 crossref_primary_10_1016_j_ijheatmasstransfer_2025_127163 crossref_primary_10_3390_forecast3020021 crossref_primary_10_3390_forecast3020024 crossref_primary_10_1007_s12559_024_10329_6 crossref_primary_10_3390_e26110984 crossref_primary_10_1007_s00034_018_0757_0 crossref_primary_10_1155_2020_1949863 crossref_primary_10_3390_app10051827 crossref_primary_10_3390_s20195523 crossref_primary_10_1016_j_hpj_2025_08_004 crossref_primary_10_1049_sil2_12125 crossref_primary_10_3389_fnins_2021_611300 crossref_primary_10_1007_s13198_022_01777_0 crossref_primary_10_1016_j_molliq_2024_124134 crossref_primary_10_3390_s19183897 crossref_primary_10_1016_j_catena_2022_106190 crossref_primary_10_1016_j_future_2020_01_055 crossref_primary_10_1016_j_agrformet_2025_110692 crossref_primary_10_1287_inte_2020_1038 crossref_primary_10_1016_j_patrec_2020_04_018 crossref_primary_10_1016_j_solener_2021_03_002 crossref_primary_10_1007_s11831_020_09506_1 crossref_primary_10_1016_j_amar_2021_100157 crossref_primary_10_1007_s00521_021_06557_8 crossref_primary_10_1109_TIP_2016_2558825 crossref_primary_10_1016_j_media_2023_102879 crossref_primary_10_1017_S143192761700558X crossref_primary_10_1109_TRPMS_2020_3030611 crossref_primary_10_1016_j_ascom_2024_100802 crossref_primary_10_7717_peerj_13470 crossref_primary_10_1109_LAWP_2021_3075370 crossref_primary_10_1063_5_0147316 crossref_primary_10_1109_MDAT_2020_3031857 crossref_primary_10_1016_j_asoc_2025_113607 crossref_primary_10_1155_2022_9505229 crossref_primary_10_1109_JSTARS_2022_3155967 crossref_primary_10_1007_s11235_025_01312_z crossref_primary_10_1587_transinf_2021EDL8054 crossref_primary_10_1002_biot_201400857 crossref_primary_10_1162_jocn_a_02285 crossref_primary_10_1080_19392699_2024_2353128 crossref_primary_10_1038_s41524_020_00438_9 crossref_primary_10_1109_TITS_2020_3018054 crossref_primary_10_1007_s11063_017_9707_2 crossref_primary_10_1109_TCBB_2020_3025007 crossref_primary_10_4236_health_2025_173012 crossref_primary_10_1007_s11042_022_12085_x crossref_primary_10_3390_rs14225821 crossref_primary_10_1007_s11042_023_15890_0 crossref_primary_10_1007_s11831_020_09496_0 crossref_primary_10_3390_atoms11100126 crossref_primary_10_1007_s10722_024_02042_y crossref_primary_10_3390_info11020095 crossref_primary_10_1093_sleep_zsac254 crossref_primary_10_1016_j_datak_2024_102364 crossref_primary_10_3390_ijerph15051032 crossref_primary_10_1007_s44163_024_00164_x crossref_primary_10_1088_2058_9565_ad5866 crossref_primary_10_1186_s41039_022_00202_1 crossref_primary_10_1016_j_trpro_2020_02_069 crossref_primary_10_1016_j_jcp_2020_109824 crossref_primary_10_1016_j_tej_2024_107449 crossref_primary_10_7717_peerj_cs_356 crossref_primary_10_1016_j_compag_2024_109370 crossref_primary_10_1080_17460441_2020_1758664 crossref_primary_10_1088_1748_9326_ac0eb0 crossref_primary_10_1088_1361_6501_ab8df9 crossref_primary_10_1007_s00266_024_04639_1 crossref_primary_10_1016_j_autcon_2017_11_002 crossref_primary_10_1002_smm2_1233 crossref_primary_10_1007_s11227_025_07752_3 crossref_primary_10_1088_1674_1056_ac9b32 crossref_primary_10_1016_j_envsoft_2024_106165 crossref_primary_10_3390_s22062099 crossref_primary_10_1080_00102202_2020_1822826 crossref_primary_10_1016_j_engappai_2023_107468 crossref_primary_10_1109_ACCESS_2019_2918784 crossref_primary_10_1016_j_asoc_2019_105487 crossref_primary_10_1016_j_ijfatigue_2022_106975 crossref_primary_10_3389_frai_2021_689398 crossref_primary_10_1007_s11518_019_5452_6 crossref_primary_10_1109_ACCESS_2020_2973270 crossref_primary_10_1175_JHM_D_19_0169_1 crossref_primary_10_1016_j_knosys_2024_112057 crossref_primary_10_1186_s13058_022_01509_z crossref_primary_10_1016_j_engappai_2024_108604 crossref_primary_10_1016_j_ucl_2020_09_004 crossref_primary_10_1142_S2591728525500069 crossref_primary_10_1063_5_0134198 crossref_primary_10_1016_j_neucom_2020_07_103 crossref_primary_10_3390_pr12091824 crossref_primary_10_1016_j_eswa_2023_120967 crossref_primary_10_1146_annurev_vision_082114_035447 crossref_primary_10_1016_j_jag_2022_102926 crossref_primary_10_1016_j_fertnstert_2023_06_009 crossref_primary_10_1016_j_neucom_2020_07_101 crossref_primary_10_1002_lpor_202200357 crossref_primary_10_1007_s12194_017_0394_5 crossref_primary_10_1016_j_ejmp_2018_03_012 crossref_primary_10_1109_ACCESS_2021_3070511 crossref_primary_10_1016_j_geoen_2025_214001 crossref_primary_10_1016_j_buildenv_2021_107601 crossref_primary_10_1016_j_trc_2021_103303 crossref_primary_10_1177_0361198118794057 crossref_primary_10_1109_TWC_2020_3039180 crossref_primary_10_1007_s11042_015_3117_0 crossref_primary_10_3390_rs11192193 crossref_primary_10_1097_MLR_0000000000001147 crossref_primary_10_1364_AO_394280 crossref_primary_10_3390_rs11192191 crossref_primary_10_1029_2020GL092032 crossref_primary_10_1109_TCDS_2021_3098743 crossref_primary_10_1007_s11042_024_19558_1 crossref_primary_10_1016_j_measurement_2021_110146 crossref_primary_10_1007_s11119_019_09666_6 crossref_primary_10_1109_ACCESS_2020_3029562 crossref_primary_10_3390_ma18092081 crossref_primary_10_3390_rs14092059 crossref_primary_10_3390_aerospace8120383 crossref_primary_10_3390_app9061163 crossref_primary_10_3390_rs13183771 crossref_primary_10_3389_fenvs_2015_00085 crossref_primary_10_1016_j_scriptamat_2021_114478 crossref_primary_10_1038_s41598_017_17876_z crossref_primary_10_3390_math13091414 crossref_primary_10_3389_fenvs_2015_00080 crossref_primary_10_3390_e23060711 crossref_primary_10_1007_s10915_020_01282_1 crossref_primary_10_1016_j_aquaeng_2021_102178 crossref_primary_10_1109_ACCESS_2021_3110473 crossref_primary_10_1016_j_fcr_2019_02_022 crossref_primary_10_3390_s21051592 crossref_primary_10_1016_j_chemosphere_2023_140926 crossref_primary_10_1016_j_neucom_2019_06_029 crossref_primary_10_1016_j_swevo_2021_100863 crossref_primary_10_1016_j_ssci_2019_01_007 crossref_primary_10_1088_1757_899X_1151_1_012041 crossref_primary_10_1002_solr_202300650 crossref_primary_10_1007_s10472_019_09665_3 crossref_primary_10_1016_j_chemer_2024_126190 crossref_primary_10_1016_j_fusengdes_2018_02_027 crossref_primary_10_1016_j_commatsci_2024_113056 crossref_primary_10_1016_j_ijmedinf_2019_05_022 crossref_primary_10_1029_2020SW002707 crossref_primary_10_1016_j_jclepro_2020_124206 crossref_primary_10_1007_s11869_023_01322_3 crossref_primary_10_1016_j_cma_2025_117799 crossref_primary_10_3389_frai_2021_667780 crossref_primary_10_1007_s12559_022_10026_2 crossref_primary_10_1109_JSTARS_2021_3051873 crossref_primary_10_7554_eLife_64812 crossref_primary_10_1016_j_neucom_2020_07_109 crossref_primary_10_3390_sym10090387 crossref_primary_10_3390_mti2030047 crossref_primary_10_1109_ACCESS_2018_2880563 crossref_primary_10_1007_s40687_022_00339_x crossref_primary_10_1007_s42484_023_00114_3 crossref_primary_10_3390_s20216134 crossref_primary_10_1016_j_ins_2018_05_057 crossref_primary_10_3389_fpls_2019_01176 crossref_primary_10_1016_j_conengprac_2019_07_016 crossref_primary_10_1088_2632_2153_aca6cd crossref_primary_10_3390_diagnostics15081037 crossref_primary_10_3389_fcvm_2022_1009131 crossref_primary_10_1016_j_neucom_2017_10_066 crossref_primary_10_1039_D0MH01451F crossref_primary_10_3390_app14146115 crossref_primary_10_1109_ACCESS_2018_2878254 crossref_primary_10_1109_JIOT_2021_3114420 crossref_primary_10_1007_s11269_021_02825_3 crossref_primary_10_1039_C8SC04175J crossref_primary_10_1088_1361_6501_ac4d5f crossref_primary_10_1016_j_compchemeng_2024_108715 crossref_primary_10_1109_ACCESS_2020_2985280 crossref_primary_10_3390_molecules25061375 crossref_primary_10_3390_pr11082275 crossref_primary_10_1016_j_fuel_2024_131026 crossref_primary_10_1007_s40747_022_00733_6 crossref_primary_10_1007_s40010_017_0431_0 crossref_primary_10_1016_j_neucom_2018_09_012 crossref_primary_10_3389_fneur_2025_1603536 crossref_primary_10_1088_1757_899X_352_1_012024 crossref_primary_10_3390_s22207754 crossref_primary_10_3390_app11157148 crossref_primary_10_1016_j_neucom_2021_10_126 crossref_primary_10_3354_meps14842 crossref_primary_10_1017_wet_2024_7 crossref_primary_10_1007_s13198_021_01484_2 crossref_primary_10_1016_j_enganabound_2024_105933 crossref_primary_10_1061_JTEPBS_TEENG_8277 crossref_primary_10_1016_j_ijleo_2018_04_092 crossref_primary_10_3892_mco_2019_1932 crossref_primary_10_1016_j_jobe_2022_105444 crossref_primary_10_1016_j_neucom_2018_09_025 crossref_primary_10_1007_s13042_019_01054_w crossref_primary_10_1016_j_neucom_2018_09_027 crossref_primary_10_1007_s10772_019_09645_2 crossref_primary_10_1109_TFUZZ_2019_2892348 crossref_primary_10_1007_s11831_020_09446_w crossref_primary_10_1007_s11548_017_1567_8 crossref_primary_10_1016_j_eswa_2019_03_050 crossref_primary_10_3390_electronics8050554 crossref_primary_10_1109_TIM_2022_3144211 crossref_primary_10_3390_aerospace7090132 crossref_primary_10_1109_ACCESS_2021_3104668 crossref_primary_10_1088_1742_6596_1661_1_012017 crossref_primary_10_1016_j_displa_2024_102895 crossref_primary_10_1016_j_glohj_2020_04_002 crossref_primary_10_1016_j_neucom_2018_09_038 crossref_primary_10_1016_j_procir_2023_06_184 crossref_primary_10_1109_TASLP_2017_2672398 crossref_primary_10_1109_TAFFC_2017_2751469 crossref_primary_10_1109_ACCESS_2020_3012701 crossref_primary_10_1109_TPDS_2021_3116865 crossref_primary_10_1007_s00158_024_03835_6 crossref_primary_10_1016_j_mehy_2019_109472 crossref_primary_10_1016_j_cie_2023_109714 crossref_primary_10_1016_j_enconman_2019_111793 crossref_primary_10_3390_life12081267 crossref_primary_10_1007_s11425_020_1865_1 crossref_primary_10_1016_j_procs_2023_01_163 crossref_primary_10_1038_s41598_023_39156_9 crossref_primary_10_3389_frvir_2024_1197547 crossref_primary_10_1080_08839514_2021_1922847 crossref_primary_10_1038_s41467_018_04482_4 crossref_primary_10_1007_s41064_018_0060_5 crossref_primary_10_1016_j_engstruct_2022_114311 crossref_primary_10_1109_ACCESS_2020_2974527 crossref_primary_10_1007_s11042_021_10707_4 crossref_primary_10_3847_1538_4357_ac7f9e crossref_primary_10_1109_TPEL_2020_3008194 crossref_primary_10_1007_s13042_018_0811_z crossref_primary_10_1016_j_scitotenv_2020_140317 crossref_primary_10_1016_j_renene_2025_124381 crossref_primary_10_3390_s21248214 crossref_primary_10_1007_s10462_018_09679_z crossref_primary_10_1007_s12530_024_09630_4 crossref_primary_10_1109_ACCESS_2019_2959238 crossref_primary_10_1016_j_knosys_2019_05_009 crossref_primary_10_1017_S1473550417000180 crossref_primary_10_2174_1574893618666230320103421 crossref_primary_10_1007_s42044_020_00065_z crossref_primary_10_1016_j_asoc_2019_03_015 crossref_primary_10_1016_j_cmpb_2018_02_001 crossref_primary_10_1016_j_forsciint_2020_110179 crossref_primary_10_1016_j_neuroimage_2015_12_036 crossref_primary_10_1007_s00761_021_00916_9 crossref_primary_10_1103_rzjx_9zz1 crossref_primary_10_1007_s10489_019_01552_y crossref_primary_10_1016_j_net_2025_103474 crossref_primary_10_1016_j_knosys_2020_105479 crossref_primary_10_1109_TMM_2019_2912124 crossref_primary_10_3390_app11219997 crossref_primary_10_1016_j_compstruct_2023_116770 crossref_primary_10_1016_j_neucom_2022_04_066 crossref_primary_10_3389_fmed_2022_846024 crossref_primary_10_1186_s13638_020_01706_4 crossref_primary_10_1016_j_rse_2022_113059 crossref_primary_10_1109_COMST_2019_2935810 crossref_primary_10_1016_j_jksuci_2023_101853 crossref_primary_10_1109_TCDS_2019_2934643 crossref_primary_10_1109_ACCESS_2020_2986546 crossref_primary_10_1109_MIM_2020_9126068 crossref_primary_10_1007_s00170_018_2420_0 crossref_primary_10_1016_j_knosys_2019_05_020 crossref_primary_10_1002_aelm_202300865 crossref_primary_10_1016_j_procs_2023_01_109 crossref_primary_10_1038_s41598_021_95128_x crossref_primary_10_1007_s12046_024_02657_y crossref_primary_10_1109_JPROC_2023_3321433 crossref_primary_10_1016_j_landurbplan_2023_104683 crossref_primary_10_1016_j_compbiomed_2018_07_001 crossref_primary_10_3390_mi14040789 crossref_primary_10_1109_TCBB_2018_2821127 crossref_primary_10_1109_TKDE_2018_2839599 crossref_primary_10_1007_s00784_023_05475_4 crossref_primary_10_1016_j_chemer_2024_126125 crossref_primary_10_1007_s00784_023_05355_x crossref_primary_10_1002_nag_3688 crossref_primary_10_1109_LWC_2017_2757490 crossref_primary_10_1016_j_esr_2020_100544 crossref_primary_10_1007_s12145_021_00658_7 crossref_primary_10_1093_bib_bbw068 crossref_primary_10_2166_hydro_2023_146 crossref_primary_10_1016_j_optcom_2021_127479 crossref_primary_10_1109_ACCESS_2018_2867564 crossref_primary_10_3390_rs12132140 crossref_primary_10_1038_s42256_019_0123_3 crossref_primary_10_1088_1402_4896_aca3da crossref_primary_10_1016_j_patcog_2017_07_008 crossref_primary_10_3233_JIFS_201717 crossref_primary_10_1093_bib_bbaa420 crossref_primary_10_1016_j_jhazmat_2023_133196 crossref_primary_10_1007_s10710_021_09401_z crossref_primary_10_1088_2632_2153_abd614 crossref_primary_10_3390_s20164493 crossref_primary_10_3390_s23156972 crossref_primary_10_1016_j_rineng_2024_103421 crossref_primary_10_1016_j_neunet_2025_107685 crossref_primary_10_3390_s19122712 crossref_primary_10_1016_j_oceaneng_2020_108234 crossref_primary_10_1016_j_compbiomed_2024_108093 crossref_primary_10_2478_acee_2025_0026 crossref_primary_10_3390_math10142547 crossref_primary_10_1016_j_dwt_2024_100059 crossref_primary_10_1016_j_jhydrol_2025_132719 crossref_primary_10_1007_s10489_021_02733_4 crossref_primary_10_1186_s40537_020_00361_2 crossref_primary_10_1109_ACCESS_2018_2867546 crossref_primary_10_1109_ACCESS_2020_2999829 crossref_primary_10_1007_s12652_021_02924_4 crossref_primary_10_3390_su15086647 crossref_primary_10_1016_j_jacadv_2024_101180 crossref_primary_10_1088_1742_6596_2236_1_012004 crossref_primary_10_1016_j_cej_2022_139099 crossref_primary_10_1109_COMST_2020_3008362 crossref_primary_10_2196_66100 crossref_primary_10_1002_hbm_23730 crossref_primary_10_1007_s10462_023_10513_4 crossref_primary_10_1587_nolta_9_24 crossref_primary_10_1038_s41562_021_01194_6 crossref_primary_10_1093_cercor_bhab232 crossref_primary_10_1016_j_applthermaleng_2025_128020 crossref_primary_10_1016_j_asoc_2022_109023 crossref_primary_10_1016_j_procir_2021_01_138 crossref_primary_10_3389_fncom_2025_1565660 crossref_primary_10_1520_JTE20190801 crossref_primary_10_1038_s41598_023_40528_4 crossref_primary_10_1016_j_actamat_2024_119877 crossref_primary_10_1109_TGRS_2023_3296520 crossref_primary_10_3390_ijerph16101688 crossref_primary_10_1177_23409444251341326 crossref_primary_10_3233_JIFS_169151 crossref_primary_10_1109_MGRS_2022_3218801 crossref_primary_10_3389_fmed_2022_830515 crossref_primary_10_1109_TEM_2019_2957842 crossref_primary_10_1002_cpe_7331 crossref_primary_10_1016_j_pmpp_2025_102940 crossref_primary_10_1049_cvi2_12028 crossref_primary_10_1109_ACCESS_2020_2963912 crossref_primary_10_3390_su9122309 crossref_primary_10_1007_s11432_020_2871_2 crossref_primary_10_3390_electronics11193057 crossref_primary_10_2466_10_IT_4_7 crossref_primary_10_3390_agronomy13041120 crossref_primary_10_3390_app9081526 crossref_primary_10_7717_peerj_17080 crossref_primary_10_3390_rs13163284 crossref_primary_10_1007_s11831_021_09587_6 crossref_primary_10_1007_s00332_018_9513_7 crossref_primary_10_1016_j_eswa_2018_10_003 crossref_primary_10_3390_cancers13040738 crossref_primary_10_1007_s10278_020_00332_2 crossref_primary_10_1109_ACCESS_2020_2992451 crossref_primary_10_3390_app9081523 crossref_primary_10_1016_j_jbusres_2022_04_012 crossref_primary_10_3390_s19122750 crossref_primary_10_4018_IJSWIS_359985 crossref_primary_10_1029_2020JB021473 crossref_primary_10_1016_j_agrformet_2024_109955 crossref_primary_10_1080_19368623_2020_1765226 crossref_primary_10_3390_math11132841 crossref_primary_10_1109_ACCESS_2022_3179356 crossref_primary_10_3389_fnbot_2023_1267561 crossref_primary_10_3390_ijgi10060388 crossref_primary_10_1016_j_enbuild_2018_03_065 crossref_primary_10_3390_hydrology10120230 crossref_primary_10_1016_j_neucom_2022_10_047 crossref_primary_10_3233_JIFS_169131 crossref_primary_10_1038_s41566_020_0604_2 crossref_primary_10_1002_jrs_6365 crossref_primary_10_1016_j_envpol_2022_119208 crossref_primary_10_1016_j_jhydrol_2018_10_054 crossref_primary_10_1177_10775463221074478 crossref_primary_10_1016_j_csbj_2022_05_057 crossref_primary_10_1016_j_ast_2019_105403 crossref_primary_10_3390_s22093275 crossref_primary_10_1016_j_procs_2021_01_345 crossref_primary_10_1109_TNNLS_2019_2927106 crossref_primary_10_1109_ACCESS_2019_2936536 crossref_primary_10_1016_j_neunet_2024_106408 crossref_primary_10_1007_s12520_021_01424_y crossref_primary_10_1016_j_compeleceng_2022_107741 crossref_primary_10_1002_minf_201600029 crossref_primary_10_1016_j_chempr_2020_08_008 crossref_primary_10_3390_rs15040888 crossref_primary_10_1093_aje_kwab271 crossref_primary_10_1109_TITS_2019_2962338 crossref_primary_10_1007_s10854_021_07623_6 crossref_primary_10_1007_s42835_019_00115_y crossref_primary_10_1016_j_media_2020_101891 crossref_primary_10_3390_app9102116 crossref_primary_10_1007_s41109_019_0134_3 crossref_primary_10_3390_electronics13183617 crossref_primary_10_3390_agronomy11091890 crossref_primary_10_1007_s10614_021_10116_7 crossref_primary_10_1016_j_media_2018_06_005 crossref_primary_10_1051_0004_6361_202346983 crossref_primary_10_1049_htl_2017_0020 crossref_primary_10_1109_ACCESS_2021_3139334 crossref_primary_10_1137_18M1222399 crossref_primary_10_3389_fnhum_2022_875201 crossref_primary_10_1007_s42979_023_02480_y crossref_primary_10_1002_ps_6804 crossref_primary_10_3389_fnins_2018_00774 crossref_primary_10_3390_jmse9111252 crossref_primary_10_1016_j_oceaneng_2024_118701 crossref_primary_10_3390_app11104660 crossref_primary_10_1016_j_ijer_2023_102275 crossref_primary_10_1016_j_ymssp_2023_110124 crossref_primary_10_1109_ACCESS_2020_3037922 crossref_primary_10_1177_0309324718798222 crossref_primary_10_1155_2019_7410701 crossref_primary_10_46604_aiti_2022_8308 crossref_primary_10_3390_sym17040523 crossref_primary_10_1016_j_bspc_2021_102677 crossref_primary_10_3390_electronics8121417 crossref_primary_10_1016_j_semradonc_2022_06_007 crossref_primary_10_1080_15252019_2022_2126337 crossref_primary_10_1364_AO_400563 crossref_primary_10_1109_ACCESS_2019_2924584 crossref_primary_10_3390_en11051253 crossref_primary_10_1109_TNNLS_2020_3009047 crossref_primary_10_1103_PhysRevResearch_2_013050 crossref_primary_10_1007_s11831_025_10378_6 crossref_primary_10_1109_TWC_2022_3160517 crossref_primary_10_1109_LGRS_2019_2961374 crossref_primary_10_1111_jfpe_13005 crossref_primary_10_1007_s00376_024_3380_y crossref_primary_10_1088_1757_899X_1043_3_032020 crossref_primary_10_3390_app122412744 crossref_primary_10_1016_j_neunet_2017_12_007 crossref_primary_10_1016_j_neunet_2018_03_004 crossref_primary_10_1016_j_neunet_2018_03_005 crossref_primary_10_3390_sym17040539 crossref_primary_10_1016_j_physleta_2020_126442 crossref_primary_10_1016_j_cobeha_2019_04_006 crossref_primary_10_1016_j_procs_2023_01_068 crossref_primary_10_3390_s20051495 crossref_primary_10_1016_j_oceaneng_2021_110321 crossref_primary_10_1049_rpg2_12875 crossref_primary_10_1145_3374748 crossref_primary_10_3390_su16177514 crossref_primary_10_3390_ijerph182413409 crossref_primary_10_1186_s12911_019_1007_5 crossref_primary_10_1371_journal_pcbi_1011950 crossref_primary_10_1007_s42405_019_00222_0 crossref_primary_10_1038_s41467_021_22332_8 crossref_primary_10_1093_mnras_stx2052 crossref_primary_10_1109_TNNLS_2017_2766168 crossref_primary_10_3390_en11071740 crossref_primary_10_1002_jrs_6335 crossref_primary_10_7717_peerj_cs_2014 crossref_primary_10_1080_2150704X_2023_2258460 crossref_primary_10_1016_j_tafmec_2023_103999 crossref_primary_10_1007_s00799_018_0242_1 crossref_primary_10_1109_TSM_2016_2628865 crossref_primary_10_1088_1742_6596_1969_1_012045 crossref_primary_10_1016_j_jmsy_2017_02_013 crossref_primary_10_3390_s20195609 crossref_primary_10_1016_j_neucom_2023_01_015 crossref_primary_10_1016_j_neucom_2020_07_049 crossref_primary_10_1038_s41467_023_43127_z crossref_primary_10_1109_JSEN_2023_3247728 crossref_primary_10_3390_cryst11111399 crossref_primary_10_3390_molecules26072065 crossref_primary_10_1016_j_rse_2020_112093 crossref_primary_10_3390_s21217024 crossref_primary_10_1016_j_media_2019_03_006 crossref_primary_10_1109_JIOT_2022_3224239 crossref_primary_10_1109_TIM_2020_3007292 crossref_primary_10_1007_s00371_024_03381_8 crossref_primary_10_1007_s12559_021_09974_y crossref_primary_10_1080_00207543_2022_2079012 crossref_primary_10_1109_TNSRE_2021_3112167 crossref_primary_10_1063_5_0206287 crossref_primary_10_1103_PhysRevX_12_031010 crossref_primary_10_1109_ACCESS_2021_3111898 crossref_primary_10_3390_foods13193025 crossref_primary_10_1259_dmfr_20200185 crossref_primary_10_1016_j_neunet_2021_09_003 crossref_primary_10_3389_feart_2021_728643 crossref_primary_10_1016_j_ins_2019_02_041 crossref_primary_10_3233_JIFS_189503 crossref_primary_10_3390_sym10120738 crossref_primary_10_3389_fnins_2020_00259 crossref_primary_10_3390_sym12030358 crossref_primary_10_1016_j_jmgm_2017_07_015 crossref_primary_10_1002_cnm_2827 crossref_primary_10_1111_jmi_13007 crossref_primary_10_1146_annurev_biodatasci_022020_021940 crossref_primary_10_1016_j_neunet_2021_09_013 crossref_primary_10_1007_s42979_020_00444_0 crossref_primary_10_1016_j_aei_2018_06_004 crossref_primary_10_1111_coin_12392 crossref_primary_10_1155_int_9674462 crossref_primary_10_1016_j_cmpb_2017_11_003 crossref_primary_10_3390_a17050187 crossref_primary_10_1016_j_csl_2019_101057 crossref_primary_10_34133_icomputing_0123 crossref_primary_10_1016_j_neunet_2021_09_018 crossref_primary_10_1038_s41598_020_79452_2 crossref_primary_10_3390_s21062187 crossref_primary_10_1007_s11219_023_09642_4 crossref_primary_10_1177_0361198120947421 crossref_primary_10_3390_molecules30051092 crossref_primary_10_1007_s11063_023_11361_7 crossref_primary_10_1109_ACCESS_2019_2954353 crossref_primary_10_1007_s11063_019_10062_4 crossref_primary_10_1242_jeb_245409 crossref_primary_10_1007_s11694_025_03193_x crossref_primary_10_3233_JHS_180594 crossref_primary_10_1016_j_neucom_2020_07_053 crossref_primary_10_1038_s42005_020_00428_9 crossref_primary_10_1088_1755_1315_143_1_012025 crossref_primary_10_1007_s11101_024_10006_4 crossref_primary_10_1109_ACCESS_2020_3011374 crossref_primary_10_1109_JSYST_2019_2905565 crossref_primary_10_3390_app12126028 crossref_primary_10_1109_TITS_2019_2961060 crossref_primary_10_1007_s12559_017_9472_6 crossref_primary_10_1027_1015_5759_a000608 crossref_primary_10_1016_j_neucom_2017_01_032 crossref_primary_10_1016_j_neunet_2015_09_011 crossref_primary_10_1109_TVCG_2020_3027069 crossref_primary_10_3390_s20071956 crossref_primary_10_1007_s11571_021_09698_7 crossref_primary_10_1016_j_specom_2021_05_010 crossref_primary_10_1061_JCEMD4_COENG_12542 crossref_primary_10_1155_2021_4547030 crossref_primary_10_1109_ACCESS_2020_2978112 crossref_primary_10_1016_j_enbuild_2022_112188 crossref_primary_10_1109_ACCESS_2020_3035347 crossref_primary_10_1016_j_coisb_2017_08_009 crossref_primary_10_1134_S1061830922060109 crossref_primary_10_1016_j_ige_2024_10_001 crossref_primary_10_1109_ACCESS_2022_3227427 crossref_primary_10_1109_TNNLS_2016_2574840 crossref_primary_10_3390_diagnostics12092262 crossref_primary_10_3389_fspor_2021_809898 crossref_primary_10_1007_s12539_018_0313_4 crossref_primary_10_1016_j_jweia_2024_105752 crossref_primary_10_1016_j_gsd_2023_101062 crossref_primary_10_1016_j_engappai_2024_108616 crossref_primary_10_1016_j_memsci_2024_123256 crossref_primary_10_3390_s22229019 crossref_primary_10_3390_s18072080 crossref_primary_10_1364_JOCN_11_000C48 crossref_primary_10_2478_ausi_2018_0002 crossref_primary_10_3390_s20195633 crossref_primary_10_1016_j_enbuild_2022_112197 crossref_primary_10_1177_20503121241274197 crossref_primary_10_1007_s11831_022_09841_5 crossref_primary_10_1016_j_jcp_2019_109119 crossref_primary_10_3390_s22218337 crossref_primary_10_1155_2019_8325218 crossref_primary_10_1109_ACCESS_2020_3023376 crossref_primary_10_1016_j_neucom_2023_01_032 crossref_primary_10_1145_3234150 crossref_primary_10_3390_app112110264 crossref_primary_10_3233_JIFS_190548 crossref_primary_10_1038_s41598_021_95978_5 crossref_primary_10_1016_j_jormas_2022_08_007 crossref_primary_10_1029_2018WR022643 crossref_primary_10_1155_2020_5491963 crossref_primary_10_3390_ijgi10060358 crossref_primary_10_1002_admt_202101108 crossref_primary_10_1007_s10278_019_00254_8 crossref_primary_10_1007_s00371_021_02316_x crossref_primary_10_1109_TCDS_2016_2636291 crossref_primary_10_1177_14613484211032758 crossref_primary_10_3390_pharmaceutics15071916 crossref_primary_10_1038_s41598_024_74778_7 crossref_primary_10_1109_TDSC_2018_2816656 crossref_primary_10_1007_s10472_022_09786_2 crossref_primary_10_1016_j_ins_2016_08_055 crossref_primary_10_1371_journal_pone_0296760 crossref_primary_10_1016_j_comnet_2025_111723 crossref_primary_10_1016_j_biortech_2024_132028 crossref_primary_10_1016_j_patcog_2016_02_001 crossref_primary_10_1002_adma_202006201 crossref_primary_10_1007_s40314_019_0946_x crossref_primary_10_1016_j_autcon_2021_103883 crossref_primary_10_1016_j_compag_2024_109494 crossref_primary_10_1080_13588265_2022_2131262 crossref_primary_10_1007_s10661_022_10813_2 crossref_primary_10_1109_ACCESS_2018_2881561 crossref_primary_10_2118_212870_PA crossref_primary_10_1063_5_0148469 crossref_primary_10_1080_21681163_2024_2330524 crossref_primary_10_1007_s10463_022_00828_4 crossref_primary_10_1016_j_conbuildmat_2020_120647 crossref_primary_10_1016_j_infrared_2018_12_011 crossref_primary_10_1016_j_neunet_2020_06_003 crossref_primary_10_1016_j_asoc_2021_108129 crossref_primary_10_3389_fonc_2023_1278180 crossref_primary_10_1007_s00521_019_04383_7 crossref_primary_10_1016_j_iot_2024_101192 crossref_primary_10_1088_1742_6596_2739_1_012054 crossref_primary_10_1016_j_envsoft_2024_106289 crossref_primary_10_1016_j_jnucmat_2025_155692 crossref_primary_10_1155_2020_8403262 crossref_primary_10_1109_TGRS_2022_3162833 crossref_primary_10_2118_205015_PA crossref_primary_10_1007_s12652_022_03868_z crossref_primary_10_1007_s42979_020_00435_1 crossref_primary_10_1038_s41377_024_01547_6 crossref_primary_10_1016_j_ast_2025_110075 crossref_primary_10_1016_j_diin_2018_04_024 crossref_primary_10_1155_2017_1895897 crossref_primary_10_1002_adma_202510239 crossref_primary_10_3390_brainsci12070834 crossref_primary_10_1088_1402_4896_ad61a0 crossref_primary_10_1016_j_isprsjprs_2019_09_009 crossref_primary_10_1080_00330124_2021_2009888 crossref_primary_10_1109_ACCESS_2022_3186323 crossref_primary_10_1016_j_physa_2024_130166 crossref_primary_10_3390_agriculture13020352 crossref_primary_10_1088_1742_6596_1750_1_012048 crossref_primary_10_1002_stc_2230 crossref_primary_10_1039_C9NR05912A crossref_primary_10_1155_2021_5868501 crossref_primary_10_1016_j_bspc_2023_104653 crossref_primary_10_1016_j_neucom_2018_04_030 crossref_primary_10_1080_02286203_2024_2371682 crossref_primary_10_1186_s40537_018_0150_7 crossref_primary_10_1016_j_swevo_2024_101616 crossref_primary_10_1016_j_ifacol_2024_07_254 crossref_primary_10_1016_j_isprsjprs_2019_09_006 crossref_primary_10_1155_2022_8013640 crossref_primary_10_1093_schbul_sby171 crossref_primary_10_1016_j_neucom_2020_01_126 crossref_primary_10_1007_s11227_020_03300_3 crossref_primary_10_1117_1_JRS_16_038503 crossref_primary_10_1007_s10994_022_06135_6 crossref_primary_10_1109_JSYST_2020_3043827 crossref_primary_10_1016_j_ajp_2022_103021 crossref_primary_10_1007_s11467_021_1150_1 crossref_primary_10_1109_TG_2019_2896986 crossref_primary_10_1016_j_pmcj_2024_101920 crossref_primary_10_1002_asmb_2607 crossref_primary_10_1016_j_jksuci_2022_12_010 crossref_primary_10_1016_j_ins_2020_03_018 crossref_primary_10_1016_j_ins_2022_08_074 crossref_primary_10_3389_fsurg_2023_1102711 crossref_primary_10_1002_cjce_25562 crossref_primary_10_1186_s40537_022_00602_6 crossref_primary_10_1007_s40333_025_0009_7 crossref_primary_10_3389_fbioe_2020_00898 crossref_primary_10_3390_math11173648 crossref_primary_10_1016_j_neucom_2019_12_137 crossref_primary_10_1016_j_patcog_2018_07_025 crossref_primary_10_1007_s00500_021_05760_y crossref_primary_10_1016_j_robot_2019_03_005 crossref_primary_10_3390_foods12061242 crossref_primary_10_1007_s10706_020_01544_7 crossref_primary_10_1016_j_ins_2020_12_019 crossref_primary_10_1007_s12652_018_0878_0 crossref_primary_10_1088_1742_6596_1684_1_012059 crossref_primary_10_3233_IDA_194961 crossref_primary_10_1007_s12553_020_00509_3 crossref_primary_10_1109_ACCESS_2020_3005664 crossref_primary_10_1016_j_epsr_2024_111185 crossref_primary_10_1088_1742_6596_3027_1_012012 crossref_primary_10_1155_2020_8851475 crossref_primary_10_1088_1742_6596_3027_1_012013 crossref_primary_10_3390_ijerph192215395 crossref_primary_10_1007_s11063_020_10335_3 crossref_primary_10_1016_j_brat_2025_104752 crossref_primary_10_1016_j_neunet_2021_10_026 crossref_primary_10_1016_j_enbuild_2024_114491 crossref_primary_10_1002_eqe_3415 crossref_primary_10_3390_app10051657 crossref_primary_10_1016_j_bspc_2023_104693 crossref_primary_10_1109_ACCESS_2018_2879221 crossref_primary_10_3390_molecules23082055 crossref_primary_10_1016_j_neucom_2019_12_118 crossref_primary_10_1016_j_ultras_2018_12_001 crossref_primary_10_1016_j_scs_2024_106057 crossref_primary_10_1287_mksc_2022_1378 crossref_primary_10_1016_j_aca_2019_06_012 crossref_primary_10_3390_s22207877 crossref_primary_10_1111_2041_210X_13256 crossref_primary_10_1038_s41598_022_13919_2 crossref_primary_10_1190_geo2017_0666_1 crossref_primary_10_1007_s11663_022_02571_w crossref_primary_10_3233_JIFS_201679 crossref_primary_10_1177_0967033518762617 crossref_primary_10_3390_s21093087 crossref_primary_10_1002_dac_4972 crossref_primary_10_1016_j_cities_2022_103925 crossref_primary_10_1007_s10462_024_10818_y crossref_primary_10_1016_j_jobe_2021_103098 crossref_primary_10_3233_IDA_194940 crossref_primary_10_1088_2632_072X_acacdf crossref_primary_10_1109_TII_2017_2774242 crossref_primary_10_1109_COMST_2021_3053118 crossref_primary_10_1016_j_enbuild_2024_114474 crossref_primary_10_7769_gesec_v16i6_4991 crossref_primary_10_1371_journal_pone_0233166 crossref_primary_10_1093_bib_bbaa125 crossref_primary_10_1007_s42484_021_00041_1 crossref_primary_10_1287_opre_2021_2217 crossref_primary_10_1002_prot_26694 crossref_primary_10_1016_j_epsr_2020_106788 crossref_primary_10_1038_s41386_020_0767_z crossref_primary_10_1016_j_csda_2022_107447 crossref_primary_10_1109_TC_2020_3044142 crossref_primary_10_3390_nu17162651 crossref_primary_10_1007_s00500_023_08619_6 crossref_primary_10_3390_s20144017 crossref_primary_10_1007_s00009_021_01717_5 crossref_primary_10_1016_j_techfore_2020_120555 crossref_primary_10_3390_s23115094 crossref_primary_10_1016_j_arcontrol_2022_03_005 crossref_primary_10_1111_mice_12903 crossref_primary_10_3390_rs14225673 crossref_primary_10_1109_ACCESS_2021_3130605 crossref_primary_10_1145_3042064 crossref_primary_10_1109_TSP_2021_3099630 crossref_primary_10_1007_s10055_024_01044_6 crossref_primary_10_3390_diagnostics11081402 crossref_primary_10_1016_j_specom_2022_02_006 crossref_primary_10_1002_advs_202003097 crossref_primary_10_1093_tse_tdac050 crossref_primary_10_1680_jenes_19_00023 crossref_primary_10_1016_j_birob_2024_100145 crossref_primary_10_1016_j_future_2019_06_030 crossref_primary_10_1016_j_jobe_2020_101827 crossref_primary_10_1016_j_radphyschem_2021_109539 crossref_primary_10_1002_cite_201800089 crossref_primary_10_1109_JOE_2021_3073931 crossref_primary_10_3847_1538_4365_ab26b6 crossref_primary_10_1007_s00330_020_06986_4 crossref_primary_10_1016_j_ijheatmasstransfer_2018_02_115 crossref_primary_10_1080_21691401_2025_2533361 crossref_primary_10_1287_mnsc_2020_3696 crossref_primary_10_1002_adfm_202108044 crossref_primary_10_3390_app12052646 crossref_primary_10_2166_wcc_2022_106 crossref_primary_10_1016_j_jenvman_2023_119714 crossref_primary_10_1088_1742_6596_2653_1_012032 crossref_primary_10_1007_s10712_021_09670_4 crossref_primary_10_1007_s13246_018_0691_2 crossref_primary_10_1016_j_neunet_2021_10_016 crossref_primary_10_1038_srep32672 crossref_primary_10_1016_j_jastp_2019_105062 crossref_primary_10_3389_fnbot_2019_00095 crossref_primary_10_5194_jsss_14_119_2025 crossref_primary_10_1155_2022_8500272 crossref_primary_10_1016_j_procs_2019_06_021 crossref_primary_10_1109_ACCESS_2019_2960113 crossref_primary_10_1016_j_autcon_2023_104901 crossref_primary_10_1080_15325008_2023_2168091 crossref_primary_10_1016_j_jvcir_2018_11_011 crossref_primary_10_1038_s41598_022_17013_5 crossref_primary_10_1007_s11042_018_7142_7 crossref_primary_10_1016_j_jbusres_2021_07_024 crossref_primary_10_3846_jcem_2021_14649 crossref_primary_10_1016_j_mseb_2024_117536 crossref_primary_10_1088_1742_6596_880_1_012018 crossref_primary_10_1016_j_oregeorev_2021_104300 crossref_primary_10_1111_exsy_70140 crossref_primary_10_1016_j_physa_2023_129308 crossref_primary_10_1093_bib_bbab420 crossref_primary_10_3390_electronics12183830 crossref_primary_10_1007_s11063_019_10036_6 crossref_primary_10_1016_j_knosys_2020_105596 crossref_primary_10_1016_j_cose_2020_101994 crossref_primary_10_1109_TII_2019_2910524 crossref_primary_10_1016_j_renene_2022_03_088 crossref_primary_10_1007_s00521_021_06137_w crossref_primary_10_1109_TII_2019_2908211 crossref_primary_10_1186_s43074_024_00139_2 crossref_primary_10_1002_mrm_28117 crossref_primary_10_1016_j_compstruc_2021_106484 crossref_primary_10_3390_en13246654 crossref_primary_10_1016_j_jqsrt_2021_107841 crossref_primary_10_1007_s11042_021_11413_x crossref_primary_10_1016_j_matdes_2021_110078 crossref_primary_10_3390_biomedicines11020356 crossref_primary_10_1049_ipr2_12134 crossref_primary_10_3103_S000510551903004X crossref_primary_10_1016_j_nucengdes_2024_112982 crossref_primary_10_1007_s13738_018_1397_9 crossref_primary_10_1186_s42492_019_0023_8 crossref_primary_10_1109_ACCESS_2017_2762418 crossref_primary_10_3390_ijerph192215301 crossref_primary_10_1016_j_compeleceng_2019_02_015 crossref_primary_10_1093_condor_duy004 crossref_primary_10_1088_1742_6596_1804_1_012120 crossref_primary_10_1016_j_enconman_2019_02_032 crossref_primary_10_1109_ACCESS_2019_2906645 crossref_primary_10_3390_jcm7090277 crossref_primary_10_1007_s00521_023_08398_z crossref_primary_10_1162_neco_a_01367 crossref_primary_10_1016_j_uclim_2024_102039 crossref_primary_10_1080_01431161_2017_1399472 crossref_primary_10_1088_2040_8986_ab8b7f crossref_primary_10_1016_j_cej_2025_163749 crossref_primary_10_1016_j_trc_2018_10_017 crossref_primary_10_1007_s10489_020_02154_9 crossref_primary_10_1007_s00500_019_04101_4 crossref_primary_10_1109_ACCESS_2020_3027044 crossref_primary_10_1109_ACCESS_2021_3056516 crossref_primary_10_1109_ACCESS_2019_2906654 crossref_primary_10_3390_electronics8121499 crossref_primary_10_1016_j_renene_2022_10_066 crossref_primary_10_1007_s10846_021_01398_y crossref_primary_10_3138_cjccj_2020_0011 crossref_primary_10_1080_0013791X_2019_1620391 crossref_primary_10_3390_math11071680 crossref_primary_10_1002_mrm_29498 crossref_primary_10_1002_ppap_70057 crossref_primary_10_1016_j_measurement_2020_108086 crossref_primary_10_32604_cmes_2025_059414 crossref_primary_10_3389_fmats_2022_851085 crossref_primary_10_3389_frsen_2025_1578841 crossref_primary_10_1016_j_biotechadv_2021_107739 crossref_primary_10_1109_TGRS_2018_2874950 crossref_primary_10_1155_2024_6750409 crossref_primary_10_3390_computation10100186 crossref_primary_10_1016_j_jobe_2021_103014 crossref_primary_10_1109_TIE_2022_3206696 crossref_primary_10_1016_j_neunet_2024_106154 crossref_primary_10_1109_ACCESS_2021_3085085 crossref_primary_10_1126_science_abe2629 crossref_primary_10_1016_j_frl_2021_102209 crossref_primary_10_1007_s00521_022_07511_y crossref_primary_10_3389_fphy_2024_1369099 crossref_primary_10_1121_1_5036725 crossref_primary_10_1007_s00340_021_07596_8 crossref_primary_10_3390_mi15040430 crossref_primary_10_1016_j_compind_2021_103498 crossref_primary_10_1109_TCDS_2017_2785332 crossref_primary_10_1109_ACCESS_2019_2917311 crossref_primary_10_1002_mp_16405 crossref_primary_10_1109_ACCESS_2021_3073090 crossref_primary_10_1186_s40537_020_0286_0 crossref_primary_10_1016_j_cose_2020_101943 crossref_primary_10_1016_j_engstruct_2021_113064 crossref_primary_10_1016_j_jvcir_2018_11_041 crossref_primary_10_1155_je_5604741 crossref_primary_10_1016_j_pdisas_2024_100347 crossref_primary_10_3390_pr12010062 crossref_primary_10_1016_j_artmed_2021_102156 crossref_primary_10_1016_j_artmed_2021_102157 crossref_primary_10_1016_j_rse_2019_111599 crossref_primary_10_1007_s00287_022_01438_3 crossref_primary_10_1002_rob_22013 crossref_primary_10_61790_vt_2025_17681 crossref_primary_10_1080_00207179_2023_2201644 crossref_primary_10_1007_s40313_021_00719_8 crossref_primary_10_1016_j_cageo_2023_105450 crossref_primary_10_3390_healthcare10010010 crossref_primary_10_2514_1_J061075 crossref_primary_10_1016_j_neucom_2023_127207 crossref_primary_10_1111_mice_12995 crossref_primary_10_1177_1687814019864465 crossref_primary_10_1007_s10033_017_0150_0 crossref_primary_10_1515_cppm_2020_0070 crossref_primary_10_1016_j_ins_2024_120367 crossref_primary_10_1109_ACCESS_2023_3318486 crossref_primary_10_1016_j_annals_2021_103255 crossref_primary_10_1016_j_conb_2015_04_003 crossref_primary_10_3390_s19235300 crossref_primary_10_1002_admt_202000262 crossref_primary_10_1016_j_rineng_2025_105629 crossref_primary_10_1177_1475921720916923 crossref_primary_10_1089_big_2020_0159 crossref_primary_10_1016_j_heliyon_2024_e25276 crossref_primary_10_1016_j_csbj_2020_08_003 crossref_primary_10_1016_j_procs_2017_09_066 crossref_primary_10_1007_s10844_024_00908_2 crossref_primary_10_1016_j_bbe_2019_12_004 crossref_primary_10_3390_s24175752 crossref_primary_10_1109_TSMC_2019_2919940 crossref_primary_10_1016_j_engappai_2025_110755 crossref_primary_10_1016_j_eswa_2018_03_056 crossref_primary_10_1371_journal_pone_0264219 crossref_primary_10_1109_TNNLS_2021_3049281 crossref_primary_10_1007_s00366_020_01272_9 crossref_primary_10_1088_1742_6596_1883_1_012141 crossref_primary_10_1016_j_comcom_2022_12_010 crossref_primary_10_1016_j_mineng_2018_12_004 crossref_primary_10_1007_s11042_023_14940_x crossref_primary_10_1016_j_oceaneng_2016_04_030 crossref_primary_10_1080_0952813X_2018_1544283 crossref_primary_10_1155_2018_6401645 crossref_primary_10_1080_0305215X_2021_1988587 crossref_primary_10_3390_s18061745 crossref_primary_10_1016_j_ifacol_2023_10_1248 crossref_primary_10_1080_07038992_2020_1865141 crossref_primary_10_3389_fnins_2023_1160899 crossref_primary_10_1088_1741_2552_aae5d8 crossref_primary_10_1063_5_0065634 crossref_primary_10_1186_s40537_021_00512_z crossref_primary_10_4137_BECB_S31601 crossref_primary_10_1007_s11063_020_10263_2 crossref_primary_10_1007_s11069_023_05856_8 crossref_primary_10_1007_s11063_019_10130_9 crossref_primary_10_1007_s00238_023_02152_3 crossref_primary_10_3390_app13137891 crossref_primary_10_1038_s41467_021_23831_4 crossref_primary_10_1080_13658816_2020_1768260 crossref_primary_10_3390_s25072262 crossref_primary_10_1080_10298436_2021_1877704 crossref_primary_10_1016_j_biosystemseng_2021_12_005 crossref_primary_10_1007_s11042_019_07814_8 crossref_primary_10_1016_j_mtcomm_2024_109904 crossref_primary_10_1109_JPROC_2015_2444094 crossref_primary_10_1016_j_segan_2024_101353 crossref_primary_10_1002_lpor_202000249 crossref_primary_10_1016_j_cossms_2017_01_003 crossref_primary_10_1186_s40537_018_0127_6 crossref_primary_10_1016_j_autcon_2018_02_018 crossref_primary_10_1177_18724981241305875 crossref_primary_10_1007_s12065_021_00634_6 crossref_primary_10_3390_metrology5030040 crossref_primary_10_35784_jcsi_2634 crossref_primary_10_1051_epjconf_202022501004 crossref_primary_10_1007_s00500_020_05348_y crossref_primary_10_1007_s00521_020_04905_8 crossref_primary_10_1007_s11042_022_12502_1 crossref_primary_10_3390_app10031142 crossref_primary_10_1080_10106049_2021_1975832 crossref_primary_10_1177_1946756719897402 crossref_primary_10_1109_ACCESS_2024_3408948 crossref_primary_10_3390_s21196432 crossref_primary_10_1007_s00521_022_08067_7 crossref_primary_10_3846_aviation_2018_2048 crossref_primary_10_3390_sym12111923 crossref_primary_10_1177_0263276420966386 crossref_primary_10_1109_TGRS_2021_3116349 crossref_primary_10_1088_1361_6528_aa8334 crossref_primary_10_1088_1361_6560_ab9066 crossref_primary_10_1631_FITEE_1800743 crossref_primary_10_1177_20552076221102766 crossref_primary_10_1109_ACCESS_2019_2962734 crossref_primary_10_1016_j_eswa_2021_116104 crossref_primary_10_1103_PhysRevResearch_3_013200 crossref_primary_10_1016_j_buildenv_2019_106216 crossref_primary_10_1109_ACCESS_2019_2924492 crossref_primary_10_1051_matecconf_202030905007 crossref_primary_10_3390_jcm14103380 crossref_primary_10_1109_ACCESS_2020_3011438 crossref_primary_10_3390_s18061703 crossref_primary_10_1007_s10664_020_09881_0 crossref_primary_10_1038_s41598_021_00018_x crossref_primary_10_5194_hess_28_3051_2024 crossref_primary_10_1155_2022_8931035 crossref_primary_10_3389_fpsyg_2016_00925 crossref_primary_10_1016_j_media_2020_101733 crossref_primary_10_1007_s10483_025_3240_7 crossref_primary_10_1097_RMR_0000000000000290 crossref_primary_10_1002_sim_7915 crossref_primary_10_1186_s12874_024_02183_9 crossref_primary_10_1080_01694243_2021_1996795 crossref_primary_10_1098_rsif_2017_0387 crossref_primary_10_1007_s00521_025_11125_5 crossref_primary_10_3390_bdcc3040051 crossref_primary_10_7717_peerj_cs_1048 crossref_primary_10_1016_j_cie_2025_111532 crossref_primary_10_1007_s10825_019_01350_2 crossref_primary_10_1016_j_psep_2024_06_052 crossref_primary_10_1007_s10462_022_10293_3 crossref_primary_10_1093_ckj_sfad153 crossref_primary_10_1007_s11664_022_09635_2 crossref_primary_10_1016_j_optcom_2023_129634 crossref_primary_10_7717_peerj_cs_2371 crossref_primary_10_1002_srin_202100078 crossref_primary_10_1002_ima_22490 crossref_primary_10_1016_j_inffus_2017_10_006 crossref_primary_10_1016_j_compmedimag_2019_101645 crossref_primary_10_1016_j_jprocont_2021_06_004 crossref_primary_10_1007_s11356_022_24065_7 crossref_primary_10_1007_s00530_024_01645_w crossref_primary_10_3390_jcm9072146 crossref_primary_10_1016_j_memsci_2022_120981 crossref_primary_10_1007_s00521_020_04788_9 crossref_primary_10_1002_aisy_202000247 crossref_primary_10_1088_1748_0221_14_10_P10034 crossref_primary_10_1007_s11042_023_14655_z crossref_primary_10_1016_j_cej_2024_148652 crossref_primary_10_1080_15440478_2020_1727817 crossref_primary_10_1016_j_jbi_2017_08_014 crossref_primary_10_3390_math11051245 crossref_primary_10_1007_s12206_025_0128_2 crossref_primary_10_1109_TIFS_2022_3176191 crossref_primary_10_1016_j_compmedimag_2019_101658 crossref_primary_10_1145_3296957_3173212 crossref_primary_10_3390_inventions3030041 crossref_primary_10_1007_s12145_024_01671_2 crossref_primary_10_1155_2022_3710968 crossref_primary_10_1002_joc_7932 crossref_primary_10_1038_s41583_023_00705_w crossref_primary_10_1016_j_enconman_2021_114315 crossref_primary_10_1016_j_optcom_2020_125272 crossref_primary_10_1109_TSG_2021_3107908 crossref_primary_10_1155_2022_8952849 crossref_primary_10_1109_ACCESS_2021_3093461 crossref_primary_10_1155_2019_6212759 crossref_primary_10_1016_j_patrec_2024_10_005 crossref_primary_10_1038_s41524_020_00423_2 crossref_primary_10_1155_2016_9306205 crossref_primary_10_1016_j_trc_2018_07_022 crossref_primary_10_1016_j_neunet_2023_06_036 crossref_primary_10_1109_LAWP_2019_2916369 crossref_primary_10_1109_TMM_2022_3164798 crossref_primary_10_1109_TITS_2022_3177647 crossref_primary_10_3390_min12081012 crossref_primary_10_1109_ACCESS_2019_2955555 crossref_primary_10_3390_s24010226 crossref_primary_10_1007_s11630_022_1703_9 crossref_primary_10_3390_electronics8030292 crossref_primary_10_2514_1_C038235 crossref_primary_10_1016_j_neunet_2019_08_024 crossref_primary_10_1587_nolta_16_13 crossref_primary_10_1155_2020_8888811 crossref_primary_10_1109_ACCESS_2019_2891914 crossref_primary_10_1007_s10462_021_09989_9 crossref_primary_10_1016_j_apenergy_2023_121519 crossref_primary_10_3390_ani10122241 crossref_primary_10_1007_s11227_020_03388_7 crossref_primary_10_1007_s00500_021_06193_3 crossref_primary_10_1016_j_talanta_2022_124057 crossref_primary_10_1017_eds_2024_24 crossref_primary_10_1016_j_metrad_2025_100151 crossref_primary_10_1016_j_neunet_2019_08_019 crossref_primary_10_1155_2018_6142724 crossref_primary_10_3390_en13123221 crossref_primary_10_1371_journal_pone_0254841 crossref_primary_10_1016_j_image_2018_05_015 crossref_primary_10_17221_45_2021_VETMED crossref_primary_10_1016_j_neunet_2019_08_015 crossref_primary_10_1016_j_knosys_2017_06_018 crossref_primary_10_1186_s12903_022_02466_x crossref_primary_10_1109_JSTQE_2019_2921376 crossref_primary_10_1109_JSTQE_2019_2946655 crossref_primary_10_1007_s12652_021_03398_0 crossref_primary_10_1016_j_neucom_2025_129440 crossref_primary_10_1007_s13278_024_01338_2 crossref_primary_10_1007_s10342_021_01431_7 crossref_primary_10_1016_j_neucom_2019_12_094 crossref_primary_10_1051_0004_6361_202243461 crossref_primary_10_1155_2022_7020979 crossref_primary_10_1007_s00432_023_05339_0 crossref_primary_10_1016_j_optlastec_2017_10_011 crossref_primary_10_1186_s12877_018_0915_z crossref_primary_10_1080_0952813X_2018_1509897 crossref_primary_10_1109_TNNLS_2017_2764960 crossref_primary_10_3389_fncom_2022_900885 crossref_primary_10_1097_ICU_0000000000000791 crossref_primary_10_1063_5_0088304 crossref_primary_10_1016_j_autcon_2021_103961 crossref_primary_10_1007_s11831_024_10169_5 crossref_primary_10_1016_j_compeleceng_2024_109836 crossref_primary_10_1016_j_ces_2024_120568 crossref_primary_10_1371_journal_pone_0204596 crossref_primary_10_1140_epjs_s11734_021_00162_5 crossref_primary_10_2478_forma_2022_0002 crossref_primary_10_1109_TCSS_2018_2857473 crossref_primary_10_3390_computers13060145 crossref_primary_10_1016_j_jhazmat_2021_126425 crossref_primary_10_1038_s41586_022_05340_6 crossref_primary_10_31857_S0005231023090039 crossref_primary_10_3389_fenvs_2022_1039249 crossref_primary_10_4018_IJTHI_319358 crossref_primary_10_1038_s41398_024_02992_y crossref_primary_10_1088_1361_6528_ad2c52 crossref_primary_10_1016_j_asoc_2024_112249 crossref_primary_10_1155_2021_6690539 crossref_primary_10_1016_j_jestch_2019_12_004 crossref_primary_10_1016_j_metrad_2025_100134 crossref_primary_10_1016_j_rse_2018_02_045 crossref_primary_10_1038_s41598_020_71549_y crossref_primary_10_1016_j_neucom_2021_07_010 crossref_primary_10_1007_s00138_015_0706_x crossref_primary_10_1002_int_22451 crossref_primary_10_1016_j_esd_2023_04_004 crossref_primary_10_12688_wellcomeopenres_17148_2 crossref_primary_10_3389_fchem_2021_820417 crossref_primary_10_1080_20964471_2024_2386091 crossref_primary_10_3233_ISU_190060 crossref_primary_10_12688_wellcomeopenres_17148_1 crossref_primary_10_1109_JSTARS_2018_2880783 crossref_primary_10_1126_science_aaa8415 crossref_primary_10_1007_s11227_017_2022_x crossref_primary_10_1016_j_marpol_2025_106704 crossref_primary_10_1016_j_procs_2020_09_203 crossref_primary_10_1007_s11063_024_11655_4 crossref_primary_10_1007_s42405_020_00254_x crossref_primary_10_1109_TCSVT_2018_2822773 crossref_primary_10_3390_info13020076 crossref_primary_10_1038_s41598_018_28999_2 crossref_primary_10_1109_ACCESS_2020_3023495 crossref_primary_10_1016_j_engappai_2023_107365 crossref_primary_10_1007_s11837_023_06212_8 crossref_primary_10_1038_s41467_021_25427_4 crossref_primary_10_1039_D2RE00008C crossref_primary_10_3390_s24113454 crossref_primary_10_3390_rs16244793 crossref_primary_10_1109_ACCESS_2021_3127084 crossref_primary_10_3390_rs13163313 crossref_primary_10_1109_ACCESS_2022_3228647 crossref_primary_10_3390_app11177931 crossref_primary_10_1109_ACCESS_2020_3034141 crossref_primary_10_1109_JETCAS_2019_2911537 crossref_primary_10_1186_s41018_016_0013_9 crossref_primary_10_1007_s00779_020_01467_3 crossref_primary_10_1016_j_asoc_2024_112232 crossref_primary_10_1016_j_chemolab_2021_104329 crossref_primary_10_3390_ijerph18020752 crossref_primary_10_1016_j_neucom_2018_04_085 crossref_primary_10_1002_nbm_4626 crossref_primary_10_1088_1361_6560_ac6e24 crossref_primary_10_3233_JIFS_189430 crossref_primary_10_1016_j_neucom_2017_09_005 crossref_primary_10_5194_bg_18_1941_2021 crossref_primary_10_1016_j_buildenv_2020_106805 crossref_primary_10_1109_ACCESS_2018_2866049 crossref_primary_10_1007_s00404_022_06865_x crossref_primary_10_1007_s11042_018_6062_x crossref_primary_10_1088_1742_6596_1950_1_012071 crossref_primary_10_1007_s10339_018_0888_z crossref_primary_10_1089_big_2017_0020 crossref_primary_10_1002_aisy_202300703 crossref_primary_10_1177_29498732251340187 crossref_primary_10_1016_j_jcp_2019_06_039 crossref_primary_10_1109_TNNLS_2021_3070584 crossref_primary_10_1016_j_eswa_2023_120747 crossref_primary_10_1016_j_watres_2020_116103 crossref_primary_10_1007_s40860_017_0053_y crossref_primary_10_1109_JSTARS_2021_3113163 crossref_primary_10_1111_phc3_12625 crossref_primary_10_1016_j_jclepro_2023_137300 crossref_primary_10_1007_s11192_021_04027_5 crossref_primary_10_1016_j_nucengdes_2022_111863 crossref_primary_10_1155_2018_9649643 crossref_primary_10_1016_j_jconhyd_2021_103798 crossref_primary_10_1016_j_jcp_2019_06_042 crossref_primary_10_1109_JIOT_2023_3294259 crossref_primary_10_1093_bib_bbaa272 crossref_primary_10_1109_TGRS_2021_3063216 crossref_primary_10_1088_1742_6596_1948_1_012023 crossref_primary_10_1109_TSMC_2023_3309709 crossref_primary_10_1007_s40558_023_00247_y crossref_primary_10_1007_s12652_020_02010_1 crossref_primary_10_1148_radiol_2019182304 crossref_primary_10_1007_s00158_020_02648_7 crossref_primary_10_1038_s41540_023_00272_x crossref_primary_10_3390_s18072287 crossref_primary_10_1007_s00603_023_03698_1 crossref_primary_10_26634_jip_7_2_17034 crossref_primary_10_1007_s42484_023_00112_5 crossref_primary_10_3389_frobt_2016_00054 crossref_primary_10_1016_j_csbj_2020_05_017 crossref_primary_10_1016_j_csbr_2024_100005 crossref_primary_10_1016_j_aei_2018_12_005 crossref_primary_10_1016_j_jmmm_2024_172726 crossref_primary_10_1016_j_diin_2016_07_001 crossref_primary_10_1631_FITEE_1900193 crossref_primary_10_1016_j_jmsy_2023_10_014 crossref_primary_10_3389_fnbot_2020_578675 crossref_primary_10_1145_3418172 crossref_primary_10_1103_PhysRevResearch_2_033338 crossref_primary_10_1109_TR_2022_3159784 crossref_primary_10_1016_j_apacoust_2020_107854 crossref_primary_10_1016_j_nucengdes_2022_111825 crossref_primary_10_3390_electronics10010017 crossref_primary_10_1007_s40996_025_02028_5 crossref_primary_10_1371_journal_pone_0305857 crossref_primary_10_1088_1361_665X_ad9fbf crossref_primary_10_1155_2022_4511510 crossref_primary_10_1109_MCI_2019_2954643 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126142 crossref_primary_10_1038_s42256_020_0176_3 crossref_primary_10_1109_TNNLS_2018_2790388 crossref_primary_10_1016_j_anucene_2021_108521 crossref_primary_10_3390_rs13152867 crossref_primary_10_1109_MRA_2019_2918125 crossref_primary_10_1016_j_ifacol_2024_07_141 crossref_primary_10_1016_j_knosys_2024_112272 crossref_primary_10_1186_s42162_025_00565_x crossref_primary_10_1038_s41598_022_23499_w crossref_primary_10_1088_1361_6463_ab1f3f crossref_primary_10_1109_TSP_2018_2872006 crossref_primary_10_1016_j_apenergy_2016_08_079 crossref_primary_10_1109_ACCESS_2019_2920885 crossref_primary_10_1109_ACCESS_2020_3030787 crossref_primary_10_1109_TSP_2016_2546221 crossref_primary_10_1155_2020_8863388 crossref_primary_10_3389_frai_2024_1424012 crossref_primary_10_1007_s00530_022_00992_w crossref_primary_10_3390_rs11010002 crossref_primary_10_1016_j_neucom_2019_12_011 crossref_primary_10_3390_rs16163002 crossref_primary_10_1016_j_earscirev_2024_104887 crossref_primary_10_1016_j_iot_2024_101260 crossref_primary_10_1016_j_neucom_2019_12_014 crossref_primary_10_1109_TNSRE_2019_2915621 crossref_primary_10_1002_mp_15269 crossref_primary_10_1088_1742_6596_1294_4_042009 crossref_primary_10_3390_rs12203416 crossref_primary_10_4018_IJIDE_349724 crossref_primary_10_1016_j_compbiolchem_2025_108532 crossref_primary_10_1016_j_compbiolchem_2025_108530 crossref_primary_10_3390_s19235180 crossref_primary_10_3389_fphy_2025_1496778 crossref_primary_10_1109_MCOM_2017_1600699CM crossref_primary_10_1016_j_cherd_2024_04_045 crossref_primary_10_1016_j_engappai_2022_105188 crossref_primary_10_1016_j_ijepes_2022_108005 crossref_primary_10_1088_1741_4326_ab201e crossref_primary_10_1016_j_measurement_2022_111543 crossref_primary_10_1007_s00170_022_10709_y crossref_primary_10_1007_s10796_023_10402_9 crossref_primary_10_1186_s13662_019_2008_5 crossref_primary_10_3390_s24102991 crossref_primary_10_1007_s12525_022_00537_z crossref_primary_10_1017_S1743921317000552 crossref_primary_10_1016_j_jsr_2024_11_011 crossref_primary_10_1161_JAHA_123_033194 crossref_primary_10_1049_sil2_12085 crossref_primary_10_1016_j_energy_2023_129405 crossref_primary_10_1016_j_neucom_2016_07_059 crossref_primary_10_1155_2020_8865983 crossref_primary_10_3389_fpls_2016_01419 crossref_primary_10_1038_s41467_021_26568_2 crossref_primary_10_1016_j_ecoinf_2018_10_002 crossref_primary_10_1109_ACCESS_2021_3081442 crossref_primary_10_1109_ACCESS_2024_3354706 crossref_primary_10_1109_JIOT_2021_3081694 crossref_primary_10_2478_rem_2019_0013 crossref_primary_10_3390_electronics12143099 crossref_primary_10_1109_ACCESS_2021_3081449 crossref_primary_10_3390_app10186249 crossref_primary_10_1007_s13399_021_01651_2 crossref_primary_10_1016_j_neucom_2020_10_075 crossref_primary_10_3390_rs16111822 crossref_primary_10_1016_j_energy_2019_116278 crossref_primary_10_3390_electronics10101149 crossref_primary_10_1002_fsn3_4300 crossref_primary_10_3389_fonc_2023_1089998 crossref_primary_10_1016_j_cjph_2025_08_038 crossref_primary_10_1038_s41374_020_00477_2 crossref_primary_10_1016_j_icte_2020_01_002 crossref_primary_10_1371_journal_pone_0245026 crossref_primary_10_1007_s11665_023_07827_3 crossref_primary_10_1016_j_fss_2021_02_022 crossref_primary_10_1029_2021GL093096 crossref_primary_10_1016_j_compbiomed_2024_108258 crossref_primary_10_1016_j_neucom_2019_12_005 crossref_primary_10_1016_j_neucom_2020_10_065 crossref_primary_10_1109_TITS_2021_3070111 crossref_primary_10_3389_fpls_2022_729097 crossref_primary_10_1016_j_mtcomm_2025_111625 crossref_primary_10_1186_s13638_018_1133_2 crossref_primary_10_1016_j_flowmeasinst_2022_102233 crossref_primary_10_1016_j_flowmeasinst_2022_102234 crossref_primary_10_3847_1538_4357_ab8a47 crossref_primary_10_1186_s13007_018_0332_5 crossref_primary_10_5594_JMI_2021_3059344 crossref_primary_10_3390_en18020250 crossref_primary_10_1109_ACCESS_2019_2948367 crossref_primary_10_1007_s10462_019_09743_2 crossref_primary_10_1016_j_compag_2022_107234 crossref_primary_10_1063_1_4945368 crossref_primary_10_1109_TASE_2019_2936645 crossref_primary_10_3390_ijms17081313 crossref_primary_10_1124_pr_119_017921 crossref_primary_10_3390_electronics13224447 crossref_primary_10_1109_JSEN_2023_3300123 crossref_primary_10_1108_IJPCC_02_2021_0037 crossref_primary_10_1109_ACCESS_2019_2919806 crossref_primary_10_3390_rs13030364 crossref_primary_10_1080_17452007_2023_2244949 crossref_primary_10_1007_s10694_020_00986_y crossref_primary_10_1007_s10588_018_9265_9 crossref_primary_10_1145_3231740 crossref_primary_10_1109_TKDE_2019_2913376 crossref_primary_10_1016_j_engappai_2019_08_014 crossref_primary_10_1080_0952813X_2017_1354081 crossref_primary_10_3390_math9070766 crossref_primary_10_1259_dmfr_20230284 crossref_primary_10_1016_j_procir_2021_09_045 crossref_primary_10_3390_molecules26247551 crossref_primary_10_1007_s10143_025_03512_2 crossref_primary_10_1145_3708496 crossref_primary_10_1016_j_icte_2019_08_004 crossref_primary_10_3390_brainsci11050615 crossref_primary_10_1007_s41403_022_00338_y crossref_primary_10_1016_j_phycom_2025_102628 crossref_primary_10_1109_ACCESS_2021_3050296 crossref_primary_10_3389_fceng_2022_899941 crossref_primary_10_1007_s13042_022_01541_7 crossref_primary_10_3390_app12178769 crossref_primary_10_1007_s12539_016_0196_1 crossref_primary_10_1109_TCBB_2019_2936186 crossref_primary_10_1145_3386569_3392409 crossref_primary_10_1016_j_egypro_2018_09_220 crossref_primary_10_1016_j_scitotenv_2020_140562 crossref_primary_10_1136_oemed_2019_106386 crossref_primary_10_1007_s00521_020_05626_8 crossref_primary_10_1111_anae_14535 crossref_primary_10_1007_s12369_021_00819_0 crossref_primary_10_1016_j_molliq_2021_118418 crossref_primary_10_1007_s11071_023_08360_7 crossref_primary_10_1016_j_matdes_2021_110181 crossref_primary_10_1002_minf_202300262 crossref_primary_10_1016_j_ndteint_2019_102147 crossref_primary_10_1007_s12206_022_0102_1 crossref_primary_10_1109_TSUSC_2017_2710178 crossref_primary_10_1109_TCYB_2017_2668395 crossref_primary_10_1016_j_neunet_2022_12_017 crossref_primary_10_1016_j_procs_2018_01_104 crossref_primary_10_1016_j_wneu_2024_01_035 crossref_primary_10_1109_TKDE_2020_3028943 crossref_primary_10_1016_j_isci_2025_112062 crossref_primary_10_3390_app13084781 crossref_primary_10_1093_ijl_ecy011 crossref_primary_10_1177_0954407019861245 crossref_primary_10_1080_08839514_2020_1804228 crossref_primary_10_1002_aisy_202300797 crossref_primary_10_1002_aenm_202100931 crossref_primary_10_1038_s41598_024_81523_7 crossref_primary_10_32604_sdhm_2024_049298 crossref_primary_10_1109_JPROC_2023_3273520 crossref_primary_10_1523_JNEUROSCI_1338_21_2021 crossref_primary_10_4103_1673_5374_355982 crossref_primary_10_1016_j_neunet_2022_12_011 crossref_primary_10_1109_ACCESS_2022_3180051 crossref_primary_10_1146_annurev_bioeng_110220_030247 crossref_primary_10_3390_asi8010018 crossref_primary_10_1088_2515_7620_adac32 crossref_primary_10_1364_JOSAB_545930 crossref_primary_10_1103_PhysRevA_106_032611 crossref_primary_10_3233_IDA_226750 crossref_primary_10_1007_s00466_019_01716_0 crossref_primary_10_1186_s13007_018_0287_6 crossref_primary_10_3390_data7050058 crossref_primary_10_3233_JIFS_231387 crossref_primary_10_1016_j_isprsjprs_2022_04_026 crossref_primary_10_47164_ijngc_v14i1_1052 crossref_primary_10_3390_app13095491 crossref_primary_10_1038_s41467_017_02726_3 crossref_primary_10_1016_j_cmpb_2018_05_032 crossref_primary_10_1007_s00332_022_09820_x crossref_primary_10_1039_D5TC00499C crossref_primary_10_1016_j_jid_2019_12_029 crossref_primary_10_1016_j_talanta_2020_121926 crossref_primary_10_3390_app112411728 crossref_primary_10_3390_en13082102 crossref_primary_10_2196_44597 crossref_primary_10_1007_s11042_023_15961_2 crossref_primary_10_1016_j_energy_2021_122210 crossref_primary_10_1016_j_eswa_2017_09_045 crossref_primary_10_1016_j_rsase_2020_100356 crossref_primary_10_1007_s10922_024_09882_0 crossref_primary_10_1007_s41742_025_00752_4 crossref_primary_10_1109_ACCESS_2019_2948388 crossref_primary_10_1016_j_jwpe_2025_107923 crossref_primary_10_1051_e3sconf_201911302010 crossref_primary_10_3390_e25101470 crossref_primary_10_1038_s41746_023_00859_y crossref_primary_10_1109_TAFFC_2016_2634527 crossref_primary_10_4218_etrij_2017_0327 crossref_primary_10_3389_fnins_2022_920820 crossref_primary_10_1016_j_ijepes_2022_108092 crossref_primary_10_1038_s41598_020_60632_z crossref_primary_10_3390_su152215941 crossref_primary_10_1080_15440478_2021_1932669 crossref_primary_10_1208_s12248_018_0210_0 crossref_primary_10_1109_ACCESS_2019_2947069 crossref_primary_10_3390_app10155135 crossref_primary_10_1002_1873_3468_12307 crossref_primary_10_3389_frobt_2016_00026 crossref_primary_10_1109_TIV_2023_3235732 crossref_primary_10_1155_2022_7453653 crossref_primary_10_1144_petgeo2022_032 crossref_primary_10_3748_wjg_v26_i46_7287 crossref_primary_10_3389_fnins_2018_00941 crossref_primary_10_3390_en13143643 crossref_primary_10_1002_mrm_28038 crossref_primary_10_1016_j_artmed_2021_102039 crossref_primary_10_1155_2018_7130146 crossref_primary_10_1155_2021_2267635 crossref_primary_10_1109_ACCESS_2018_2886573 crossref_primary_10_1109_TNNLS_2022_3185742 crossref_primary_10_1162_neco_a_01454 crossref_primary_10_1007_s42979_024_03626_2 crossref_primary_10_1162_neco_a_01458 crossref_primary_10_1088_1742_6596_1187_2_022038 crossref_primary_10_1080_01431161_2024_2365811 crossref_primary_10_1007_s10796_022_10314_0 crossref_primary_10_1016_j_eswa_2021_116003 crossref_primary_10_1016_j_jpdc_2017_09_006 crossref_primary_10_1007_s12046_018_0794_1 crossref_primary_10_1080_08839514_2018_1501910 crossref_primary_10_1016_j_neucom_2019_03_081 crossref_primary_10_3390_jmse9020169 crossref_primary_10_1016_j_neucom_2019_03_084 crossref_primary_10_1109_JIOT_2019_2902376 crossref_primary_10_3390_cancers13092162 crossref_primary_10_1109_ACCESS_2020_3034218 crossref_primary_10_1007_s11663_025_03674_w crossref_primary_10_1093_forestry_cpac002 crossref_primary_10_1080_09500340_2020_1810347 crossref_primary_10_3390_machines13080666 crossref_primary_10_4018_JGIM_298992 crossref_primary_10_1016_j_measurement_2020_108227 crossref_primary_10_1002_isaf_1487 crossref_primary_10_1038_s41598_019_47564_z crossref_primary_10_1109_ACCESS_2020_2979256 crossref_primary_10_1016_j_artmed_2019_07_008 crossref_primary_10_3389_fncom_2016_00094 crossref_primary_10_3389_fmicb_2019_03097 crossref_primary_10_3389_fncom_2016_00092 crossref_primary_10_1016_j_neucom_2019_03_096 crossref_primary_10_1109_ACCESS_2021_3076820 crossref_primary_10_1109_TII_2020_2990397 crossref_primary_10_1016_j_neurol_2025_02_007 crossref_primary_10_1016_j_psep_2023_04_008 crossref_primary_10_1111_coin_12557 crossref_primary_10_4103_jrms_JRMS_268_20 crossref_primary_10_1109_MCI_2016_2627670 crossref_primary_10_3390_a18070399 crossref_primary_10_1016_j_cognition_2020_104243 crossref_primary_10_1109_JAS_2022_105737 crossref_primary_10_3390_electronics10030342 crossref_primary_10_1007_s41252_022_00309_y crossref_primary_10_1007_s00107_022_01826_2 crossref_primary_10_1016_j_cie_2022_108859 crossref_primary_10_1088_1475_7516_2025_01_014 crossref_primary_10_1109_TCDS_2019_2963476 crossref_primary_10_1016_j_anucene_2019_107111 crossref_primary_10_3390_en12142758 crossref_primary_10_1108_RPJ_05_2020_0097 crossref_primary_10_3390_e20020043 crossref_primary_10_1109_TIM_2022_3206762 crossref_primary_10_1016_j_earscirev_2023_104509 crossref_primary_10_1109_ACCESS_2021_3051557 crossref_primary_10_1016_j_ifacol_2023_10_1367 crossref_primary_10_1080_07038992_2022_2054405 crossref_primary_10_1111_aos_15071 crossref_primary_10_1109_TMM_2021_3124080 crossref_primary_10_1016_j_future_2021_06_045 crossref_primary_10_3390_su15032644 crossref_primary_10_1016_j_isatra_2019_07_004 crossref_primary_10_1111_coin_12554 crossref_primary_10_1063_5_0051132 crossref_primary_10_1016_j_est_2024_112907 crossref_primary_10_1016_j_jhydrol_2021_127167 crossref_primary_10_1016_j_jspi_2024_106195 crossref_primary_10_3390_en12142764 crossref_primary_10_1016_j_neucom_2022_09_088 crossref_primary_10_1016_j_eswa_2021_116038 crossref_primary_10_3233_SW_180300 crossref_primary_10_3389_frai_2020_00004 crossref_primary_10_1007_s00530_024_01396_8 crossref_primary_10_1007_s10182_022_00467_3 crossref_primary_10_1016_j_ejor_2022_01_034 crossref_primary_10_1016_j_dsm_2024_09_004 crossref_primary_10_1016_j_ecoenv_2023_115066 crossref_primary_10_1137_18M1181249 crossref_primary_10_3390_jmse12071099 crossref_primary_10_1016_j_ins_2016_05_033 crossref_primary_10_1016_j_jspi_2024_106188 crossref_primary_10_3390_sym13020308 crossref_primary_10_1007_s44202_022_00027_5 crossref_primary_10_1109_MSP_2017_2739299 crossref_primary_10_1162_neco_a_01410 crossref_primary_10_1016_j_cie_2021_107227 crossref_primary_10_1016_j_rser_2025_115573 crossref_primary_10_1109_ACCESS_2020_2980285 crossref_primary_10_1007_s40808_024_02070_8 crossref_primary_10_1016_j_mineng_2020_106443 crossref_primary_10_1109_TSM_2017_2676245 crossref_primary_10_1109_MSP_2022_3199595 crossref_primary_10_3390_jtaer17030048 crossref_primary_10_1109_ACCESS_2021_3074219 crossref_primary_10_1038_s41598_020_57549_y crossref_primary_10_1007_s10064_023_03498_5 crossref_primary_10_1051_0004_6361_202038787 crossref_primary_10_1016_j_bbe_2018_01_001 crossref_primary_10_1016_j_future_2019_06_008 crossref_primary_10_1016_j_yexcr_2022_113278 crossref_primary_10_1016_j_mtener_2024_101621 crossref_primary_10_1016_j_neunet_2024_106215 crossref_primary_10_1177_03611981241257512 crossref_primary_10_3233_JIFS_161860 crossref_primary_10_3390_bioengineering10101120 crossref_primary_10_1016_j_physrep_2019_03_001 crossref_primary_10_3390_s22062330 crossref_primary_10_1016_j_measen_2023_100784 crossref_primary_10_1007_s43621_024_00745_x crossref_primary_10_1162_neco_a_01407 crossref_primary_10_3390_machines12040214 crossref_primary_10_1111_aos_15040 crossref_primary_10_1016_j_ifacol_2023_10_1378 crossref_primary_10_1190_geo2020_0726_1 crossref_primary_10_1109_TIA_2020_3004294 crossref_primary_10_1038_s41598_020_62724_2 crossref_primary_10_1055_a_2039_3773 crossref_primary_10_1049_ote2_12113 crossref_primary_10_1016_j_cja_2023_11_001 crossref_primary_10_1007_s13042_023_01794_w crossref_primary_10_1002_isaf_1459 crossref_primary_10_1080_19648189_2024_2393881 crossref_primary_10_1016_j_nxener_2023_100078 crossref_primary_10_1007_s41064_023_00233_3 crossref_primary_10_1007_s11042_019_07813_9 crossref_primary_10_1016_j_mtcomm_2022_103901 crossref_primary_10_3390_land11101796 crossref_primary_10_1371_journal_pone_0168392 crossref_primary_10_1016_j_neucom_2020_04_057 crossref_primary_10_1177_08465371231222229 crossref_primary_10_1016_j_engappai_2025_111937 crossref_primary_10_1088_1741_2552_abf28e crossref_primary_10_1007_s00170_021_07774_0 crossref_primary_10_1016_j_jafrearsci_2025_105561 crossref_primary_10_1093_bib_bbaf023 crossref_primary_10_1109_TVT_2021_3099797 crossref_primary_10_1007_s10462_022_10315_0 crossref_primary_10_1016_j_apacoust_2022_108951 crossref_primary_10_1371_journal_pone_0239141 crossref_primary_10_1007_s11760_022_02393_y crossref_primary_10_1016_j_asoc_2019_105740 crossref_primary_10_1109_JLT_2020_3025616 crossref_primary_10_1109_ACCESS_2024_3510656 crossref_primary_10_1007_s13369_020_05112_2 crossref_primary_10_1103_PhysRevApplied_12_014059 crossref_primary_10_1007_s12599_018_0551_3 crossref_primary_10_3390_en14010125 crossref_primary_10_1080_13658816_2019_1599122 crossref_primary_10_1016_j_engappai_2025_110613 crossref_primary_10_1016_j_compbiomed_2019_103350 crossref_primary_10_1080_23311916_2020_1727168 crossref_primary_10_1016_j_compbiomed_2019_103352 crossref_primary_10_1007_s11042_015_2702_6 crossref_primary_10_1109_TNNLS_2020_2966745 crossref_primary_10_3390_su14010013 crossref_primary_10_1088_1361_6420_ab460a crossref_primary_10_3390_atmos15030271 crossref_primary_10_3390_genes10110906 crossref_primary_10_1038_s41467_018_05169_6 crossref_primary_10_1515_scid_2019_0020 crossref_primary_10_1016_j_oceaneng_2024_119833 crossref_primary_10_1016_j_apenergy_2022_119005 crossref_primary_10_1038_s41524_019_0189_9 crossref_primary_10_1007_s00500_019_04306_7 crossref_primary_10_1038_s41395_018_0268_4 crossref_primary_10_1038_s41598_017_16316_2 crossref_primary_10_1002_isaf_1404 crossref_primary_10_1007_s12181_021_00511_7 crossref_primary_10_1016_j_measurement_2022_111581 crossref_primary_10_1042_BCJ20210535 crossref_primary_10_1002_isaf_1408 crossref_primary_10_1016_j_compbiomed_2019_103346 crossref_primary_10_1016_j_neucom_2019_03_019 crossref_primary_10_1109_JPROC_2021_3052449 crossref_primary_10_1109_ACCESS_2022_3216574 crossref_primary_10_1109_JPROC_2020_2968184 crossref_primary_10_1109_ACCESS_2021_3067043 crossref_primary_10_1093_comjnl_bxaa042 crossref_primary_10_1007_s12652_020_01938_8 crossref_primary_10_1016_j_est_2023_106784 crossref_primary_10_1007_s11837_016_2226_1 crossref_primary_10_1007_s11128_020_02657_x crossref_primary_10_1051_epjconf_202430217009 crossref_primary_10_1177_0959651820939345 crossref_primary_10_1016_j_compbiomed_2018_10_033 crossref_primary_10_3390_jrfm17070295 crossref_primary_10_1016_j_jmmm_2023_170624 crossref_primary_10_1016_j_neures_2023_01_007 crossref_primary_10_1049_gtd2_12925 crossref_primary_10_3233_IDA_194739 crossref_primary_10_1007_s10596_019_09918_4 crossref_primary_10_1364_AO_551276 crossref_primary_10_1109_JBHI_2018_2878945 crossref_primary_10_3390_app112110064 crossref_primary_10_3390_diagnostics12061344 crossref_primary_10_1109_TITS_2019_2906038 crossref_primary_10_1016_j_scitotenv_2021_152018 crossref_primary_10_1007_s11042_022_13714_1 crossref_primary_10_1016_j_ins_2020_06_044 crossref_primary_10_1038_s42256_018_0006_z crossref_primary_10_14361_dcs_2018_040109 crossref_primary_10_1016_j_jhydrol_2020_124670 crossref_primary_10_1038_s41467_022_29491_2 crossref_primary_10_1016_j_conbuildmat_2020_119703 crossref_primary_10_1016_j_ocemod_2025_102510 crossref_primary_10_1016_j_neucom_2022_09_003 crossref_primary_10_1038_s41598_020_70159_y crossref_primary_10_1017_jpr_2022_96 crossref_primary_10_3390_ma16227213 crossref_primary_10_1137_20M1344263 crossref_primary_10_1617_s11527_022_01933_9 crossref_primary_10_1016_j_parco_2019_03_005 crossref_primary_10_1007_s00289_023_04929_9 crossref_primary_10_1016_j_jksuci_2020_09_008 crossref_primary_10_3390_cryst11040324 crossref_primary_10_1073_pnas_2009821117 crossref_primary_10_1007_s40194_021_01145_9 crossref_primary_10_1002_stc_2054 crossref_primary_10_1016_j_jsr_2022_08_013 crossref_primary_10_1109_ACCESS_2018_2807700 crossref_primary_10_1016_j_engappai_2023_107261 crossref_primary_10_1177_0047287520921244 crossref_primary_10_1038_s41598_019_53989_3 crossref_primary_10_1109_MNET_2018_1800101 crossref_primary_10_1109_TCDS_2018_2796940 crossref_primary_10_1007_s00521_020_05137_6 crossref_primary_10_3389_fdata_2022_688496 crossref_primary_10_1002_adma_202210484 crossref_primary_10_1016_j_jksuci_2019_08_001 crossref_primary_10_1038_s41598_022_05709_7 crossref_primary_10_1007_s00894_023_05523_6 crossref_primary_10_1162_posc_a_00377 crossref_primary_10_1016_j_neucom_2018_10_097 crossref_primary_10_1063_5_0011998 crossref_primary_10_1002_ima_22562 crossref_primary_10_1016_j_optcom_2018_11_054 crossref_primary_10_1080_01431161_2022_2030070 crossref_primary_10_1190_geo2021_0560_1 crossref_primary_10_1109_ACCESS_2020_2979219 crossref_primary_10_1016_j_asoc_2025_113759 crossref_primary_10_1007_s10462_021_09975_1 crossref_primary_10_1016_j_ymssp_2020_107110 crossref_primary_10_1007_s11063_022_11035_w crossref_primary_10_1109_TMTT_2021_3075689 crossref_primary_10_1049_iet_its_2017_0042 crossref_primary_10_1016_j_eswa_2024_123242 crossref_primary_10_1016_j_future_2022_10_022 crossref_primary_10_3390_mi12070781 crossref_primary_10_1016_j_fusengdes_2016_11_006 crossref_primary_10_1088_1361_6501_aaaca6 crossref_primary_10_1109_TASLP_2018_2842159 crossref_primary_10_3390_polym14235290 crossref_primary_10_1007_s11042_023_14656_y crossref_primary_10_1109_TGRS_2022_3172227 crossref_primary_10_3390_su12187520 crossref_primary_10_51847_iW1DfVoXVw crossref_primary_10_1007_s11227_023_05611_7 crossref_primary_10_3390_atmos11030246 crossref_primary_10_1016_j_jclepro_2023_138650 crossref_primary_10_1051_0004_6361_202142932 crossref_primary_10_1080_24751839_2021_1981684 crossref_primary_10_1002_ima_22542 crossref_primary_10_1016_j_autcon_2024_105894 crossref_primary_10_1109_ACCESS_2021_3064830 crossref_primary_10_1109_ACCESS_2020_2981506 crossref_primary_10_1080_00207543_2020_1832270 crossref_primary_10_1109_TSTE_2021_3123337 crossref_primary_10_1007_s12559_017_9461_9 crossref_primary_10_3390_axioms11090464 crossref_primary_10_1007_s10668_022_02387_3 crossref_primary_10_1088_1757_899X_450_4_042010 crossref_primary_10_3233_XST_210962 crossref_primary_10_1093_jge_gxab046 crossref_primary_10_1109_ACCESS_2020_2994810 crossref_primary_10_1007_s11042_019_08236_2 crossref_primary_10_1016_j_neucom_2023_126919 crossref_primary_10_1109_TNNLS_2022_3144515 crossref_primary_10_1007_s10489_022_03313_w crossref_primary_10_1007_s41116_023_00038_x crossref_primary_10_3390_cancers15164044 crossref_primary_10_3389_fpsyg_2016_01584 crossref_primary_10_1007_s12524_019_01049_8 crossref_primary_10_1016_j_atech_2025_100855 crossref_primary_10_2478_amcs_2018_0056 crossref_primary_10_3389_fnhum_2022_767612 crossref_primary_10_1086_714877 crossref_primary_10_1007_s00146_018_0860_6 crossref_primary_10_1109_TNNLS_2022_3157830 crossref_primary_10_1007_s12665_019_8210_7 crossref_primary_10_1016_j_iswa_2025_200563 crossref_primary_10_1128_AEM_00608_19 crossref_primary_10_1007_s40745_020_00300_1 crossref_primary_10_1145_3281032 crossref_primary_10_1109_ACCESS_2020_3003286 crossref_primary_10_1111_jfb_15793 crossref_primary_10_1007_s13369_023_07959_7 crossref_primary_10_3390_app10186357 crossref_primary_10_1016_j_mtcomm_2023_105979 crossref_primary_10_1007_s11269_022_03216_y crossref_primary_10_1016_j_patrec_2018_07_027 crossref_primary_10_1016_j_csl_2020_101104 crossref_primary_10_1016_j_swevo_2020_100650 crossref_primary_10_1073_pnas_2016708118 crossref_primary_10_1007_s11220_019_0248_9 crossref_primary_10_1088_1742_6596_2050_1_012007 crossref_primary_10_1109_JBHI_2016_2633963 crossref_primary_10_1016_j_jmsy_2018_05_004 crossref_primary_10_1029_2018WR024090 crossref_primary_10_1007_s11103_018_0698_9 crossref_primary_10_1186_s12859_018_2055_z crossref_primary_10_1371_journal_pone_0315343 crossref_primary_10_3390_s23208347 crossref_primary_10_3233_JIFS_190215 crossref_primary_10_1002_jbio_201960147 crossref_primary_10_1002_mde_3905 crossref_primary_10_1557_s43580_022_00308_0 crossref_primary_10_1039_D1SC01000J crossref_primary_10_1093_bib_bbab271 crossref_primary_10_1038_s41598_018_21215_1 crossref_primary_10_1108_IJQRM_07_2022_0204 crossref_primary_10_1007_s11141_022_10175_2 crossref_primary_10_3847_1538_4365_ad1f5d crossref_primary_10_1016_j_jappgeo_2024_105296 crossref_primary_10_1080_03610918_2020_1714659 crossref_primary_10_3390_math13132110 crossref_primary_10_3390_s22145265 crossref_primary_10_1109_ACCESS_2019_2920776 crossref_primary_10_1002_nsg_12163 crossref_primary_10_1016_j_jenvman_2023_119585 crossref_primary_10_1007_s40747_023_01257_3 crossref_primary_10_1109_JSEN_2022_3210773 crossref_primary_10_1016_j_aap_2023_107205 crossref_primary_10_1007_s11042_023_14959_0 crossref_primary_10_1016_j_jclepro_2022_132961 crossref_primary_10_1109_TMI_2021_3116298 crossref_primary_10_1016_j_cie_2020_106536 crossref_primary_10_1016_j_radphyschem_2021_109708 crossref_primary_10_1038_s41598_024_78979_y crossref_primary_10_3390_su16229805 crossref_primary_10_3233_JIFS_201400 crossref_primary_10_3389_fbioe_2024_1351485 crossref_primary_10_1049_ccs2_12012 crossref_primary_10_1177_09544097221093486 crossref_primary_10_2196_59564 crossref_primary_10_1109_MSP_2018_2868887 crossref_primary_10_1109_ACCESS_2020_3042839 crossref_primary_10_3390_math11163603 crossref_primary_10_3390_w15234160 crossref_primary_10_1016_j_atech_2025_100898 crossref_primary_10_1109_TIE_2017_2745473 crossref_primary_10_1016_j_surg_2024_07_039 crossref_primary_10_1109_TITS_2017_2750070 crossref_primary_10_1016_j_knosys_2025_113575 crossref_primary_10_1016_j_neunet_2020_07_025 crossref_primary_10_1039_C9RA04186A crossref_primary_10_1016_j_compag_2024_109695 crossref_primary_10_1007_s10586_018_2185_0 crossref_primary_10_1109_TGRS_2021_3085340 crossref_primary_10_1177_17562872211044880 crossref_primary_10_1007_s10845_018_1447_2 crossref_primary_10_3390_s24165350 crossref_primary_10_7232_JKIIE_2022_48_6_557 crossref_primary_10_3390_rs14195042 crossref_primary_10_1002_ece3_5410 crossref_primary_10_1109_TNNLS_2021_3122179 crossref_primary_10_1093_mnras_stw1621 crossref_primary_10_1007_s13351_019_8162_6 crossref_primary_10_3390_en14165150 crossref_primary_10_1038_s41591_025_03560_7 crossref_primary_10_1177_0022034520920593 crossref_primary_10_1002_jccs_201900514 crossref_primary_10_3390_math12233859 crossref_primary_10_1016_j_conbuildmat_2023_134212 crossref_primary_10_1109_ACCESS_2020_3029860 crossref_primary_10_1038_s41580_018_0094_y crossref_primary_10_1109_ACCESS_2022_3206266 crossref_primary_10_1007_s42360_023_00660_7 crossref_primary_10_1080_08820538_2021_1901123 crossref_primary_10_3390_met11101533 crossref_primary_10_1016_j_ins_2023_119668 crossref_primary_10_3390_computation13020058 crossref_primary_10_1016_j_datak_2021_101909 crossref_primary_10_1049_iet_opt_2020_0021 crossref_primary_10_1109_JSTARS_2021_3103216 crossref_primary_10_1186_s13640_017_0213_2 crossref_primary_10_3390_a15120466 crossref_primary_10_5194_essd_14_3743_2022 crossref_primary_10_1109_TCOMM_2020_2968314 crossref_primary_10_1371_journal_pone_0176690 crossref_primary_10_1016_j_envsoft_2025_106338 crossref_primary_10_1155_2022_1812273 crossref_primary_10_3390_s23187712 crossref_primary_10_1126_scirobotics_abe2547 crossref_primary_10_1007_s44211_024_00681_w crossref_primary_10_1088_1757_899X_1176_1_012034 crossref_primary_10_1186_s12880_025_01646_9 crossref_primary_10_1016_j_energy_2020_118878 crossref_primary_10_1016_j_eswa_2025_126557 crossref_primary_10_1002_cdt3_137 crossref_primary_10_1029_2021MS002926 crossref_primary_10_1016_j_ymssp_2019_106482 crossref_primary_10_1007_s11042_022_12223_5 crossref_primary_10_1093_bib_bbac552 crossref_primary_10_1109_TPEL_2023_3309233 crossref_primary_10_1109_TPEL_2023_3309232 crossref_primary_10_1016_j_neucom_2020_09_086 crossref_primary_10_1016_j_oceaneng_2024_118495 crossref_primary_10_1016_j_epsr_2020_106547 crossref_primary_10_4018_IJSI_2019100101 crossref_primary_10_1109_TSMC_2020_3042785 crossref_primary_10_1016_j_energy_2018_12_016 crossref_primary_10_1155_2024_1124598 crossref_primary_10_63463_kjes1074 crossref_primary_10_1016_j_petlm_2023_02_003 crossref_primary_10_1109_TNNLS_2021_3083759 crossref_primary_10_1016_j_neucom_2020_09_082 crossref_primary_10_1007_s00586_023_07909_9 crossref_primary_10_1016_j_chemolab_2018_07_001 crossref_primary_10_1016_j_imavis_2020_103981 crossref_primary_10_3390_jcdd12080314 crossref_primary_10_1002_stc_2899 crossref_primary_10_1038_s41598_024_77398_3 crossref_primary_10_1109_ACCESS_2019_2949577 crossref_primary_10_1109_ACCESS_2020_3040298 crossref_primary_10_1007_s10278_017_0010_6 crossref_primary_10_3390_inventions6010015 crossref_primary_10_1016_j_cageo_2025_105853 crossref_primary_10_1186_s12938_017_0405_0 crossref_primary_10_1007_s00034_022_02110_7 crossref_primary_10_3389_fmicb_2025_1510126 crossref_primary_10_1061__ASCE_WR_1943_5452_0001615 crossref_primary_10_1109_ACCESS_2020_2992063 crossref_primary_10_1016_j_csda_2023_107911 crossref_primary_10_3390_s21206910 crossref_primary_10_1007_s40430_024_05310_1 crossref_primary_10_1002_ese3_1405 crossref_primary_10_1016_j_isprsjprs_2017_07_014 crossref_primary_10_1364_AO_58_003179 crossref_primary_10_1109_ACCESS_2019_2962552 crossref_primary_10_1007_s11250_019_02097_5 crossref_primary_10_1177_15501477211009814 crossref_primary_10_1016_j_patcog_2020_107528 crossref_primary_10_1007_s13369_021_06309_9 crossref_primary_10_1007_s10489_022_04083_1 crossref_primary_10_1016_j_jmsy_2019_02_005 crossref_primary_10_1016_j_snb_2024_136528 crossref_primary_10_1016_j_biortech_2021_125581 crossref_primary_10_3390_diagnostics14111091 crossref_primary_10_1016_j_agwat_2022_108115 crossref_primary_10_1017_S1431927622012132 crossref_primary_10_1371_journal_pone_0276032 crossref_primary_10_1007_s00521_018_03973_1 crossref_primary_10_1109_JIOT_2019_2963701 crossref_primary_10_1109_TIFS_2016_2555287 crossref_primary_10_1049_cmu2_12335 crossref_primary_10_3390_cancers17152515 crossref_primary_10_1016_j_procs_2021_02_079 crossref_primary_10_1088_1757_899X_263_4_042094 crossref_primary_10_1016_j_rineng_2024_102461 crossref_primary_10_1007_s00521_024_10158_6 crossref_primary_10_1016_j_neucom_2018_07_097 crossref_primary_10_1007_s13143_023_00319_3 crossref_primary_10_1016_j_neucom_2018_07_099 crossref_primary_10_1186_s12711_018_0439_1 crossref_primary_10_1088_1757_899X_263_4_042097 crossref_primary_10_1088_1741_2552_ad8031 crossref_primary_10_1109_ACCESS_2020_2979074 crossref_primary_10_1109_ACCESS_2020_3022405 crossref_primary_10_1016_j_geoderma_2020_114552 crossref_primary_10_1088_2632_2153_abbf9a crossref_primary_10_1016_j_neucom_2017_06_002 crossref_primary_10_1016_j_neucom_2021_02_049 crossref_primary_10_3390_ijgi10120813 crossref_primary_10_1049_iet_cvi_2018_5829 crossref_primary_10_1007_s00477_022_02195_1 crossref_primary_10_1016_j_ijsrc_2018_09_001 crossref_primary_10_1016_j_knosys_2021_106969 crossref_primary_10_1080_19648189_2022_2068657 crossref_primary_10_1109_TCSI_2020_2971642 crossref_primary_10_1088_1742_6596_1631_1_012135 crossref_primary_10_1109_TPAMI_2025_3552368 crossref_primary_10_1111_1541_4337_12492 crossref_primary_10_1016_j_patcog_2016_05_028 crossref_primary_10_1016_j_neunet_2022_08_014 crossref_primary_10_1007_s00521_022_07513_w crossref_primary_10_3390_e24040471 crossref_primary_10_1109_ACCESS_2021_3064354 crossref_primary_10_1016_j_jhydrol_2020_125085 crossref_primary_10_1371_journal_pone_0211510 crossref_primary_10_1002_pd_5893 crossref_primary_10_1016_j_procs_2016_09_068 crossref_primary_10_1016_j_engappai_2022_105490 crossref_primary_10_3390_molecules26010182 crossref_primary_10_1088_2631_8695_ade02b crossref_primary_10_1098_rsos_191649 crossref_primary_10_3390_en17010159 crossref_primary_10_1109_TNSE_2020_3004312 crossref_primary_10_3390_app14167312 crossref_primary_10_1002_er_6462 crossref_primary_10_1016_j_compbiomed_2023_106711 crossref_primary_10_1016_j_engstruct_2022_115311 crossref_primary_10_1016_j_jmst_2020_08_008 crossref_primary_10_1016_j_jcp_2022_111301 crossref_primary_10_3389_fpls_2019_01422 crossref_primary_10_1016_j_ins_2025_122104 crossref_primary_10_1016_j_ijplas_2023_103642 crossref_primary_10_1080_01969722_2019_1705548 crossref_primary_10_1016_j_optlaseng_2025_109058 crossref_primary_10_1145_3368313 crossref_primary_10_3390_e23030339 crossref_primary_10_3390_ani15030292 crossref_primary_10_1007_s10845_019_01485_w crossref_primary_10_1038_s41467_019_11605_y crossref_primary_10_3390_su15031895 crossref_primary_10_1177_00031348221109478 crossref_primary_10_1007_s11430_019_9584_9 crossref_primary_10_1016_j_media_2018_10_006 crossref_primary_10_1016_j_bspc_2023_105706 crossref_primary_10_1007_s10278_020_00391_5 crossref_primary_10_1016_j_technovation_2023_102768 crossref_primary_10_1007_s11768_022_00081_3 crossref_primary_10_1109_TED_2021_3093376 crossref_primary_10_1038_s41598_020_76826_4 crossref_primary_10_1016_j_cma_2021_114038 crossref_primary_10_1111_1556_4029_14978 crossref_primary_10_1016_j_conbuildmat_2018_08_011 crossref_primary_10_1016_j_engappai_2022_105458 crossref_primary_10_1117_1_JBO_24_5_051408 crossref_primary_10_1007_s10586_022_03577_4 crossref_primary_10_1016_j_aap_2023_107237 crossref_primary_10_1007_s00382_021_05869_8 crossref_primary_10_1063_5_0177640 crossref_primary_10_1175_JHM_D_21_0019_1 crossref_primary_10_1007_s41062_025_02147_y crossref_primary_10_3390_su141610344 crossref_primary_10_1038_s41598_022_09453_w crossref_primary_10_1155_2017_3471616 crossref_primary_10_3390_su141711084 crossref_primary_10_1016_j_apacoust_2023_109714 crossref_primary_10_3389_fmats_2019_00110 crossref_primary_10_1109_TIE_2017_2733438 crossref_primary_10_3390_s21051888 crossref_primary_10_1016_j_compag_2021_106136 crossref_primary_10_1162_neco_a_01100 crossref_primary_10_1016_j_wroa_2025_100346 crossref_primary_10_1002_stc_2824 crossref_primary_10_1116_6_0002809 crossref_primary_10_1177_14759217221075241 crossref_primary_10_3390_atmos10070373 crossref_primary_10_1002_sta4_308 crossref_primary_10_1007_s00521_023_09302_5 crossref_primary_10_1016_j_apor_2023_103511 crossref_primary_10_1061__ASCE_WR_1943_5452_0001624 crossref_primary_10_1063_5_0138060 crossref_primary_10_1109_ACCESS_2019_2918409 crossref_primary_10_3390_e23101242 crossref_primary_10_1016_j_ijheatmasstransfer_2025_127616 crossref_primary_10_1109_ACCESS_2019_2905101 crossref_primary_10_3390_app13137690 crossref_primary_10_1080_09715010_2017_1408433 crossref_primary_10_1155_2022_2014510 crossref_primary_10_1016_j_conbuildmat_2023_131941 crossref_primary_10_3390_s18103327 crossref_primary_10_1016_j_est_2025_116403 crossref_primary_10_1007_s10287_024_00504_3 crossref_primary_10_56093_ijas_v91i9_116097 crossref_primary_10_1016_j_knosys_2019_104874 crossref_primary_10_1109_ACCESS_2021_3116131 crossref_primary_10_1108_AJIM_02_2020_0054 crossref_primary_10_1016_j_cviu_2018_09_001 crossref_primary_10_1038_s41380_019_0365_9 crossref_primary_10_1080_0952813X_2023_2219286 crossref_primary_10_3390_app15147684 crossref_primary_10_1007_s11668_022_01360_6 crossref_primary_10_1016_j_ins_2022_12_045 crossref_primary_10_3389_fenvs_2022_1025268 crossref_primary_10_1007_s42045_018_0003_0 crossref_primary_10_2139_ssrn_3155047 crossref_primary_10_1007_s41062_023_01351_y crossref_primary_10_1016_j_spinee_2020_08_012 crossref_primary_10_1155_2022_9645830 crossref_primary_10_3390_app151810268 crossref_primary_10_1145_3323334 crossref_primary_10_1088_1757_899X_383_1_012018 crossref_primary_10_1109_TASLP_2019_2930913 crossref_primary_10_3390_sym15101875 crossref_primary_10_1016_j_engappai_2025_111849 crossref_primary_10_1109_JBHI_2019_2908488 crossref_primary_10_1016_j_asoc_2020_106678 crossref_primary_10_1016_j_ejrad_2025_112060 crossref_primary_10_1016_j_echo_2022_06_005 crossref_primary_10_1016_j_ejor_2019_10_049 crossref_primary_10_1007_s00419_021_01930_4 crossref_primary_10_3103_S1068799825010167 crossref_primary_10_1109_TAI_2021_3134186 crossref_primary_10_1016_j_oceaneng_2025_121008 crossref_primary_10_1016_j_scitotenv_2023_162797 crossref_primary_10_1038_s41551_019_0466_4 crossref_primary_10_1016_j_procs_2020_09_092 crossref_primary_10_3390_e20120927 crossref_primary_10_1080_13658816_2024_2321223 crossref_primary_10_1007_s11433_018_9321_7 crossref_primary_10_1007_s12145_022_00876_7 crossref_primary_10_1108_WJE_05_2024_0299 crossref_primary_10_3390_s17091941 crossref_primary_10_1016_j_pmcj_2018_06_011 crossref_primary_10_3168_jds_2023_24082 crossref_primary_10_14201_ADCAIJ2019841932 crossref_primary_10_1007_s11042_022_13567_8 crossref_primary_10_1177_1475921718799070 crossref_primary_10_1016_j_petlm_2018_09_005 crossref_primary_10_1002_suco_202100286 crossref_primary_10_1002_jcc_24764 crossref_primary_10_1016_j_engappai_2025_111860 crossref_primary_10_1016_j_ifacol_2019_09_172 crossref_primary_10_1109_ACCESS_2019_2912226 crossref_primary_10_1029_2025JH000657 crossref_primary_10_1186_s40537_020_00364_z crossref_primary_10_1111_mila_12205 crossref_primary_10_1016_j_eswa_2022_116616 crossref_primary_10_1016_j_trc_2025_105166 crossref_primary_10_7759_cureus_61860 crossref_primary_10_1007_s10462_024_10744_z crossref_primary_10_1016_j_eswa_2022_116618 crossref_primary_10_1016_j_engappai_2025_110534 crossref_primary_10_1186_s13071_022_05324_5 crossref_primary_10_1016_j_neucom_2018_07_101 crossref_primary_10_1016_j_neucom_2018_07_102 crossref_primary_10_1016_j_irbm_2021_06_010 crossref_primary_10_1038_s41598_020_78418_8 crossref_primary_10_1142_S0218194025500159 crossref_primary_10_1002_cite_70000 crossref_primary_10_19127_bshealthscience_1144271 crossref_primary_10_1016_j_ast_2019_04_021 crossref_primary_10_1109_TII_2019_2913853 crossref_primary_10_1002_wcms_1465 crossref_primary_10_1016_j_media_2017_04_002 crossref_primary_10_1016_j_ijsolstr_2024_113125 crossref_primary_10_1016_j_jmst_2021_09_061 crossref_primary_10_1177_03019233241301144 crossref_primary_10_1007_s10543_025_01058_9 crossref_primary_10_1109_ACCESS_2019_2925561 crossref_primary_10_1002_nme_6236 crossref_primary_10_1029_2025JH000686 crossref_primary_10_1016_j_envsoft_2019_07_013 crossref_primary_10_1016_j_aeolia_2021_100682 crossref_primary_10_3390_horticulturae7110489 crossref_primary_10_1016_j_cviu_2021_103249 crossref_primary_10_1016_j_neunet_2019_05_002 crossref_primary_10_3390_s16060895 crossref_primary_10_1049_itr2_12489 crossref_primary_10_1016_j_surfin_2024_105518 crossref_primary_10_1007_s13752_024_00483_3 crossref_primary_10_1016_j_neuroimage_2022_119717 crossref_primary_10_1155_2022_1420542 crossref_primary_10_3390_s22114157 crossref_primary_10_1111_tops_12527 crossref_primary_10_3389_fncom_2020_554097 crossref_primary_10_3390_a15060210 crossref_primary_10_1186_s12880_018_0286_0 crossref_primary_10_1155_2016_3891253 crossref_primary_10_1109_JIOT_2021_3123811 crossref_primary_10_3390_app12084088 crossref_primary_10_1038_s41598_020_66308_y crossref_primary_10_1016_j_mri_2019_06_009 crossref_primary_10_1016_j_neunet_2019_05_012 crossref_primary_10_3389_frwa_2021_652100 crossref_primary_10_1007_s11042_016_4220_6 crossref_primary_10_1121_10_0021303 crossref_primary_10_1016_j_cmpb_2017_04_012 crossref_primary_10_51536_tusbad_1702172 crossref_primary_10_3390_app14083184 crossref_primary_10_3847_1538_4357_adc88e crossref_primary_10_1007_s10115_017_1029_1 crossref_primary_10_1109_ACCESS_2022_3173734 crossref_primary_10_1088_1741_2552_abc902 crossref_primary_10_1088_1741_2552_abc903 crossref_primary_10_1016_j_oceaneng_2022_110749 crossref_primary_10_1038_s41598_019_55320_6 crossref_primary_10_3390_electronics9050750 crossref_primary_10_1080_01431161_2024_2406035 crossref_primary_10_2196_67969 crossref_primary_10_1007_s11047_022_09890_6 crossref_primary_10_1155_2022_7962686 crossref_primary_10_3390_math11030501 crossref_primary_10_1016_j_compchemeng_2021_107535 crossref_primary_10_1007_s11709_022_0882_5 crossref_primary_10_1016_j_neunet_2019_05_022 crossref_primary_10_1007_s00113_022_01202_y crossref_primary_10_1007_s11042_017_5593_x crossref_primary_10_1002_advs_202410065 crossref_primary_10_1002_wcms_1478 crossref_primary_10_1002_wcms_1479 crossref_primary_10_1109_ACCESS_2025_3525721 crossref_primary_10_7717_peerj_4568 crossref_primary_10_1145_3341167 crossref_primary_10_1007_s10055_023_00804_0 crossref_primary_10_3934_fods_2022004 crossref_primary_10_1002_wcms_1475 crossref_primary_10_1016_j_cscm_2023_e02370 crossref_primary_10_1016_j_trc_2021_103018 crossref_primary_10_1038_s43856_021_00008_0 crossref_primary_10_1155_2019_9196234 crossref_primary_10_3390_foods13172676 crossref_primary_10_1109_TVT_2019_2925562 crossref_primary_10_1016_j_istruc_2024_106321 crossref_primary_10_1007_s10570_022_05020_8 crossref_primary_10_1186_s40537_020_00377_8 crossref_primary_10_1109_TSP_2019_2957607 crossref_primary_10_3233_JIFS_200044 crossref_primary_10_1145_3575865 crossref_primary_10_3390_electronics11162497 crossref_primary_10_3390_s17112458 crossref_primary_10_1007_s11629_023_7931_y crossref_primary_10_1016_j_ejps_2022_106324 crossref_primary_10_1109_ACCESS_2021_3059785 crossref_primary_10_1177_1059712316667202 crossref_primary_10_1016_j_mejo_2020_104827 crossref_primary_10_1109_TSC_2022_3155448 crossref_primary_10_3390_rs14071681 crossref_primary_10_1109_JSTARS_2018_2860989 crossref_primary_10_1016_j_nexres_2025_100639 crossref_primary_10_1007_s40846_018_0389_7 crossref_primary_10_1016_j_buildenv_2023_110739 crossref_primary_10_1016_j_enconman_2020_113764 crossref_primary_10_1080_08839514_2021_1935590 crossref_primary_10_1051_matecconf_202439201120 crossref_primary_10_1016_j_measurement_2020_107896 crossref_primary_10_3390_electronics12010044 crossref_primary_10_3390_ijerph16040599 crossref_primary_10_1190_geo2018_0884_1 crossref_primary_10_1007_s12599_020_00645_0 crossref_primary_10_1038_s41598_025_10859_5 crossref_primary_10_3390_s23239566 crossref_primary_10_1007_s11042_024_19479_z crossref_primary_10_3389_fpls_2022_837020 crossref_primary_10_3390_jrfm13110265 crossref_primary_10_1016_j_neunet_2017_04_004 crossref_primary_10_2478_plua_2024_0015 crossref_primary_10_1109_TIFS_2019_2939713 crossref_primary_10_1002_ett_3302 crossref_primary_10_1016_j_imavis_2020_103933 crossref_primary_10_1016_j_isci_2025_112980 crossref_primary_10_1080_1062936X_2022_2109062 crossref_primary_10_1051_0004_6361_202348239 crossref_primary_10_3390_agriengineering7100317 crossref_primary_10_1007_s11063_022_10882_x crossref_primary_10_3390_foods10081803 crossref_primary_10_1007_s11604_020_01009_0 crossref_primary_10_1109_TETC_2021_3072666 crossref_primary_10_1089_cmb_2020_0252 crossref_primary_10_1016_j_ejor_2021_03_006 crossref_primary_10_1016_j_neunet_2020_07_010 crossref_primary_10_32604_cmes_2023_022566 crossref_primary_10_3390_met9050557 crossref_primary_10_1007_s11042_024_20276_x crossref_primary_10_1049_iet_cvi_2016_0482 crossref_primary_10_1111_1754_9485_13276 crossref_primary_10_1016_j_jvs_2023_09_037 crossref_primary_10_7717_peerj_cs_3091 crossref_primary_10_1007_s11042_023_15178_3 crossref_primary_10_1038_s41598_018_33516_6 crossref_primary_10_1007_s11571_024_10184_z crossref_primary_10_1016_j_fuel_2022_126296 crossref_primary_10_1016_j_cherd_2020_09_024 crossref_primary_10_3390_agriculture14050712 crossref_primary_10_1016_j_renene_2020_03_042 crossref_primary_10_1007_s11042_021_10644_2 crossref_primary_10_3390_math11143160 crossref_primary_10_1109_JIOT_2018_2878477 crossref_primary_10_1007_s12530_022_09453_1 crossref_primary_10_1016_j_heliyon_2024_e26332 crossref_primary_10_1016_j_robot_2016_11_005 crossref_primary_10_1002_isaf_70015 crossref_primary_10_1177_09596518231154042 crossref_primary_10_1007_s10851_019_00876_1 crossref_primary_10_1016_j_ast_2019_07_002 crossref_primary_10_1145_3363554 crossref_primary_10_3389_fpls_2021_613507 crossref_primary_10_1016_j_ymssp_2020_107467 crossref_primary_10_1002_adem_202201780 crossref_primary_10_1007_s00521_022_07011_z crossref_primary_10_1162_tacl_a_00489 crossref_primary_10_1002_widm_1560 crossref_primary_10_1108_SSMT_08_2023_0045 crossref_primary_10_1371_journal_pcbi_1005542 crossref_primary_10_1007_s13735_020_00195_x crossref_primary_10_1680_jener_24_00027 crossref_primary_10_1016_j_ejor_2019_09_018 crossref_primary_10_1152_jn_00507_2024 crossref_primary_10_3390_wevj13010001 crossref_primary_10_3233_ICA_170538 crossref_primary_10_3390_rs13010054 crossref_primary_10_1155_2018_4651582 crossref_primary_10_3390_app11115029 crossref_primary_10_1016_j_oceaneng_2020_106972 crossref_primary_10_1007_s42484_022_00092_y crossref_primary_10_1109_JBHI_2017_2771768 crossref_primary_10_1109_JSEN_2018_2844799 crossref_primary_10_7717_peerj_cs_3077 crossref_primary_10_1109_TMI_2019_2911211 crossref_primary_10_1007_s42417_023_01116_y crossref_primary_10_1016_j_coastaleng_2018_03_004 crossref_primary_10_3390_ma14082056 crossref_primary_10_1038_s41598_017_16548_2 crossref_primary_10_1111_1754_9485_13286 crossref_primary_10_1016_j_prime_2024_100458 crossref_primary_10_1109_ACCESS_2019_2943381 crossref_primary_10_1007_s00170_024_14472_0 crossref_primary_10_1080_0951192X_2019_1571241 crossref_primary_10_1109_LGRS_2020_2998580 crossref_primary_10_1007_s12043_023_02653_7 crossref_primary_10_1016_j_trc_2021_103062 crossref_primary_10_1007_s00704_024_05304_y crossref_primary_10_1109_JSTARS_2019_2900705 crossref_primary_10_1109_TAES_2020_3037406 crossref_primary_10_3389_fnins_2021_724391 crossref_primary_10_1016_j_chaos_2024_115886 crossref_primary_10_1186_s13321_019_0389_9 crossref_primary_10_1016_j_jspi_2022_11_001 crossref_primary_10_1080_08839514_2021_2014190 crossref_primary_10_1587_transinf_2018EDP7073 crossref_primary_10_1016_j_jenvman_2017_07_026 crossref_primary_10_1109_TAES_2021_3056086 crossref_primary_10_1109_TMI_2019_2936500 crossref_primary_10_1007_s11947_017_2050_9 crossref_primary_10_1109_ACCESS_2023_3271515 crossref_primary_10_1080_02626667_2021_1957105 crossref_primary_10_1109_ACCESS_2018_2873811 crossref_primary_10_1016_j_jvcir_2019_06_007 crossref_primary_10_3389_fbioe_2019_00443 crossref_primary_10_1155_2021_6721564 crossref_primary_10_1093_bib_bbaa043 crossref_primary_10_1038_s41534_019_0222_3 crossref_primary_10_1088_2632_2153_ab6432 crossref_primary_10_3389_fpsyt_2022_811665 crossref_primary_10_3390_agriculture12081192 crossref_primary_10_1016_j_eswa_2019_01_056 crossref_primary_10_1214_18_AOS1747 crossref_primary_10_3390_electronics11071078 crossref_primary_10_1088_1402_4896_acb39b crossref_primary_10_1016_j_physa_2024_130295 crossref_primary_10_1007_s12145_023_00955_3 crossref_primary_10_1038_s41598_025_04764_0 crossref_primary_10_1155_2022_3525266 crossref_primary_10_1016_j_ijimpeng_2019_103461 crossref_primary_10_1016_j_aei_2022_101553 crossref_primary_10_3390_rs11091068 crossref_primary_10_1007_s11042_019_7444_4 crossref_primary_10_1038_s41598_021_95275_1 crossref_primary_10_1016_j_jfds_2017_05_001 crossref_primary_10_3390_diagnostics14202274 crossref_primary_10_1016_j_ejmp_2021_03_026 crossref_primary_10_3390_s21237925 crossref_primary_10_1088_1674_1056_adcb99 crossref_primary_10_3390_s17071564 crossref_primary_10_12677_AAM_2021_101012 crossref_primary_10_1007_s10694_017_0695_6 crossref_primary_10_1029_2021EA002043 crossref_primary_10_1109_TGRS_2017_2711275 crossref_primary_10_1016_j_enbuild_2021_111478 crossref_primary_10_1108_JM2_04_2021_0105 crossref_primary_10_1016_j_autcon_2024_105569 crossref_primary_10_3390_nano12111808 crossref_primary_10_1186_s12859_019_2823_4 crossref_primary_10_3389_fnbot_2022_1086578 crossref_primary_10_1371_journal_pone_0223451 crossref_primary_10_3389_fnsys_2016_00097 crossref_primary_10_1016_j_cie_2023_109352 crossref_primary_10_1109_ACCESS_2021_3076281 crossref_primary_10_3390_s23010062 crossref_primary_10_32604_iasc_2024_043020 crossref_primary_10_1007_s40558_025_00315_5 crossref_primary_10_1016_j_watres_2022_118299 crossref_primary_10_3233_JIFS_190101 crossref_primary_10_1016_j_compag_2025_110676 crossref_primary_10_1007_s00500_023_07949_9 crossref_primary_10_1587_transinf_2017EDP7138 crossref_primary_10_3389_fgene_2018_00717 crossref_primary_10_1029_2023JG007815 crossref_primary_10_3390_electronics12010105 crossref_primary_10_3390_rs11091044 crossref_primary_10_1016_j_asoc_2025_113930 crossref_primary_10_3390_s24051495 crossref_primary_10_1007_s00500_016_2416_3 crossref_primary_10_1016_j_neuroimage_2018_12_015 crossref_primary_10_3390_s24051493 crossref_primary_10_35675_befdergi_1605165 crossref_primary_10_1016_j_petrol_2018_06_072 crossref_primary_10_1007_s11071_024_10843_0 crossref_primary_10_3390_su12072914 crossref_primary_10_2514_1_G004080 crossref_primary_10_1093_bjro_tzae018 crossref_primary_10_1016_j_egyr_2025_05_074 crossref_primary_10_1093_comjnl_bxab049 crossref_primary_10_1080_10618600_2024_2421248 crossref_primary_10_1088_1361_6595_ac6e04 crossref_primary_10_1242_jeb_198101 crossref_primary_10_1016_j_knosys_2019_07_026 crossref_primary_10_1016_j_petrol_2018_06_038 crossref_primary_10_1016_j_jval_2022_06_004 crossref_primary_10_1002_ima_22734 crossref_primary_10_3390_aerospace11020140 crossref_primary_10_1016_j_engappai_2025_110389 crossref_primary_10_1109_TBME_2018_2889512 crossref_primary_10_1016_j_measurement_2020_107962 crossref_primary_10_1016_j_patcog_2020_107609 crossref_primary_10_1016_j_measurement_2024_115880 crossref_primary_10_1038_s41598_022_22204_1 crossref_primary_10_1016_j_jpdc_2019_03_010 crossref_primary_10_1109_JIOT_2017_2732735 crossref_primary_10_1016_j_eswa_2024_125276 crossref_primary_10_3390_atmos13071042 crossref_primary_10_1007_s11063_018_9878_5 crossref_primary_10_3390_s23208493 crossref_primary_10_1016_j_patcog_2017_05_025 crossref_primary_10_3390_en15082834 crossref_primary_10_2196_11499 crossref_primary_10_1016_j_neucom_2016_06_014 crossref_primary_10_1016_j_scitotenv_2023_166168 crossref_primary_10_1017_aer_2023_4 crossref_primary_10_1007_s11053_023_10193_5 crossref_primary_10_1515_nanoph_2020_0570 crossref_primary_10_1086_714960 crossref_primary_10_2196_22148 crossref_primary_10_3367_UFNe_2025_02_039872 crossref_primary_10_1016_j_heliyon_2024_e33490 crossref_primary_10_1016_j_jhydrol_2024_130627 crossref_primary_10_1016_j_cmpb_2015_12_014 crossref_primary_10_1186_s12967_024_05609_6 crossref_primary_10_1371_journal_pone_0246126 crossref_primary_10_1038_s41467_022_31560_5 crossref_primary_10_3389_fmed_2022_1037647 crossref_primary_10_1002_minf_202200257 crossref_primary_10_1080_01621459_2021_1938081 crossref_primary_10_1093_bib_bbab355 crossref_primary_10_1007_s11119_023_10073_1 crossref_primary_10_1088_1757_899X_177_1_012028 crossref_primary_10_3389_frwa_2023_1028922 crossref_primary_10_1145_3304103 crossref_primary_10_3390_rs11091079 crossref_primary_10_1016_j_prostr_2017_07_027 crossref_primary_10_1007_s10044_023_01161_z crossref_primary_10_1051_shsconf_202419703002 crossref_primary_10_3390_agronomy13092387 crossref_primary_10_1145_3477535 crossref_primary_10_3389_fpls_2023_1102855 crossref_primary_10_1016_j_opelre_2019_02_003 crossref_primary_10_1007_s11042_019_08546_5 crossref_primary_10_1002_rse2_195 crossref_primary_10_1016_j_atmosres_2022_106339 crossref_primary_10_1016_j_bspc_2020_101860 crossref_primary_10_1016_j_jclepro_2022_131556 crossref_primary_10_1016_j_compbiomed_2022_105634 crossref_primary_10_3847_1538_4365_adb1c4 crossref_primary_10_1007_s11431_024_2762_5 crossref_primary_10_1007_s40687_022_00370_y crossref_primary_10_1016_j_petsci_2024_09_015 crossref_primary_10_1007_s11269_023_03443_x crossref_primary_10_1002_aisy_202100200 crossref_primary_10_1109_TITS_2019_2900426 crossref_primary_10_1155_2020_8856818 crossref_primary_10_1155_2022_9541115 crossref_primary_10_1007_s10584_024_03844_w crossref_primary_10_1103_PhysRevResearch_5_013139 crossref_primary_10_1186_s12862_021_01839_0 crossref_primary_10_3390_risks9030046 crossref_primary_10_1080_23322039_2022_2150134 crossref_primary_10_3390_sym13030428 crossref_primary_10_1016_j_neuroimage_2018_03_065 crossref_primary_10_1007_s44245_025_00094_7 crossref_primary_10_1016_j_ultras_2023_106970 crossref_primary_10_1109_TBME_2018_2872726 crossref_primary_10_1007_s10489_020_02168_3 crossref_primary_10_1007_s11934_019_0914_4 crossref_primary_10_1016_j_biosystemseng_2019_05_002 crossref_primary_10_3390_app10062017 crossref_primary_10_1137_18M1203602 crossref_primary_10_3390_info9090238 crossref_primary_10_1016_j_cie_2020_106600 crossref_primary_10_1007_s10338_025_00607_7 crossref_primary_10_1016_j_mad_2019_111194 crossref_primary_10_1016_j_asoc_2022_109454 crossref_primary_10_1029_2022SW003090 crossref_primary_10_1016_j_ndteint_2021_102575 crossref_primary_10_1002_tee_22711 crossref_primary_10_1016_j_cie_2022_108129 crossref_primary_10_1016_j_procs_2017_03_130 crossref_primary_10_1002_hed_28213 crossref_primary_10_1016_j_compfluid_2019_104318 crossref_primary_10_1038_s41598_019_48016_4 crossref_primary_10_3390_rs11050597 crossref_primary_10_3390_rs13245054 crossref_primary_10_3390_biomedinformatics2010010 crossref_primary_10_1177_0954407019861028 crossref_primary_10_1007_s10664_024_10576_z crossref_primary_10_1016_j_flowmeasinst_2025_102914 crossref_primary_10_1088_1361_6560_abc303 crossref_primary_10_1016_j_trgeo_2025_101492 crossref_primary_10_1162_neco_a_01275 crossref_primary_10_1016_j_engappai_2023_106500 crossref_primary_10_1002_pnp_721 crossref_primary_10_1007_s40808_024_02090_4 crossref_primary_10_1109_ACCESS_2019_2936124 crossref_primary_10_21673_anadoluklin_1653335 crossref_primary_10_1016_j_enconman_2023_117618 crossref_primary_10_1007_s42979_023_02214_0 crossref_primary_10_3233_JIFS_172261 crossref_primary_10_1007_s00521_020_05383_8 crossref_primary_10_1016_j_pepi_2021_106653 crossref_primary_10_1587_transinf_2019EDL8170 crossref_primary_10_1016_j_eswa_2025_126464 crossref_primary_10_1088_1757_899X_608_1_012045 crossref_primary_10_1007_s40747_021_00307_y crossref_primary_10_1016_j_cageo_2025_105981 crossref_primary_10_3389_fpls_2023_1143326 crossref_primary_10_1177_01423312211040901 crossref_primary_10_1002_ijfe_3116 crossref_primary_10_1002_smr_2488 crossref_primary_10_1155_2022_8044887 crossref_primary_10_1016_j_ins_2018_07_015 crossref_primary_10_1145_3656047 crossref_primary_10_3390_rs13132598 crossref_primary_10_1109_TNNLS_2019_2957366 crossref_primary_10_1016_j_trip_2025_101636 crossref_primary_10_1051_e3sconf_202129102023 crossref_primary_10_1007_s00500_021_05983_z crossref_primary_10_1016_j_neurad_2017_05_008 crossref_primary_10_3390_s22176491 crossref_primary_10_1080_00268976_2019_1652367 crossref_primary_10_1155_2021_2016816 crossref_primary_10_1109_TC_2020_2992113 crossref_primary_10_1016_j_neucom_2020_01_081 crossref_primary_10_1109_ACCESS_2019_2891588 crossref_primary_10_1016_j_taml_2020_01_043 crossref_primary_10_1109_TMM_2021_3121547 crossref_primary_10_1002_qute_202100140 crossref_primary_10_1016_j_compbiomed_2023_106837 crossref_primary_10_1061__ASCE_WR_1943_5452_0001540 crossref_primary_10_1038_s41467_025_56122_3 crossref_primary_10_1080_13416979_2024_2436748 crossref_primary_10_1016_j_cej_2018_04_087 crossref_primary_10_1038_s41377_022_00714_x crossref_primary_10_3390_s23062957 crossref_primary_10_52711_2321_581X_2022_00007 crossref_primary_10_1088_2057_1976_acbd53 crossref_primary_10_22399_ijcesen_3235 crossref_primary_10_1016_j_compstruct_2021_114808 crossref_primary_10_1038_s41598_025_88446_x crossref_primary_10_1016_j_physrep_2019_11_001 crossref_primary_10_1177_10760296231179438 crossref_primary_10_1016_j_cageo_2023_105364 crossref_primary_10_1186_s40537_023_00829_x crossref_primary_10_1080_14680629_2023_2230298 crossref_primary_10_1049_iet_its_2018_0064 crossref_primary_10_3390_en17010264 crossref_primary_10_1155_2022_2515432 crossref_primary_10_3389_fphy_2021_710351 crossref_primary_10_1109_TCDS_2018_2833387 crossref_primary_10_1007_s10851_022_01106_x crossref_primary_10_1016_j_rser_2022_112282 crossref_primary_10_1136_gpsych_2020_100197 crossref_primary_10_1002_zamm_202400051 crossref_primary_10_1016_j_bspc_2024_106195 crossref_primary_10_1088_1757_899X_569_4_042046 crossref_primary_10_1002_stc_2714 crossref_primary_10_3389_fphy_2021_650108 crossref_primary_10_1016_j_ecoinf_2024_102794 crossref_primary_10_1109_TVCG_2020_3023129 crossref_primary_10_1002_ajim_23037 crossref_primary_10_1109_TMI_2016_2526689 crossref_primary_10_1016_j_neucom_2017_12_066 crossref_primary_10_1016_j_ultras_2021_106671 crossref_primary_10_1109_ACCESS_2019_2920616 crossref_primary_10_1016_j_jmgm_2021_108083 crossref_primary_10_1016_j_optlaseng_2025_109155 crossref_primary_10_1038_s41598_022_08863_0 crossref_primary_10_1007_s10489_022_04370_x crossref_primary_10_1007_s11042_019_08319_0 crossref_primary_10_1063_5_0025462 crossref_primary_10_1016_j_sciaf_2024_e02159 crossref_primary_10_1080_01969722_2016_1128776 crossref_primary_10_1049_rsn2_12084 crossref_primary_10_1016_j_ins_2022_04_052 crossref_primary_10_1016_j_oooo_2023_01_017 crossref_primary_10_1080_07038992_2021_1954498 crossref_primary_10_3390_en13246579 crossref_primary_10_1111_ffe_14379 crossref_primary_10_1016_j_arcontrol_2019_09_008 crossref_primary_10_3390_su12135317 crossref_primary_10_1109_ACCESS_2019_2907645 crossref_primary_10_2166_hydro_2019_084 crossref_primary_10_1080_23818107_2018_1446357 crossref_primary_10_36702_pb_563 crossref_primary_10_1049_iet_ipr_2019_0907 crossref_primary_10_1016_j_is_2023_102176 crossref_primary_10_1109_TNNLS_2020_3016632 crossref_primary_10_1515_eng_2020_0080 crossref_primary_10_1088_1742_6596_1695_1_012152 crossref_primary_10_1016_j_tree_2018_11_007 crossref_primary_10_1088_1742_6596_1343_1_012032 crossref_primary_10_1088_1742_6596_1621_1_012062 crossref_primary_10_1111_mice_12628 crossref_primary_10_1117_1_JRS_18_014531 crossref_primary_10_1088_1742_6596_1004_1_012004 crossref_primary_10_1016_j_compgeo_2023_105935 crossref_primary_10_3390_info6040790 crossref_primary_10_3390_s20154332 crossref_primary_10_3390_app121910025 crossref_primary_10_1109_TNNLS_2018_2890334 crossref_primary_10_1016_j_taml_2023_100482 crossref_primary_10_1109_ACCESS_2020_2983987 crossref_primary_10_1016_j_apenergy_2024_124430 crossref_primary_10_3389_fams_2018_00060 crossref_primary_10_3390_ani12151948 crossref_primary_10_3390_plants11233344 crossref_primary_10_3390_s20082193 crossref_primary_10_3389_frai_2025_1627078 crossref_primary_10_1016_j_eswa_2022_117847 crossref_primary_10_1007_s10922_016_9398_4 crossref_primary_10_1016_j_ipm_2018_08_001 crossref_primary_10_1007_s12559_017_9522_0 crossref_primary_10_1109_ACCESS_2022_3150924 crossref_primary_10_1080_10630732_2024_2402676 crossref_primary_10_1155_2018_5419645 crossref_primary_10_1371_journal_pone_0253217 crossref_primary_10_1007_s00500_017_2850_x crossref_primary_10_1109_TVCG_2020_2973473 crossref_primary_10_1007_s10921_025_01236_3 crossref_primary_10_3390_electronics11010103 crossref_primary_10_1007_s11042_020_09527_9 crossref_primary_10_1016_j_apr_2021_101066 crossref_primary_10_1038_s41467_022_28487_2 crossref_primary_10_1016_j_neunet_2023_10_050 crossref_primary_10_1007_s40860_018_0072_3 crossref_primary_10_1007_s00009_020_01513_7 crossref_primary_10_1016_j_procs_2017_08_336 crossref_primary_10_1016_j_autcon_2025_106447 crossref_primary_10_1002_asl_1195 crossref_primary_10_1088_1755_1315_990_1_012054 crossref_primary_10_3390_en14196316 crossref_primary_10_1038_s41467_024_48766_4 crossref_primary_10_1111_mice_12623 crossref_primary_10_1007_s43681_024_00469_8 crossref_primary_10_3389_fncom_2024_1388166 crossref_primary_10_1175_MWR_D_18_0187_1 crossref_primary_10_1016_j_apenergy_2021_117193 crossref_primary_10_3390_jimaging8100267 crossref_primary_10_34248_bsengineering_938520 crossref_primary_10_1109_TCCN_2021_3066619 crossref_primary_10_1016_j_robot_2020_103578 crossref_primary_10_3390_ijerph17114152 crossref_primary_10_1117_1_OE_61_6_061409 crossref_primary_10_3390_s20154300 crossref_primary_10_1007_s12665_023_11134_4 crossref_primary_10_1007_s00521_022_07648_w crossref_primary_10_1016_j_neucom_2019_04_093 crossref_primary_10_1109_TBDATA_2018_2871151 crossref_primary_10_32634_0869_8155_2025_397_08_104_114 crossref_primary_10_1007_s41109_021_00389_0 crossref_primary_10_1016_j_heliyon_2024_e26297 crossref_primary_10_1109_ACCESS_2019_2938768 crossref_primary_10_3390_w15152707 crossref_primary_10_1016_j_engstruct_2018_05_109 crossref_primary_10_1038_s41433_018_0269_y crossref_primary_10_25122_jml_2019_0090 crossref_primary_10_1002_smr_2432 crossref_primary_10_1007_s12524_022_01506_x crossref_primary_10_3390_s22010174 crossref_primary_10_1007_s11571_018_9489_x crossref_primary_10_1016_j_seps_2023_101560 crossref_primary_10_3390_sym13050804 crossref_primary_10_3390_agriculture12020176 crossref_primary_10_1109_JIOT_2021_3088875 crossref_primary_10_4018_IJCINI_2016100101 crossref_primary_10_1007_s11042_023_16292_y crossref_primary_10_1088_2515_7620_ac5b84 crossref_primary_10_1007_s11242_019_01265_3 crossref_primary_10_3389_fphys_2021_662314 crossref_primary_10_1016_j_supflu_2023_106051 crossref_primary_10_3390_molecules26030612 crossref_primary_10_1016_j_imu_2023_101210 crossref_primary_10_1002_ese3_439 crossref_primary_10_1017_wsc_2020_46 crossref_primary_10_3390_electronics10182304 crossref_primary_10_1002_adc2_70003 crossref_primary_10_1038_s42003_024_05871_w crossref_primary_10_1109_ACCESS_2023_3275015 crossref_primary_10_3390_rs12071111 crossref_primary_10_1109_TIM_2017_2759418 crossref_primary_10_1371_journal_pone_0229596 crossref_primary_10_1016_j_est_2025_117836 crossref_primary_10_3390_diagnostics12112794 crossref_primary_10_1016_j_est_2021_103749 crossref_primary_10_1088_1361_6528_ad3648 crossref_primary_10_1007_s13278_020_00688_x crossref_primary_10_1016_j_ast_2018_07_024 crossref_primary_10_1017_S0956792517000146 crossref_primary_10_1016_j_heliyon_2023_e19229 crossref_primary_10_1016_j_jastp_2020_105465 crossref_primary_10_1007_s12273_020_0735_x crossref_primary_10_1007_s11042_020_09634_7 crossref_primary_10_1117_1_OE_64_5_056106 crossref_primary_10_1002_sta4_382 crossref_primary_10_1007_s11042_025_20766_6 crossref_primary_10_1007_s40031_023_00907_x crossref_primary_10_3389_fnins_2022_801847 crossref_primary_10_3390_math10091428 crossref_primary_10_1145_3472770 crossref_primary_10_1016_j_jacr_2018_01_028 crossref_primary_10_1016_j_dsp_2023_104168 crossref_primary_10_1016_j_oceaneng_2022_110691 crossref_primary_10_1016_j_preteyeres_2020_100900 crossref_primary_10_1186_s12916_020_01823_3 crossref_primary_10_3389_fnins_2025_1551143 crossref_primary_10_1007_s11837_025_07542_5 crossref_primary_10_1093_cercor_bhaf160 crossref_primary_10_1016_j_jallcom_2022_168488 crossref_primary_10_1038_s42256_020_0160_y crossref_primary_10_1016_j_autcon_2020_103520 crossref_primary_10_1016_j_ribaf_2022_101683 crossref_primary_10_4025_actasciagron_v45i1_59854 crossref_primary_10_1016_j_technovation_2021_102312 crossref_primary_10_3390_app132212316 crossref_primary_10_1016_j_ifacol_2023_10_1500 crossref_primary_10_1016_j_yebeh_2018_02_010 crossref_primary_10_1007_s00170_022_10649_7 crossref_primary_10_3390_rs9121305 crossref_primary_10_1016_j_geoen_2024_213275 crossref_primary_10_1007_s10614_024_10629_x crossref_primary_10_1016_j_ins_2020_05_022 crossref_primary_10_1109_JBHI_2020_3002097 crossref_primary_10_1007_s00521_021_06082_8 crossref_primary_10_3390_s24020353 crossref_primary_10_1016_j_undsp_2023_11_008 crossref_primary_10_1007_s00521_019_04282_x crossref_primary_10_1109_JPHOT_2022_3157776 crossref_primary_10_1007_s00466_019_01740_0 crossref_primary_10_34133_plantphenomics_0048 crossref_primary_10_3390_app9214656 crossref_primary_10_1007_s11831_023_10047_6 crossref_primary_10_1016_j_nima_2020_164951 crossref_primary_10_1016_j_jfranklin_2023_07_015 crossref_primary_10_3390_s25134231 crossref_primary_10_1007_s40201_018_0301_y crossref_primary_10_3390_ecologies3030025 crossref_primary_10_1109_TNNLS_2017_2708712 crossref_primary_10_1016_j_eswa_2020_113788 crossref_primary_10_3938_jkps_75_909 crossref_primary_10_1002_cpe_6434 crossref_primary_10_1002_spy2_189 crossref_primary_10_1007_s10334_018_0718_4 crossref_primary_10_3390_electronics10212608 crossref_primary_10_1007_s10462_023_10698_8 crossref_primary_10_3390_e24060751 crossref_primary_10_1016_j_compag_2022_106928 crossref_primary_10_1016_j_cma_2020_113516 crossref_primary_10_1016_j_ijleo_2022_170268 crossref_primary_10_3390_brainsci9110326 crossref_primary_10_3917_qdm_204_0063 crossref_primary_10_3390_w15234194 crossref_primary_10_1016_j_trc_2024_104735 crossref_primary_10_1007_s11045_016_0408_1 crossref_primary_10_1016_j_anucene_2019_05_039 crossref_primary_10_1177_15501329221088450 crossref_primary_10_3390_electronics11121859 crossref_primary_10_1016_j_psep_2023_03_052 crossref_primary_10_1016_j_isatra_2021_06_013 crossref_primary_10_1016_j_measurement_2018_08_010 crossref_primary_10_1186_s11671_020_03319_8 crossref_primary_10_1016_j_istruc_2022_02_003 crossref_primary_10_1016_j_neucom_2016_12_110 crossref_primary_10_1007_s10506_016_9186_1 crossref_primary_10_1016_j_commatsci_2020_109948 crossref_primary_10_1016_j_renene_2021_04_025 crossref_primary_10_1016_j_seppur_2022_121129 crossref_primary_10_1038_s41598_020_66225_0 crossref_primary_10_1186_s40663_021_00328_6 crossref_primary_10_1007_s11042_022_12941_w crossref_primary_10_1016_j_scitotenv_2022_160180 crossref_primary_10_1016_j_aap_2022_106769 crossref_primary_10_3390_rs17010111 crossref_primary_10_3390_biomedicines10092157 crossref_primary_10_1016_j_ifacol_2018_09_380 crossref_primary_10_1109_TCSVT_2019_2927550 crossref_primary_10_1088_1742_6596_960_1_012048 crossref_primary_10_1073_pnas_1900358116 crossref_primary_10_1051_e3sconf_202017505007 crossref_primary_10_1080_1755876X_2021_1999107 crossref_primary_10_3390_math11183964 crossref_primary_10_1088_2632_2153_ade04c crossref_primary_10_1038_s41598_024_56502_7 crossref_primary_10_1002_adts_202300430 crossref_primary_10_1007_s11416_021_00386_y crossref_primary_10_1155_2016_3289801 crossref_primary_10_3390_info14080441 crossref_primary_10_1038_s41598_023_30555_6 crossref_primary_10_1039_C9SC01928F crossref_primary_10_3389_fnins_2021_552666 crossref_primary_10_1007_s10846_020_01281_2 crossref_primary_10_1016_j_cma_2022_115078 crossref_primary_10_1186_s12911_024_02761_3 crossref_primary_10_1109_TR_2019_2907402 crossref_primary_10_1109_JSYST_2020_3007428 crossref_primary_10_1109_TNB_2018_2873221 crossref_primary_10_1021_acs_jcim_7b00384 crossref_primary_10_1016_j_cma_2020_113568 crossref_primary_10_1016_j_neunet_2017_10_007 crossref_primary_10_1016_j_neunet_2017_10_005 crossref_primary_10_1007_s41649_018_0069_5 crossref_primary_10_1016_j_scitotenv_2023_163972 crossref_primary_10_1016_j_procs_2019_09_385 crossref_primary_10_3390_s17051173 crossref_primary_10_1016_j_asoc_2021_108212 crossref_primary_10_2196_43822 crossref_primary_10_1007_s00779_019_01248_7 crossref_primary_10_1016_j_neunet_2018_05_016 crossref_primary_10_1016_j_cej_2025_166668 crossref_primary_10_1016_j_engappai_2015_07_017 crossref_primary_10_1007_s00500_019_03947_y crossref_primary_10_1016_j_ejmp_2025_104978 crossref_primary_10_1007_s10596_020_09940_x crossref_primary_10_1016_j_compag_2018_02_016 crossref_primary_10_1016_j_ins_2020_05_031 crossref_primary_10_1007_s11280_021_00997_x crossref_primary_10_3390_math11143062 crossref_primary_10_1109_ACCESS_2020_3004624 crossref_primary_10_3390_mi14081618 crossref_primary_10_1080_01431161_2023_2255350 crossref_primary_10_3390_s24020348 crossref_primary_10_1016_j_conbuildmat_2024_137276 crossref_primary_10_1109_TAI_2022_3180272 crossref_primary_10_3390_rs15153838 crossref_primary_10_1007_s10346_023_02072_0 crossref_primary_10_1007_s10614_022_10239_5 crossref_primary_10_3390_app9040684 crossref_primary_10_1109_JPROC_2020_2986602 crossref_primary_10_1108_JM2_07_2020_0181 crossref_primary_10_1007_s11082_020_02565_5 crossref_primary_10_1016_j_engstruct_2021_113619 crossref_primary_10_1016_j_apenergy_2020_115599 crossref_primary_10_1017_S0263574719000316 crossref_primary_10_3390_app11198979 crossref_primary_10_3389_fphys_2019_00255 crossref_primary_10_1109_COMST_2018_2866942 crossref_primary_10_1002_ima_22788 crossref_primary_10_1111_mice_12663 crossref_primary_10_1016_j_neucom_2025_129769 crossref_primary_10_1080_01431161_2023_2255349 crossref_primary_10_3390_ijerph19095367 crossref_primary_10_1016_j_neunet_2018_05_007 crossref_primary_10_1016_j_frl_2023_104304 crossref_primary_10_1016_j_cam_2017_05_008 crossref_primary_10_1007_s10032_019_00317_0 crossref_primary_10_1016_j_bspc_2025_108354 crossref_primary_10_1007_s11047_016_9597_7 crossref_primary_10_1109_JIOT_2018_2859480 crossref_primary_10_1016_j_cosrev_2022_100488 crossref_primary_10_1016_j_artmed_2018_02_004 crossref_primary_10_1016_j_patcog_2021_108057 crossref_primary_10_1007_s11042_020_09455_8 crossref_primary_10_1016_j_jcp_2020_109950 crossref_primary_10_1016_j_neucom_2016_01_074 crossref_primary_10_1016_j_asoc_2025_112979 crossref_primary_10_1051_matecconf_202235502054 crossref_primary_10_3390_rs12234000 crossref_primary_10_1049_iet_gtd_2018_5254 crossref_primary_10_1016_j_meatsci_2018_05_020 crossref_primary_10_1016_j_eswa_2024_125594 crossref_primary_10_52711_0975_4377_2025_00005 crossref_primary_10_1016_j_chaos_2025_116727 crossref_primary_10_1038_s41377_024_01721_w crossref_primary_10_3390_molecules27196249 crossref_primary_10_1016_j_rse_2022_113116 crossref_primary_10_1016_j_compag_2023_107805 crossref_primary_10_3390_app10093020 crossref_primary_10_3390_s21051664 crossref_primary_10_1016_j_cose_2021_102246 crossref_primary_10_1016_j_asoc_2025_112984 crossref_primary_10_1016_j_jbusres_2024_114576 crossref_primary_10_1145_3079765 crossref_primary_10_1177_23312165251365802 crossref_primary_10_1007_s10596_022_10189_9 crossref_primary_10_1109_TBDATA_2019_2916868 crossref_primary_10_1016_j_eswa_2021_114839 crossref_primary_10_1016_j_compbiomed_2024_108561 crossref_primary_10_1002_jeq2_20138 crossref_primary_10_1016_j_jag_2020_102292 crossref_primary_10_1109_ACCESS_2022_3160179 crossref_primary_10_1016_j_eja_2024_127366 crossref_primary_10_1016_j_scitotenv_2022_160446 crossref_primary_10_1088_1755_1315_714_4_042049 crossref_primary_10_1016_j_drugalcdep_2019_107605 crossref_primary_10_1002_cem_2916 crossref_primary_10_1007_s11222_017_9793_z crossref_primary_10_1016_j_autcon_2020_103145 crossref_primary_10_1080_09540091_2020_1862059 crossref_primary_10_1002_lom3_10573 crossref_primary_10_3390_molecules28031324 crossref_primary_10_1080_00949655_2020_1797031 crossref_primary_10_1007_s11227_017_2080_0 crossref_primary_10_1109_ACCESS_2020_3027499 crossref_primary_10_1038_s41598_023_35864_4 crossref_primary_10_1016_j_neunet_2025_107364 crossref_primary_10_1016_j_ecolind_2024_112402 crossref_primary_10_1007_s00521_020_04843_5 crossref_primary_10_3390_su13116165 crossref_primary_10_3389_fphy_2022_965095 crossref_primary_10_1080_24751839_2019_1573395 crossref_primary_10_1038_s41467_022_34807_3 crossref_primary_10_3390_math12233685 crossref_primary_10_1016_j_ins_2023_03_071 crossref_primary_10_1061__ASCE_WR_1943_5452_0001432 crossref_primary_10_1007_s42452_025_06941_2 crossref_primary_10_1007_s10898_018_0701_7 crossref_primary_10_1007_s11042_019_08162_3 crossref_primary_10_1093_bib_bbac350 crossref_primary_10_2196_11357 crossref_primary_10_1016_j_compbiomed_2017_08_001 crossref_primary_10_1016_j_vlsi_2017_11_001 crossref_primary_10_3389_fnins_2017_00350 crossref_primary_10_12677_jisp_2024_133030 crossref_primary_10_3390_s21165654 crossref_primary_10_1093_bioadv_vbad110 crossref_primary_10_2139_ssrn_5375099 crossref_primary_10_3390_bioengineering9100523 crossref_primary_10_1088_1674_4527_ace297 crossref_primary_10_1002_ese3_1297 crossref_primary_10_1016_j_ribaf_2022_101644 crossref_primary_10_1109_MCOM_2016_7470945 crossref_primary_10_3233_XST_221301 crossref_primary_10_1080_10447318_2023_2175494 crossref_primary_10_1038_s41928_022_00719_9 crossref_primary_10_1016_j_displa_2018_08_001 crossref_primary_10_1109_ACCESS_2024_3359055 crossref_primary_10_1016_j_engappai_2025_110264 crossref_primary_10_1007_s00330_021_08014_5 crossref_primary_10_1109_TCSII_2017_2746749 crossref_primary_10_1115_1_2016_Dec_2 crossref_primary_10_3390_pr10081653 crossref_primary_10_1016_j_neucom_2021_05_061 crossref_primary_10_3389_feart_2020_00227 crossref_primary_10_3390_plants13141918 crossref_primary_10_1155_2021_3006397 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122563 crossref_primary_10_1109_ACCESS_2020_3040408 crossref_primary_10_1016_j_compbiomed_2017_08_022 crossref_primary_10_3390_s21020505 crossref_primary_10_1155_2021_9919588 crossref_primary_10_1080_15481603_2023_2257978 crossref_primary_10_1109_ACCESS_2020_3026110 crossref_primary_10_3390_math13111861 crossref_primary_10_3390_electronics13101819 crossref_primary_10_1140_epjc_s10052_019_6909_y crossref_primary_10_3390_cancers14082008 crossref_primary_10_1007_s11063_019_10116_7 crossref_primary_10_1089_big_2021_0013 crossref_primary_10_1007_s40684_018_0057_y crossref_primary_10_1109_ACCESS_2020_2990985 crossref_primary_10_1111_mice_12494 crossref_primary_10_1016_j_ecoinf_2025_103203 crossref_primary_10_1088_1742_6596_1471_1_012043 crossref_primary_10_3390_atmos9110426 crossref_primary_10_3390_jcm9103313 crossref_primary_10_1016_j_istruc_2024_107478 crossref_primary_10_2166_ws_2022_136 crossref_primary_10_1002_ange_201804736 crossref_primary_10_3390_info9070169 crossref_primary_10_1016_j_ifacol_2022_07_097 crossref_primary_10_3389_fncom_2021_551111 crossref_primary_10_1016_j_culher_2020_04_008 crossref_primary_10_3390_jpm12091444 crossref_primary_10_1002_tal_1504 crossref_primary_10_1109_ACCESS_2020_2987324 crossref_primary_10_1016_j_tics_2021_01_008 crossref_primary_10_1021_acs_energyfuels_5c02808 crossref_primary_10_3390_jimaging9110238 crossref_primary_10_1021_acs_iecr_4c03342 crossref_primary_10_1121_10_0026459 crossref_primary_10_1038_lsa_2017_141 crossref_primary_10_1007_s12206_018_1205_6 crossref_primary_10_3390_jmse9080906 crossref_primary_10_4018_IJAIML_2020070102 crossref_primary_10_1016_j_neunet_2020_04_008 crossref_primary_10_1007_s00500_025_10591_2 crossref_primary_10_1016_j_jmr_2019_07_034 crossref_primary_10_3390_app11219848 crossref_primary_10_1109_ACCESS_2020_3022627 crossref_primary_10_1016_j_neunet_2020_04_004 crossref_primary_10_4018_IJAIML_2020070101 crossref_primary_10_3390_systems11060296 crossref_primary_10_1371_journal_pone_0195621 crossref_primary_10_1016_j_neucom_2019_01_078 crossref_primary_10_3390_s20226442 crossref_primary_10_1155_2021_5529905 crossref_primary_10_1177_20552076241272632 crossref_primary_10_1016_j_jpowsour_2019_227281 crossref_primary_10_1007_s11269_020_02507_6 crossref_primary_10_1002_qute_202100053 crossref_primary_10_1016_j_compeleceng_2021_107621 crossref_primary_10_1016_j_jcp_2018_10_024 crossref_primary_10_1080_13658816_2018_1480783 crossref_primary_10_1007_s10973_024_13621_7 crossref_primary_10_3390_app13137507 crossref_primary_10_1016_j_drudis_2021_04_028 crossref_primary_10_1016_j_camwa_2025_01_030 crossref_primary_10_1016_j_earscirev_2019_103076 crossref_primary_10_3389_fgene_2018_00693 crossref_primary_10_1016_j_apacoust_2021_108068 crossref_primary_10_1371_journal_pone_0183661 crossref_primary_10_5194_acp_25_4167_2025 crossref_primary_10_1007_s11280_018_0576_z crossref_primary_10_3233_NAI_240720 crossref_primary_10_1016_j_compenvurbsys_2019_101350 crossref_primary_10_1016_j_jvcir_2023_104017 crossref_primary_10_1145_3464301 crossref_primary_10_1007_s11517_023_02984_y crossref_primary_10_1016_j_jag_2020_102215 crossref_primary_10_3390_agriculture14030411 crossref_primary_10_1007_s10531_020_02107_1 crossref_primary_10_1007_s10489_021_02262_0 crossref_primary_10_1080_19427867_2021_1952042 crossref_primary_10_1007_s11082_019_2038_y crossref_primary_10_1016_j_ebiom_2019_10_033 crossref_primary_10_1111_eos_12853 crossref_primary_10_1109_TVCG_2018_2881451 crossref_primary_10_1007_s12194_024_00780_3 crossref_primary_10_1109_LRA_2021_3135573 crossref_primary_10_1038_s41598_020_58178_1 crossref_primary_10_1016_j_cosrev_2018_01_004 crossref_primary_10_1007_s11440_020_01091_8 crossref_primary_10_1088_1742_6596_1547_1_012024 crossref_primary_10_1016_j_oceaneng_2025_122607 crossref_primary_10_1080_15325008_2021_1937401 crossref_primary_10_1109_JSEN_2019_2958787 crossref_primary_10_1049_iet_smt_2016_0423 crossref_primary_10_1016_j_heliyon_2025_e42512 crossref_primary_10_1063_1_5108663 crossref_primary_10_1088_1367_2630_aaf749 crossref_primary_10_1109_TNSE_2018_2872034 crossref_primary_10_1177_1475921718800363 crossref_primary_10_1007_s10586_018_2196_x crossref_primary_10_1016_j_ymssp_2019_06_012 crossref_primary_10_1016_j_powtec_2020_07_102 crossref_primary_10_1103_PhysRevApplied_15_024030 crossref_primary_10_3365_KJMM_2019_57_3_184 crossref_primary_10_3390_buildings12060829 crossref_primary_10_1016_j_icte_2022_01_013 crossref_primary_10_1007_s11042_021_11435_5 crossref_primary_10_1109_LSP_2018_2885511 crossref_primary_10_3390_fi17030119 crossref_primary_10_1109_JSTARS_2018_2854893 crossref_primary_10_3390_rs13214241 crossref_primary_10_1016_j_compag_2023_107836 crossref_primary_10_1360_SSC_2025_0015 crossref_primary_10_1007_s42241_020_0028_y crossref_primary_10_1016_j_envpol_2023_123082 crossref_primary_10_3390_rs13112212 crossref_primary_10_1016_j_ecoser_2022_101475 crossref_primary_10_1088_1742_6596_1575_1_012018 crossref_primary_10_1016_j_bdr_2020_100179 crossref_primary_10_1063_1_5086812 crossref_primary_10_1088_1748_3190_adad26 crossref_primary_10_3389_fgene_2022_927721 crossref_primary_10_1063_5_0095871 crossref_primary_10_3103_S0146411622010035 crossref_primary_10_1007_s00704_023_04622_x crossref_primary_10_1055_a_1423_8006 crossref_primary_10_3390_rs17101779 crossref_primary_10_1016_j_fct_2019_110921 crossref_primary_10_1007_s11042_020_10070_w crossref_primary_10_1016_j_ins_2022_06_093 crossref_primary_10_1080_21681163_2023_2219755 crossref_primary_10_1016_j_bspc_2020_101929 crossref_primary_10_3390_rs13112229 crossref_primary_10_1177_2631774521993059 crossref_primary_10_3390_w12061549 crossref_primary_10_1016_j_bspc_2020_101921 crossref_primary_10_1038_s41598_024_69243_4 crossref_primary_10_1016_j_compbiomed_2023_107814 crossref_primary_10_1016_j_ces_2021_117272 crossref_primary_10_1016_j_ces_2021_117271 crossref_primary_10_1016_j_ins_2021_02_064 crossref_primary_10_1016_j_forsciint_2025_112476 crossref_primary_10_3390_s16101701 crossref_primary_10_1007_s12559_023_10200_0 crossref_primary_10_1002_aisy_202100186 crossref_primary_10_1016_j_scs_2020_102589 crossref_primary_10_1088_1361_6501_ad1811 crossref_primary_10_1016_j_istruc_2024_106193 crossref_primary_10_1364_AO_486107 crossref_primary_10_1038_s41598_018_30390_0 crossref_primary_10_1038_s41598_025_13794_7 crossref_primary_10_1007_s40435_018_0412_4 crossref_primary_10_3389_fonc_2022_892056 crossref_primary_10_1007_s40031_021_00693_4 crossref_primary_10_1016_j_phycom_2020_101213 crossref_primary_10_1007_s00170_021_06770_8 crossref_primary_10_3390_info13050246 crossref_primary_10_1109_TITS_2021_3076844 crossref_primary_10_1155_2021_9976939 crossref_primary_10_3233_JIFS_190095 crossref_primary_10_1007_s11227_021_04263_9 crossref_primary_10_3390_pr9071178 crossref_primary_10_1016_j_jacr_2023_12_005 crossref_primary_10_1109_TCCN_2019_2946358 crossref_primary_10_1016_j_semcancer_2018_07_001 crossref_primary_10_1109_JSTARS_2023_3297013 crossref_primary_10_1016_j_patcog_2018_09_007 crossref_primary_10_1109_TNNLS_2016_2522428 crossref_primary_10_1109_TFUZZ_2019_2931254 crossref_primary_10_1002_mrm_29000 crossref_primary_10_1016_j_ins_2021_02_046 crossref_primary_10_1088_1873_7005_ac4f2d crossref_primary_10_1038_s41598_021_85928_6 crossref_primary_10_1016_j_neunet_2020_04_030 crossref_primary_10_1038_s41598_024_52944_1 crossref_primary_10_1016_j_patcog_2020_107312 crossref_primary_10_1080_03772063_2025_2467761 crossref_primary_10_1007_s10614_025_11001_3 crossref_primary_10_1177_0361198119841291 crossref_primary_10_1177_14759217231216694 crossref_primary_10_1016_j_neunet_2021_12_007 crossref_primary_10_1097_CMR_0000000000000922 crossref_primary_10_1109_TGRS_2019_2901945 crossref_primary_10_1109_ACCESS_2019_2891548 crossref_primary_10_1016_j_physa_2024_129513 crossref_primary_10_1177_08953996241290326 crossref_primary_10_3390_diagnostics12112843 crossref_primary_10_1016_j_jfranklin_2020_04_033 crossref_primary_10_1016_j_tourman_2022_104559 crossref_primary_10_1080_13658816_2020_1775836 crossref_primary_10_1016_j_ecofro_2024_08_001 crossref_primary_10_1007_s42243_024_01179_5 crossref_primary_10_1128_spectrum_00032_24 crossref_primary_10_1016_j_ijmecsci_2023_108654 crossref_primary_10_1016_j_matdes_2022_110880 crossref_primary_10_1016_j_infrared_2023_104672 crossref_primary_10_1186_s12938_025_01401_9 crossref_primary_10_3390_en16031352 crossref_primary_10_1016_j_compbiomed_2025_110693 crossref_primary_10_3390_electronics12030756 crossref_primary_10_1145_3483596 crossref_primary_10_1145_3544968 crossref_primary_10_1039_D3EW00619K crossref_primary_10_1109_MCE_2016_2614423 crossref_primary_10_1007_s10614_023_10413_3 crossref_primary_10_1007_s35764_017_0104_4 crossref_primary_10_1016_j_inffus_2017_12_007 crossref_primary_10_1186_s13677_023_00582_9 crossref_primary_10_1088_2632_072X_ac68bf crossref_primary_10_1007_s40864_020_00130_7 crossref_primary_10_1002_adhm_202100734 crossref_primary_10_1177_03611981241254109 crossref_primary_10_1109_TC_2019_2954495 crossref_primary_10_1109_ACCESS_2020_2969549 crossref_primary_10_3390_app12020656 crossref_primary_10_1007_s42241_020_0027_z crossref_primary_10_1140_epjc_s10052_025_14042_y crossref_primary_10_1016_j_envsoft_2020_104669 crossref_primary_10_1016_j_ins_2019_12_006 crossref_primary_10_1007_s00603_022_02992_8 crossref_primary_10_1103_f2f3_l3fc crossref_primary_10_1109_JBHI_2017_2655720 crossref_primary_10_1029_2021JF006276 crossref_primary_10_1186_s40537_019_0192_5 crossref_primary_10_1002_nme_7388 crossref_primary_10_2196_28114 crossref_primary_10_3390_genes9120626 crossref_primary_10_1109_TNNLS_2019_2952864 crossref_primary_10_1007_s10494_020_00170_w crossref_primary_10_1007_s43681_023_00408_z crossref_primary_10_3390_rs10040511 crossref_primary_10_1007_s00500_021_05626_3 crossref_primary_10_1109_ACCESS_2019_2915971 crossref_primary_10_1111_mice_12503 crossref_primary_10_1140_epjp_s13360_020_00122_3 crossref_primary_10_1007_s00466_023_02435_3 crossref_primary_10_1016_j_bspc_2022_103532 crossref_primary_10_3390_en18051144 crossref_primary_10_3390_rs12010021 crossref_primary_10_1088_1755_1315_170_4_042051 crossref_primary_10_1002_dac_5072 crossref_primary_10_1007_s00521_015_2009_6 crossref_primary_10_1016_j_neunet_2024_106528 crossref_primary_10_1038_s41598_025_95629_z crossref_primary_10_1007_s00259_019_04373_w crossref_primary_10_1155_2016_5642856 crossref_primary_10_1049_ipr2_12637 crossref_primary_10_1016_j_knosys_2023_110477 crossref_primary_10_1051_e3sconf_202021710004 crossref_primary_10_3390_robotics8010004 crossref_primary_10_1007_s10489_022_03351_4 crossref_primary_10_1109_TNNLS_2020_3042943 crossref_primary_10_1177_0361198118772723 crossref_primary_10_1155_2024_4097442 crossref_primary_10_12677_SEA_2018_76031 crossref_primary_10_1080_24725854_2019_1632502 crossref_primary_10_1007_s40687_019_0183_3 crossref_primary_10_1155_2015_141363 crossref_primary_10_3389_fgene_2022_995532 crossref_primary_10_3390_diagnostics12112888 crossref_primary_10_1097_SCS_0000000000009856 crossref_primary_10_1108_SR_03_2019_0085 crossref_primary_10_3390_app10175933 crossref_primary_10_1016_j_nicl_2017_01_033 crossref_primary_10_1016_j_neucom_2016_09_110 crossref_primary_10_1109_ACCESS_2018_2885565 crossref_primary_10_1016_j_neunet_2021_03_003 crossref_primary_10_1016_j_jksuci_2020_04_009 crossref_primary_10_1002_aenm_201902106 crossref_primary_10_1016_j_cageo_2021_104952 crossref_primary_10_1016_j_foodchem_2023_138039 crossref_primary_10_3390_rs13071250 crossref_primary_10_1002_jmri_27308 crossref_primary_10_1016_j_scs_2022_104090 crossref_primary_10_1177_15500594241234836 crossref_primary_10_1007_s11738_019_2946_2 crossref_primary_10_1088_1742_6596_1578_1_012217 crossref_primary_10_1007_s00146_017_0731_6 crossref_primary_10_1007_s11356_021_14632_9 crossref_primary_10_1002_srin_201900454 crossref_primary_10_1038_s41598_025_15282_4 crossref_primary_10_1007_s42600_023_00301_y crossref_primary_10_1007_s42064_018_0053_6 crossref_primary_10_1073_pnas_1917285117 crossref_primary_10_1002_qre_2947 crossref_primary_10_1016_j_health_2025_100388 crossref_primary_10_1007_s42835_025_02430_z crossref_primary_10_1016_j_biosystemseng_2018_06_017 crossref_primary_10_1109_LAWP_2020_2973937 crossref_primary_10_1109_JBHI_2020_3034863 crossref_primary_10_1016_j_bios_2024_116076 crossref_primary_10_1016_j_neunet_2021_03_029 crossref_primary_10_1111_odi_13631 crossref_primary_10_1016_j_nima_2023_168409 crossref_primary_10_1002_nme_6012 crossref_primary_10_1007_s42235_022_00230_z crossref_primary_10_1002_smtd_202401501 crossref_primary_10_1016_j_neucom_2019_10_099 crossref_primary_10_1109_JIOT_2021_3063497 crossref_primary_10_3390_pr8091042 crossref_primary_10_1038_s41598_021_01313_3 crossref_primary_10_1109_TCYB_2020_3008963 crossref_primary_10_1109_JBHI_2020_2969322 crossref_primary_10_24171_j_phrp_2025_0120 crossref_primary_10_3233_JIFS_210956 crossref_primary_10_1007_s10489_020_01913_y crossref_primary_10_1016_j_neucom_2018_02_093 crossref_primary_10_1017_S0956792520000182 crossref_primary_10_1080_01431161_2025_2467303 crossref_primary_10_1007_s00521_020_05374_9 crossref_primary_10_1088_2058_9565_aaf59e crossref_primary_10_1108_JSIT_06_2020_0120 crossref_primary_10_56530_spectroscopy_op4571n3 crossref_primary_10_1109_ACCESS_2021_3131506 crossref_primary_10_1007_s10772_020_09781_0 crossref_primary_10_1016_j_neunet_2021_03_015 crossref_primary_10_3390_app10124381 crossref_primary_10_1016_j_neucom_2018_02_042 crossref_primary_10_1016_j_forsciint_2022_111177 crossref_primary_10_1080_17538947_2024_2430679 crossref_primary_10_1109_JSTSP_2020_3002391 crossref_primary_10_1155_2019_6862031 crossref_primary_10_1016_j_trc_2024_104625 crossref_primary_10_1080_02286203_2020_1783494 crossref_primary_10_1007_s12652_023_04667_w crossref_primary_10_1088_1742_6596_1237_3_032057 crossref_primary_10_1088_1742_6596_1237_3_032058 crossref_primary_10_1016_j_iot_2023_100893 crossref_primary_10_1109_TIE_2017_2764861 crossref_primary_10_1016_j_bspc_2021_102767 crossref_primary_10_1016_j_mri_2023_01_015 crossref_primary_10_1186_s12859_020_3531_9 crossref_primary_10_3390_app13064018 crossref_primary_10_1155_2019_5629572 crossref_primary_10_33715_inonusaglik_1022065 crossref_primary_10_32604_cmc_2021_014943 crossref_primary_10_1016_j_cageo_2021_104987 crossref_primary_10_1002_adem_201901338 crossref_primary_10_1016_j_foodchem_2023_138082 crossref_primary_10_1109_TGRS_2019_2899129 crossref_primary_10_3390_forecast6030035 crossref_primary_10_3389_fnins_2022_906290 crossref_primary_10_1016_j_enbuild_2025_116053 crossref_primary_10_1016_j_jvcir_2019_01_043 crossref_primary_10_1145_3524497 crossref_primary_10_3390_sym14010013 crossref_primary_10_1002_jmri_26047 crossref_primary_10_1080_10407782_2025_2520808 crossref_primary_10_1016_j_neucom_2018_02_062 crossref_primary_10_1162_NECO_a_00931 crossref_primary_10_1016_j_aei_2020_101120 crossref_primary_10_1016_j_istruc_2018_11_013 crossref_primary_10_1016_j_petsci_2023_10_024 crossref_primary_10_32604_cmc_2021_014924 crossref_primary_10_1016_j_rse_2021_112468 crossref_primary_10_3390_su14138200 crossref_primary_10_1016_j_engfracmech_2023_109321 crossref_primary_10_1016_j_jclepro_2020_122722 crossref_primary_10_3389_fneur_2021_603868 crossref_primary_10_1016_j_eurtel_2017_06_001 crossref_primary_10_1016_j_dynatmoce_2021_101266 crossref_primary_10_1016_j_pharmthera_2019_107395 crossref_primary_10_1016_j_ins_2019_12_084 crossref_primary_10_1007_s10664_020_09819_6 crossref_primary_10_1007_s10845_023_02127_y crossref_primary_10_1016_j_procs_2021_05_044 crossref_primary_10_3390_rs11070755 crossref_primary_10_1016_j_clon_2021_12_003 crossref_primary_10_1007_s41024_023_00371_6 crossref_primary_10_1016_j_future_2018_09_060 crossref_primary_10_1109_TETCI_2016_2642200 crossref_primary_10_3390_su13094652 crossref_primary_10_1257_jel_20221319 crossref_primary_10_3390_batteries8030021 crossref_primary_10_1038_521037a crossref_primary_10_1109_TBME_2020_3008707 crossref_primary_10_3390_fi17080374 crossref_primary_10_1007_s13042_020_01122_6 crossref_primary_10_1016_j_asoc_2021_107227 crossref_primary_10_1038_s41598_024_73035_1 crossref_primary_10_1016_j_compbiomed_2024_108620 crossref_primary_10_1007_s11831_021_09691_7 crossref_primary_10_1155_2019_5982834 crossref_primary_10_1088_1361_6471_aa9408 crossref_primary_10_3390_app132212244 crossref_primary_10_3390_mi13081313 crossref_primary_10_1016_j_neunet_2023_04_045 crossref_primary_10_1109_TGRS_2023_3339303 crossref_primary_10_35784_jcsi_3579 crossref_primary_10_1080_15567036_2021_2007179 crossref_primary_10_1109_TII_2020_2978114 crossref_primary_10_1016_j_wneu_2022_02_097 crossref_primary_10_3390_su11010189 crossref_primary_10_1007_s11750_020_00563_0 crossref_primary_10_3390_s21082709 crossref_primary_10_1016_j_eswa_2021_114805 crossref_primary_10_1016_j_eswa_2024_125546 crossref_primary_10_1007_s44163_025_00322_9 crossref_primary_10_1007_s42452_020_2222_5 crossref_primary_10_4103_ijo_IJO_1754_19 crossref_primary_10_1080_0144929X_2020_1741684 crossref_primary_10_1016_j_procs_2019_01_189 crossref_primary_10_1371_journal_pone_0286825 crossref_primary_10_3390_cancers16061102 crossref_primary_10_1016_j_amjoto_2023_104155 crossref_primary_10_1038_s43587_022_00266_0 crossref_primary_10_1016_j_catena_2019_104451 crossref_primary_10_1016_j_procs_2019_01_181 crossref_primary_10_1007_s10845_017_1380_9 crossref_primary_10_1016_j_conb_2020_11_009 crossref_primary_10_2118_203980_PA crossref_primary_10_1002_cjce_25181 crossref_primary_10_1109_TITS_2020_3046974 crossref_primary_10_1109_TII_2018_2864759 crossref_primary_10_1016_j_postharvbio_2024_113120 crossref_primary_10_3390_s19081917 crossref_primary_10_3389_fnins_2020_00179 crossref_primary_10_1111_mice_12532 crossref_primary_10_1016_j_jclepro_2025_144781 crossref_primary_10_3390_app13148128 crossref_primary_10_1016_j_catena_2019_104424 crossref_primary_10_1016_j_ecoinf_2021_101252 crossref_primary_10_1016_j_optlastec_2024_112220 crossref_primary_10_1093_nc_niab012 crossref_primary_10_1177_1059712318763806 crossref_primary_10_1007_s00138_019_01008_w crossref_primary_10_1016_j_catena_2019_104426 crossref_primary_10_1016_j_conbuildmat_2024_137393 crossref_primary_10_1109_ACCESS_2020_3045280 crossref_primary_10_1016_j_eswa_2024_125564 crossref_primary_10_1093_sysbio_syab048 crossref_primary_10_1007_s00704_022_04300_4 crossref_primary_10_1016_j_specom_2019_03_006 crossref_primary_10_1177_1748006X251369081 crossref_primary_10_1007_s11229_024_04566_3 crossref_primary_10_1016_j_jpowsour_2025_237203 crossref_primary_10_1016_j_coche_2019_02_008 crossref_primary_10_1080_09540091_2020_1822780 crossref_primary_10_1088_1757_899X_1130_1_012056 crossref_primary_10_29109_gujsc_1632938 crossref_primary_10_1016_j_cosrev_2017_11_002 crossref_primary_10_1016_j_engstruct_2023_116379 crossref_primary_10_3390_s20071809 crossref_primary_10_3390_app12042071 crossref_primary_10_3390_jmse11040880 crossref_primary_10_1007_s11227_017_1994_x crossref_primary_10_3390_agriculture14010060 crossref_primary_10_3390_s22103693 crossref_primary_10_1002_lpor_202300939 crossref_primary_10_1177_1074248419878405 crossref_primary_10_1002_smll_202305195 crossref_primary_10_1016_j_advengsoft_2022_103240 crossref_primary_10_1109_JIOT_2019_2902815 crossref_primary_10_1016_j_ijinfomgt_2022_102538 crossref_primary_10_1109_ACCESS_2018_2890150 crossref_primary_10_3390_s21051794 crossref_primary_10_1371_journal_pone_0289076 crossref_primary_10_3390_make4010009 crossref_primary_10_3390_make4010004 crossref_primary_10_1016_j_neunet_2018_08_001 crossref_primary_10_1016_j_neunet_2018_08_002 crossref_primary_10_1111_epi_16719 crossref_primary_10_1016_j_eswa_2016_10_010 crossref_primary_10_1002_aisy_202100016 crossref_primary_10_1016_j_ymssp_2019_106587 crossref_primary_10_1088_1674_1056_ac380b crossref_primary_10_1016_j_patrec_2017_05_011 crossref_primary_10_1109_TNNLS_2017_2697455 crossref_primary_10_1007_s13201_022_01798_x crossref_primary_10_1186_s13705_020_00266_1 crossref_primary_10_1007_s11053_021_10002_x crossref_primary_10_1016_j_patrec_2017_05_018 crossref_primary_10_1038_s41598_021_94564_z crossref_primary_10_3390_jmse11020313 crossref_primary_10_1109_TIP_2018_2851670 crossref_primary_10_1108_IMDS_10_2018_0445 crossref_primary_10_1109_TII_2025_3526478 crossref_primary_10_1016_j_procir_2020_01_019 crossref_primary_10_1080_13658816_2019_1652304 crossref_primary_10_1016_j_compag_2021_106045 crossref_primary_10_1121_1_5116016 crossref_primary_10_1016_j_energy_2019_07_034 crossref_primary_10_1016_j_aquaculture_2021_737215 crossref_primary_10_1007_s00521_024_09660_8 crossref_primary_10_1186_s12859_018_2198_y crossref_primary_10_1049_rsn2_12295 crossref_primary_10_1007_s41095_019_0142_3 crossref_primary_10_1038_s41598_024_61379_7 crossref_primary_10_3390_sym15071413 crossref_primary_10_1061__ASCE_WR_1943_5452_0001317 crossref_primary_10_1109_ACCESS_2018_2825996 crossref_primary_10_1016_j_bspc_2021_102825 crossref_primary_10_3390_jmse11020340 crossref_primary_10_1016_j_artmed_2025_103276 crossref_primary_10_1080_01621459_2025_2529602 crossref_primary_10_1109_ACCESS_2019_2920410 crossref_primary_10_3847_1538_4365_aba8ff crossref_primary_10_1080_07038992_2020_1833186 crossref_primary_10_3390_jimaging8070182 crossref_primary_10_1109_TIT_2015_2510657 crossref_primary_10_3389_fonc_2025_1587517 crossref_primary_10_3390_jimaging7090177 crossref_primary_10_1016_j_ocecoaman_2023_106631 crossref_primary_10_1016_j_bej_2018_04_015 crossref_primary_10_1038_s41928_023_01069_w crossref_primary_10_1016_j_bspc_2017_06_012 crossref_primary_10_1016_j_bspc_2021_102814 crossref_primary_10_1149_1945_7111_ad69c5 crossref_primary_10_1016_j_prrv_2021_06_002 crossref_primary_10_1016_j_aei_2022_101749 crossref_primary_10_1063_1_5040020 crossref_primary_10_1007_s00163_020_00336_7 crossref_primary_10_1002_stc_2571 crossref_primary_10_1109_JSEN_2023_3348597 crossref_primary_10_1063_5_0220809 crossref_primary_10_3390_s21020618 crossref_primary_10_1089_cmb_2015_0145 crossref_primary_10_1109_ACCESS_2019_2920436 crossref_primary_10_3390_diagnostics14151634 crossref_primary_10_1016_j_rse_2022_113263 crossref_primary_10_3390_en14082163 crossref_primary_10_3233_THC_248011 crossref_primary_10_1109_TGRS_2020_2963928 crossref_primary_10_1109_ACCESS_2020_2988557 crossref_primary_10_1109_JIOT_2023_3303253 crossref_primary_10_1109_TUFFC_2020_2964698 crossref_primary_10_3103_S0147688221030035 crossref_primary_10_1002_suco_202400188 crossref_primary_10_1007_s10462_025_11282_y crossref_primary_10_1162_NECO_a_00929 crossref_primary_10_1088_1742_6596_1889_3_032029 crossref_primary_10_1109_JSTARS_2021_3117975 crossref_primary_10_1109_TIFS_2019_2925452 crossref_primary_10_1016_j_jbef_2021_100474 crossref_primary_10_1038_s41746_022_00651_4 crossref_primary_10_1038_s42256_019_0018_3 crossref_primary_10_1007_s40192_024_00369_z crossref_primary_10_1162_neco_a_01079 crossref_primary_10_1016_j_measurement_2024_114760 crossref_primary_10_1016_j_engappai_2019_06_016 crossref_primary_10_1016_j_envres_2024_120015 crossref_primary_10_1038_nphoton_2017_93 crossref_primary_10_1007_s00521_023_08260_2 crossref_primary_10_1080_17477778_2024_2403424 crossref_primary_10_1109_TII_2017_2672988 crossref_primary_10_1007_s13239_020_00497_5 crossref_primary_10_1016_j_mineng_2025_109741 crossref_primary_10_1146_annurev_pathmechdis_051222_113147 crossref_primary_10_1016_j_compbiomed_2022_105888 crossref_primary_10_1007_s13369_024_09818_5 crossref_primary_10_1111_mice_12376 crossref_primary_10_1002_stc_2552 crossref_primary_10_1016_j_trf_2017_12_006 crossref_primary_10_1016_j_aei_2020_101166 crossref_primary_10_1016_j_energy_2023_128546 crossref_primary_10_1515_med_2020_0006 crossref_primary_10_1007_s00034_019_01157_3 crossref_primary_10_1109_ACCESS_2020_2977880 crossref_primary_10_3390_en14082144 crossref_primary_10_1111_coin_12198 crossref_primary_10_1016_j_procs_2019_09_190 crossref_primary_10_1162_neco_a_01086 crossref_primary_10_1007_s10845_016_1279_x crossref_primary_10_1016_j_scs_2021_103231 crossref_primary_10_1016_j_combustflame_2019_07_015 crossref_primary_10_1016_j_autcon_2020_103230 crossref_primary_10_1016_j_compag_2021_106090 crossref_primary_10_1109_TNS_2016_2543203 crossref_primary_10_1016_j_inffus_2018_11_016 crossref_primary_10_1016_j_aei_2022_101773 crossref_primary_10_1016_j_eswa_2019_112855 crossref_primary_10_1093_bib_bbac427 crossref_primary_10_1016_j_entcom_2020_100357 crossref_primary_10_1016_j_scitotenv_2023_167234 crossref_primary_10_1109_ACCESS_2019_2920448 crossref_primary_10_1587_transinf_2020EDL8163 crossref_primary_10_1088_1361_6528_ab3480 crossref_primary_10_1109_ACCESS_2018_2847314 crossref_primary_10_1371_journal_pone_0196828 crossref_primary_10_3390_diagnostics14151646 crossref_primary_10_1371_journal_pone_0249856 crossref_primary_10_1590_1981_5344_3505 crossref_primary_10_1016_j_patcog_2016_08_015 crossref_primary_10_32604_cmc_2023_029618 crossref_primary_10_1016_j_optcom_2022_127951 crossref_primary_10_1109_LRA_2019_2926959 crossref_primary_10_1016_j_jksuci_2017_09_001 crossref_primary_10_1109_TIFS_2021_3103062 crossref_primary_10_1007_s10791_017_9321_y crossref_primary_10_3390_s19010063 crossref_primary_10_1016_j_aquaculture_2018_12_079 crossref_primary_10_1214_17_AAP1328 crossref_primary_10_1155_2021_9022558 crossref_primary_10_3390_robotics12050124 crossref_primary_10_1109_TITS_2021_3052771 crossref_primary_10_3847_1538_4357_ac9793 crossref_primary_10_1016_j_patcog_2020_107407 crossref_primary_10_1007_s41027_022_00412_7 crossref_primary_10_1007_s43545_020_00043_z crossref_primary_10_1007_s11227_019_02838_1 crossref_primary_10_1007_s12652_021_03184_y crossref_primary_10_1038_s41598_020_59801_x crossref_primary_10_1063_5_0200395 crossref_primary_10_1371_journal_pone_0177630 crossref_primary_10_1016_j_xnsj_2023_100236 crossref_primary_10_1007_s10661_021_09561_6 crossref_primary_10_1016_j_bspc_2022_103596 crossref_primary_10_1016_j_petlm_2018_12_001 crossref_primary_10_3233_ICA_200640 crossref_primary_10_1007_s00158_018_02191_6 crossref_primary_10_1002_jsp2_1044 crossref_primary_10_3389_fphy_2020_621966 crossref_primary_10_1007_s11082_020_02372_y crossref_primary_10_1155_2022_7067342 crossref_primary_10_1016_j_procs_2025_04_387 crossref_primary_10_3390_rs14112648 crossref_primary_10_1007_s11306_017_1274_z crossref_primary_10_1016_j_yofte_2024_103952 crossref_primary_10_1371_journal_pcbi_1005929 crossref_primary_10_3847_1538_4357_ab14eb crossref_primary_10_1016_j_petrol_2019_106332 crossref_primary_10_1109_TSE_2020_2979701 crossref_primary_10_1016_j_knosys_2021_106855 crossref_primary_10_1109_ACCESS_2018_2789935 crossref_primary_10_3390_jmse13050905 crossref_primary_10_1208_s12249_025_03075_x crossref_primary_10_1109_TASE_2020_3003124 crossref_primary_10_1109_TASE_2021_3072363 crossref_primary_10_1371_journal_pone_0228065 crossref_primary_10_3390_app14198686 crossref_primary_10_1016_j_seppur_2024_127790 crossref_primary_10_1016_j_cities_2024_105141 crossref_primary_10_3233_JAD_160309 crossref_primary_10_3390_ijgi8090417 crossref_primary_10_3390_jimaging6030008 crossref_primary_10_1088_2051_672X_ac9492 crossref_primary_10_1016_j_apm_2023_12_008 crossref_primary_10_3390_s21134412 crossref_primary_10_1016_j_jcp_2019_108910 crossref_primary_10_3390_jne5030015 crossref_primary_10_1002_mp_14382 crossref_primary_10_1109_TII_2021_3115567 crossref_primary_10_1016_j_autcon_2025_106283 crossref_primary_10_1162_neco_a_01029 crossref_primary_10_1109_ACCESS_2021_3088423 crossref_primary_10_1109_TGRS_2018_2870202 crossref_primary_10_3390_s21248467 crossref_primary_10_1002_tee_22938 crossref_primary_10_3390_math10152552 crossref_primary_10_1177_0954406219834048 crossref_primary_10_1016_j_patcog_2018_01_002 crossref_primary_10_1063_5_0279303 crossref_primary_10_1214_17_BA1082 crossref_primary_10_1007_s40192_018_0117_8 crossref_primary_10_1109_TIM_2017_2735661 crossref_primary_10_1016_j_cogsys_2017_10_003 crossref_primary_10_3390_rs12030343 crossref_primary_10_1088_2515_7647_abf02c crossref_primary_10_1016_j_cnsns_2022_106708 crossref_primary_10_1016_j_physrep_2019_05_002 crossref_primary_10_1109_ACCESS_2021_3099111 crossref_primary_10_1631_jzus_B2400103 crossref_primary_10_1038_s41598_017_08892_0 crossref_primary_10_3233_THC_220514 crossref_primary_10_1016_j_acra_2020_02_006 crossref_primary_10_1007_s11119_023_10022_y crossref_primary_10_3390_jmse11020368 crossref_primary_10_1016_j_cej_2021_133244 crossref_primary_10_3233_XST_221260 crossref_primary_10_1016_j_neunet_2016_07_006 crossref_primary_10_1016_j_compag_2018_07_014 crossref_primary_10_1016_j_neunet_2016_07_004 crossref_primary_10_3390_act12040154 crossref_primary_10_1016_j_petrol_2019_106306 crossref_primary_10_1137_24M1639464 crossref_primary_10_1002_aisy_202100054 crossref_primary_10_3390_s21051745 crossref_primary_10_3390_app9173569 crossref_primary_10_1109_TIM_2020_3016408 crossref_primary_10_1093_jcr_ucab018 crossref_primary_10_3390_pr10122500 crossref_primary_10_1016_j_jcp_2019_108939 crossref_primary_10_1515_cclm_2021_0081 crossref_primary_10_3389_fimmu_2021_642383 crossref_primary_10_1109_TSM_2017_2787550 crossref_primary_10_1371_journal_pcbi_1009467 crossref_primary_10_1007_s42452_023_05447_z crossref_primary_10_1061__ASCE_GM_1943_5622_0002064 crossref_primary_10_1051_0004_6361_202243900 crossref_primary_10_1002_aisy_202100066 crossref_primary_10_1088_1751_8121_ab6943 crossref_primary_10_1145_3366022 crossref_primary_10_1155_2020_5408942 crossref_primary_10_1002_ett_4388 crossref_primary_10_1038_s41598_020_80426_7 crossref_primary_10_1016_j_microc_2025_115053 crossref_primary_10_1016_j_energy_2019_04_221 crossref_primary_10_17573_cepar_2025_1_05 crossref_primary_10_1175_WAF_D_18_0095_1 crossref_primary_10_1007_s40574_025_00502_6 crossref_primary_10_3390_app9245502 crossref_primary_10_1088_1757_899X_563_5_052082 crossref_primary_10_1007_s11356_024_35764_8 crossref_primary_10_1051_matecconf_201821004019 crossref_primary_10_1016_j_patcog_2020_107424 crossref_primary_10_3390_jmse11020384 crossref_primary_10_1016_j_ijepes_2025_110945 crossref_primary_10_1016_j_cej_2020_126673 crossref_primary_10_1016_j_flowmeasinst_2021_101913 crossref_primary_10_3390_electronics11030305 crossref_primary_10_13169_prometheus_36_4_0322 crossref_primary_10_1007_s10479_018_2891_2 crossref_primary_10_3390_app13031858 crossref_primary_10_3390_cancers16213702 crossref_primary_10_1016_j_gpb_2017_07_003 crossref_primary_10_2174_1381612829666230412084137 crossref_primary_10_1080_02640414_2023_2268366 crossref_primary_10_1002_ps_5349 crossref_primary_10_1177_0165551521991022 crossref_primary_10_1016_j_ijepes_2021_107744 crossref_primary_10_1007_s12652_020_02357_5 crossref_primary_10_4018_IJSKD_2019070101 crossref_primary_10_1007_s11042_021_10510_1 crossref_primary_10_1038_s41567_025_02855_3 crossref_primary_10_1016_j_technovation_2023_102711 crossref_primary_10_1029_2019WR026793 crossref_primary_10_1109_ACCESS_2021_3094262 crossref_primary_10_1039_D4TC05041J crossref_primary_10_1109_ACCESS_2020_2970433 crossref_primary_10_1109_TCBB_2022_3199758 crossref_primary_10_1007_s10845_022_01933_0 crossref_primary_10_1002_anie_202008366 crossref_primary_10_3389_fnut_2023_1277048 crossref_primary_10_1016_j_ces_2025_121603 crossref_primary_10_1088_2632_2153_acefaa crossref_primary_10_1140_epjc_s10052_025_13943_2 crossref_primary_10_1016_j_measurement_2018_11_040 crossref_primary_10_1007_s11030_021_10217_3 crossref_primary_10_3390_foods11182915 crossref_primary_10_1016_j_fuel_2023_130586 crossref_primary_10_1109_TCYB_2022_3207878 crossref_primary_10_1109_ACCESS_2020_2970442 crossref_primary_10_1016_j_eswa_2023_122013 crossref_primary_10_1155_2019_8124254 crossref_primary_10_1016_j_optlastec_2023_110005 crossref_primary_10_1007_s00170_019_03821_z crossref_primary_10_3390_plants14182841 crossref_primary_10_1016_j_knosys_2019_104971 crossref_primary_10_1063_5_0123614 crossref_primary_10_1016_j_resourpol_2020_101806 crossref_primary_10_3390_en17050993 crossref_primary_10_1007_s00330_019_06457_5 crossref_primary_10_3390_ma14185342 crossref_primary_10_1007_s13369_020_04533_3 crossref_primary_10_1371_journal_pcbi_1008127 crossref_primary_10_1073_pnas_1620742114 crossref_primary_10_1109_ACCESS_2020_2982404 crossref_primary_10_1016_j_ress_2019_106731 crossref_primary_10_3390_beverages9030068 crossref_primary_10_1007_s11042_023_14634_4 crossref_primary_10_1162_NECO_a_00893 crossref_primary_10_1007_s11554_019_00887_6 crossref_primary_10_1016_j_jcp_2019_108877 crossref_primary_10_1016_j_compeleceng_2016_04_018 crossref_primary_10_3390_ijms232112975 crossref_primary_10_1007_s11071_024_10423_2 crossref_primary_10_1007_s11042_022_13771_6 crossref_primary_10_3390_rs13071391 crossref_primary_10_1109_COMST_2020_3013514 crossref_primary_10_1109_JSEN_2022_3179466 crossref_primary_10_1109_ACCESS_2022_3179589 crossref_primary_10_1109_ACCESS_2020_3046687 crossref_primary_10_1109_JSTQE_2019_2941485 crossref_primary_10_36930_40310317 crossref_primary_10_1103_PhysRevE_107_045301 crossref_primary_10_1145_3355089_3356557 crossref_primary_10_1007_s11634_018_0344_z crossref_primary_10_3390_pr8091155 crossref_primary_10_1016_j_ymssp_2020_107513 crossref_primary_10_1016_j_ipm_2019_02_018 crossref_primary_10_1093_mnras_stab953 crossref_primary_10_1016_j_jksuci_2021_06_008 crossref_primary_10_3846_mma_2022_15974 crossref_primary_10_1016_j_engappai_2024_108470 crossref_primary_10_1038_s41598_020_64509_z crossref_primary_10_3390_brainsci10110835 crossref_primary_10_1088_1742_6596_1402_3_033092 crossref_primary_10_1002_cyto_a_23701 crossref_primary_10_1080_17445302_2018_1447746 crossref_primary_10_1016_j_compag_2020_105258 crossref_primary_10_1007_s42405_019_00233_x crossref_primary_10_1016_j_geoderma_2024_116838 crossref_primary_10_1016_j_neucom_2019_09_113 crossref_primary_10_1088_1742_6596_1646_1_012039 crossref_primary_10_1016_j_ins_2018_10_053 crossref_primary_10_1097_CIN_0000000000001052 crossref_primary_10_3390_s24196313 crossref_primary_10_1109_TITS_2015_2465296 crossref_primary_10_1190_geo2023_0424_1 crossref_primary_10_1038_s41598_018_24330_1 crossref_primary_10_1007_s13534_025_00469_5 crossref_primary_10_1016_j_biosystemseng_2015_06_011 crossref_primary_10_3390_app10113835 crossref_primary_10_1016_j_jmapro_2024_11_067 crossref_primary_10_1029_2023JC019941 crossref_primary_10_1016_j_oceaneng_2025_122479 crossref_primary_10_1016_j_coal_2019_103284 crossref_primary_10_3389_fnins_2018_00525 crossref_primary_10_1109_TIM_2022_3217839 crossref_primary_10_2196_17364 crossref_primary_10_1109_ACCESS_2019_2940853 crossref_primary_10_2196_42337 crossref_primary_10_1007_s10479_021_04429_x crossref_primary_10_1042_BCJ20200781 crossref_primary_10_3390_math11143217 crossref_primary_10_1109_TIP_2019_2928627 crossref_primary_10_1155_2022_2540546 crossref_primary_10_1016_j_apenergy_2019_02_052 crossref_primary_10_1016_j_ces_2021_117224 crossref_primary_10_2196_28036 crossref_primary_10_3390_app12168007 crossref_primary_10_1016_j_imavis_2022_104401 crossref_primary_10_1088_1361_6501_ac7b6b crossref_primary_10_1007_s42161_025_01983_2 crossref_primary_10_1061__ASCE_CP_1943_5487_0001010 crossref_primary_10_3390_app10113816 crossref_primary_10_3390_s19183914 crossref_primary_10_1007_s11356_024_33058_7 crossref_primary_10_3390_ai2010008 crossref_primary_10_1109_TVCG_2016_2598838 crossref_primary_10_3390_ai2010009 crossref_primary_10_1007_s40860_020_00121_2 crossref_primary_10_1109_JIOT_2020_2981379 crossref_primary_10_1016_j_ins_2024_121363 crossref_primary_10_1051_bioconf_20249700004 crossref_primary_10_3390_en15093265 crossref_primary_10_3390_e27030279 crossref_primary_10_1109_ACCESS_2020_3019048 crossref_primary_10_1016_j_patter_2025_101182 crossref_primary_10_1063_5_0201613 crossref_primary_10_1155_2024_2444698 crossref_primary_10_1016_j_knosys_2017_10_004 crossref_primary_10_1016_j_physrep_2021_10_005 crossref_primary_10_1587_transinf_2016LOI0001 crossref_primary_10_1177_03611981241248164 crossref_primary_10_1007_s10614_021_10118_5 crossref_primary_10_3390_en16031404 crossref_primary_10_1007_s10845_018_1438_3 crossref_primary_10_1016_j_inffus_2020_09_006 crossref_primary_10_3390_ijgi11020085 crossref_primary_10_1016_j_procs_2018_10_503 crossref_primary_10_1016_j_oceaneng_2025_121199 crossref_primary_10_1515_humaff_2022_2035 crossref_primary_10_3390_app142210657 crossref_primary_10_1016_j_compstruc_2021_106714 crossref_primary_10_1097_WNO_0000000000001605 crossref_primary_10_1007_s10346_024_02336_3 crossref_primary_10_1007_s12273_022_0953_5 crossref_primary_10_1098_rsos_221614 crossref_primary_10_3390_en13102640 crossref_primary_10_1016_j_chemolab_2018_01_014 crossref_primary_10_1109_ACCESS_2022_3213061 crossref_primary_10_1520_JTE20170563 crossref_primary_10_1093_mnras_stac3797 crossref_primary_10_3390_s19224909 crossref_primary_10_1016_j_acra_2019_05_018 crossref_primary_10_1039_D2NR06202J crossref_primary_10_3390_diagnostics12040869 crossref_primary_10_3389_fbioe_2020_01039 crossref_primary_10_1007_s42107_025_01388_7 crossref_primary_10_3390_jsan12040059 crossref_primary_10_1038_s41598_025_08515_z crossref_primary_10_3847_1538_4357_ab0e8a crossref_primary_10_1016_j_cageo_2021_104869 crossref_primary_10_1016_j_bdr_2017_05_002 crossref_primary_10_1109_MIE_2017_2788850 crossref_primary_10_1109_TNNLS_2017_2697386 crossref_primary_10_1016_j_ymssp_2017_11_024 crossref_primary_10_1007_s11277_020_07173_w crossref_primary_10_1016_j_knosys_2017_10_024 crossref_primary_10_1109_ACCESS_2023_3293041 crossref_primary_10_1038_s41598_021_83315_9 crossref_primary_10_1109_TSMC_2016_2637279 crossref_primary_10_1016_j_procs_2018_10_520 crossref_primary_10_1007_s00339_022_06365_4 crossref_primary_10_1016_j_foodchem_2025_145932 crossref_primary_10_1016_j_physletb_2017_12_053 crossref_primary_10_1016_j_ejrad_2024_111655 crossref_primary_10_1016_j_measurement_2016_04_007 crossref_primary_10_1109_TVCG_2020_3030467 crossref_primary_10_1109_TKDE_2017_2682858 crossref_primary_10_1016_j_jhazmat_2016_07_034 crossref_primary_10_1109_ACCESS_2021_3072897 crossref_primary_10_1177_15500594221137234 crossref_primary_10_1186_s10033_019_0388_9 crossref_primary_10_1155_2021_4259629 crossref_primary_10_1016_j_saa_2021_120187 crossref_primary_10_3390_app12042158 crossref_primary_10_1109_ACCESS_2019_2933676 crossref_primary_10_2514_1_J059027 crossref_primary_10_1109_ACCESS_2022_3156888 crossref_primary_10_1016_j_istruc_2024_107543 crossref_primary_10_1155_2020_1895076 crossref_primary_10_1049_rsn2_12316 crossref_primary_10_1007_s00417_023_06208_9 crossref_primary_10_1093_brain_awad255 crossref_primary_10_1097_AUD_0000000000001217 crossref_primary_10_1097_TP_0000000000002189 crossref_primary_10_1109_TSMC_2018_2850367 crossref_primary_10_2478_mspe_2020_0020 crossref_primary_10_1093_icb_icab015 crossref_primary_10_3390_rs11141678 crossref_primary_10_1016_j_segan_2022_100660 crossref_primary_10_1109_ACCESS_2019_2931040 crossref_primary_10_1109_TNSM_2020_3043482 crossref_primary_10_1093_bib_bbab048 crossref_primary_10_1016_j_aop_2019_167938 crossref_primary_10_1016_j_apacoust_2020_107435 crossref_primary_10_1051_epjconf_202532801052 crossref_primary_10_1109_TASE_2021_3118226 crossref_primary_10_1109_TNSE_2023_3246463 crossref_primary_10_1016_j_rser_2025_115986 crossref_primary_10_1016_j_molliq_2022_120571 crossref_primary_10_1109_TSMC_2018_2791575 crossref_primary_10_1017_S0263574721000023 crossref_primary_10_1007_s42486_020_00039_x crossref_primary_10_1093_bib_bbab047 crossref_primary_10_1080_00036846_2022_2141462 crossref_primary_10_1093_bib_bbac373 crossref_primary_10_3390_ma18071464 crossref_primary_10_3390_en16020799 crossref_primary_10_3389_fspas_2023_1177550 crossref_primary_10_15407_kvt208_02_030 crossref_primary_10_1109_TASLP_2020_3043655 crossref_primary_10_1371_journal_pone_0320224 crossref_primary_10_1007_s11220_022_00377_3 crossref_primary_10_3390_app11115146 crossref_primary_10_1080_14680629_2023_2237597 crossref_primary_10_2139_ssrn_5351278 crossref_primary_10_1016_j_compag_2024_108660 crossref_primary_10_3390_app9193945 crossref_primary_10_1016_j_artmed_2020_101792 crossref_primary_10_1016_j_comnet_2024_110344 crossref_primary_10_3390_bios15090571 crossref_primary_10_1007_s00180_016_0678_y crossref_primary_10_1177_1745691617693393 crossref_primary_10_1016_j_physa_2019_122656 crossref_primary_10_1016_j_aei_2022_101818 crossref_primary_10_1016_j_jclepro_2021_129579 crossref_primary_10_1016_j_eswa_2020_113994 crossref_primary_10_1111_mice_12422 crossref_primary_10_3389_fped_2022_1005099 crossref_primary_10_1136_bmjgast_2019_000371 crossref_primary_10_1016_j_ress_2019_106706 crossref_primary_10_1007_s00371_022_02468_4 crossref_primary_10_1016_j_comnet_2024_110330 crossref_primary_10_1016_j_applthermaleng_2024_123191 crossref_primary_10_1007_s00107_025_02211_5 |
| Cites_doi | 10.1016/j.neuron.2012.01.010 10.1007/BF00199581 10.1162/089976600300015015 10.1073/pnas.79.8.2554 10.1109/72.279181 10.1162/neco.1997.9.1.1 10.1007/s10827-007-0038-6 10.1016/S0893-6080(09)80004-X 10.1016/j.neuron.2008.10.043 10.1016/S0893-6080(96)00110-4 10.1016/0167-2789(90)90081-Y 10.1162/neco.1996.8.1.1 10.1162/neco.1994.6.1.147 10.1093/comjnl/11.2.185 10.1007/BF00992696 10.1162/neco.1992.4.4.559 10.1007/BF02331346 10.1016/j.neunet.2005.06.042 10.1162/neco.1989.1.1.151 10.1109/72.623201 10.1162/neco.1992.4.2.243 10.1016/S0893-6080(02)00235-6 10.1016/j.neunet.2012.09.016 10.1103/PhysRevLett.72.3634 10.1109/CVPR.2014.223 10.1109/TSMCC.2012.2218595 10.1016/S0893-6080(96)00127-X 10.1016/j.neunet.2012.02.023 10.1109/ICSMC.1990.142119 10.1162/neco.1993.5.1.140 10.1113/jphysiol.1968.sp008455 10.1023/A:1008925309027 10.1109/72.265959 10.1093/cercor/1.1.1 10.1137/S0363012999361974 10.1162/neco.1995.7.5.889 10.1109/ICDAR.2013.218 10.1007/BF00116250 10.1109/TEVC.2010.2104157 10.1113/jphysiol.1959.sp006308 10.1162/neco.1994.6.6.1155 10.1523/JNEUROSCI.04-08-02051.1984 10.1016/j.neunet.2008.02.002 10.1109/JRPROC.1962.288235 10.1142/S0129065791000030 10.1098/rspb.2012.2863 10.1103/PhysRevE.59.4498 10.1109/72.410363 10.1126/science.1225266 10.1109/TPAMI.2012.59 10.1098/rstl.1763.0053 10.1162/0899766053011519 10.1007/3-540-36755-1_25 10.1111/j.2517-6161.1977.tb01600.x 10.1162/neco.1994.6.4.559 10.1093/cercor/bhs348 10.1109/72.377972 10.1007/978-1-4684-1716-6_25 10.1007/BF01700692 10.1162/neco.1989.1.3.412 10.1007/BF00344251 10.1126/science.316.5825.688c 10.1109/TAC.1973.1100330 10.1088/0954-898X/3/2/004 10.1109/IVS.1994.639472 10.1613/jair.2110 10.1016/j.neucom.2007.11.026 10.3389/fpsyg.2013.00124 10.1023/A:1025696116075 10.1145/175247.175257 10.1162/neco.1996.8.6.1135 10.1162/NECO_a_00344 10.1016/S0004-3702(99)00052-1 10.1109/TPAMI.2013.50 10.1109/IJCNN.1998.685873 10.1126/science.1254642 10.1016/0743-1066(94)90029-9 10.1162/neco.1989.1.4.541 10.1109/72.963769 10.1016/0042-6989(82)90113-4 10.1162/neco.2007.19.3.757 10.1016/0893-6080(90)90044-L 10.1109/IJCNN.1999.831160 10.1364/JOSAA.22.002013 10.1162/neco.1995.7.6.1129 10.1162/neco.1996.8.3.643 10.1080/09540098908915631 10.1109/72.377990 10.1109/CEC.2008.4631255 10.1162/neco.1989.1.4.425 10.1109/TCT.1969.1082967 10.1109/TSMCB.2003.818557 10.1364/JOSAA.4.002379 10.1016/S0893-6080(03)00127-8 10.1162/neco.2009.10-08-881 10.1016/j.ijar.2008.11.006 10.1109/TAC.1974.1100705 10.1016/j.patcog.2004.01.013 10.1016/S0893-6080(05)80023-1 10.1016/0022-247X(62)90004-5 10.1007/BF00288907 10.1109/5.726791 10.1162/08997660460733994 10.21437/Interspeech.2014-305 10.1109/CDC.1989.70114 10.1093/nar/gkp305 10.1007/3-540-46084-5_213 10.1162/neco.1992.4.2.141 10.1162/089976698300017502 10.1016/0022-5193(68)90079-9 10.1016/0004-3702(89)90049-0 10.1162/089976698300017746 10.1145/6592.6594 10.1016/S0925-2312(01)00658-0 10.1162/neco.1990.2.2.173 10.1162/08997660360675099 10.1109/5.726790 10.1109/DEVLRN.2011.6037326 10.2307/2371045 10.1142/S0129054102001199 10.1016/S0019-9958(64)90223-2 10.1016/0165-6074(96)00012-9 10.1162/neco.1992.4.1.1 10.1109/IJCNN.2008.4633916 10.1098/rspb.1976.0087 10.1162/neco.1997.9.8.1735 10.6028/jres.049.044 10.1093/comjnl/6.2.163 10.1016/S0166-4115(97)80111-2 10.1523/JNEUROSCI.14-01-00409.1994 10.1016/0925-2312(94)90034-5 10.4249/scholarpedia.4650 10.1080/09540090600768658 10.1109/TNN.2003.820440 10.1023/B:VISI.0000029664.99615.94 10.1371/journal.pcbi.1000894 10.1007/BF00114727 10.1162/neco.1994.6.2.215 10.1088/0954-898X/5/4/008 10.3389/fpsyg.2013.00313 10.1016/0893-6080(88)90007-X 10.1109/72.839013 10.1093/bioinformatics/17.5.419 10.1145/1143844.1143891 10.1109/TSMC.1974.5408453 10.1109/21.155944 10.1080/00401706.1979.10489751 10.1613/jair.639 10.21437/Interspeech.2014-80 10.1613/jair.806 10.1177/105971239700600202 10.1109/IJCNN.1990.137723 10.1109/TKDE.2009.191 10.1109/MSP.2012.2205597 10.1162/NECO_a_00397 10.1016/S0893-6080(02)00219-8 10.1109/34.825759 10.1126/science.1109676 10.1109/78.554307 10.1109/TPAMI.2012.272 10.1109/CEC.2010.5586547 10.1162/neco.1997.9.5.1127 10.1007/BF00114724 10.1080/09540098908915640 10.1007/BF02478259 10.1214/aos/1176350051 10.1162/neco.1989.1.2.270 10.1109/2.36 10.1090/qam/10666 10.1109/ICDAR.2003.1227801 10.1016/0004-3702(89)90047-7 10.1162/neco.1992.4.4.473 10.1109/MCSE.2010.112 10.1109/72.363438 10.1162/089976602317318938 10.1162/neco.1997.9.5.1015 10.1364/JOSAA.7.000923 10.1016/0893-6080(89)90020-8 10.1002/aic.690370209 10.1109/72.279191 10.1142/S0129065789000475 10.1109/IJCNN.1989.118645 10.1162/089976602760408035 10.1111/j.2517-6161.1974.tb00994.x 10.1109/78.650093 10.1007/BF00337365 10.1162/neco.1989.1.3.295 10.1038/14819 10.1162/neco.1994.6.5.842 10.1162/NECO_a_00052 10.1109/IJCNN.2002.1007449 10.1016/S0304-3975(02)00097-X 10.1109/TNNLS.2014.2308519 10.1147/rd.33.0210 10.1113/jphysiol.1952.sp004764 10.1007/BF00118594 10.1109/TITS.2011.2119483 10.1162/106365602320169811 10.1142/S0129065794000074 10.1016/0893-6080(94)90030-2 10.1016/j.patcog.2013.10.020 10.1016/S0893-6080(01)00054-5 10.1007/3-540-45110-2_105 10.1162/neco.2006.18.7.1527 10.1109/IJCNN.2000.861532 10.1163/156855308X360604 10.1016/j.neunet.2011.03.017 10.1016/0020-0190(87)90114-1 10.1016/j.neunet.2013.01.001 10.1016/0893-6080(94)00098-7 10.2991/agi.2010.22 10.1162/neco.1993.5.3.402 10.1016/0165-1684(94)90029-9 10.1109/TNN.2002.804221 10.1007/978-3-642-15825-4_10 10.1016/0004-3702(90)90005-K 10.1007/978-3-540-74695-9_23 10.1109/TPAMI.2008.137 10.1093/jigpal/jzp049 10.1038/381607a0 10.1109/ICASSP.2014.6853982 10.1162/neco.1997.9.1.123 10.1109/TSMC.1976.4309532 10.1109/TPAMI.2012.231 10.1088/0954-898X/7/4/005 10.1145/321356.321363 10.1098/rstb.1997.0101 10.1016/0893-6080(95)00086-0 10.1126/science.1117593 10.1109/72.80202 10.1109/CVPR.2014.98 10.21437/Interspeech.2014-483 10.1523/JNEUROSCI.5044-12.2013 10.1145/1276958.1277155 10.1037/h0042519 10.1109/JRPROC.1952.273898 10.1109/CVPR.2014.249 10.1098/rstb.1992.0003 10.1162/neco.1993.5.2.289 10.1162/106365601750190398 10.1007/BF01931367 10.1162/jocn_a_00282 10.1109/ICIP.2013.6738831 10.1007/BF01404567 10.1016/S0005-1098(00)00050-9 10.1162/089976606775093891 10.2514/8.5282 10.1023/A:1007967800668 10.1007/BF00203171 10.1023/A:1007379606734 10.21437/Interspeech.2014-445 10.1103/PhysRevLett.59.2229 10.1523/JNEUROSCI.4098-12.2013 10.1126/science.1091277 10.1016/S0925-2312(02)00635-5 10.1007/BF00116037 10.1038/scientificamerican0612-50 10.1152/jn.1994.71.3.856 10.1109/ICCV.1999.790410 10.1152/jn.01095.2004 10.1109/ICASSP.2014.6854518 10.1137/0111030 10.1016/0020-0255(93)90049-R 10.1145/192161.192167 10.1145/1553374.1553453 10.1162/neco.1992.4.2.234 10.1162/neco.1992.4.6.863 10.1109/TSMC.1983.6313077 10.1016/j.artint.2014.02.004 10.1007/BF00114116 10.1162/08997660260028683 10.1016/B978-1-55860-307-3.50045-9 10.1007/BF00114731 10.1016/j.neunet.2008.02.003 10.1016/S0006-3495(61)86902-6 10.1093/bioinformatics/bts475 10.1109/IJCNN.1989.118583 10.1109/IROS.2003.1250667 10.1016/0893-6080(94)90100-7 10.1109/ICASSP.2010.5495651 10.1145/1569901.1569976 10.1162/neco.1995.7.3.565 10.1109/TSMC.1987.289329 10.1007/978-3-642-22887-2_25 10.1038/nn.2996 10.1016/0893-9659(91)90080-F 10.1207/s15516709cog1402_1 10.1007/BF00198094 10.1109/TNN.2010.2044802 10.1109/72.248466 10.1016/j.neunet.2010.04.009 10.1126/science.1127647 10.1007/978-3-642-40763-5_51 10.1007/BF00993077 10.1162/089976602760128018 10.1093/protein/6.4.383 10.1162/089976602753712972 10.1162/NECO_a_00268 10.1109/MCI.2010.938364 10.1090/S0025-5718-1970-0274029-X 10.1109/72.548162 10.1016/S0168-0102(99)00108-X 10.1162/089976602760407955 10.1109/72.80204 10.1109/IJCNN.1992.287238 10.1371/journal.pcbi.0030166 10.1023/A:1007469218079 10.1007/BF00993591 10.1523/JNEUROSCI.13-08-03406.1993 10.1002/(SICI)1098-1063(1996)6:3<271::AID-HIPO5>3.3.CO;2-Q 10.1113/jphysiol.1962.sp006837 10.1016/0165-1684(91)90079-X 10.1007/978-3-642-04277-5_76 10.1016/j.conb.2007.03.002 10.1007/BF00337288 10.1109/TNN.2009.2023653 10.1162/neco.2010.01-09-953 10.1002/(SICI)1520-684X(199904)30:4<20::AID-SCJ3>3.0.CO;2-E 10.1016/S0893-6080(97)00011-7 10.1137/1105015 10.1080/095400900750060122 10.21437/Interspeech.2014-151 10.1162/neco.1993.5.3.473 10.1177/105971239400200301 10.21437/Interspeech.2014-443 10.1016/j.neunet.2014.01.006 10.1093/bioinformatics/15.11.937 10.1016/j.patcog.2013.05.025 10.1109/72.392248 10.1016/S0896-6273(03)00761-X 10.1109/TAMD.2012.2182765 10.4103/2153-3539.112693 10.1109/TNN.2011.2167240 10.1023/A:1007562800292 10.1109/TIT.1978.1055913 10.1145/1830483.1830596 10.1109/72.363436 10.1162/08997660260293319 10.1016/S0893-6080(05)80077-2 10.1152/jn.1987.58.6.1233 10.1177/105971239700600201 10.1162/artl.2009.15.2.15202 10.1109/ICASSP.2013.6637694 10.1162/neco.1996.8.4.773 10.1016/S0925-2312(01)00700-7 10.1007/BF00337019 10.1016/S0893-6080(03)00054-6 10.1080/095400999116340 10.1016/B978-1-55860-377-6.50013-X 10.1007/BF00992698 10.1016/S0893-6080(05)80010-3 10.1162/evco.1997.5.2.123 10.1126/science.7761831 10.1016/0893-6080(89)90014-2 10.1109/72.105414 10.1162/neco.1996.8.7.1541 10.4249/scholarpedia.3698 10.1016/S0004-3702(02)00378-8 10.1016/j.jalgor.2009.04.002 10.1007/BF00239352 10.1007/BF00058655 10.1093/bioinformatics/17.2.126 10.1016/S0960-9822(95)00108-4 10.1145/2382559.2382563 10.1007/BF00993982 10.1524/itit.2005.47.5_2005.250 10.1109/ROBOT.2004.1302446 10.1109/IJCNN.2011.6033458 10.1007/s10994-005-0460-9 10.1145/2463372.2463484 10.1016/S0893-6080(05)80155-8 10.1109/72.846741 10.1115/1.3662552 10.1007/BF02506337 10.1080/09540098908915650 10.1162/089976600300014827 10.1162/106365603321828970 10.1109/IJCNN.2012.6252544 10.1021/ci400187y 10.1007/BF00340335 10.1016/0004-3702(84)90016-X 10.1016/j.neunet.2009.12.004 10.1162/neco.1996.8.5.895 10.1162/089976699300016629 10.1109/72.80212 10.1016/0004-3702(94)90105-8 10.1109/72.279188 10.1007/BF00993104 10.1109/PGEC.1967.264666 10.1177/105971239400300102 10.1152/jn.1996.75.4.1515 10.1145/42372.42377 10.1016/0893-6080(88)90003-2 10.1049/ip-vis:19941301 10.1023/A:1007383707642 10.1109/72.478390 10.1090/S0025-5718-1970-0258249-6 10.1007/s00521-004-0444-x 10.1002/j.1538-7305.1948.tb01338.x 10.1023/B:MACH.0000015880.99707.b2 10.1109/IJCNN.2011.6033589 10.1007/BF00332914 10.1214/aoms/1177699147 10.1016/j.conengprac.2005.04.007 10.1109/64.393139 10.1162/neco.1992.4.5.703 10.1016/j.patrec.2013.07.013 10.1162/neco.2007.03-07-493 10.1109/TASL.2011.2134090 10.1109/TC.1972.5008975 10.1109/TSMC.1971.4308320 10.1109/TSE.1985.231877 10.1090/S0025-5718-1965-0198670-6 10.1162/neco.1992.4.3.448 10.1109/ICIP.2013.6738559 10.1142/S1469026801000342 10.1016/0950-7051(96)81920-4 10.1016/S0893-6080(96)00009-3 10.1371/journal.pcbi.1003037 10.1016/0167-2789(86)90244-7 10.1103/PhysRevA.46.2131 10.1109/IJCNN.2003.1224004 10.1016/j.neunet.2012.02.016 10.1142/S0218001493000339 10.1162/neco.1989.1.2.263 10.1007/BF00114722 10.1038/78829 10.1162/artl.1995.2.4.417 10.1016/j.specom.2012.08.006 10.1016/0893-6080(91)90005-P 10.2307/2269031 10.1088/0954-898X/8/4/003 10.1080/09540098908915647 10.1214/aoms/1177729694 10.1109/CVPR.2012.6248110 10.1109/IJCNN.2010.5596468 10.1016/j.neunet.2007.04.011 10.1142/S0129065793000274 10.1109/CIG.2009.5286504 10.1007/BF00344744 |
| ContentType | Journal Article |
| Copyright | 2014 |
| Copyright_xml | – notice: 2014 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.neunet.2014.09.003 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1879-2782 |
| EndPage | 117 |
| ExternalDocumentID | 25462637 10_1016_j_neunet_2014_09_003 S0893608014002135 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 |
| ID | FETCH-LOGICAL-c362t-7c5d783d99f7ae868619fc1e852479eaf1631ba6a958e5166b1720b15d4f933a3 |
| ISICitedReferencesCount | 12082 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000347595400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0893-6080 1879-2782 |
| IngestDate | Sun Sep 28 10:34:00 EDT 2025 Thu Apr 03 07:01:00 EDT 2025 Sat Nov 29 02:39:45 EST 2025 Tue Nov 18 20:57:25 EST 2025 Fri Feb 23 02:28:36 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Supervised learning Unsupervised learning Reinforcement learning Evolutionary computation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c362t-7c5d783d99f7ae868619fc1e852479eaf1631ba6a958e5166b1720b15d4f933a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PMID | 25462637 |
| PQID | 1662427875 |
| PQPubID | 23479 |
| PageCount | 33 |
| ParticipantIDs | proquest_miscellaneous_1662427875 pubmed_primary_25462637 crossref_primary_10_1016_j_neunet_2014_09_003 crossref_citationtrail_10_1016_j_neunet_2014_09_003 elsevier_sciencedirect_doi_10_1016_j_neunet_2014_09_003 |
| PublicationCentury | 2000 |
| PublicationDate | January 2015 2015-01-00 2015-Jan 20150101 |
| PublicationDateYYYYMMDD | 2015-01-01 |
| PublicationDate_xml | – month: 01 year: 2015 text: January 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neural networks |
| PublicationTitleAlternate | Neural Netw |
| PublicationYear | 2015 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | De Freitas (br000780) 2003 Hyvärinen, Hoyer, Oja (br001700) 1999 Ostrovskii, Volin, Borisov (br002885) 1971; 13 Kohonen (br001995) 1982; 43 Neil, Liu (br002775) 2014; PP De Valois, Albrecht, Thorell (br000815) 1982; 22 Felleman, Van Essen (br001000) 1991; 1 Buhler (br000535) 2001; 17 Jaeger (br001795) 2001 An (br000070) 1996; 8 Fu (br001105) 1977 Jones, Palmer (br001835) 1987; 58 Watanabe (br004075) 1985 Bishop (br000395) 1993; 4 Prokhorov, Puskorius, Feldkamp (br003075) 2001 Dayan, Hinton, Neal, Zemel (br000760) 1995; 7 Narendra, Thathatchar (br002750) 1974; 4 Werbos (br004165) 2006 Rosenblatt (br003240) 1962 Young, Davis, Mishtal, Arel (br004395) 2014; 37 . Levin, Narendra (br002280) 1995; 7 McCallum (br002520) 1996 Watrous, Kuhn (br004095) 1992 Martens, J., & Sutskever, I. (2011). Learning recurrent neural networks with Hessian-free optimization. In Melnik, O., Levy, S. D., & Pollack, J. B. (2000). RAAM for infinite context-free languages. In Baluja (br000200) 1994 Belouchrani, Abed-Meraim, Cardoso, Moulines (br000340) 1997; 45 Urlbe (br003970) 1999 (pp. 585–590). Wöllmer, Schuller, Rigoll (br004330) 2013; 55 Hornik, Stinchcombe, White (br001665) 1989; 2 Schaul, T., Zhang, S., & LeCun, Y. (2013). No more pesky learning rates. In Hopfield (br001660) 1982; 79 Schmidhuber (br003475) 2007; 316 Boltzmann (br000450) 1909 Versino, Gambardella (br004010) 1996 Hansen, Müller, Koumoutsakos (br001440) 2003; 11 (pp. 68–73). Plate (br003020) 1993 Windisch (br004310) 2005; 17 Faggin, F. (1992). Neural network hardware. In Desimone, Albright, Gross, Bruce (br000805) 1984; 4 Werbos (br004130) 1974 Neti, Schneider, Young (br002785) 1992; 3 D’Ambrosio, D. B., & Stanley, K. O. (2007). A novel generative encoding for exploiting neural network sensor and output geometry. In Waydo, Koch (br004100) 2008; 20 Williams, Zipser (br004290) 1988 Munro, P. W. (1987). A dual back-propagation scheme for scalar reinforcement learning. In Goodfellow, I. J., Courville, A. C., & Bengio, Y. (2012). Large-scale feature learning with spike-and-slab sparse coding. In Hassibi, Stork (br001470) 1993 Pan, Yang (br002925) 2010; 22 Kasabov (br001920) 2014 Kempter, Gerstner, Van Hemmen (br001930) 1999; 59 Steijvers, Grunwald (br003775) 1996 Fletcher, Powell (br001050) 1963; 6 Snowbird: Utah. Computational and Biological Learning Society. Prokhorov (br003065) 2010; 21 Jordan, Sejnowski (br001860) 2001 (pp. 759–766). Rodriguez, Wiles (br003215) 1998 Chellapilla, K., Puri, S., & Simard, P. (2006). High performance convolutional neural networks for document processing. In Ivakhnenko (br001755) 1995; 5 (pp. 1845–1853). Wu, Baldi (br004345) 2008; 21 Hestenes, Stiefel (br001530) 1952; 49 Arel, Rose, Karnowski (br000095) 2010; 5 Hihi, Bengio (br001535) 1996 Almeida, L. B. (1987). A learning rule for asynchronous perceptrons with feedback in a combinatorial environment. In Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014). Large-scale video classification with convolutional neural networks. In Lee (br002190) 1996 Lindenmayer (br002315) 1968; 18 Risi, Stanley (br003190) 2012 Pasemann, Steinmetz, Dieckman (br002950) 1999 Williams (br004265) 1988 Floreano, Mattiussi (br001055) 2001 Gomez (br001270) 2003 Pineda (br003015) 1987; 19 Fogel, Fogel, Porto (br001060) 1990; 63 Fahlman (br000960) 1991 Wiskott, Sejnowski (br004315) 2002; 14 (pp. 755–764). Rifai, S., Vincent, P., Muller, X., Glorot, X., & Bengio, Y. (2011). Contractive auto-encoders: Explicit invariance during feature extraction. In Jacobs (br001790) 1988; 1 Burgess (br000545) 1994; 5 Werbos, P. J. (1989a). Backpropagation and neurocontrol: A review and prospectus. In Cochocki, Unbehauen (br000685) 1993 (pp. 118–126). Whiteson, Kohl, Miikkulainen, Stone (br004190) 2005; 59 Schmidhuber, Wierstra, Gagliolo, Gomez (br003525) 2007; 19 Gomi, Kawato (br001290) 1993; 6 (p. 153). Church (br000615) 1936; 58 Kompella, Luciw, Schmidhuber (br002020) 2012; 24 Schmidhuber (br003450) 1997; 10 Yin, Meng, Jin (br004385) 2012; 4 Minton, Carbonell, Knoblock, Kuokka, Etzioni, Gil (br002605) 1989; 40 (pp. 220–229). Indermuhle, Frinken, Fischer, Bunke (br001735) 2011 Becker (br000285) 1991; 2 Sims (br003690) 1994 Gomez, F. J., & Miikkulainen, R. (2003). Active guidance for a finless rocket using neuroevolution. In Gisslen, Luciw, Graziano, Schmidhuber (br001220) 2011 Mozer (br002695) 1989; 3 Dickmanns, E. D., Behringer, R., Dickmanns, D., Hildebrandt, T., Maurer, M., & Thomanek, F., et al. (1994). The seeing passenger car ’VaMoRs-P’. In Blum, Rivest (br000420) 1992; 5 Oudeyer, Baranes, Kaplan (br002905) 2013 Wysoski, Benuskova, Kasabov (br004360) 2010; 23 Igel, Hüsken (br001720) 2003; 50 (pp. 92–101). Kalman (br001905) 1960; 82 Zipser, Kehoe, Littlewort, Fuster (br004440) 1993; 13 Földiák (br001070) 1990; 64 Nessler, Pfeiffer, Buesing, Maass (br002780) 2013; 9 Miller, Todd, Hedge (br002580) 1989 Hanson (br001450) 1990; 42 Wu, D., & Shao, L. (2014). Leveraging hierarchical parametric networks for skeletal joints based action segmentation and recognition. In (pp. 1356–1361). Palm (br002920) 1992; 4 Bryson Jr., Denham (br000525) 1961 Deville, Lau (br000820) 1994; 19 Connor, Martin, Atlas (br000705) 1994; 5 Gauss, C. F. (1821). Theoria combinationis observationum erroribus minimis obnoxiae (Theory of the combination of observations least subject to error). Schmidhuber (br003445) 1993 Lagoudakis, Parr (br002110) 2003; 4 Schwefel (br003585) 1974 Behnke (br000300) 2001; 1 Hinton, Deng, Yu, Dahl, Mohamed, Jaitly (br001555) 2012; 29 Hochreiter (br001590) 1991 Yamauchi, Beer (br004365) 1994; 2 Deco, Rolls (br000775) 2005; 94 Mohamed, A., & Hinton, G. E. (2010). Phone recognition using restricted Boltzmann machines. In Riesenhuber, Poggio (br003160) 1999; 2 (pp. 320–322). Jacob, Lindenmayer, Rozenberg (br001785) 1994 Miller (br002565) 1994; 14 Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural network acoustic models. In Legenstein, Wilbert, Wiskott (br002230) 2010; 6 Oquab, Bottou, Laptev, Sivic (br002860) 2013 Fine, Singer, Tishby (br001035) 1998; 32 (pp. 369–376). Goodfellow, I. J., Courville, A., & Bengio, Y. (2011). Spike-and-slab sparse coding for unsupervised feature discovery. In Whitehead (br004180) 1992 Smolensky (br003715) 1986 Brunel (br000515) 2000; 8 Graves, A., & Jaitly, N. (2014). Towards end-to-end speech recognition with recurrent neural networks. In Pascanu, R., Gulcehre, C., Cho, K., & Bengio, Y. (2013). How to construct deep recurrent neural networks. arXiv Preprint LeCun, Muller, Cosatto, Flepp (br002180) 2006 Schmidhuber (br003395) 1990 Moriarty (br002675) 1997 (pp. 91–96). Prokhorov, D. V., Feldkamp, L. A., & Tyukin, I. Y. (2002). Adaptive behavior with fixed weights in RNN: an overview. In Ciresan, Meier, Masci, Schmidhuber (br000645) 2012; 32 Pachitariu, M., & Sahani, M. (2013). Regularization and nonlinearities for neural language models: when are they needed? arXiv Preprint Bakker, B., Zhumatiy, V., Gruener, G., & Schmidhuber, J. (2003). A robot that reinforcement-learns to identify and memorize important previous observations. In Steil (br003780) 2007; 20 Mesnil, G., Dauphin, Y., Glorot, X., Rifai, S., Bengio, Y., & Goodfellow, I., et al. (2011). Unsupervised and transfer learning challenge: a deep learning approach. In Dorffner, G. (1996). Neural networks for time series processing. In Koutník, Cuccu, Schmidhuber, Gomez (br002050) 2013 Síma (br003675) 1994; 6 Martinetz, Ritter, Schulten (br002500) 1990; 1 Schmidhuber (br003480) 2012 Veta, M., Viergever, M., Pluim, J., Stathonikos, N., & van Diest, P. J. (2013). MICCAI 2013 grand challenge on mitosis detection. McCulloch, Pitts (br002525) 1943; 7 Ge, Hang, Lee, Zhang (br001160) 2010 (pp. 279–284). Heess, N., Silver, D., & Teh, Y. W. (2012). Actor-critic reinforcement learning with energy-based policies. In Fukada, Schuster, Sagisaka (br001110) 1999; 30 Guyon, Vapnik, Boser, Bottou, Solla (br001420) 1992 (pp. 762–770). Akaike (br000025) 1974; 19 (pp. 619–626). Menache, I., Mannor, S., & Shimkin, N. (2002). Schmidhuber (br003390) 1990 Lin, Horne, Tino, Giles (br002310) 1996; 7 Leibniz (br002240) 1684 Sun, Giles, Chen, Lee (br003815) 1993 Post (br003050) 1936; 1 Schmidhuber, Wahnsiedler (br003520) 1992 Honavar, Uhr (br001655) 1993; 70 Fukushima (br001125) 2011; 24 (pp. 776–779). Shavlik (br003650) 1994; 14 Kelley (br001925) 1960; 30 Moody (br002655) 1992 Eubank (br000935) 1988 Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701. Marchi, E., Ferroni, G., Eyben, F., Gabrielli, L., Squartini, S., & Schuller, B. (2014). Multi-resolution linear prediction based features for audio onset detection with bidirectional LSTM neural networks. In Cuccu, Luciw, Schmidhuber, Gomez (br000725) 2011 Hinton, Sejnowski (br001575) 1986 Pham, V., Kermorvant, C., & Louradour, J. (2013). Dropout improves recurrent neural networks for handwriting recognition. arXiv Preprint Barlow (br000210) 1989; 1 Grossberg (br001395) 1976; 23 Kramer (br002070) 1991; 37 Schuster, Paliwal (br003575) 1997; 45 Behnke, S., & Rojas, R. (1998). Neural abstraction pyramid: a hierarchical image understanding architecture. In Schmidhuber (br003485) 2013 Schemmel, Grubl, Meier, Mueller (br003365) 2006 Srivastava, Masci, Kazerounian, Gomez, Schmidhuber (br003750) 2013 Wolpert (br004335) 1992; 5 Kohonen (br001990) 1972; 100 Barlow, Kaushal, Mitchison (br000215) 1989; 1 [cs.NE]. Singh, S. P. (1994). Reinforcement learning algorithms for average-payoff Markovian decision processes. In Kak, S., Chen, Y., & Wang, L. (2010). Data mining using surface and deep agents based on neural networks. In Hutter (br001695) 2005 Field (br001025) 1994; 6 Hashem, Schmeiser (br001465) 1992; 6 (pp. 836–843). Madala, Ivakhnenko (br002435) 1994 (pp. 700–705). Jain, Seung (br001805) 2009 Schmidhuber, Zhao, Wiering (br003535) 1997; 28 Amari (br000045) 1967; 16 Sallans, Hinton (br003300) 2004; 5 Abounadi, Bertsekas, Borkar (br000010) 2002; 40 ICPR (2012). Contest on Mitosis Detection in Breast Cancer Histological Images (2012). IPAL laboratory and TRIBVN company and pitie-salpetriere hospital and CIALAB of Ohio State Univ. Fernandez, R., Rendel, Zamora-Martínez (10.1016/j.neunet.2014.09.003_br004405) 2014; 47 Fritzke (10.1016/j.neunet.2014.09.003_br001100) 1994 LeCun (10.1016/j.neunet.2014.09.003_br002180) 2006 Grondman (10.1016/j.neunet.2014.09.003_br001380) 2012; 42 Lampinen (10.1016/j.neunet.2014.09.003_br002115) 1992; 2 Bengio (10.1016/j.neunet.2014.09.003_br000355) 2013; 35 10.1016/j.neunet.2014.09.003_br004015 Kasabov (10.1016/j.neunet.2014.09.003_br001920) 2014 10.1016/j.neunet.2014.09.003_br003165 Koza (10.1016/j.neunet.2014.09.003_br002065) 1992 Krizhevsky (10.1016/j.neunet.2014.09.003_br002085) 2012 Weigend (10.1016/j.neunet.2014.09.003_br004110) 1991 Bayes (10.1016/j.neunet.2014.09.003_br000280) 1763; 53 Sehnke (10.1016/j.neunet.2014.09.003_br003595) 2010; 23 Song (10.1016/j.neunet.2014.09.003_br003740) 2000; 3 Hastie (10.1016/j.neunet.2014.09.003_br001480) 2009 Hochreiter (10.1016/j.neunet.2014.09.003_br001625) 2001; Vol. 2130 Shavlik (10.1016/j.neunet.2014.09.003_br003655) 1989; 1 Yu (10.1016/j.neunet.2014.09.003_br004400) 1995; 6 Lenat (10.1016/j.neunet.2014.09.003_br002250) 1984; 23 Grüttner (10.1016/j.neunet.2014.09.003_br001410) 2010 Li (10.1016/j.neunet.2014.09.003_br002295) 1997 Biegler-König (10.1016/j.neunet.2014.09.003_br000390) 1993; 6 Williams (10.1016/j.neunet.2014.09.003_br004275) 1992; 8 10.1016/j.neunet.2014.09.003_br003155 Schmidhuber (10.1016/j.neunet.2014.09.003_br003445) 1993 Waydo (10.1016/j.neunet.2014.09.003_br004100) 2008; 20 Bakker (10.1016/j.neunet.2014.09.003_br000140) 2004 Turing (10.1016/j.neunet.2014.09.003_br003955) 1936; 41 Molgedey (10.1016/j.neunet.2014.09.003_br002630) 1994; 72 Maniezzo (10.1016/j.neunet.2014.09.003_br002465) 1994; 5 Williams (10.1016/j.neunet.2014.09.003_br004265) 1988 Li (10.1016/j.neunet.2014.09.003_br002300) 2014 Schmidhuber (10.1016/j.neunet.2014.09.003_br003440) 1993 Baldi (10.1016/j.neunet.2014.09.003_br000170) 1996; 8 10.1016/j.neunet.2014.09.003_br002060 Whiteson (10.1016/j.neunet.2014.09.003_br004195) 2006; 7 10.1016/j.neunet.2014.09.003_br004240 10.1016/j.neunet.2014.09.003_br002055 Haykin (10.1016/j.neunet.2014.09.003_br001490) 2001 Vahed (10.1016/j.neunet.2014.09.003_br003980) 2004; 16 Peters (10.1016/j.neunet.2014.09.003_br002995) 2010; 5 Brunel (10.1016/j.neunet.2014.09.003_br000515) 2000; 8 Madala (10.1016/j.neunet.2014.09.003_br002435) 1994 Schmidhuber (10.1016/j.neunet.2014.09.003_br003465) 2006; 18 Wöllmer (10.1016/j.neunet.2014.09.003_br004330) 2013; 55 Riesenhuber (10.1016/j.neunet.2014.09.003_br003160) 1999; 2 Windisch (10.1016/j.neunet.2014.09.003_br004310) 2005; 17 Sims (10.1016/j.neunet.2014.09.003_br003690) 1994 LeCun (10.1016/j.neunet.2014.09.003_br002170) 1998; 86 Schäfer (10.1016/j.neunet.2014.09.003_br003345) 2006; Vol. 4131 Lapedes (10.1016/j.neunet.2014.09.003_br002130) 1986; 22 Marquardt (10.1016/j.neunet.2014.09.003_br002485) 1963; 11 Baldi (10.1016/j.neunet.2014.09.003_br000190) 2014; 210C Hinton (10.1016/j.neunet.2014.09.003_br001560) 1997; 352 Kitano (10.1016/j.neunet.2014.09.003_br001965) 1990; 4 Escalante-B (10.1016/j.neunet.2014.09.003_br000930) 2013; 14 Williams (10.1016/j.neunet.2014.09.003_br004260) 1986 Witczak (10.1016/j.neunet.2014.09.003_br004320) 2006; 14 Fogel (10.1016/j.neunet.2014.09.003_br001065) 1966 Rezende (10.1016/j.neunet.2014.09.003_br003140) 2014; 8 Lewicki (10.1016/j.neunet.2014.09.003_br002285) 1998 Mosteller (10.1016/j.neunet.2014.09.003_br002690) 1968 Amari (10.1016/j.neunet.2014.09.003_br000050) 1998; 10 Narendra (10.1016/j.neunet.2014.09.003_br002750) 1974; 4 Glackin (10.1016/j.neunet.2014.09.003_br001230) 2005 Rubner (10.1016/j.neunet.2014.09.003_br003250) 1990; 62 Shavlik (10.1016/j.neunet.2014.09.003_br003650) 1994; 14 Ciresan (10.1016/j.neunet.2014.09.003_br000645) 2012; 32 10.1016/j.neunet.2014.09.003_br002040 10.1016/j.neunet.2014.09.003_br003370 Zemel (10.1016/j.neunet.2014.09.003_br004420) 1993 Legendre (10.1016/j.neunet.2014.09.003_br002220) 1805 Judd (10.1016/j.neunet.2014.09.003_br001875) 1990 Schmidhuber (10.1016/j.neunet.2014.09.003_br003500) 1996; 8 O’Reilly (10.1016/j.neunet.2014.09.003_br002875) 2013; 4 Hutter (10.1016/j.neunet.2014.09.003_br001695) 2005 Hoerzer (10.1016/j.neunet.2014.09.003_br001635) 2014; 24 10.1016/j.neunet.2014.09.003_br003120 10.1016/j.neunet.2014.09.003_br003360 von der Malsburg (10.1016/j.neunet.2014.09.003_br004045) 1973; 14 Jaeger (10.1016/j.neunet.2014.09.003_br001795) 2001 Brea (10.1016/j.neunet.2014.09.003_br000480) 2013; 33 Schmidhuber (10.1016/j.neunet.2014.09.003_br003470) 2006 Sun (10.1016/j.neunet.2014.09.003_br003815) 1993 Boltzmann (10.1016/j.neunet.2014.09.003_br000450) 1909 Soloway (10.1016/j.neunet.2014.09.003_br003735) 1986; 29 Hinton (10.1016/j.neunet.2014.09.003_br001545) 2002; 14 Collobert (10.1016/j.neunet.2014.09.003_br000690) 2008 Ranzato (10.1016/j.neunet.2014.09.003_br003105) 2007 Lee (10.1016/j.neunet.2014.09.003_br002195) 2007 Levin (10.1016/j.neunet.2014.09.003_br002265) 1973; 14 10.1016/j.neunet.2014.09.003_br003590 10.1016/j.neunet.2014.09.003_br002495 Saito (10.1016/j.neunet.2014.09.003_br003280) 1997; 9 Baldi (10.1016/j.neunet.2014.09.003_br000160) 1999; 15 10.1016/j.neunet.2014.09.003_br001165 Battiti (10.1016/j.neunet.2014.09.003_br000245) 1992; 4 Speelpenning (10.1016/j.neunet.2014.09.003_br003745) 1980 Dickmanns (10.1016/j.neunet.2014.09.003_br000840) 1987 Maex (10.1016/j.neunet.2014.09.003_br002450) 1996; 75 Miller (10.1016/j.neunet.2014.09.003_br002565) 1994; 14 Carter (10.1016/j.neunet.2014.09.003_br000560) 1990 Mitchell (10.1016/j.neunet.2014.09.003_br002610) 1997 Pasemann (10.1016/j.neunet.2014.09.003_br002950) 1999 DeJong (10.1016/j.neunet.2014.09.003_br000785) 1986; 1 Ciresan (10.1016/j.neunet.2014.09.003_br000660) 2013 Jin (10.1016/j.neunet.2014.09.003_br001825) 2010; 12 Schaul (10.1016/j.neunet.2014.09.003_br003355) 2010; 6 Martens (10.1016/j.neunet.2014.09.003_br002490) 2010 Neal (10.1016/j.neunet.2014.09.003_br002760) 2006; Vol. 3944 Lindstädt (10.1016/j.neunet.2014.09.003_br002320) 1993 10.1016/j.neunet.2014.09.003_br003580 Bohte (10.1016/j.neunet.2014.09.003_br000445) 2002; 48 10.1016/j.neunet.2014.09.003_br001155 Baldi (10.1016/j.neunet.2014.09.003_br000150) 1995; 6 Becker (10.1016/j.neunet.2014.09.003_br000290) 1989 Werbos (10.1016/j.neunet.2014.09.003_br004160) 1992 Hinton (10.1016/j.neunet.2014.09.003_br001550) 1995; 268 Levin (10.1016/j.neunet.2014.09.003_br002270) 1973; 9 Barlow (10.1016/j.neunet.2014.09.003_br000215) 1989; 1 Farlow (10.1016/j.neunet.2014.09.003_br000980) 1984 Zeng (10.1016/j.neunet.2014.09.003_br004430) 1994; 5 Bengio (10.1016/j.neunet.2014.09.003_br000360) 2007 Desimone (10.1016/j.neunet.2014.09.003_br000805) 1984; 4 Akaike (10.1016/j.neunet.2014.09.003_br000015) 1970; 22 Young (10.1016/j.neunet.2014.09.003_br004395) 2014; 37 10.1016/j.neunet.2014.09.003_br000970 10.1016/j.neunet.2014.09.003_br002910 Gers (10.1016/j.neunet.2014.09.003_br001190) 2002; 3 Wallace (10.1016/j.neunet.2014.09.003_br004055) 1968; 11 Síma (10.1016/j.neunet.2014.09.003_br003680) 2002; 14 Belouchrani (10.1016/j.neunet.2014.09.003_br000340) 1997; 45 Neftci (10.1016/j.neunet.2014.09.003_br002770) 2014; 7 Geman (10.1016/j.neunet.2014.09.003_br001170) 1992; 4 Moore (10.1016/j.neunet.2014.09.003_br002665) 1993; 13 Jordan (10.1016/j.neunet.2014.09.003_br001860) 2001 Koikkalainen (10.1016/j.neunet.2014.09.003_br002005) 1990 Ivakhnenko (10.1016/j.neunet.2014.09.003_br001755) 1995; 5 Wierstra (10.1016/j.neunet.2014.09.003_br004235) 2010; 18 Oh (10.1016/j.neunet.2014.09.003_br002835) 2004; 37 Schmidhuber (10.1016/j.neunet.2014.09.003_br003520) 1992 LeCun (10.1016/j.neunet.2014.09.003_br002175) 1990 Stanley (10.1016/j.neunet.2014.09.003_br003765) 2009; 15 Blum (10.1016/j.neunet.2014.09.003_br000420) 1992; 5 Schmidhuber (10.1016/j.neunet.2014.09.003_br003535) 1997; 28 Golub (10.1016/j.neunet.2014.09.003_br001265) 1979; 21 Pineda (10.1016/j.neunet.2014.09.003_br003015) 1987; 19 Ueda (10.1016/j.neunet.2014.09.003_br003965) 2000; 22 O’Connor (10.1016/j.neunet.2014.09.003_br002830) 2013; 7 Jacobs (10.1016/j.neunet.2014.09.003_br001790) 1988; 1 Lusci (10.1016/j.neunet.2014.09.003_br002385) 2013; 53 10.1016/j.neunet.2014.09.003_br000950 Serrano-Gotarredona (10.1016/j.neunet.2014.09.003_br003610) 2009; 20 McCallum (10.1016/j.neunet.2014.09.003_br002520) 1996 Steil (10.1016/j.neunet.2014.09.003_br003780) 2007; 20 Guo (10.1016/j.neunet.2014.09.003_br001415) 2014 Behnke (10.1016/j.neunet.2014.09.003_br000320) 2005; 14 Falconbridge (10.1016/j.neunet.2014.09.003_br000965) 2006; 18 Holland (10.1016/j.neunet.2014.09.003_br001645) 1975 Deville (10.1016/j.neunet.2014.09.003_br000820) 1994; 19 Post (10.1016/j.neunet.2014.09.003_br003050) 1936; 1 10.1016/j.neunet.2014.09.003_br000940 10.1016/j.neunet.2014.09.003_br000945 Tsodyks (10.1016/j.neunet.2014.09.003_br003945) 1996; 6 Jutten (10.1016/j.neunet.2014.09.003_br001880) 1991; 24 Werbos (10.1016/j.neunet.2014.09.003_br004130) 1974 Kordík (10.1016/j.neunet.2014.09.003_br002035) 2003; 2 Schmidhuber (10.1016/j.neunet.2014.09.003_br003455) 2002 Blumer (10.1016/j.neunet.2014.09.003_br000425) 1987; 24 Goldberg (10.1016/j.neunet.2014.09.003_br001255) 1989 Tesauro (10.1016/j.neunet.2014.09.003_br003900) 1994; 6 Jodogne (10.1016/j.neunet.2014.09.003_br001830) 2007; 28 de Souto (10.1016/j.neunet.2014.09.003_br000810) 1999 Mahadevan (10.1016/j.neunet.2014.09.003_br002455) 1996; 22 Ostrovskii (10.1016/j.neunet.2014.09.003_br002885) 1971; 13 10.1016/j.neunet.2014.09.003_br004065 Gers (10.1016/j.neunet.2014.09.003_br001180) 2001; 12 Hadsell (10.1016/j.neunet.2014.09.003_br001430) 2006 Cliff (10.1016/j.neunet.2014.09.003_br000665) 1993 Bradtke (10.1016/j.neunet.2014.09.003_br000470) 1996 Sun (10.1016/j.neunet.2014.09.003_br003820) 2013 Wu (10.1016/j.neunet.2014.09.003_br004345) 2008; 21 Bodenhausen (10.1016/j.neunet.2014.09.003_br000440) 1991 Oudeyer (10.1016/j.neunet.2014.09.003_br002905) 2013 Grünwald (10.1016/j.neunet.2014.09.003_br001405) 2005 Chalup (10.1016/j.neunet.2014.09.003_br000585) 2003; 16 Grossberg (10.1016/j.neunet.2014.09.003_br001395) 1976; 23 Gallant (10.1016/j.neunet.2014.09.003_br001145) 1988; 31 Elman (10.1016/j.neunet.2014.09.003_br000920) 1990; 14 Peters (10.1016/j.neunet.2014.09.003_br003005) 200 |
| References_xml | – reference: Brueckner, R., & Schulter, B. (2014). Social signal classification using deep BLSTM recurrent neural networks. In – start-page: 318 year: 1986 end-page: 362 ident: br003260 article-title: Learning internal representations by error propagation publication-title: Parallel distributed processing, vol. 1 – reference: Masci, J., Giusti, A., Ciresan, D. C., Fricout, G., & Schmidhuber, J. (2013). A fast learning algorithm for image segmentation with max-pooling convolutional networks. In – start-page: 473 year: 1976 end-page: 479 ident: br001725 article-title: Sequential GMDH algorithm and its application to river flow prediction publication-title: IEEE Transactions on Systems, Man and Cybernetics – start-page: 302 year: 2012 end-page: 307 ident: br001730 article-title: Mode detection in online handwritten documents using BLSTM neural networks publication-title: Frontiers in handwriting recognition (ICFHR), 2012 international conference on – reference: Korkin, M., de Garis, H., Gers, F., & Hemmi, H. (1997). CBM (CAM-Brain Machine)—a hardware tool which evolves a neural net module in a fraction of a second and runs a million neuron artificial brain in real time. – start-page: 151 year: 1986 end-page: 193 ident: br003265 article-title: Feature discovery by competitive learning publication-title: Parallel distributed processing – reference: (pp. 253–258). – reference: [cs.NE]. – start-page: 216 year: 2002 end-page: 228 ident: br003455 article-title: The speed prior: a new simplicity measure yielding near-optimal computable predictions publication-title: Proceedings of the 15th annual conference on computational learning theory – volume: 8 start-page: 895 year: 1996 end-page: 938 ident: br002865 article-title: Biologically plausible error-driven learning using local activation differences: The generalized recirculation algorithm publication-title: Neural Computation – volume: 4 start-page: 448 year: 1992 end-page: 472 ident: br002415 article-title: A practical Bayesian framework for backprop networks publication-title: Neural Computation – reference: Sermanet, P., & LeCun, Y. (2011). Traffic sign recognition with multi-scale convolutional networks. In – reference: Pollack, J. B. (1988). Implications of recursive distributed representations. In – volume: 18 start-page: 602 year: 2005 end-page: 610 ident: br001360 article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures publication-title: Neural Networks – volume: 54 start-page: 211 year: 2004 end-page: 254 ident: br003460 article-title: Optimal ordered problem solver publication-title: Machine Learning – reference: D’Ambrosio, D. B., & Stanley, K. O. (2007). A novel generative encoding for exploiting neural network sensor and output geometry. In – reference: Ciresan, D. C., Meier, U., Masci, J., & Schmidhuber, J. (2011). A committee of neural networks for traffic sign classification. In – volume: 10 start-page: 857 year: 1997 end-page: 873 ident: br003450 article-title: Discovering neural nets with low Kolmogorov complexity and high generalization capability publication-title: Neural Networks – start-page: 265 year: 2006 end-page: 295 ident: br002765 article-title: High dimensional classification with Bayesian neural networks and Dirichlet diffusion trees publication-title: Feature extraction: foundations and applications – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: br002170 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of the IEEE – start-page: 847 year: 1992 end-page: 854 ident: br002655 article-title: The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems publication-title: Advances in neural information processing systems (NIPS), vol. 4 – volume: 2 start-page: 135 year: 1991 end-page: 141 ident: br003505 article-title: Learning to generate artificial fovea trajectories for target detection publication-title: International Journal of Neural Systems – reference: Bryson, A. E. (1961). A gradient method for optimizing multi-stage allocation processes. In – start-page: 282 year: 1986 end-page: 317 ident: br001575 article-title: Learning and relearning in Boltzmann machines publication-title: Parallel distributed processing, vol. 1 – volume: 25 start-page: 109 year: 1997 end-page: 143 ident: br004125 article-title: Learning recognition and segmentation using the cresceptron publication-title: International Journal of Computer Vision – start-page: 667 year: 1991 end-page: 673 ident: br004210 article-title: Evolving neural network controllers for unstable systems publication-title: International joint conference on neural networks, vol. 2 – volume: 10 start-page: 821 year: 1998 end-page: 835 ident: br003940 article-title: Neural networks with dynamic synapses publication-title: Neural Computation – reference: Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., & Bengio, Y. (2013). Maxout networks. In – volume: 60 start-page: 1126 year: 2008 end-page: 1141 ident: br002080 article-title: Matching categorical object representations in inferior temporal cortex of man and monkey publication-title: Neuron – year: 1970 ident: br004025 article-title: Applications of pattern recognition technology publication-title: Adaptive, learning, and pattern recognition systems – year: 2006 ident: br000400 article-title: Pattern recognition and machine learning – start-page: 429 year: 1989 end-page: 438 ident: br003380 article-title: Accelerated learning in back-propagation nets publication-title: Connectionism in perspective – volume: 41 start-page: 757 year: 1996 end-page: 769 ident: br000085 article-title: Mixing floating- and fixed-point formats for neural network learning on neuroprocessors publication-title: Microprocessing and Microprogramming – start-page: 6645 year: 2013 end-page: 6649 ident: br001355 article-title: Speech recognition with deep recurrent neural networks publication-title: IEEE International conference on acoustics, speech and signal processing – year: 2013 ident: br000660 article-title: Multi-column deep neural networks for offline handwritten Chinese character classification. Technical report – volume: 50 start-page: 105 year: 2003 end-page: 123 ident: br001720 article-title: Empirical evaluation of the improved Rprop learning algorithm publication-title: Neurocomputing – volume: 58 start-page: 345 year: 1936 end-page: 363 ident: br000615 article-title: An unsolvable problem of elementary number theory publication-title: The American Journal of Mathematics – volume: 18 start-page: 415 year: 2006 end-page: 429 ident: br000965 article-title: A simple Hebbian/anti-Hebbian network learns the sparse, independent components of natural images publication-title: Neural Computation – reference: Giusti, A., Ciresan, D. C., Masci, J., Gambardella, L. M., & Schmidhuber, J. (2013). Fast image scanning with deep max-pooling convolutional neural networks. In – volume: 16 start-page: 683 year: 2003 end-page: 689 ident: br000990 article-title: Simple and conditioned adaptive behavior from Kalman filter trained recurrent networks publication-title: Neural Networks – year: 1968 ident: br002690 article-title: Data analysis, including statistics publication-title: Handbook of social psychology, vol. 2 – volume: 8 start-page: 549 year: 1995 end-page: 562 ident: br001910 article-title: Generalizations of principal component analysis, optimization problems, and neural networks publication-title: Neural Networks – volume: Vol. 5212 start-page: 234 year: 2008 end-page: 249 ident: br003255 article-title: State-dependent exploration for policy gradient methods publication-title: European conference on machine learning (ECML) and principles and practice of knowledge discovery in databases 2008, part II – reference: Fernandez, R., Rendel, A., Ramabhadran, B., & Hoory, R. (2014). Prosody contour prediction with long short-term memory, bi-directional, deep recurrent neural networks. In – reference: Schaul, T., Zhang, S., & LeCun, Y. (2013). No more pesky learning rates. In – start-page: 200 year: 1994 end-page: 207 ident: br004340 article-title: Bayesian backpropagation over i-o functions rather than weights publication-title: Advances in neural information processing systems (NIPS), vol. 6 – volume: 310 start-page: 863 year: 2005 end-page: 866 ident: br001685 article-title: Fast readout of object identity from macaque inferior temporal cortex publication-title: Science – start-page: 2729 year: 2011 end-page: 2736 ident: br003875 article-title: Learning invariance through imitation publication-title: Conference on computer vision and pattern recognition – year: 1993 ident: br002305 article-title: Reinforcement learning for robots using neural networks – reference: (pp. 369–376). – year: 1991 ident: br001810 article-title: Delayed reinforcement learning with multiple time scale hierarchical backpropagated adaptive critics publication-title: Neural networks for control – volume: 1 start-page: 1 year: 1965 end-page: 11 ident: br002015 article-title: Three approaches to the quantitative definition of information publication-title: Problems of Information Transmission – start-page: 534 year: 1996 end-page: 542 ident: br004215 article-title: Solving POMDPs with Levin search and EIRA publication-title: Machine learning: proceedings of the thirteenth international conference – reference: . CD edition. – volume: 6 start-page: 271 year: 1996 end-page: 280 ident: br003945 article-title: Population dynamics and theta rhythm phase precession of hippocampal place cell firing: a spiking neuron model publication-title: Hippocampus – year: 1992 ident: br002065 article-title: Genetic programming—on the programming of computers by means of natural selection – volume: 13 start-page: 1331 year: 2002 end-page: 1341 ident: br003115 article-title: The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data publication-title: IEEE Transactions on Neural Networks – volume: Vol. 1502 year: 1998 ident: br001900 article-title: Computation in recurrent neural networks: from counters to iterated function systems publication-title: Advanced topics in artificial intelligence, Proceedings of the 11th Australian joint conference on artificial intelligence – year: 1997 ident: br002675 article-title: Symbiotic evolution of neural networks in sequential decision tasks – volume: 5 start-page: 552 year: 1995 end-page: 563 ident: br002355 article-title: Shape representation in the inferior temporal cortex of monkeys publication-title: Current Biology – volume: 9 start-page: 159 year: 2001 end-page: 195 ident: br001445 article-title: Completely derandomized self-adaptation in evolution strategies publication-title: Evolutionary Computation – volume: 29 start-page: 850 year: 1986 end-page: 858 ident: br003735 article-title: Learning to program publication-title: Communications of the ACM – volume: 5 start-page: 527 year: 1995 end-page: 535 ident: br001755 article-title: The review of problems solvable by algorithms of the group method of data handling (GMDH) publication-title: Pattern Recognition and Image Analysis/Raspoznavaniye Obrazov I Analiz Izobrazhenii – reference: Shan, H., & Cottrell, G. (2014). Efficient visual coding: From retina to V2. In – volume: 36 start-page: 287 year: 1994 end-page: 314 ident: br000695 article-title: Independent component analysis—a new concept? publication-title: Signal Processing – year: 2013 ident: br003490 article-title: : training an increasingly general problem solver by continually searching for the simplest still unsolvable problem publication-title: Frontiers in Psychology – reference: Yin, F., Wang, Q.-F., Zhang, X.-Y., & Liu, C.-L. (2013). ICDAR 2013 Chinese handwriting recognition competition. In – reference: Behnke, S. (2002). Learning face localization using hierarchical recurrent networks. In – reference: (pp. 471–482). – year: 1988 ident: br000955 article-title: An empirical study of learning speed in back-propagation networks. Technical report CMU-CS-88-162 – volume: IT-24 start-page: 422 year: 1978 end-page: 432 ident: br003730 article-title: Complexity-based induction systems publication-title: IEEE Transactions on Information Theory – year: 1994 ident: br001785 article-title: Genetic L-system programming publication-title: Parallel problem solving from nature III – start-page: 325 year: 2012 end-page: 355 ident: br004185 article-title: Evolutionary computation for reinforcement learning publication-title: Reinforcement learning – year: 1980 ident: br003745 article-title: Compiling fast partial derivatives of functions given by algorithms – start-page: 968 year: 1999 end-page: 974 ident: br000130 article-title: Gradient descent for general reinforcement learning publication-title: Advances in neural information processing systems, vol. 12 (NIPS) – volume: 6 start-page: 1155 year: 1994 end-page: 1173 ident: br002470 article-title: First-order recurrent neural networks and deterministic finite state automata publication-title: Neural Computation – year: 1994 ident: br003180 article-title: Continual learning in reinforcement environments – volume: 147 start-page: 5 year: 2003 end-page: 34 ident: br002440 article-title: On the undecidability of probabilistic planning and related stochastic optimization problems publication-title: Artificial Intelligence – volume: 13 start-page: 382 year: 1971 end-page: 384 ident: br002885 article-title: Über die Berechnung von Ableitungen publication-title: Wissenschaftliche Zeitschrift der Technischen Hochschule für Chemie – volume: 6 start-page: 842 year: 1994 end-page: 850 ident: br003675 article-title: Loading deep networks is hard publication-title: Neural Computation – volume: 25 start-page: 805 year: 2013 end-page: 831 ident: br000610 article-title: Enhanced gradient for training restricted Boltzmann machines publication-title: Neural Computation – start-page: 11 year: 1993 end-page: 18 ident: br001585 article-title: Keeping neural networks simple publication-title: Proceedings of the international conference on artificial neural networks, Amsterdam – volume: 36 start-page: 111 year: 1974 end-page: 147 ident: br003795 article-title: Cross-validatory choice and assessment of statistical predictions publication-title: Journal of the Royal Statistical Society B – start-page: 271 year: 1993 end-page: 278 ident: br000750 article-title: Feudal reinforcement learning publication-title: Advances in neural information processing systems (NIPS), vol. 5 – volume: 160 start-page: 106 year: 1962 end-page: 154 ident: br001670 article-title: Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex publication-title: Journal of Physiology (London) – start-page: 580 year: 1993 end-page: 587 ident: br000790 article-title: Non-linear dimensionality reduction publication-title: Advances in neural information processing systems (NIPS), vol. 5 – reference: (pp. 1764–1772). – volume: 7 year: 2013 ident: br002380 article-title: An intrinsic value system for developing multiple invariant representations with incremental slowness learning publication-title: Frontiers in Neurorobotics – year: 1985 ident: br000715 article-title: A representation for the adaptive generation of simple sequential programs publication-title: Proceedings of an international conference on genetic algorithms and their applications, Carnegie-Mellon University – start-page: 343 year: 1991 end-page: 347 ident: br003170 article-title: Incremental development of complex behaviors through automatic construction of sensory-motor hierarchies publication-title: Machine learning: proceedings of the eighth international workshop – start-page: 1057 year: 1999 end-page: 1063 ident: br003845 article-title: Policy gradient methods for reinforcement learning with function approximation publication-title: Advances in neural information processing systems (NIPS), vol. 12 – start-page: 115 year: 1987 end-page: 121 ident: br000220 article-title: Learning receptive fields publication-title: Proceedings of the IEEE 1st annual conference on neural networks, vol. IV – volume: 4 start-page: 243 year: 1992 end-page: 248 ident: br003425 article-title: A fixed size storage publication-title: Neural Computation – volume: Vol. 1524 start-page: 373 year: 1996 end-page: 423 ident: br002790 article-title: How to train neural networks publication-title: Neural networks: tricks of the trade – start-page: 190 year: 1994 end-page: 197 ident: br002810 article-title: How to evolve autonomous robots: Different approaches in evolutionary robotics publication-title: Fourth international workshop on the synthesis and simulation of living systems (artificial life IV) – start-page: 364 year: 1971 end-page: 378 ident: br001750 article-title: Polynomial theory of complex systems publication-title: IEEE Transactions on Systems, Man and Cybernetics – reference: Griewank, A. (2012). Documenta Mathematica—Extra Volume ISMP, (pp. 389–400). – year: 2003 ident: br000005 article-title: Policy-gradient algorithms for partially observable Markov decision processes – reference: Raiko, T., Valpola, H., & LeCun, Y. (2012). Deep learning made easier by linear transformations in perceptrons. In – volume: 40 start-page: 185 year: 1989 end-page: 234 ident: br001540 article-title: Connectionist learning procedures publication-title: Artificial Intelligence – volume: 16 start-page: 955 year: 2003 end-page: 972 ident: br000585 article-title: Incremental training of first order recurrent neural networks to predict a context-sensitive language publication-title: Neural Networks – volume: 23 start-page: 551 year: 2010 end-page: 559 ident: br003595 article-title: Parameter-exploring policy gradients publication-title: Neural Networks – volume: PP start-page: 1 year: 2014 end-page: 8 ident: br002775 article-title: Minitaur, an event-driven FPGA-based spiking network accelerator publication-title: IEEE Transactions on Very Large Scale Integration (VLSI) Systems – reference: Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., & Tzeng, E., et al. (2013). DeCAF: a deep convolutional activation feature for generic visual recognition. ArXiv Preprint – volume: 22 start-page: 511 year: 2010 end-page: 538 ident: br003950 article-title: Convolutional networks can learn to generate affinity graphs for image segmentation publication-title: Neural Computation – reference: Sak, H., Vinyals, O., Heigold, G., Senior, A., McDermott, E., & Monga, R., et al. (2014). Sequence discriminative distributed training of long short-term memory recurrent neural networks. In – reference: Kimura, H., Miyazaki, K., & Kobayashi, S. (1997). Reinforcement learning in POMDPs with function approximation. In – start-page: 967 year: 1991 end-page: 972 ident: br003415 article-title: Learning to generate sub-goals for action sequences publication-title: Artificial neural networks – reference: Ballard, D. H. (1987). Modular learning in neural networks. In – volume: 1 start-page: 425 year: 1989 end-page: 464 ident: br004175 article-title: Learning in artificial neural networks: A statistical perspective publication-title: Neural Computation – volume: 33 start-page: 9565 year: 2013 end-page: 9575 ident: br000480 article-title: Matching recall and storage in sequence learning with spiking neural networks publication-title: The Journal of Neuroscience – reference: Bayer, J., Wierstra, D., Togelius, J., & Schmidhuber, J. (2009). Evolving memory cell structures for sequence learning. In – volume: Vol. 43 year: 1990 ident: br001475 publication-title: Generalized additive models – year: 1969 ident: br002600 article-title: Perceptrons – volume: 42 start-page: 265 year: 1990 end-page: 272 ident: br001450 article-title: A stochastic version of the delta rule publication-title: Physica D: Nonlinear Phenomena – volume: 287 start-page: 239 year: 2002 end-page: 249 ident: br002225 article-title: Neural circuits for pattern recognition with small total wire length publication-title: Theoretical Computer Science – volume: 36 year: 1980 ident: br002915 article-title: On associative memory publication-title: Biological Cybernetics – start-page: 563 year: 1996 end-page: 569 ident: br003555 article-title: Tempering backpropagation networks: not all weights are created equal publication-title: Advances in neural information processing systems (NIPS), vol. 8 – volume: 10 start-page: 99 year: 2002 end-page: 127 ident: br003770 article-title: Evolving neural networks through augmenting topologies publication-title: Evolutionary Computation – volume: 11 start-page: 1 year: 2003 end-page: 18 ident: br001440 article-title: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES) publication-title: Evolutionary Computation – volume: 7 year: 2013 ident: br002830 article-title: Real-time classification and sensor fusion with a spiking deep belief network publication-title: Frontiers in Neuroscience – year: 1999 ident: br003970 article-title: Structure-adaptable digital neural networks – reference: Dorffner, G. (1996). Neural networks for time series processing. In – year: 2010 ident: br001160 article-title: Stable adaptive neural network control – volume: 7 start-page: 115 year: 1943 end-page: 133 ident: br002525 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bulletin of Mathematical Biophysics – volume: 22 start-page: 1744 year: 2011 end-page: 1756 ident: br000595 article-title: Learning speaker-specific characteristics with a deep neural architecture publication-title: IEEE Transactions on Neural Networks – volume: 7 start-page: 30 year: 1995 end-page: 42 ident: br002280 article-title: Control of nonlinear dynamical systems using neural networks. II. Observability, identification, and control publication-title: IEEE Transactions on Neural Networks – start-page: 1 year: 2013 end-page: 9 ident: br004370 article-title: Hierarchical modular optimization of convolutional networks achieves representations similar to macaque IT and human ventral stream publication-title: Advances in neural information processing systems (NIPS) – start-page: 873 year: 2007 end-page: 880 ident: br002200 article-title: Sparse deep belief net model for visual area V2 publication-title: Advances in neural information processing systems (NIPS), vol. 7 – volume: 9 start-page: 937 year: 2008 end-page: 965 ident: br001285 article-title: Accelerated neural evolution through cooperatively coevolved synapses publication-title: Journal of Machine Learning Research – start-page: 1 year: 2012 end-page: 8 ident: br003190 article-title: A unified approach to evolving plasticity and neural geometry publication-title: International joint conference on neural networks – volume: 1 start-page: 44 year: 1990 end-page: 57 ident: br002045 article-title: Unsupervised learning in noise publication-title: IEEE Transactions on Neural Networks – start-page: 293 year: 1997 end-page: 309 ident: br003530 article-title: Reinforcement learning with self-modifying policies publication-title: Learning to learn – volume: 141 start-page: 245 year: 1994 end-page: 250 ident: br003985 article-title: Original approach for the localisation of objects in images publication-title: IEE Proceedings Vision, Image, and Signal Processing – start-page: 1786 year: 1993 end-page: 1793 ident: br004105 article-title: Results of the time series prediction competition at the Santa Fe Institute publication-title: Neural networks, 1993., IEEE international conference on – start-page: 3084 year: 2013 end-page: 3092 ident: br000115 article-title: Adaptive dropout for training deep neural networks publication-title: Advances in neural information processing systems (NIPS) – reference: (pp. 2758–2763). – volume: 36 start-page: 81 year: 2000 end-page: 91 ident: br003800 article-title: When pyramidal neurons lock, when they respond chaotically, and when they like to synchronize publication-title: Neuroscience Research – year: 1986 ident: br001840 article-title: Serial order: a parallel distributed processing approach. Technical report ICS report 8604 – start-page: 241 year: 2003 end-page: 250 ident: br002980 article-title: Kalman filters improve LSTM network performance in problems unsolvable by traditional recurrent nets publication-title: Neural Networks – start-page: 387 year: 2002 end-page: 397 ident: br003615 article-title: On the role of object-specific features for real world object recognition in biological vision publication-title: Biologically motivated computer vision – volume: 24 start-page: 2248 year: 2012 end-page: 2261 ident: br004355 article-title: The limits of feedforward vision: Recurrent processing promotes robust object recognition when objects are degraded publication-title: Journal of Cognitive Neuroscience – reference: Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701. – start-page: 500 year: 1991 end-page: 506 ident: br003420 article-title: Reinforcement learning in Markovian and non-Markovian environments publication-title: Advances in neural information processing systems, vol. 3 (NIPS 3) – volume: 46 start-page: 2131 year: 1992 end-page: 2138 ident: br003565 article-title: Learning by maximization the information transfer through nonlinear noisy neurons and “noise breakdown” publication-title: Physical Review A – start-page: 467 year: 1684 end-page: 473 ident: br002240 article-title: Nova methodus pro maximis et minimis, itemque tangentibus, quae nec fractas, nec irrationales quantitates moratur, et singulare pro illis calculi genus publication-title: Acta Eruditorum – volume: 14 start-page: 671 year: 2006 end-page: 683 ident: br004320 article-title: A GMDH neural network-based approach to robust fault diagnosis: Application to the DAMADICS benchmark problem publication-title: Control Engineering Practice – start-page: 34 year: 1993 end-page: 41 ident: br003020 article-title: Holographic recurrent networks publication-title: Advances in neural information processing systems (NIPS), vol. 5 – volume: 1 start-page: 295 year: 1988 end-page: 307 ident: br001790 article-title: Increased rates of convergence through learning rate adaptation publication-title: Neural Networks – year: 1965 ident: br001760 article-title: Cybernetic predicting devices – volume: 6 year: 2010 ident: br002230 article-title: Reinforcement learning on slow features of high-dimensional input streams publication-title: PLoS Computational Biology – volume: Vol. 2766 year: 2003 ident: br000315 publication-title: Hierarchical neural networks for image interpretation – volume: XXVII start-page: 379 year: 1948 end-page: 423 ident: br003640 article-title: A mathematical theory of communication (parts I and II) publication-title: Bell System Technical Journal – start-page: 689 year: 2011 end-page: 690 ident: br003045 article-title: Sum–product networks: A new deep architecture publication-title: IEEE International conference on computer vision workshops – volume: 24 start-page: 647 year: 1970 end-page: 656 ident: br003635 article-title: Conditioning of quasi-Newton methods for function minimization publication-title: Mathematics of Computation – volume: 64 start-page: 152 year: 2009 end-page: 168 ident: br001515 article-title: Neuroevolution strategies for episodic reinforcement learning publication-title: Journal of Algorithms – year: 2003 ident: br001270 article-title: Robust nonlinear control through neuroevolution – year: 1993 ident: br003445 article-title: Netzwerkarchitekturen, Zielfunktionen und Kettenregel. (Network architectures, objective functions, and chain rule.) – start-page: 1096 year: 2008 end-page: 1103 ident: br004030 article-title: Extracting and composing robust features with denoising autoencoders publication-title: Proceedings of the 25th international conference on Machine learning – reference: Chellapilla, K., Puri, S., & Simard, P. (2006). High performance convolutional neural networks for document processing. In – volume: 8 start-page: 38 year: 2014 ident: br003140 article-title: Stochastic variational learning in recurrent spiking networks publication-title: Frontiers in Computational Neuroscience – year: 1977 ident: br001105 article-title: Syntactic pattern recognition and applications – reference: (pp. 1096–1104). – volume: 21 start-page: 215 year: 1979 end-page: 224 ident: br001265 article-title: Generalized cross-validation as a method for choosing a good ridge parameter publication-title: Technometrics – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: br001570 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – year: 1996 ident: br001400 article-title: A comparison between cellular encoding and direct encoding for genetic neural networks. NeuroCOLT Technical report NC-TR-96-048, ESPRIT Working Group in Neural and Computational Learning, NeuroCOLT 8556 – reference: Behnke, S. (1999). Hebbian learning and competition in the neural abstraction pyramid. In – year: 1993 ident: br002185 article-title: Automatic learning rate maximization by on-line estimation of the Hessian’s eigenvectors publication-title: Advances in neural information processing systems, vol. 5 (NIPS 1992) – reference: (pp. 524–531). – year: 1996 ident: br000380 article-title: Neuro-dynamic programming – volume: 5 start-page: 140 year: 1993 end-page: 153 ident: br000060 article-title: Statistical theory of learning curves under entropic loss criterion publication-title: Neural Computation – reference: -maximization: An unsupervised learning procedure for discovering regularities. In Denker, J.S., (Ed.), – volume: 4 start-page: 8 year: 2013 ident: br003245 article-title: Mitosis detection in breast cancer histological images—an ICPR 2012 contest publication-title: Journal of Pathology Informatics – reference: , vol. 1 (pp. 209–216). – reference: Almeida, L. B. (1987). A learning rule for asynchronous perceptrons with feedback in a combinatorial environment. In – volume: 31 start-page: 377 year: 1979 end-page: 403 ident: br000720 article-title: Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation publication-title: Numerische Mathematik – start-page: 253 year: 2004 end-page: 262 ident: br000745 article-title: Locality-sensitive hashing scheme based on publication-title: Proceedings of the 20th annual symposium on computational geometry – volume: 61 start-page: 241 year: 1989 end-page: 254 ident: br003200 article-title: Self-organizing semantic maps publication-title: Biological Cybernetics – volume: 10 start-page: 1659 year: 1997 end-page: 1671 ident: br002400 article-title: Networks of spiking neurons: the third generation of neural network models publication-title: Neural Networks – volume: 24 start-page: 677 year: 2014 end-page: 690 ident: br001635 article-title: Emergence of complex computational structures from chaotic neural networks through reward-modulated Hebbian learning publication-title: Cerebral Cortex – year: 2005 ident: br001695 article-title: Universal artificial intelligence: sequential decisions based on algorithmic probability – year: 2001 ident: br002140 article-title: Estimation of distribution algorithms: a new tool for evolutionary computation – volume: 14 start-page: 1080 year: 1986 end-page: 1100 ident: br003195 article-title: Stochastic complexity and modeling publication-title: The Annals of Statistics – volume: 6 start-page: 792 year: 1992 end-page: 794 ident: br001465 article-title: Improving model accuracy using optimal linear combinations of trained neural networks publication-title: IEEE Transactions on Neural Networks – volume: 18 start-page: 383 year: 1973 end-page: 385 ident: br000890 article-title: The computational solution of optimal control problems with time lag publication-title: IEEE Transactions on Automatic Control – volume: 6 start-page: 1212 year: 1995 end-page: 1228 ident: br002965 article-title: Gradient calculations for dynamic recurrent neural networks: A survey publication-title: IEEE Transactions on Neural Networks – volume: 5 start-page: 30 year: 1962 end-page: 45 ident: br000885 article-title: The numerical solution of variational problems publication-title: Journal of Mathematical Analysis and Applications – reference: Friedman, J., Hastie, T., & Tibshirani, R. (2001). – volume: 6 start-page: 163 year: 1963 end-page: 168 ident: br001050 article-title: A rapidly convergent descent method for minimization publication-title: The Computer Journal – volume: 16 start-page: 146 year: 1976 end-page: 160 ident: br002330 article-title: Taylor expansion of the accumulated rounding error publication-title: BIT Numerical Mathematics – start-page: 873 year: 2009 end-page: 880 ident: br003095 article-title: Large-scale deep unsupervised learning using graphics processors publication-title: Proceedings of the 26th annual International conference on machine learning – volume: 3 start-page: 14 year: 1992 end-page: 23 ident: br002785 article-title: Maximally fault tolerant neural networks publication-title: IEEE Transactions on Neural Networks – volume: 12 start-page: 1333 year: 2001 end-page: 1340 ident: br001180 article-title: LSTM recurrent networks learn simple context free and context sensitive languages publication-title: IEEE Transactions on Neural Networks – start-page: 317 year: 2005 end-page: 328 ident: br003145 article-title: Neural fitted Q iteration—first experiences with a data efficient neural reinforcement learning method publication-title: Proc. ECML-2005 – volume: 9 start-page: 41 year: 1996 end-page: 52 ident: br002855 article-title: Extraction of rules from discrete-time recurrent neural networks publication-title: Neural Networks – reference: (pp. 1237–1242). – year: 1993 ident: br003815 article-title: The neural network pushdown automaton: Model, stack and learning simulations. Technical report CS-TR-3118 – reference: Menache, I., Mannor, S., & Shimkin, N. (2002). – reference: Egorova, A., Gloye, A., Göktekin, C., Liers, A., Luft, M., & Rojas, R., et al. (2004). FU-fighters small size 2004, team description. In – reference: Wierstra, D., Schaul, T., Peters, J., & Schmidhuber, J. (2008). Natural evolution strategies. In – volume: 2 start-page: 219 year: 1994 end-page: 246 ident: br004365 article-title: Sequential behavior and learning in evolved dynamical neural networks publication-title: Adaptive Behavior – reference: Hochreiter, S., & Obermayer, K. (2005). Sequence classification for protein analysis. In – volume: 194 start-page: 431 year: 1976 end-page: 445 ident: br004305 article-title: How patterned neural connections can be set up by self-organization publication-title: Proceedings of the Royal Society of London. Series B – start-page: 627 year: 1991 end-page: 634 ident: br002700 article-title: Discovering discrete distributed representations with iterative competitive learning publication-title: Advances in neural information processing systems, vol. 3 – start-page: 22 year: 1996 end-page: 33 ident: br000470 article-title: Linear least-squares algorithms for temporal difference learning publication-title: Machine Learning – volume: 14 start-page: 2709 year: 2002 end-page: 2728 ident: br003680 article-title: Training a single sigmoidal neuron is hard publication-title: Neural Computation – start-page: 177 year: 1989 end-page: 185 ident: br001455 article-title: Comparing biases for minimal network construction with back-propagation publication-title: Advances in neural information processing systems (NIPS), vol. 1 – start-page: 683 year: 2013 end-page: 687 ident: br000495 article-title: High-performance OCR for printed English and Fraktur using LSTM networks publication-title: 12th International conference on document analysis and recognition – volume: 2 start-page: 625 year: 1988 end-page: 640 ident: br003720 article-title: Accelerated learning in layered neural networks publication-title: Complex Systems – start-page: 151 year: 1990 end-page: 158 ident: br003670 article-title: Speeding up back-propagation publication-title: Advanced neural computers – volume: 14 start-page: 1723 year: 2002 end-page: 1738 ident: br003545 article-title: Fast curvature matrix–vector products for second-order gradient descent publication-title: Neural Computation – volume: 2 start-page: 17 year: 1991 end-page: 33 ident: br000285 article-title: Unsupervised learning procedures for neural networks publication-title: International Journal of Neural Systems – year: 2014 ident: br001920 article-title: Neucube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data publication-title: Neural Networks – volume: 11 start-page: 5 year: 1999 end-page: 40 ident: br003220 article-title: A recurrent neural network that learns to count publication-title: Connection Science – reference: Khan, S. H., Bennamoun, M., Sohel, F., & Togneri, R. (2014). Automatic feature learning for robust shadow detection. In – year: 1985 ident: br004075 article-title: Pattern recognition: human and mechanical – year: 2014 ident: br003835 article-title: Sequence to sequence learning with neural networks. Technical report – volume: 40 start-page: 1098 year: 1952 end-page: 1101 ident: br001680 article-title: A method for construction of minimum-redundancy codes publication-title: Proceedings IRE – reference: . ArXiv Preprint – volume: 3 start-page: 115 year: 2002 end-page: 143 ident: br001190 article-title: Learning precise timing with LSTM recurrent networks publication-title: Journal of Machine Learning Research – reference: (pp. 1033–1040). – start-page: 160 year: 2008 end-page: 167 ident: br000690 article-title: A unified architecture for natural language processing: deep neural networks with multitask learning publication-title: Proceedings of the 25th international conference on machine learning – year: 1984 ident: br000980 article-title: Self-organizing methods in modeling: GMDH type algorithms, vol. 54 – volume: 3 start-page: 139 year: 1992 end-page: 164 ident: br001200 article-title: Associative memory in a network of spiking neurons publication-title: Network: Computation in Neural Systems – reference: , Snowbird: Utah. Computational and Biological Learning Society. – reference: Cardoso, J.-F. (1994). On the performance of orthogonal source separation algorithms. In – volume: 5 year: 2011 ident: br001740 article-title: Neuromorphic silicon neuron circuits publication-title: Frontiers in Neuroscience – start-page: 801 year: 2007 end-page: 808 ident: br002195 article-title: Efficient sparse coding algorithms publication-title: Advances in neural information processing systems (NIPS), vol. 19 – reference: Boutilier, C., & Poole, D. (1996). Computing optimal policies for partially observable Markov decision processes using compact representations. In – start-page: 735 year: 2010 end-page: 742 ident: br002490 article-title: Deep learning via Hessian-free optimization publication-title: Proceedings of the 27th international conference on machine learning – volume: 9 start-page: 123 year: 1997 end-page: 141 ident: br003280 article-title: Partial BFGS update and efficient step-length calculation for three-layer neural networks publication-title: Neural Computation – volume: 10 start-page: 251 year: 1998 end-page: 276 ident: br000050 article-title: Natural gradient works efficiently in learning publication-title: Neural Computation – start-page: 909 year: 2006 end-page: 916 ident: br003860 article-title: Cross-entropy optimization for independent process analysis publication-title: Independent component analysis and blind signal separation – volume: 35 start-page: 1915 year: 2013 end-page: 1929 ident: br000975 article-title: Learning hierarchical features for scene labeling publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – year: 2009 ident: br001370 article-title: The intelligent movement machine: an ethological perspective on the primate motor system – volume: 9 start-page: 1385 year: 1996 end-page: 1403 ident: br000755 article-title: Varieties of Helmholtz machine publication-title: Neural Networks – volume: 24 start-page: 1271 year: 2012 end-page: 1296 ident: br003885 article-title: Learning invariance from natural images inspired by observations in the primary visual cortex publication-title: Neural Computation – reference: Le, Q. V., Ranzato, M., Monga, R., Devin, M., Corrado, G., & Chen, K., et al. (2012). Building high-level features using large scale unsupervised learning. In – start-page: 950 year: 1992 end-page: 957 ident: br002090 article-title: A simple weight decay can improve generalization publication-title: Advances in neural information processing systems, vol. 4 – volume: 1 start-page: 412 year: 1989 end-page: 423 ident: br000215 article-title: Finding minimum entropy codes publication-title: Neural Computation – start-page: 29 year: 1989 end-page: 37 ident: br000290 article-title: Improving the convergence of back-propagation learning with second order methods publication-title: Proc. 1988 connectionist models summer school, 1988 – reference: Coates, A., Huval, B., Wang, T., Wu, D. J., Ng, A. Y., & Catanzaro, B. (2013). Deep learning with COTS HPC systems. In – start-page: 337 year: 1993 end-page: 343 ident: br003895 article-title: Learning via task decomposition publication-title: From animals to animats 2: proceedings of the second international conference on simulation of adaptive behavior – volume: 3 start-page: 331 year: 1989 end-page: 342 ident: br000240 article-title: Accelerated backpropagation learning: two optimization methods publication-title: Complex Systems – volume: 40 start-page: 63 year: 1989 end-page: 118 ident: br002605 article-title: Explanation-based learning: A problem solving perspective publication-title: Artificial Intelligence – start-page: 438 year: 2004 end-page: 445 ident: br000140 article-title: Hierarchical reinforcement learning based on subgoal discovery and subpolicy specialization publication-title: Proc. 8th conference on intelligent autonomous systems IAS-8 – year: 1988 ident: br004265 article-title: Toward a theory of reinforcement-learning connectionist systems. Technical report NU-CCS-88-3 – volume: 2 start-page: 164 year: 1944 end-page: 168 ident: br002260 article-title: A method for the solution of certain problems in least squares publication-title: Quarterly of Applied Mathematics – volume: 8 start-page: 373 year: 1995 end-page: 389 ident: br000080 article-title: Survey and critique of techniques for extracting rules from trained artificial neural networks publication-title: Knowledge-Based Systems – volume: 13 start-page: 547 year: 1966 end-page: 569 ident: br000580 article-title: On the length of programs for computing finite binary sequences publication-title: Journal of the ACM – volume: 4 start-page: 2379 year: 1987 end-page: 2394 ident: br001020 article-title: Relations between the statistics of natural images and the response properties of cortical cells publication-title: Journal of the Optical Society of America – reference: Kak, S., Chen, Y., & Wang, L. (2010). Data mining using surface and deep agents based on neural networks. In – year: 1977 ident: br003910 article-title: Solutions of ill-posed problems – year: 1993 ident: br000685 article-title: Neural networks for optimization and signal processing – start-page: 1973 year: 1999 end-page: 1978 ident: br002950 article-title: Evolving structure and function of neurocontrollers publication-title: Proceedings of the congress on evolutionary computation, vol. 3 – year: 1971 ident: br003125 article-title: Evolutionsstrategie—optimierung technischer systeme nach prinzipien der biologischen evolution – reference: Goodfellow, I. J., Courville, A. C., & Bengio, Y. (2012). Large-scale feature learning with spike-and-slab sparse coding. In – volume: 14 start-page: 1413 year: 1973 end-page: 1416 ident: br002265 article-title: On the notion of a random sequence publication-title: Soviet Mathematics Doklady – reference: (pp. 226–233). – start-page: 11 year: 1989 end-page: 19 ident: br003320 article-title: An optimality principle for unsupervised learning publication-title: Advances in neural information processing systems (NIPS), vol. 1 – start-page: 576 year: 1992 end-page: 581 ident: br004120 article-title: Cresceptron: a self-organizing neural network which grows adaptively publication-title: International joint conference on neural networks, vol. 1 – start-page: 73 year: 2011 end-page: 77 ident: br001735 article-title: Keyword spotting in online handwritten documents containing text and non-text using BLSTM neural networks publication-title: Document analysis and recognition (ICDAR), 2011 international conference on – volume: 23 start-page: 187 year: 1976 end-page: 202 ident: br001390 article-title: Adaptive pattern classification and universal recoding, 1: parallel development and coding of neural feature detectors publication-title: Biological Cybernetics – reference: (pp. 1356–1361). – reference: Bluche, T., Louradour, J., Knibbe, M., Moysset, B., Benzeghiba, F., & Kermorvant, C. (2014). The A2iA Arabic handwritten text recognition system at the OpenHaRT2013 evaluation. In – year: 1974 ident: br003585 article-title: Numerische optimierung von computer-modellen – year: 1990 ident: br001875 publication-title: Neural network design and the complexity of learning – reference: (pp. 609–618). – volume: 29 start-page: 82 year: 2012 end-page: 97 ident: br001555 article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups publication-title: IEEE Signal Processing Magazine – volume: 11 start-page: 697 year: 2000 end-page: 709 ident: br000110 article-title: New results on recurrent network training: unifying the algorithms and accelerating convergence publication-title: IEEE Transactions on Neural Networks – reference: Simsek, Ö., & Barto, A. G. (2008). Skill characterization based on betweenness. In – volume: 7 start-page: 687 year: 1996 end-page: 716 ident: br003785 article-title: A single spike suffices: the simplest form of stochastic resonance in model neurons publication-title: Network: Computation in Neural Systems – volume: 1 start-page: 61 year: 1989 end-page: 68 ident: br002840 article-title: Neural networks, principal components, and subspaces publication-title: International Journal of Neural Systems – volume: 35 start-page: 1798 year: 2013 end-page: 1828 ident: br000355 article-title: Representation learning: a review and new perspectives publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 5 start-page: 402 year: 1993 end-page: 418 ident: br000165 article-title: Neural networks for fingerprint recognition publication-title: Neural Computation – year: 1994 ident: br001640 article-title: On the theory of generalization and self-structuring in linearly weighted connectionist networks – volume: 47 year: 2005 ident: br001245 article-title: Reinforcing the driving quality of soccer playing robots by anticipation publication-title: IT—Information Technology – start-page: 593 year: 1989 end-page: 605 ident: br001500 article-title: Theory of the backpropagation neural network publication-title: International joint conference on neural networks – reference: Martens, J., & Sutskever, I. (2011). Learning recurrent neural networks with Hessian-free optimization. In – year: 1996 ident: br002190 article-title: Learning of context-free languages: a survey of the literature. Technical report TR-12-96 – volume: 5 start-page: 565 year: 1994 end-page: 581 ident: br002730 article-title: Non-linear neurons in the low noise limit: a factorial code maximises information transfer publication-title: Networks – volume: 1 start-page: 403 year: 1989 end-page: 412 ident: br003385 article-title: A local learning algorithm for dynamic feedforward and recurrent networks publication-title: Connection Science – start-page: 112 year: 2004 end-page: 119 ident: br000230 article-title: Intrinsically motivated learning of hierarchical collections of skills publication-title: Proceedings of international conference on developmental learning – volume: 6 start-page: 147 year: 1994 end-page: 160 ident: br002960 article-title: Fast exact multiplication by the Hessian publication-title: Neural Computation – reference: (pp. 924–932). – start-page: 769 year: 2009 end-page: 776 ident: br001805 article-title: Natural image denoising with convolutional networks publication-title: Advances in neural information processing systems (NIPS), vol. 21 – year: 2006 ident: br002180 article-title: Off-road obstacle avoidance through end-to-end learning publication-title: Advances in neural information processing systems (NIPS 2005) – volume: 11 start-page: 185 year: 1968 end-page: 194 ident: br004055 article-title: An information theoretic measure for classification publication-title: The Computer Journal – year: 2014 ident: br002300 article-title: Deep learning based imaging data completion for improved brain disease diagnosis publication-title: Proc. MICCAI – reference: Rifai, S., Vincent, P., Muller, X., Glorot, X., & Bengio, Y. (2011). Contractive auto-encoders: Explicit invariance during feature extraction. In – volume: 7 start-page: 1129 year: 1995 end-page: 1159 ident: br000330 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Computation – reference: (pp. 91–96). – start-page: 8609 year: 2013 end-page: 8613 ident: br000730 article-title: Improving deep neural networks for LVCSR using rectified linear units and dropout publication-title: IEEE International conference on acoustics, speech and signal processing – volume: 21 start-page: 858 year: 2010 end-page: 863 ident: br003065 article-title: A convolutional learning system for object classification in 3-D LIDAR data publication-title: IEEE Transactions on Neural Networks – volume: 50 start-page: 461 year: 2003 end-page: 472 ident: br004020 article-title: A training algorithm for classification of high-dimensional data publication-title: Neurocomputing – volume: 2 start-page: 261 year: 1992 end-page: 272 ident: br002115 article-title: Clustering properties of hierarchical self-organizing maps publication-title: Journal of Mathematical Imaging and Vision – volume: 40 start-page: 1063 year: 2003 end-page: 1073 ident: br003620 article-title: Learning in spiking neural networks by reinforcement of stochastic synaptic transmission publication-title: Neuron – reference: (pp. 1497–1504). – volume: 1 start-page: 47 year: 1986 end-page: 80 ident: br002615 article-title: Explanation-based generalization: A unifying view publication-title: Machine Learning – start-page: 1273 year: 2007 ident: br003630 article-title: Recursive ICA publication-title: Advances in neural information processing systems (NIPS), vol. 19 – volume: 27 start-page: 37 year: 2012 end-page: 50 ident: br000155 article-title: Autoencoders, unsupervised learning, and deep architectures publication-title: Journal of Machine Learning Research – volume: 1 start-page: 145 year: 1986 end-page: 176 ident: br000785 article-title: Explanation-based learning: an alternative view publication-title: Machine Learning – volume: 94 start-page: 295 year: 2005 end-page: 313 ident: br000775 article-title: Neurodynamics of biased competition and cooperation for attention: a model with spiking neurons publication-title: Journal of Neurophysiology – reference: (pp. 152–160). – reference: (pp. 427–436). – volume: 24 start-page: 377 year: 1987 end-page: 380 ident: br000425 article-title: Occam’s razor publication-title: Information Processing Letters – volume: Vol. 37 start-page: 65 year: 1996 end-page: 72 ident: br001605 article-title: Bridging long time lags by weight guessing and Long Short-Term Memory publication-title: Spatiotemporal models in biological and artificial systems – volume: 316 start-page: 688 year: 2007 ident: br003475 article-title: Prototype resilient, self-modeling robots publication-title: Science – volume: 1 start-page: 131 year: 1990 end-page: 136 ident: br002500 article-title: Three-dimensional neural net for learning visuomotor coordination of a robot arm publication-title: IEEE Transactions on Neural Networks – reference: Turner, A. J., & Miller, J. F. (2013). Cartesian genetic programming encoded artificial neural networks: A comparison using three benchmarks. In – start-page: 340 year: 1990 end-page: 347 ident: br000560 article-title: Operational fault tolerance of CMAC networks publication-title: Advances in neural information processing systems (NIPS), vol. 2 – start-page: 545 year: 2009 end-page: 552 ident: br001365 article-title: Offline handwriting recognition with multidimensional recurrent neural networks publication-title: Advances in neural information processing systems (NIPS), vol. 21 – volume: 5 start-page: 157 year: 1994 end-page: 166 ident: br000365 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Transactions on Neural Networks – start-page: 207 year: 2012 end-page: 251 ident: br003995 article-title: Reinforcement learning in continuous state and action spaces publication-title: Reinforcement learning – volume: 35 start-page: 221 year: 2013 end-page: 231 ident: br001815 article-title: 3D convolutional neural networks for human action recognition publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: Graves, A., Eck, D., Beringer, N., & Schmidhuber, J. (2003). Isolated digit recognition with LSTM recurrent networks. In – start-page: 2849 year: 2008 end-page: 2856 ident: br001950 article-title: SpiNNaker: mapping neural networks onto a massively-parallel chip multiprocessor publication-title: International joint conference on neural networks – reference: (pp. 43–57). – reference: (pp. 243–246). – volume: 4 start-page: 12 year: 2012 ident: br004035 article-title: On the computational complexity of stochastic controller optimization in POMDPs publication-title: ACM Transactions on Computation Theory – year: 1992 ident: br003515 article-title: Discovering predictable classifications. Technical report CU-CS-626-92 – volume: 3 start-page: 349 year: 1989 end-page: 381 ident: br002695 article-title: A focused back-propagation algorithm for temporal sequence recognition publication-title: Complex Systems – start-page: 283 year: 1992 end-page: 356 ident: br004160 article-title: Neural networks, system identification, and control in the chemical industries publication-title: Handbook of intelligent control: neural, fuzzy, and adaptive approaches – volume: 20 start-page: 30 year: 2012 end-page: 42 ident: br000735 article-title: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition publication-title: IEEE Transactions on Audio, Speech and Language Processing – volume: 86 start-page: 2259 year: 1998 end-page: 2277 ident: br000995 article-title: A signal processing framework based on dynamic neural networks with application to problems in adaptation, filtering, and classification publication-title: Proceedings of the IEEE – reference: Maei, H. R., & Sutton, R. S. (2010). GQ( – reference: ): A general gradient algorithm for temporal-difference prediction learning with eligibility traces. In – reference: Marchi, E., Ferroni, G., Eyben, F., Gabrielli, L., Squartini, S., & Schuller, B. (2014). Multi-resolution linear prediction based features for audio onset detection with bidirectional LSTM neural networks. In – year: 1997 ident: br000040 article-title: On-line step size adaptation. Technical report, INESC, 9 Rua Alves Redol, 1000 – reference: Ciresan, D. C., Meier, U., Masci, J., Gambardella, L. M., & Schmidhuber, J. (2011). Flexible, high performance convolutional neural networks for image classification. In – reference: Baird, H. (1990). Document image defect models. In – reference: Munro, P. W. (1987). A dual back-propagation scheme for scalar reinforcement learning. In – reference: (pp. 609–616). – reference: (pp. 1845–1853). – year: 1990 ident: br001855 article-title: Supervised learning with a distal teacher. Technical report Occasional Paper #40 – volume: 15 start-page: 346 year: 2011 end-page: 367 ident: br000675 article-title: On the performance of indirect encoding across the continuum of regularity publication-title: IEEE Transactions on Evolutionary Computation – reference: (pp. 333–338). – reference: (pp. 220–229). – reference: (pp. 2018–2023). – year: 1989 ident: br003230 article-title: The ‘moving targets’ training method publication-title: Proceedings of ‘distributed adaptive neural information processing’ – volume: 11 start-page: 436 year: 2000 end-page: 451 ident: br002930 article-title: Constructive neural network learning algorithms for multi-category pattern classification publication-title: IEEE Transactions on Neural Networks – volume: 21 start-page: 682 year: 2008 end-page: 697 ident: br003005 article-title: Reinforcement learning of motor skills with policy gradients publication-title: Neural Networks – year: 2012 ident: br001580 article-title: Improving neural networks by preventing co-adaptation of feature detectors. Technical report – reference: . – volume: Vol. 2130 start-page: 87 year: 2001 end-page: 94 ident: br001625 article-title: Learning to learn using gradient descent publication-title: Proc. intl. conf. on artificial neural networks – reference: Meuleau, N., Peshkin, L., Kim, K. E., & Kaelbling, L. P. (1999). Learning finite state controllers for partially observable environments. In – volume: 21 year: 1983 ident: br002245 article-title: Theory formation by heuristic search publication-title: Machine Learning – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: br001615 article-title: Long short-term memory publication-title: Neural Computation – volume: Vol. 3944 start-page: 28 year: 2006 end-page: 32 ident: br002760 article-title: Classification with Bayesian neural networks publication-title: Machine learning challenges. Evaluating predictive uncertainty, visual object classification, and recognising textual entailment – year: 1998 ident: br003840 article-title: Reinforcement learning: An introduction – volume: 22 start-page: 436 year: 1992 end-page: 440 ident: br002510 article-title: Noise injection into inputs in back-propagation learning publication-title: IEEE Transactions on Systems, Man and Cybernetics – volume: 8 start-page: 229 year: 1992 end-page: 256 ident: br004275 article-title: Simple statistical gradient-following algorithms for connectionist reinforcement learning publication-title: Machine Learning – reference: Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural networks. In – start-page: 379 year: 1989 end-page: 384 ident: br002580 article-title: Designing neural networks using genetic algorithms publication-title: Proceedings of the 3rd international conference on genetic algorithms – year: 1996 ident: br003775 article-title: A recurrent network that performs a contextsensitive prediction task publication-title: Proceedings of the 18th annual conference of the cognitive science society – reference: Ciresan, D. C., Meier, U., & Schmidhuber, J. (2012a). Multi-column deep neural networks for image classification. In – volume: 11 start-page: 431 year: 1963 end-page: 441 ident: br002485 article-title: An algorithm for least-squares estimation of nonlinear parameters publication-title: Journal of the Society for Industrial & Applied Mathematics – volume: 3 start-page: 919 year: 2000 end-page: 926 ident: br003740 article-title: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity publication-title: Nature Neuroscience – volume: 71 start-page: 856 year: 1994 end-page: 867 ident: br001980 article-title: Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex publication-title: Journal of Neurophysiology – year: 1992 ident: br003340 article-title: Numerische mathematik, vol. 4 – volume: 93 start-page: 429 year: 1946 end-page: 441 ident: br001140 article-title: Theory of communication. Part 1: the analysis of information publication-title: Electrical Engineers-Part III: Journal of the Institution of Radio and Communication Engineering – volume: 22 start-page: 59 year: 1996 end-page: 94 ident: br003935 article-title: Feature-based methods for large scale dynamic programming publication-title: Machine Learning – year: 1998 ident: br002350 article-title: System identification – reference: (pp. 430–435). – volume: 2 start-page: 68 year: 2003 end-page: 75 ident: br002035 article-title: Modified GMDH method and models quality evaluation by visualization publication-title: Control Systems and Computers – volume: 11 start-page: 679 year: 1999 end-page: 714 ident: br001620 article-title: Feature extraction through LOCOCODE publication-title: Neural Computation – reference: Heess, N., Silver, D., & Teh, Y. W. (2012). Actor-critic reinforcement learning with energy-based policies. In – start-page: 189 year: 2003 end-page: 198 ident: br003225 article-title: Hardware spiking neural network with run-time reconfigurable connectivity in an autonomous robot publication-title: Proc. NASA/DoD conference on evolvable hardware – start-page: 199 year: 2006 end-page: 226 ident: br003470 article-title: Gödel machines: Fully self-referential optimal universal self-improvers publication-title: Artificial general intelligence – volume: 12 start-page: 574 year: 2011 end-page: 582 ident: br004325 article-title: On-line driver distraction detection using long short-term memory publication-title: IEEE Transactions on Intelligent Transportation Systems (TITS) – year: 1996 ident: br000055 article-title: A new learning algorithm for blind signal separation publication-title: Advances in neural information processing systems (NIPS), vol. 8 – reference: Prokhorov, D. V., Feldkamp, L. A., & Tyukin, I. Y. (2002). Adaptive behavior with fixed weights in RNN: an overview. In – year: 2014 ident: br000800 article-title: Deep learning: methods and applications – volume: 33 start-page: 105 year: 1998 end-page: 116 ident: br004225 article-title: Fast online Q( publication-title: Machine Learning – reference: (pp. 755–764). – year: 1992 ident: br004180 article-title: Reinforcement learning for the adaptive control of perception and action – volume: 7 start-page: 985 year: 1994 end-page: 1004 ident: br001460 article-title: Design and evolution of modular neural network architectures publication-title: Neural Networks – volume: 14 start-page: 321 year: 1994 end-page: 331 ident: br003650 article-title: Combining symbolic and neural learning publication-title: Machine Learning – volume: 71 start-page: 1180 year: 2008 end-page: 1190 ident: br003000 article-title: Natural actor-critic publication-title: Neurocomputing – reference: Pearlmutter, B. A., & Hinton, G. E. (1986). – volume: 12 start-page: 2121 year: 2011 end-page: 2159 ident: br000895 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: The Journal of Machine Learning – volume: 3 start-page: 166 year: 2007 ident: br001085 article-title: Slowness and sparseness lead to place, head-direction, and spatial-view cells publication-title: PLoS Computational Biology – volume: 2 start-page: 173 year: 1990 end-page: 187 ident: br002420 article-title: Analysis of Linsker’s simulation of Hebbian rules publication-title: Neural Computation – year: 1988 ident: br000935 article-title: Spline smoothing and nonparametric regression publication-title: Self-organizing methods in modeling – reference: Schrauwen, B., Verstraeten, D., & Van Campenhout, J. (2007). An overview of reservoir computing: theory, applications and implementations. In – volume: 79 start-page: 2554 year: 1982 end-page: 2558 ident: br001660 article-title: Neural networks and physical systems with emergent collective computational abilities publication-title: Proceedings of the National Academy of Sciences – start-page: 153 year: 2007 end-page: 160 ident: br000360 article-title: Greedy layer-wise training of deep networks publication-title: Advances in neural information processing systems, vol. 19 (NIPS) – start-page: 1458 year: 1991 end-page: 1463 ident: br003410 article-title: Curious model-building control systems publication-title: Proceedings of the international joint conference on neural networks, vol. 2 – reference: Robinson, T., & Fallside, F. (1989). Dynamic reinforcement driven error propagation networks with application to game playing. In – year: 1687 ident: br002795 article-title: Philosophiae naturalis principia mathematica – year: 1991 ident: br001590 article-title: Untersuchungen zu dynamischen neuronalen Netzen – start-page: 2619 year: 2004 end-page: 2624 ident: br001985 article-title: Policy gradient reinforcement learning for fast quadrupedal locomotion publication-title: Robotics and automation, 2004. Proceedings. ICRA’04. 2004 IEEE international conference on, vol. 3 – volume: 31 start-page: 152 year: 1988 end-page: 169 ident: br001145 article-title: Connectionist expert systems publication-title: Communications of the ACM – volume: 75 start-page: 1515 year: 1996 end-page: 1545 ident: br002450 article-title: Model circuit of spiking neurons generating directional selectivity in simple cells publication-title: Journal of Neurophysiology – start-page: 199 year: 1994 end-page: 219 ident: br003890 article-title: The evolution of mental models publication-title: Advances in genetic programming – start-page: 586 year: 1993 end-page: 591 ident: br003150 article-title: A direct adaptive method for faster backpropagation learning: The Rprop algorithm publication-title: Proc. IJCNN – reference: (pp. 118–126). – volume: 63 start-page: 487 year: 1990 end-page: 493 ident: br001060 article-title: Evolving neural networks publication-title: Biological Cybernetics – start-page: 6015 year: 2000 ident: br000865 article-title: The growing hierarchical self-organizing map publication-title: IEEE-INNS-ENNS International joint conference on neural networks, vol. 6 – volume: 12 start-page: 2519 year: 2000 end-page: 2535 ident: br002405 article-title: On the computational power of winner-take-all publication-title: Neural Computation – volume: 4 start-page: 141 year: 1992 end-page: 166 ident: br000245 article-title: First- and second-order methods for learning: between steepest descent and Newton’s method publication-title: Neural Computation – reference: Förster, A., Graves, A., & Schmidhuber, J. (2007). RNN-based learning of compact maps for efficient robot localization. In – volume: 4 start-page: 333 year: 1993 end-page: 336 ident: br003100 article-title: Multiprocessor and memory architecture of the neurocomputer SYNAPSE-1 publication-title: International Journal of Neural Systems – start-page: 155 year: 1991 end-page: 161 ident: br000440 article-title: The Tempo 2 algorithm: adjusting time-delays by supervised learning publication-title: Advances in neural information processing systems, vol. 3 – reference: (pp. 295–306). – start-page: 29 year: 1998 end-page: 53 ident: br000985 article-title: Enhanced multi-stream Kalman filter training for recurrent networks publication-title: Nonlinear modeling – reference: Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y. (2013). OverFeat: integrated recognition, localization and detection using convolutional networks. ArXiv Preprint – reference: (pp. 1150–1157). – volume: 8 start-page: 373 year: 1997 end-page: 404 ident: br000065 article-title: Dynamics of a recurrent network of spiking neurons before and following learning publication-title: Network: Computation in Neural Systems – year: 2005 ident: br001280 article-title: Co-evolving recurrent neurons learn deep memory POMDPs publication-title: Proc. of the 2005 conference on genetic and evolutionary computation – start-page: 625 year: 1994 end-page: 632 ident: br001100 article-title: A growing neural gas network learns topologies publication-title: NIPS – volume: 4 start-page: 1 year: 1992 end-page: 58 ident: br001170 article-title: Neural networks and the bias/variance dilemma publication-title: Neural Computation – reference: Sun, Y., Wierstra, D., Schaul, T., & Schmidhuber, J. (2009). Efficient natural evolution strategies. In – volume: 14 start-page: 1771 year: 2002 end-page: 1800 ident: br001545 article-title: Training products of experts by minimizing contrastive divergence publication-title: Neural Computation – volume: 46 start-page: 77 year: 1990 end-page: 105 ident: br003035 article-title: Recursive distributed representation publication-title: Artificial Intelligence – year: 1961 ident: br001865 article-title: Contributions to perceptron theory – start-page: 577 year: 2008 end-page: 584 ident: br001340 article-title: Unconstrained on-line handwriting recognition with recurrent neural networks publication-title: Advances in neural information processing systems (NIPS), vol. 20 – reference: (pp. 599–604). – volume: 4 start-page: 124 year: 2013 ident: br002875 article-title: Recurrent processing during object recognition publication-title: Frontiers in Psychology – reference: Segmentation of Neuronal Structures in EM Stacks Challenge, (2012). – reference: (p. 2008). – volume: 15 start-page: 185 year: 2009 end-page: 212 ident: br003765 article-title: A hypercube-based encoding for evolving large-scale neural networks publication-title: Artificial Life – volume: Vol. 3696 start-page: 575 year: 2005 end-page: 581 ident: br000370 article-title: Classifying unprompted speech by retraining LSTM nets publication-title: Artificial neural networks: biological inspirations—ICANN 2005 – volume: 5 start-page: 156 year: 1960 end-page: 178 ident: br003805 article-title: Conditional Markov processes publication-title: Theory of Probability and Its Applications – volume: 5 year: 1994 ident: br004430 article-title: Discrete recurrent neural networks for grammatical inference publication-title: IEEE Transactions on Neural Networks – reference: . New York. – volume: Vol. 7700 year: 2012 ident: br002645 publication-title: Neural networks: tricks of the trade – volume: 13 start-page: 3406 year: 1993 end-page: 3420 ident: br004440 article-title: A spiking network model of short-term active memory publication-title: The Journal of Neuroscience – volume: 6 start-page: 837 year: 1995 end-page: 858 ident: br000180 article-title: Learning in linear networks: a survey publication-title: IEEE Transactions on Neural Networks – volume: 335 start-page: 23 year: 1992 end-page: 30 ident: br002985 article-title: Organization and functions of cells responsive to faces in the temporal cortex [and discussion] publication-title: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences – volume: 23 start-page: 349 year: 2007 end-page: 398 ident: br000490 article-title: Simulation of networks of spiking neurons: a review of tools and strategies publication-title: Journal of Computational Neuroscience – reference: (pp. 315–323). – reference: Scherer, D., Müller, A., & Behnke, S. (2010). Evaluation of pooling operations in convolutional architectures for object recognition. In – volume: 32 start-page: 333 year: 2012 end-page: 338 ident: br000645 article-title: Multi-column deep neural network for traffic sign classification publication-title: Neural Networks – reference: van den Berg, T., & Whiteson, S. (2013). Critical factors in the performance of HyperNEAT. In – year: 1988 ident: br002000 article-title: Self-organization and associative memory – reference: (pp. 619–626). – reference: (pp. 320–322). – volume: 345 start-page: 668 year: 2014 end-page: 673 ident: br002545 article-title: A million spiking-neuron integrated circuit with a scalable communication network and interface publication-title: Science – volume: 18 start-page: 173 year: 2006 end-page: 187 ident: br003465 article-title: Developmental robotics, optimal artificial curiosity, creativity, music, and the fine arts publication-title: Connection Science – volume: 28 start-page: 2449 year: 2012 end-page: 2457 ident: br000855 article-title: Deep architectures for protein contact map prediction publication-title: Bioinformatics – volume: 35 start-page: 1847 year: 2013 end-page: 1871 ident: br002095 article-title: Deep hierarchies in the primate visual cortex: what can we learn for computer vision? publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: Fan, Y., Qian, Y., Xie, F., & Soong, F. K. (2014). TTS synthesis with bidirectional LSTM based recurrent neural networks. In – volume: 12 start-page: 197 year: 2000 end-page: 210 ident: br000435 article-title: Context-free and context-sensitive dynamics in recurrent neural networks publication-title: Connection Science – volume: 22 start-page: 159 year: 1996 ident: br002455 article-title: Average reward reinforcement learning: Foundations, algorithms, and empirical results publication-title: Machine Learning – start-page: 737 year: 1991 end-page: 745 ident: br002845 article-title: Data compression, feature extraction, and autoassociation in feedforward neural networks publication-title: Artificial neural networks, vol. 1 – year: 1992 ident: br003660 article-title: Theoretical foundations of recurrent neural networks – volume: 73 start-page: 415 year: 2012 end-page: 434 ident: br000830 article-title: How does the brain solve visual object recognition? publication-title: Neuron – start-page: 499 year: 1993 end-page: 506 ident: br003550 article-title: Unsupervised discrimination of clustered data via optimization of binary information gain publication-title: Advances in neural information processing systems, vol. 5 – volume: 5 start-page: 1063 year: 2004 end-page: 1088 ident: br003300 article-title: Reinforcement learning with factored states and actions publication-title: Journal of Machine Learning Research – volume: 14 start-page: 3683 year: 2013 end-page: 3719 ident: br000930 article-title: How to solve classification and regression problems on high-dimensional data with a supervised extension of slow feature analysis publication-title: Journal of Machine Learning Research – start-page: 27 year: 1994 end-page: 34 ident: br003335 article-title: Unsupervised learning of mixtures of multiple causes in binary data publication-title: Advances in neural information processing systems (NIPS), vol. 6 – reference: Ting, K. M., & Witten, I. H. (1997). Stacked generalization: when does it work? In – volume: 6 start-page: 219 year: 1998 end-page: 246 ident: br004220 article-title: HQ-learning publication-title: Adaptive Behavior – volume: 9 start-page: 1127 year: 1997 end-page: 1142 ident: br000405 article-title: Analysis of dynamical recognizers publication-title: Neural Computation – reference: Ring, M., Schaul, T., & Schmidhuber, J. (2011). The two-dimensional organization of behavior. In – volume: 7 start-page: 565 year: 1995 end-page: 579 ident: br000765 article-title: Competition and multiple cause models publication-title: Neural Computation – volume: 7 year: 2014 ident: br002770 article-title: Event-driven contrastive divergence for spiking neuromorphic systems publication-title: Frontiers in Neuroscience – start-page: 323 year: 1995 end-page: 329 ident: br004170 article-title: Adaptive back-propagation in on-line learning of multilayer networks publication-title: NIPS – reference: Behnke, S., & Rojas, R. (1998). Neural abstraction pyramid: a hierarchical image understanding architecture. In – reference: Gherrity, M. (1989). A learning algorithm for analog fully recurrent neural networks. In – start-page: 6 year: 1992 end-page: 22 ident: br000030 article-title: Application of time-bounded Kolmogorov complexity in complexity theory publication-title: Kolmogorov complexity and computational complexity – volume: 7 start-page: 375 year: 1994 end-page: 388 ident: br003135 article-title: Stock performance modeling using neural networks: a comparative study with regression models publication-title: Neural Networks – reference: Ghavamzadeh, M., & Mahadevan, S. (2003). Hierarchical policy gradient algorithms. In – start-page: 189 year: 2000 end-page: 194 ident: br001175 article-title: Recurrent nets that time and count publication-title: Proceedings of the IEEE-INNS-ENNS international joint conference on neural networks, 2000, vol. 3 – volume: 21 start-page: 1392 year: 2008 end-page: 1400 ident: br004345 article-title: Learning to play go using recursive neural networks publication-title: Neural Networks – volume: 48 start-page: 17 year: 2002 end-page: 37 ident: br000445 article-title: Error-backpropagation in temporally encoded networks of spiking neurons publication-title: Neurocomputing – volume: 19 start-page: 716 year: 1974 end-page: 723 ident: br000025 article-title: A new look at the statistical model identification publication-title: IEEE Transactions on Automatic Control – start-page: 1554 year: 1966 end-page: 1563 ident: br000255 article-title: Statistical inference for probabilistic functions of finite state Markov chains publication-title: The Annals of Mathematical Statistics – start-page: 1 year: 2000 end-page: 15 ident: br000845 article-title: Ensemble methods in machine learning publication-title: Multiple classifier systems – year: 2013 ident: br002860 article-title: Learning and transferring mid-level image representations using convolutional neural networks. Technical report hal-00911179 – volume: 4 start-page: 491 year: 1990 end-page: 501 ident: br004285 article-title: An efficient gradient-based algorithm for on-line training of recurrent network trajectories publication-title: Neural Computation – reference: (pp. 527–536). – reference: (pp. 279–284). – volume: 100 start-page: 353 year: 1972 end-page: 359 ident: br001990 article-title: Correlation matrix memories publication-title: IEEE Transactions on Computers – volume: 72 start-page: 3634 year: 1994 end-page: 3637 ident: br002630 article-title: Separation of independent signals using time-delayed correlations publication-title: Physical Review Letters – volume: 47 start-page: 329 year: 1982 end-page: 342 ident: br002990 article-title: Visual neurones responsive to faces in the monkey temporal cortex publication-title: Experimental Brain Research – volume: 381 start-page: 607 year: 1996 end-page: 609 ident: br002850 article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images publication-title: Nature – reference: Leibniz, G. W. (1676). Memoir using the chain rule (cited in TMME 7:2&3 p. 321–332, 2010). – year: 2006 ident: br003110 article-title: Efficient learning of sparse representations with an energy-based model publication-title: Advances in neural information processing systems (NIPS 2006) – volume: 7 start-page: 1329 year: 1996 end-page: 1338 ident: br002310 article-title: Learning long-term dependencies in NARX recurrent neural networks publication-title: IEEE Transactions on Neural Networks – start-page: 180 year: 1993 end-page: 187 ident: br003810 article-title: Time warping invariant neural networks publication-title: Advances in neural information processing systems (NIPS), vol. 5 – start-page: 533 year: 2012 end-page: 537 ident: br002900 article-title: Local feature based online mode detection with recurrent neural networks publication-title: Proceedings of the 2012 international conference on Frontiers in handwriting recognition – reference: Lowe, D. (1999). Object recognition from local scale-invariant features. In – reference: Bakker, B., Zhumatiy, V., Gruener, G., & Schmidhuber, J. (2003). A robot that reinforcement-learns to identify and memorize important previous observations. In – start-page: 598 year: 1990 end-page: 605 ident: br002175 article-title: Optimal brain damage publication-title: Advances in neural information processing systems, vol. 2 – reference: Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines. In – reference: Bayer, J., & Osendorfer, C. (2014). Variational inference of latent state sequences using recurrent networks. ArXiv Preprint – volume: 6 start-page: 127 year: 1993 end-page: 131 ident: br000390 article-title: A learning algorithm for multilayered neural networks based on linear least squares problems publication-title: Neural Networks – volume: 1 start-page: 1 year: 1991 end-page: 47 ident: br001000 article-title: Distributed hierarchical processing in the primate cerebral cortex publication-title: Cerebral Cortex – start-page: 241 year: 1992 end-page: 246 ident: br004280 article-title: Training recurrent networks using the extended Kalman filter publication-title: International joint conference on neural networks, vol. 4 – volume: 30 start-page: 947 year: 1960 end-page: 954 ident: br001925 article-title: Gradient theory of optimal flight paths publication-title: ARS Journal – start-page: 87 year: 1993 end-page: 95 ident: br003510 article-title: Continuous history compression publication-title: Proc. of intl. workshop on neural networks – year: 1986 ident: br004260 article-title: Reinforcement-learning in connectionist networks: A mathematical analysis. Technical report 8605 – year: 2014 ident: br000600 article-title: Foundations and advances in deep learning – year: 2006 ident: br001485 article-title: Hierarchical temporal memory—concepts, theory, and terminology – volume: 22 start-page: 2013 year: 2005 end-page: 2033 ident: br002255 article-title: Coding of color and form in the geniculostriate visual pathway publication-title: Journal of the Optical Society of America A – volume: 82 start-page: 35 year: 1960 end-page: 45 ident: br001905 article-title: A new approach to linear filtering and prediction problems publication-title: Journal of Basic Engineering – reference: Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier networks. In – start-page: 191 year: 1993 end-page: 195 ident: br003440 article-title: An introspective network that can learn to run its own weight change algorithm publication-title: Proc. of the intl. conf. on artificial neural networks, Brighton – volume: 43 start-page: 59 year: 1982 end-page: 69 ident: br001995 article-title: Self-organized formation of topologically correct feature maps publication-title: Biological Cybernetics – start-page: 107 year: 1989 end-page: 115 ident: br002710 article-title: Skeletonization: A technique for trimming the fat from a network via relevance assessment publication-title: Advances in neural information processing systems (NIPS), vol. 1 – reference: Fieres, J., Schemmel, J., & Meier, K. (2008). Realizing biological spiking network models in a configurable wafer-scale hardware system. In – volume: 9 start-page: 265 year: 1973 end-page: 266 ident: br002270 article-title: Universal sequential search problems publication-title: Problems of Information Transmission – reference: (pp. 643–644). – volume: 4 start-page: 559 year: 1992 end-page: 572 ident: br000105 article-title: Understanding retinal color coding from first principles publication-title: Neural Computation – reference: (pp. 1301–1306). – start-page: 472 year: 1988 end-page: 484 ident: br001650 article-title: A network of neuron-like units that learns to perceive by generation as well as reweighting of its links publication-title: Proc. of the 1988 connectionist models summer school – volume: 8 start-page: 773 year: 1996 end-page: 786 ident: br003500 article-title: Semilinear predictability minimization produces well-known feature detectors publication-title: Neural Computation – volume: 4 start-page: 882 year: 1993 end-page: 884 ident: br000395 article-title: Curvature-driven smoothing: A learning algorithm for feed-forward networks publication-title: IEEE Transactions on Neural Networks – volume: 37 start-page: W515 year: 2009 end-page: W518 ident: br003880 article-title: NNcon: improved protein contact map prediction using 2D-recursive neural networks publication-title: Nucleic Acids Research – volume: 59 start-page: 257 year: 1988 end-page: 263 ident: br004040 article-title: Accelerating the convergence of the back-propagation method publication-title: Biological Cybernetics – volume: 1 start-page: 445 year: 1961 end-page: 466 ident: br001045 article-title: Impulses and physiological states in theoretical models of nerve membrane publication-title: Biophysical Journal – volume: 19 start-page: 2229 year: 1987 end-page: 2232 ident: br003015 article-title: Generalization of back-propagation to recurrent neural networks publication-title: Physical Review Letters – volume: 16 start-page: 299 year: 1967 end-page: 307 ident: br000045 article-title: A theory of adaptive pattern classifiers publication-title: IEEE Transactions on Electronic Computers – volume: 9 start-page: e1003037 year: 2013 ident: br002780 article-title: Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity publication-title: PLoS Computational Biology – volume: 13 start-page: 431 year: 2002 end-page: 443 ident: br001690 article-title: The fastest and shortest algorithm for all well-defined problems publication-title: International Journal of Foundations of Computer Science – start-page: 762 year: 1989 end-page: 767 ident: br002640 article-title: Training feedforward neural networks using genetic algorithms publication-title: Proceedings of the 11th international joint conference on artificial intelligence—vol. 1 – year: 2012 ident: br004230 article-title: Reinforcement learning – volume: 32 start-page: 323 year: 2012 end-page: 332 ident: br003760 article-title: Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition publication-title: Neural Networks – year: 1995 ident: br001505 article-title: Overview of neural hardware publication-title: Neurocomputers for brain-style processing. Design, implementation and application – volume: 5 start-page: 3698 year: 2010 ident: br002995 article-title: Policy gradient methods publication-title: Scholarpedia – reference: (pp. 958–963). – year: 1805 ident: br002220 article-title: Nouvelles méthodes pour la détermination des orbites des cometes – start-page: 357 year: 1989 end-page: 363 ident: br002800 article-title: The truck backer-upper: An example of self learning in neural networks publication-title: Proceedings of the international joint conference on neural networks – volume: 7 start-page: 877 year: 2006 end-page: 917 ident: br004195 article-title: Evolutionary function approximation for reinforcement learning publication-title: Journal of Machine Learning Research – volume: 10 start-page: 683 year: 1997 end-page: 691 ident: br000770 article-title: Non-linear feature extraction by redundancy reduction in an unsupervised stochastic neural network publication-title: Neural Networks – year: 2003 ident: br002870 article-title: Making working memory work: A computational model of learning in the prefrontal cortex and basal ganglia. Technical report ICS-03-03 – year: 2001 ident: br000375 article-title: Dynamic programming and optimal control – volume: 55 start-page: 252 year: 2013 end-page: 265 ident: br004330 article-title: Keyword spotting exploiting long short-term memory publication-title: Speech Communication – year: 1999 ident: br000810 article-title: The loading problem for pyramidal neural networks publication-title: Electronic Journal on Mathematics of Computation – year: 1961 ident: br003040 article-title: The mathematical theory of optimal processes – start-page: 1061 year: 2013 end-page: 1068 ident: br002050 article-title: Evolving large-scale neural networks for vision-based reinforcement learning publication-title: Proceedings of the genetic and evolutionary computation conference – year: 1990 ident: br003390 article-title: Dynamische neuronale Netze und das fundamentale raumzeitliche Lernproblem. (Dynamic neural nets and the fundamental spatio-temporal credit assignment problem.) – volume: 14 start-page: 179 year: 1990 end-page: 211 ident: br000920 article-title: Finding structure in time publication-title: Cognitive Science – volume: 53 start-page: 1563 year: 2013 end-page: 1575 ident: br002385 article-title: Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules publication-title: Journal of Chemical Information and Modeling – start-page: 164 year: 1993 end-page: 171 ident: br001470 article-title: Second order derivatives for network pruning: optimal brain surgeon publication-title: Advances in neural information processing systems, vol. 5 – start-page: 1061 year: 2000 end-page: 1067 ident: br002685 article-title: Robust reinforcement learning publication-title: Advances in neural information processing systems (NIPS), vol. 13 – reference: Jackel, L., Boser, B., Graf, H.-P., Denker, J., LeCun, Y., & Henderson, D., et al. (1990). VLSI implementation of electronic neural networks: and example in character recognition. In IEEE (Ed.), – reference: Melnik, O., Levy, S. D., & Pollack, J. B. (2000). RAAM for infinite context-free languages. In – start-page: 190 year: 1991 end-page: 196 ident: br000960 article-title: The recurrent cascade-correlation learning algorithm publication-title: Advances in neural information processing systems (NIPS), vol. 3 – volume: 117 start-page: 500 year: 1952 ident: br001630 article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve publication-title: The Journal of Physiology – volume: 1 start-page: 295 year: 1989 end-page: 311 ident: br000210 article-title: Unsupervised learning publication-title: Neural Computation – start-page: 1143 year: 1998 end-page: 1148 ident: br002025 article-title: GMDH neural network algorithm using the heuristic self-organization method and its application to the pattern identification problem publication-title: Proceedings of the 37th SICE annual conference – volume: 13 start-page: 103 year: 1993 end-page: 130 ident: br002665 article-title: Prioritized sweeping: Reinforcement learning with less data and less time publication-title: Machine Learning – year: 1966 ident: br001065 article-title: Artificial intelligence through simulated evolution – start-page: 81 year: 2012 end-page: 88 ident: br000605 article-title: Tikhonov-type regularization for restricted Boltzmann machines publication-title: Intl. conf. on artificial neural networks 2012 – reference: (pp. 411–418). – start-page: 2588 year: 2003 end-page: 2595 ident: br001715 article-title: Neuroevolution for reinforcement learning using evolution strategies publication-title: Congress on evolutionary computation, vol. 4 – reference: Mesnil, G., Dauphin, Y., Glorot, X., Rifai, S., Bengio, Y., & Goodfellow, I., et al. (2011). Unsupervised and transfer learning challenge: a deep learning approach. In – start-page: 267 year: 1973 end-page: 281 ident: br000020 article-title: Information theory and an extension of the maximum likelihood principle publication-title: Second intl. symposium on information theory – start-page: 1335 year: 1994 end-page: 1340 ident: br004115 article-title: Hierarchical chunking in classifier systems publication-title: Proceedings of the 12th national conference on artificial intelligence, vol. 2 – volume: 7 start-page: 889 year: 1995 end-page: 904 ident: br000760 article-title: The Helmholtz machine publication-title: Neural Computation – volume: 14 start-page: 1347 year: 2002 end-page: 1369 ident: br000880 article-title: Multiple model-based reinforcement learning publication-title: Neural Computation – volume: 3 start-page: 210 year: 1959 end-page: 229 ident: br003315 article-title: Some studies in machine learning using the game of checkers publication-title: IBM Journal of Research and Development – start-page: 221 year: 1996 end-page: 226 ident: br004010 article-title: Learning fine motion by using the hierarchical extended Kohonen map publication-title: Proc. intl. conf. on artificial neural networks – start-page: 121 year: 2000 end-page: 132 ident: br002575 article-title: Cartesian genetic programming publication-title: Genetic programming – volume: 1 start-page: 4 year: 1990 end-page: 27 ident: br002745 article-title: Identification and control of dynamical systems using neural networks publication-title: IEEE Transactions on Neural Networks – reference: Schwartz, A. (1993). A reinforcement learning method for maximizing undiscounted rewards. In – reference: Pham, V., Kermorvant, C., & Louradour, J. (2013). Dropout improves recurrent neural networks for handwriting recognition. arXiv Preprint – year: 2001 ident: br001705 article-title: Independent component analysis – reference: . Long preprint – year: 1988 ident: br004290 article-title: A learning algorithm for continually running fully recurrent networks. Technical report ICS report 8805 – start-page: 196 year: 1992 end-page: 202 ident: br003520 article-title: Planning simple trajectories using neural subgoal generators publication-title: Proc. of the 2nd international conference on simulation of adaptive behavior – volume: 8 start-page: 1135 year: 1996 end-page: 1178 ident: br000570 article-title: The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction publication-title: Neural Computation – start-page: 15 year: 2006 end-page: 34 ident: br004165 article-title: Backwards differentiation in AD and neural nets: Past links and new opportunities publication-title: Automatic differentiation: applications, theory, and implementations – volume: 17 start-page: 487 year: 2005 end-page: 502 ident: br004310 article-title: Loading deep networks is hard: The pyramidal case publication-title: Neural Computation – volume: 23 start-page: 269 year: 1984 end-page: 294 ident: br002250 article-title: Why AM an EURISKO appear to work publication-title: Artificial Intelligence – volume: 304 start-page: 78 year: 2004 end-page: 80 ident: br001800 article-title: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication publication-title: Science – reference: (pp. 68–73). – volume: 16 start-page: 59 year: 2004 end-page: 71 ident: br003980 article-title: A machine learning method for extracting symbolic knowledge from recurrent neural networks publication-title: Neural Computation – volume: Vol. 1524 year: 1998 ident: br002880 publication-title: Neural networks: tricks of the trade – volume: 5 start-page: 117 year: 1992 end-page: 127 ident: br000420 article-title: Training a 3-node neural network is NP-complete publication-title: Neural Networks – reference: (pp. 4856–4860). – year: 1997 ident: br002295 article-title: An introduction to Kolmogorov complexity and its applications – reference: Sutskever, I., Hinton, G. E., & Taylor, G. W. (2008). The recurrent temporal restricted Boltzmann machine. In – reference: (pp. 1005–1012). – volume: 8 start-page: 183 year: 2000 end-page: 208 ident: br000515 article-title: Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons publication-title: Journal of Computational Neuroscience – year: 1988 ident: br001845 article-title: Supervised learning and systems with excess degrees of freedom. Technical report COINS TR 88-27 – volume: 14 start-page: 409 year: 1994 end-page: 441 ident: br002565 article-title: A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between on- and off-center inputs publication-title: Journal of Neuroscience – volume: 23 start-page: 819 year: 2010 end-page: 835 ident: br004360 article-title: Evolving spiking neural networks for audiovisual information processing publication-title: Neural Networks – volume: 13 start-page: 227 year: 2000 end-page: 303 ident: br000850 article-title: Hierarchical reinforcement learning with the MAXQ value function decomposition publication-title: Journal of Artificial Intelligence Research (JAIR) – volume: 37 start-page: 1311 year: 2004 end-page: 1314 ident: br002835 article-title: GPU implementation of neural networks publication-title: Pattern Recognition – volume: 1 start-page: 263 year: 1989 end-page: 269 ident: br002955 article-title: Learning state space trajectories in recurrent neural networks publication-title: Neural Computation – year: 1992 ident: br004080 article-title: Kolmogorov complexity and computational complexity publication-title: EATCS monographs on theoretical computer science – volume: 14 start-page: 2531 year: 2002 end-page: 2560 ident: br002410 article-title: Real-time computing without stable states: A new framework for neural computation based on perturbations publication-title: Neural Computation – volume: 59 start-page: 5 year: 2005 end-page: 30 ident: br004190 article-title: Evolving keepaway soccer players through task decomposition publication-title: Machine Learning – volume: 148 start-page: 574 year: 1959 end-page: 591 ident: br004245 article-title: Receptive fields of single neurones in the cat’s striate cortex publication-title: Journal of Physiology – year: 2014 ident: br003865 article-title: Going deeper with convolutions. Technical report – start-page: 61 year: 2013 ident: br003820 article-title: A linear time natural evolution strategy for non-separable functions publication-title: Proceedings of the genetic and evolutionary computation conference – reference: Fernández, S., Graves, A., & Schmidhuber, J. (2007a). An application of recurrent neural networks to discriminative keyword spotting. In – volume: 6 start-page: 383 year: 1993 end-page: 390 ident: br000075 article-title: Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network publication-title: Protein Engineering – reference: Graves, A., & Jaitly, N. (2014). Towards end-to-end speech recognition with recurrent neural networks. In – start-page: 15 year: 1994 end-page: 22 ident: br003690 article-title: Evolving virtual creatures publication-title: Proceedings of SIGGRAPH ’94, computer graphics proceedings, annual conference – reference: Veta, M., Viergever, M., Pluim, J., Stathonikos, N., & van Diest, P. J. (2013). MICCAI 2013 grand challenge on mitosis detection. – year: 1993 ident: br004420 article-title: A minimum description length framework for unsupervised learning – start-page: 21 year: 1988 end-page: 28 ident: br002155 article-title: A theoretical framework for back-propagation publication-title: Proceedings of the 1988 connectionist models summer school – volume: 1 start-page: 365 year: 1989 end-page: 375 ident: br000100 article-title: Dynamic node creation in backpropagation neural networks publication-title: Connection Science – year: 1987 ident: br003375 article-title: Evolutionary principles in self-referential learning, or on learning how to learn: the meta-meta-... hook – start-page: 265 year: 1994 end-page: 295 ident: br004060 article-title: Time series prediction by using a connectionist network with internal delay lines publication-title: Time series prediction: forecasting the future and understanding the past – volume: 31 year: 2009 ident: br001350 article-title: A novel connectionist system for improved unconstrained handwriting recognition publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – year: 1994 ident: br002435 article-title: Inductive learning algorithms for complex systems modeling – reference: (pp. 1319–1324). – start-page: 428 year: 1993 end-page: 435 ident: br000665 article-title: Evolving recurrent dynamical networks for robot control publication-title: Artificial neural nets and genetic algorithms – reference: (pp. 165–176). – volume: 20 start-page: 1417 year: 2009 end-page: 1438 ident: br003610 article-title: Caviar: A 45 k neuron, 5 m synapse, 12 g connects/s AER hardware sensory–processing–learning–actuating system for high-speed visual object recognition and tracking publication-title: IEEE Transactions on Neural Networks – volume: 40 start-page: 681 year: 2002 end-page: 698 ident: br000010 article-title: Learning algorithms for Markov decision processes with average cost publication-title: SIAM Journal on Control and Optimization – year: 1974 ident: br004130 article-title: Beyond regression: new tools for prediction and analysis in the behavioral sciences – volume: 18 start-page: 620 year: 2010 end-page: 634 ident: br004235 article-title: Recurrent policy gradients publication-title: Logic Journal of IGPL – start-page: 79 year: 1951 end-page: 86 ident: br002100 article-title: On information and sufficiency publication-title: The Annals of Mathematical Statistics – year: 1995 ident: br004005 article-title: The nature of statistical learning theory – volume: 31 start-page: 1 year: 1978 end-page: 6 ident: br000430 article-title: Learning processes in multilayer threshold nets publication-title: Biological Cybernetics – year: 2013 ident: br004415 article-title: Visualizing and understanding convolutional networks. Technical report – reference: Eyben, F., Weninger, F., Squartini, S., & Schuller, B. (2013). Real-life voice activity detection with LSTM recurrent neural networks and an application to Hollywood movies. In – year: 2001 ident: br001795 article-title: The “echo state” approach to analysing and training recurrent neural networks. Technical report GMD Report 148 – volume: 14 start-page: 629 year: 2001 end-page: 643 ident: br002345 article-title: Orientation-selective aVLSI spiking neurons publication-title: Neural Networks – volume: 1 start-page: 541 year: 1989 end-page: 551 ident: br002160 article-title: Back-propagation applied to handwritten zip code recognition publication-title: Neural Computation – volume: 21 start-page: 105 year: 1988 end-page: 117 ident: br002335 article-title: Self-organization in a perceptual network publication-title: IEEE Computer – start-page: 491 year: 1993 end-page: 498 ident: br002725 article-title: Synaptic weight noise during MLP learning enhances fault-tolerance, generalisation and learning trajectory publication-title: Advances in neural information processing systems (NIPS), vol. 5 – reference: Lange, S., & Riedmiller, M. (2010). Deep auto-encoder neural networks in reinforcement learning. In – volume: 5 start-page: 123 year: 1997 end-page: 141 ident: br003305 article-title: Probabilistic incremental program evolution publication-title: Evolutionary Computation – reference: Bayer, J., Osendorfer, C., Chen, N., Urban, S., & van der Smagt, P. (2013). On fast dropout and its applicability to recurrent networks. ArXiv Preprint – year: 2002 ident: br001195 article-title: Spiking neuron models – reference: Simard, P., Steinkraus, D., & Platt, J. (2003). Best practices for convolutional neural networks applied to visual document analysis. In – volume: 3 start-page: 213 year: 2002 end-page: 231 ident: br000475 article-title: R-MAX—a general polynomial time algorithm for near-optimal reinforcement learning publication-title: Journal of Machine Learning Research – start-page: 35 year: 1994 ident: br002275 article-title: Fast pruning using principal components publication-title: Advances in neural information processing systems (NIPS), vol. 6 – reference: Koutník, J., Greff, K., Gomez, F., & Schmidhuber, J. (2014). A clockwork RNN. In – reference: Werbos, P. J. (1989a). Backpropagation and neurocontrol: A review and prospectus. In – volume: 1 start-page: 233 year: 1989 end-page: 255 ident: br003655 article-title: Combining explanation-based and neural learning: An algorithm and empirical results publication-title: Connection Science – volume: 16 start-page: 985 year: 2003 end-page: 994 ident: br003310 article-title: Inter-module credit assignment in modular reinforcement learning publication-title: Neural Networks – volume: 4 start-page: 575 year: 2003 end-page: 602 ident: br000185 article-title: The principled design of large-scale recursive neural network architectures—DAG-RNNs and the protein structure prediction problem publication-title: Journal of Machine Learning Research – volume: 28 start-page: 41 year: 1997 end-page: 75 ident: br000565 article-title: Multitask learning publication-title: Machine Learning – year: 2005 ident: br001405 article-title: Advances in minimum description length: theory and applications – year: 2001 ident: br002075 article-title: Field guide to dynamical recurrent networks – volume: 4 start-page: 863 year: 1992 end-page: 879 ident: br003435 article-title: Learning factorial codes by predictability minimization publication-title: Neural Computation – volume: 15 start-page: 1931 year: 2004 end-page: 1957 ident: br003920 article-title: Architectural bias in recurrent neural networks: Fractal analysis publication-title: Neural Computation – volume: 22 start-page: 203 year: 1970 end-page: 217 ident: br000015 article-title: Statistical predictor identification publication-title: Annals of the Institute of Statistical Mathematics – volume: 7 start-page: 1 year: 1964 end-page: 22 ident: br003725 article-title: A formal theory of inductive inference. Part I publication-title: Information and Control – reference: (pp. 537–542). – volume: 5 start-page: 197 year: 1990 end-page: 227 ident: br003350 article-title: The strength of weak learnability publication-title: Machine Learning – year: 2012 ident: br002105 article-title: How to create a mind: the secret of human thought revealed – volume: 13 start-page: 43 year: 1968 end-page: 55 ident: br001745 article-title: The group method of data handling—a rival of the method of stochastic approximation publication-title: Soviet Automatic Control – reference: (pp. 298–305). – volume: 4 start-page: 77 year: 1991 end-page: 80 ident: br003665 article-title: Turing computability with neural nets publication-title: Applied Mathematics Letters – start-page: 649 year: 1995 ident: br001820 article-title: Effects of noise on convergence and generalization in recurrent networks publication-title: Advances in neural information processing systems (NIPS), vol. 7 – year: 1994 ident: br000460 article-title: Connnectionist speech recognition: a hybrid approach – reference: Ciresan, D. C., Meier, U., & Schmidhuber, J. (2012b). Transfer learning for Latin and Chinese characters with deep neural networks. In – volume: 4 start-page: 234 year: 1992 end-page: 242 ident: br003430 article-title: Learning complex, extended sequences using the principle of history compression publication-title: Neural Computation – volume: 195 start-page: 215 year: 1968 end-page: 243 ident: br001675 article-title: Receptive fields and functional architecture of monkey striate cortex publication-title: The Journal of Physiology – volume: 17 start-page: 419 year: 2001 end-page: 428 ident: br000535 article-title: Efficient large-scale sequence comparison by locality-sensitive hashing publication-title: Bioinformatics – reference: (pp. 776–779). – volume: 22 start-page: 1345 year: 2010 end-page: 1359 ident: br002925 article-title: A survey on transfer learning publication-title: The IEEE Transactions on Knowledge and Data Engineering – volume: 36 start-page: 193 year: 1980 end-page: 202 ident: br001120 article-title: Neocognitron: A self-organizing neural network for a mechanism of pattern recognition unaffected by shift in position publication-title: Biological Cybernetics – year: 1995 ident: br003275 article-title: Artificial intelligence: a modern approach, vol. 2 – volume: Vol. 2(1) year: 2009 ident: br000350 publication-title: Learning deep architectures for AI – year: 1980 ident: br002805 article-title: Principles of artificial intelligence – year: 2001 ident: br001595 article-title: Gradient flow in recurrent nets: the difficulty of learning long-term dependencies publication-title: A field guide to dynamical recurrent neural networks – volume: 6 start-page: 215 year: 1994 end-page: 219 ident: br003900 article-title: TD-gammon, a self-teaching backgammon program, achieves master-level play publication-title: Neural Computation – volume: 60 start-page: 91 year: 2004 end-page: 110 ident: br002375 article-title: Distinctive image features from scale-invariant key-points publication-title: International Journal of Computer Vision – volume: 7 start-page: 783 year: 1994 end-page: 796 ident: br002590 article-title: Perturbation response in feedforward networks publication-title: Neural Networks – volume: 5 start-page: 13 year: 2010 end-page: 18 ident: br000095 article-title: Deep machine learning—a new frontier in artificial intelligence research publication-title: IEEE Computational Intelligence Magazine – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: br000485 article-title: Bagging predictors publication-title: Machine Learning – year: 2001 ident: br000555 article-title: Continuous latent variable models for dimensionality reduction and sequential data reconstruction – reference: (pp. 1–8). – year: 1993 ident: br002635 article-title: Exact calculation of the product of the Hessian matrix of feed-forward network error functions and a vector in O(N) time. Technical report PB-432 – volume: 268 start-page: 1158 year: 1995 end-page: 1160 ident: br001550 article-title: The wake-sleep algorithm for unsupervised neural networks publication-title: Science – year: 1980 ident: br003710 article-title: A learning system based on genetic adaptive algorithms – volume: 5 start-page: 603 year: 1991 end-page: 643 ident: br000540 article-title: Bayesian back-propagation publication-title: Complex Systems – start-page: 1453 year: 2011 end-page: 1460 ident: br003755 article-title: The German traffic sign recognition benchmark: A multi-class classification competition publication-title: International joint conference on neural networks – volume: 42 start-page: 1291 year: 2012 end-page: 1307 ident: br001380 article-title: A survey of actor-critic reinforcement learning: standard and natural policy gradients publication-title: IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews – reference: Maclin, R., & Shavlik, J. W. (1995). Combining the predictions of multiple classifiers: Using competitive learning to initialize neural networks. In – start-page: 162 year: 1991 end-page: 168 ident: br000825 article-title: A theory for neural networks with time delays publication-title: Advances in neural information processing systems (NIPS), vol. 3 – reference: . – volume: Vol. 4131 start-page: 71 year: 2006 end-page: 80 ident: br003345 article-title: Learning long term dependencies with recurrent neural networks publication-title: ICANN (1) – volume: 2 start-page: 1019 year: 1999 end-page: 1025 ident: br003160 article-title: Hierarchical models of object recognition in cortex publication-title: Nature Neuroscience – reference: Sak, H., Senior, A., & Beaufays, F. (2014). Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In – start-page: 215 year: 2010 end-page: 222 ident: br000905 article-title: Free-energy based reinforcement learning for vision-based navigation with high-dimensional sensory inputs publication-title: Neural information processing. theory and algorithms (ICONIP), vol. 1 – volume: 9 start-page: 1 year: 1997 end-page: 42 ident: br001610 article-title: Flat minima publication-title: Neural Computation – volume: 352 start-page: 1177 year: 1997 end-page: 1190 ident: br001560 article-title: Generative models for discovering sparse distributed representations publication-title: Philosophical Transactions of the Royal Society B – volume: 22 start-page: 545 year: 1982 end-page: 559 ident: br000815 article-title: Spatial frequency selectivity of cells in macaque visual cortex publication-title: Vision Research – volume: 3 start-page: 23 year: 1990 end-page: 43 ident: br002120 article-title: A time-delay neural network architecture for isolated word recognition publication-title: Neural Networks – start-page: 87 year: 1998 end-page: 93 ident: br003215 article-title: Recurrent neural networks can learn to implement symbol-sensitive counting publication-title: Advances in neural information processing systems (NIPS), vol. 10 – year: 1995 ident: br001885 article-title: Planning and acting in partially observable stochastic domains. Technical report – volume: 28 start-page: 349 year: 2007 end-page: 391 ident: br001830 article-title: Closed-loop learning of visual control policies publication-title: Journal of Artificial Intelligence Research – reference: Pascanu, R., Gulcehre, C., Cho, K., & Bengio, Y. (2013). How to construct deep recurrent neural networks. arXiv Preprint – reference: Schmidhuber, J. (1990c). The neural heat exchanger. Talks at TU Munich (1990), University of Colorado at Boulder (1992), and Z. Li’s NIPS*94 workshop on unsupervised learning. Also published at the – year: 2013 ident: br000910 article-title: How to build a brain: a neural architecture for biological cognition – start-page: 315 year: 1996 end-page: 324 ident: br002520 article-title: Learning to use selective attention and short-term memory in sequential tasks publication-title: From animals to animats 4: proceedings of the fourth international conference on simulation of adaptive behavior – reference: Razavian, A. S., Azizpour, H., Sullivan, J., & Carlsson, S. (2014). CNN features off-the-shelf: an astounding baseline for recognition. ArXiv Preprint – start-page: 23 year: 1995 end-page: 27 ident: br003330 article-title: Evolving neural control systems publication-title: IEEE Expert – volume: 70 start-page: 75 year: 1993 end-page: 108 ident: br001655 article-title: Generative learning structures and processes for generalized connectionist networks publication-title: Information Sciences – year: 2005 ident: br003705 article-title: Intrinsically motivated reinforcement learning publication-title: Advances in neural information processing systems, vol. 17 (NIPS) – start-page: 11 year: 1994 end-page: 18 ident: br004425 article-title: Developing population codes by minimizing description length publication-title: Advances in neural information processing systems vol. 6 – volume: 6 start-page: 559 year: 1994 end-page: 601 ident: br001025 article-title: What is the goal of sensory coding? publication-title: Neural Computation – volume: 58 start-page: 1233 year: 1987 end-page: 1258 ident: br001835 article-title: An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex publication-title: Journal of Neurophysiology – volume: 32 start-page: 41 year: 1998 end-page: 62 ident: br001035 article-title: The hierarchical hidden Markov model: analysis and applications publication-title: Machine Learning – year: 1949 ident: br001495 article-title: The organization of behavior – volume: 39 year: 1977 ident: br000795 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society B – reference: Dickmanns, E. D., Behringer, R., Dickmanns, D., Hildebrandt, T., Maurer, M., & Thomanek, F., et al. (1994). The seeing passenger car ’VaMoRs-P’. In – reference: Hagras, H., Pounds-Cornish, A., Colley, M., Callaghan, V., & Clarke, G. (2004). Evolving spiking neural network controllers for autonomous robots. In – start-page: 23 year: 2001 end-page: 78 ident: br003075 article-title: Dynamical neural networks for control publication-title: A field guide to dynamical recurrent networks – volume: 3 start-page: 5 year: 1994 end-page: 28 ident: br002815 article-title: Learning and evolution in neural networks publication-title: Adaptive Behavior – start-page: 362 year: 1995 end-page: 370 ident: br002340 article-title: Learning policies for partially observable environments: scaling up publication-title: Machine learning: proceedings of the twelfth international conference – year: 2013 ident: br002905 article-title: Intrinsically motivated learning of real world sensorimotor skills with developmental constraints publication-title: Intrinsically motivated learning in natural and artificial systems – volume: 8 start-page: 1 year: 1996 end-page: 40 ident: br002395 article-title: Lower bounds for the computational power of networks of spiking neurons publication-title: Neural Computation – year: 2011 ident: br002360 article-title: Simulated car racing championship competition software manual. Technical report – start-page: 552 year: 2005 end-page: 563 ident: br001230 article-title: A novel approach for the implementation of large scale spiking neural networks on FPGA hardware publication-title: Computational intelligence and bioinspired systems – reference: (pp. 700–705). – volume: 50 start-page: 2061 year: 1962 end-page: 2070 ident: br002735 article-title: An active pulse transmission line simulating nerve axon publication-title: Proceedings of the IRE – year: 1991 ident: br003025 article-title: On information theory and unsupervised neural networks. Dissertation, published as Technical report CUED/F-INFENG/TR.78 – volume: 2 start-page: 53 year: 1989 end-page: 58 ident: br000175 article-title: Neural networks and principal component analysis: learning from examples without local minima publication-title: Neural Networks – reference: Yang, M., Ji, S., Xu, W., Wang, J., Lv, F., & Yu, K., et al. (2009). Detecting human actions in surveillance videos. In – volume: 15 start-page: 937 year: 1999 end-page: 946 ident: br000160 article-title: Exploiting the past and the future in protein secondary structure prediction publication-title: Bioinformatics – volume: 17 start-page: 126 year: 2001 end-page: 136 ident: br001520 article-title: A hierarchical unsupervised growing neural network for clustering gene expression patterns publication-title: Bioinformatics – volume: 306 start-page: 50 year: 2012 end-page: 55 ident: br002480 article-title: The human brain project publication-title: Scientific American – volume: 8 start-page: 997 year: 1997 end-page: 1007 ident: br003080 article-title: Adaptive critic design publication-title: IEEE Transactions on Neural Networks – year: 1994 ident: br003270 article-title: On-line Q-learning using connectionist sytems. Technical report CUED/F-INFENG-TR 166 – start-page: 393 year: 2010 end-page: 400 ident: br001235 article-title: Exponential natural evolution strategies publication-title: Proceedings of the genetic and evolutionary computation conference – reference: (p. 153). – reference: Wu, D., & Shao, L. (2014). Leveraging hierarchical parametric networks for skeletal joints based action segmentation and recognition. In – volume: 4 start-page: 323 year: 1974 end-page: 334 ident: br002750 article-title: Learning automata—a survey publication-title: IEEE Transactions on Systems, Man and Cybernetics – reference: (pp. 762–770). – start-page: 482 year: 1995 end-page: 487 ident: br004250 article-title: Learning to count without a counter: A case study of dynamics and activation landscapes in recurrent networks publication-title: Proceedings of the seventeenth annual conference of the cognitive science society – volume: 8 start-page: 1541 year: 1996 end-page: 1565 ident: br000170 article-title: Hybrid modeling, HMM/NN architectures, and protein applications publication-title: Neural Computation – reference: Szegedy, C., Toshev, A., & Erhan, D. (2013). Deep neural networks for object detection (pp. 2553–2561). – start-page: 115 year: 1993 end-page: 122 ident: br003175 article-title: Learning sequential tasks by incrementally adding higher orders publication-title: Advances in neural information processing systems, vol. 5 – year: 2013 ident: br003485 article-title: My first deep learning system of 1991 + deep learning timeline 1962–2013. Technical report – volume: 121 start-page: 471 year: 1997 end-page: 495 ident: br001850 article-title: Serial order: a parallel distributed processing approach publication-title: Advances in Psychology – volume: 4 start-page: 461 year: 1990 end-page: 476 ident: br001965 article-title: Designing neural networks using genetic algorithms with graph generation system publication-title: Complex Systems – volume: 4 start-page: 703 year: 1992 end-page: 711 ident: br002920 article-title: On the information storage capacity of local learning rules publication-title: Neural Computation – start-page: 345 year: 1995 end-page: 352 ident: br001775 article-title: Reinforcement learning algorithm for partially observable Markov decision problems publication-title: Advances in neural information processing systems, vol. 7 – start-page: 3489 year: 2009 end-page: 3512 ident: br002570 article-title: Cartesian genetic programming publication-title: Proceedings of the 11th annual conference companion on genetic and evolutionary computation conference: late breaking papers – year: 2003 ident: br000780 article-title: Bayesian methods for neural networks – volume: 5 start-page: 279 year: 1994 end-page: 297 ident: br003085 article-title: Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks publication-title: IEEE Transactions on Neural Networks – start-page: 701 year: 2012 end-page: 704 ident: br001095 article-title: Long-short term memory neural networks language modeling for handwriting recognition publication-title: 2012 21st International conference on pattern recognition – volume: 19 start-page: 53 year: 1969 end-page: 91 ident: br001385 article-title: Some networks that can learn, remember, and reproduce any number of complicated space–time patterns, I publication-title: Journal of Mathematics and Mechanics – year: 2012 ident: br003480 article-title: Self-delimiting neural networks. Technical report IDSIA-08-12 – volume: Vol. 8150 start-page: 246 year: 2013 end-page: 253 ident: br003055 article-title: Voxel classification based on triplanar convolutional neural networks applied to cartilage segmentation in knee MRI publication-title: Medical image computing and computer assisted intervention (MICCAI) – volume: 37 start-page: 93 year: 1994 end-page: 105 ident: br004205 article-title: Neural networks: Applications in industry, business and science publication-title: Communications of the ACM – volume: 114 start-page: 679 year: 1965 end-page: 681 ident: br002010 article-title: On the representation of continuous functions of several variables by superposition of continuous functions of one variable and addition publication-title: Doklady Akademii Nauk SSSR – volume: 14 start-page: 97 year: 2005 end-page: 103 ident: br000320 article-title: Face localization and tracking in the neural abstraction pyramid publication-title: Neural Computing and Applications – volume: 19 start-page: 757 year: 2007 end-page: 779 ident: br003525 article-title: Training recurrent networks by Evolino publication-title: Neural Computation – start-page: 815 year: 1998 end-page: 821 ident: br002285 article-title: Inferring sparse, overcomplete image codes using an efficient coding framework publication-title: Advances in neural information processing systems (NIPS), vol. 10 – volume: 4 start-page: 1107 year: 2003 end-page: 1149 ident: br002110 article-title: Least-squares policy iteration publication-title: Journal of Machine Learning Research – volume: 17 year: 1987 ident: br004140 article-title: Building and understanding adaptive systems: A statistical/numerical approach to factory automation and brain research publication-title: IEEE Transactions on Systems, Man and Cybernetics – reference: Riedmiller, M., Lange, S., & Voigtlaender, A. (2012). Autonomous reinforcement learning on raw visual input data in a real world application. In – volume: 308 start-page: 529 year: 2005 end-page: 534 ident: br000385 article-title: Parallel and serial neural mechanisms for visual search in macaque area V4 publication-title: Science – volume: 4 start-page: 203 year: 1993 end-page: 222 ident: br004380 article-title: A review of evolutionary artificial neural networks publication-title: International Journal of Intelligent Systems – volume: 6 start-page: 182 year: 1995 end-page: 195 ident: br000150 article-title: Gradient descent learning algorithms overview: A general dynamical systems perspective publication-title: IEEE Transactions on Neural Networks – start-page: 38 year: 2001 end-page: 61 ident: br001055 article-title: Evolution of spiking neural controllers for autonomous vision-based robots publication-title: Evolutionary robotics. From intelligent robotics to artificial life – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: br001565 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Computation – volume: 24 start-page: 2994 year: 2012 end-page: 3024 ident: br002020 article-title: Incremental slow feature analysis: Adaptive low-complexity slow feature updating from high-dimensional input streams publication-title: Neural Computation – volume: 1 start-page: 151 year: 1989 end-page: 160 ident: br000250 article-title: What size net gives valid generalization? publication-title: Neural Computation – year: 2001 ident: br001490 article-title: Kalman filtering and neural networks – year: 1962 ident: br003240 article-title: Principles of neurodynamics – year: 1965 ident: br004255 publication-title: The algebraic eigenvalue problem – volume: 59 start-page: 4498 year: 1999 ident: br001930 article-title: Hebbian learning and spiking neurons publication-title: Physical Review E – start-page: 396 year: 1990 end-page: 404 ident: br002165 article-title: Handwritten digit recognition with a back-propagation network publication-title: Advances in neural information processing systems, vol. 2 – reference: LeCun, Y. (1985). Une procédure d’apprentissage pour réseau à seuil asymétrique. In – reference: Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009). Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In – volume: 6 start-page: 4650 year: 2010 ident: br003355 article-title: Metalearning publication-title: Scholarpedia – volume: 40 start-page: 18 year: 2013 end-page: 31 ident: br001135 article-title: Training multi-layered neural network neocognitron publication-title: Neural Networks – start-page: 2852 year: 2012 end-page: 2860 ident: br000620 article-title: Deep neural networks segment neuronal membranes in electron microscopy images publication-title: Advances in neural information processing systems (NIPS) – volume: 14 start-page: 715 year: 2002 end-page: 770 ident: br004315 article-title: Slow feature analysis: Unsupervised learning of invariances publication-title: Neural Computation – volume: 6 start-page: 669 year: 1995 end-page: 677 ident: br004400 article-title: Dynamic learning rate optimization of the backpropagation algorithm publication-title: IEEE Transactions on Neural Networks – reference: (pp. 836–843). – volume: 22 start-page: 1473 year: 2010 end-page: 1492 ident: br002535 article-title: Learning to represent spatial transformations with factored higher-order Boltzmann machines publication-title: Neural Computation – reference: Ciresan, D. C., Giusti, A., Gambardella, L. M., & Schmidhuber, J. (2013). Mitosis detection in breast cancer histology images with deep neural networks. In – volume: 5 start-page: 39 year: 1994 end-page: 53 ident: br002465 article-title: Genetic evolution of the topology and weight distribution of neural networks publication-title: IEEE Transactions on Neural Networks – volume: 2 start-page: 417 year: 1995 end-page: 434 ident: br002560 article-title: Evolving mobile robots in simulated and real environments publication-title: Artificial Life – year: 1994 ident: br000200 article-title: Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning. Technical report CMU-CS-94-163 – start-page: 406 year: 1963 end-page: 450 ident: br002595 article-title: Steps toward artificial intelligence publication-title: Computers and thought – year: 1696 ident: br002290 article-title: Analyse des infiniment petits, pour l’intelligence des lignes courbes – start-page: 275 year: 1992 end-page: 282 ident: br002705 article-title: Induction of multiscale temporal structure publication-title: Advances in neural information processing systems (NIPS), vol. 4 – volume: CT-16 start-page: 330 year: 1969 end-page: 337 ident: br000860 article-title: Automated network design—the frequency-domain case publication-title: IEEE Transactions on Circuit Theory – reference: Werbos, P. J. (1981). Applications of advances in nonlinear sensitivity analysis. In – reference: Fernandez, S., Graves, A., & Schmidhuber, J. (2007b). Sequence labelling in structured domains with hierarchical recurrent neural networks. In – start-page: 151 year: 1971 end-page: 158 ident: br000710 article-title: The complexity of theorem-proving procedures publication-title: Proceedings of the 3rd annual ACM symposium on the theory of computing – reference: Schmidhuber, J., Ciresan, D., Meier, U., Masci, J., & Graves, A. (2011). On fast deep nets for AGI vision. In – volume: 37 start-page: 103 year: 2013 end-page: 119 ident: br001130 article-title: Artificial vision by multi-layered neural networks: neocognitron and its advances publication-title: Neural Networks – start-page: 303 year: 1994 end-page: 310 ident: br004070 article-title: Optimal stopping and effective machine complexity in learning publication-title: Advances in neural information processing systems (NIPS’6) – volume: 11 start-page: 625 year: 2010 end-page: 660 ident: br000925 article-title: Why does unsupervised pre-training help deep learning? publication-title: Journal of Machine Learning Research – reference: Geiger, J. T., Zhang, Z., Weninger, F., Schuller, B., & Rigoll, G. (2014). Robust speech recognition using long short-term memory recurrent neural networks for hybrid acoustic modelling. In – year: 2014 ident: br001415 article-title: Deep learning for real-time Atari game play using offline Monte-Carlo tree search planning publication-title: Advances in neural information processing systems, vol. 27 (NIPS) – reference: (pp. 1464–1470). – volume: 19 start-page: 321 year: 1994 end-page: 350 ident: br000820 article-title: Logic program synthesis publication-title: Journal of Logic Programming – volume: 17 start-page: 140 year: 2007 end-page: 147 ident: br000700 article-title: Transformation of shape information in the ventral pathway publication-title: Current Opinion in Neurobiology – reference: , vol. 1 (pp. 194–197), 1996. – start-page: 1 year: 2007 end-page: 8 ident: br003105 article-title: Unsupervised learning of invariant feature hierarchies with applications to object recognition publication-title: Proc. computer vision and pattern recognition conference – volume: 9 start-page: 1015 year: 1997 end-page: 1045 ident: br001960 article-title: Reduction of the Hodgkin–Huxley equations to a single-variable threshold model publication-title: Neural Computation – volume: SMC-13 start-page: 834 year: 1983 end-page: 846 ident: br000235 article-title: Neuronlike adaptive elements that can solve difficult learning control problems publication-title: IEEE Transactions on Systems, Man and Cybernetics – year: 1989 ident: br001255 article-title: Genetic algorithms in search, optimization and machine learning – start-page: 1475 year: 2002 end-page: 1482 ident: br000135 article-title: Reinforcement learning with long short-term memory publication-title: Advances in neural information processing systems, vol. 14 – reference: Gauss, C. F. (1821). Theoria combinationis observationum erroribus minimis obnoxiae (Theory of the combination of observations least subject to error). – volume: 5 start-page: 240 year: 1994 end-page: 254 ident: br000705 article-title: Recurrent neural networks and robust time series prediction publication-title: IEEE Transactions on Neural Networks – reference: (pp. 969–976). – volume: 30 start-page: 20 year: 1999 end-page: 30 ident: br001110 article-title: Phoneme boundary estimation using bidirectional recurrent neural networks and its applications publication-title: Systems and Computers in Japan – start-page: 308 year: 1993 end-page: 315 ident: br002320 article-title: Comparison of two unsupervised neural network models for redundancy reduction publication-title: Proc. of the 1993 connectionist models summer school – volume: 22 start-page: 207 year: 2000 end-page: 215 ident: br003965 article-title: Optimal linear combination of neural networks for improving classification performance publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 210C start-page: 78 year: 2014 end-page: 122 ident: br000190 article-title: The dropout learning algorithm publication-title: Artificial Intelligence – reference: Tonkes, B., & Wiles, J. (1997). Learning a context-free task with a recurrent neural network: An analysis of stability. In – year: 1991 ident: br000455 article-title: Une approche théorique de l’apprentissage connexioniste; applications à la reconnaissance de la parole – volume: 5 start-page: 241 year: 1992 end-page: 259 ident: br004335 article-title: Stacked generalization publication-title: Neural Networks – volume: 6 start-page: 203 year: 1995 end-page: 213 ident: br002715 article-title: Fast neural net simulation with a DSP processor array publication-title: IEEE Transactions on Neural Networks – year: 1975 ident: br001645 article-title: Adaptation in natural and artificial systems – volume: 7 start-page: 923 year: 1990 end-page: 932 ident: br002460 article-title: Preattentive texture discrimination with early vision mechanisms publication-title: Journal of the Optical Society of America A – volume: 37 start-page: 233 year: 1991 end-page: 243 ident: br002070 article-title: Nonlinear principal component analysis using autoassociative neural networks publication-title: AIChE Journal – volume: 45 start-page: 2673 year: 1997 end-page: 2681 ident: br003575 article-title: Bidirectional recurrent neural networks publication-title: IEEE Transactions on Signal Processing – reference: Loiacono, D., Lanzi, P. L., Togelius, J., Onieva, E., Pelta, D. A., & Butz, M. V., et al. (2009). The 2009 simulated car racing championship. – volume: 4 start-page: 273 year: 2012 end-page: 289 ident: br004385 article-title: A developmental approach to structural self-organization in reservoir computing publication-title: IEEE Transactions on Autonomous Mental Development – start-page: 29 year: 1989 end-page: 39 ident: br002650 article-title: Fast learning in multi-resolution hierarchies publication-title: Advances in neural information processing systems (NIPS), vol. 1 – volume: 1 start-page: 160 year: 1962 ident: br004200 article-title: Associative storage and retrieval of digital information in networks of adaptive neurons publication-title: Biological Prototypes and Synthetic Systems – volume: 14 start-page: 2497 year: 2002 end-page: 2529 ident: br003975 article-title: Many-layered learning publication-title: Neural Computation – volume: 36 start-page: 1249 year: 2000 end-page: 1274 ident: br000410 article-title: A survey of computational complexity results in systems and control publication-title: Automatica – volume: 33 start-page: 11515 year: 2013 end-page: 11529 ident: br001970 article-title: Emergence of dynamic memory traces in cortical microcircuit models through STDP publication-title: The Journal of Neuroscience – volume: 6 start-page: 163 year: 1997 end-page: 217 ident: br003325 article-title: Experiments with reinforcement learning in problems with continuous state and action spaces publication-title: Adaptive Behavior – volume: 8 start-page: 279 year: 1992 end-page: 292 ident: br004090 article-title: Q-learning publication-title: Machine Learning – reference: (pp. 585–590). – volume: 20 start-page: 353 year: 2007 end-page: 364 ident: br003780 article-title: Online reservoir adaptation by intrinsic plasticity for backpropagation–decorrelation and echo state learning publication-title: Neural Networks – volume: 1 year: 1988 ident: br004145 article-title: Generalization of backpropagation with application to a recurrent gas market model publication-title: Neural Networks – year: 2006 ident: br001430 article-title: Dimensionality reduction by learning an invariant mapping publication-title: Proc. computer vision and pattern recognition conference – reference: (pp. 539–546). – volume: 6 start-page: 621 year: 1774 end-page: 656 ident: br002135 article-title: Mémoire sur la probabilité des causes par les évènements publication-title: Mémoires de l’Academie Royale des Sciences Presentés par Divers Savan – volume: 14 start-page: 1569 year: 2003 end-page: 1572 ident: br001770 article-title: Simple model of spiking neurons publication-title: IEEE Transactions on Neural Networks – volume: 4 start-page: 175 year: 2008 end-page: 187 ident: br002030 article-title: Multi-layered GMDH-type neural network self-selecting optimum neural network architecture and its application to 3-dimensional medical image recognition of blood vessels publication-title: International Journal of Innovative Computing, Information and Control – reference: Mohamed, A., & Hinton, G. E. (2010). Phone recognition using restricted Boltzmann machines. In – reference: Graves, A., Fernandez, S., Gomez, F. J., & Schmidhuber, J. (2006). Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural nets. In – year: 1991 ident: br000345 article-title: Artificial neural networks and their application to sequence recognition – start-page: 471 year: 1992 end-page: 479 ident: br001420 article-title: Structural risk minimization for character recognition publication-title: Advances in neural information processing systems (NIPS), vol. 4 – volume: 49 start-page: 409 year: 1952 end-page: 436 ident: br001530 article-title: Methods of conjugate gradients for solving linear systems publication-title: Journal of Research of the National Bureau of Standards – year: 1970 ident: br002325 article-title: The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors – year: 1909 ident: br000450 publication-title: Wissenschaftliche Abhandlungen – volume: 38 start-page: 173 year: 1931 end-page: 198 ident: br001250 article-title: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I publication-title: Monatshefte für Mathematik und Physik – reference: Faggin, F. (1992). Neural network hardware. In – volume: 62 start-page: 193 year: 1990 end-page: 199 ident: br003250 article-title: Development of feature detectors by self-organization: A network model publication-title: Biological Cybernetics – volume: 8 start-page: 643 year: 1996 end-page: 674 ident: br000070 article-title: The effects of adding noise during backpropagation training on a generalization performance publication-title: Neural Computation – start-page: 114 year: 2010 end-page: 123 ident: br001410 article-title: Multi-dimensional deep memory atari-go players for parameter exploring policy gradients publication-title: Proceedings of the international conference on artificial neural networks ICANN – reference: Khan, M. M., Khan, G. M., & Miller, J. F. (2010). Evolution of neural networks using Cartesian Genetic Programming. In – reference: ICPR (2012). Contest on Mitosis Detection in Breast Cancer Histological Images (2012). IPAL laboratory and TRIBVN company and pitie-salpetriere hospital and CIALAB of Ohio State Univ. – volume: 24 start-page: 1 year: 1991 end-page: 10 ident: br001880 article-title: Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture publication-title: Signal Processing – volume: 22 start-page: 283 year: 1996 end-page: 290 ident: br002975 article-title: Incremental multi-step Q-learning publication-title: Machine Learning – volume: 6 start-page: 57 year: 1994 end-page: 65 ident: br000090 article-title: An efficient implementation of BP on RISC-based workstations publication-title: Neurocomputing – volume: 4 start-page: 2051 year: 1984 end-page: 2062 ident: br000805 article-title: Stimulus-selective properties of inferior temporal neurons in the macaque publication-title: The Journal of Neuroscience – volume: 22 start-page: 1521 year: 2008 end-page: 1537 ident: br002515 article-title: A system for robotic heart surgery that learns to tie knots using recurrent neural networks publication-title: Advanced Robotics – volume: 1 start-page: 103 year: 1936 end-page: 105 ident: br003050 article-title: Finite combinatory processes-formulation 1 publication-title: The Journal of Symbolic Logic – year: 1987 ident: br000840 article-title: Der genetische algorithmus: eine implementierung in prolog. Technical report – volume: 21 start-page: 199 year: 1995 end-page: 233 ident: br002670 article-title: The parti-game algorithm for variable resolution reinforcement learning in multidimensional state-spaces publication-title: Machine Learning – year: 2014 ident: br003645 article-title: Learning deep and wide: A spectral method for learning deep networks publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 12 start-page: 91 year: 2010 end-page: 97 ident: br001825 article-title: Modeling spiking neural networks on SpiNNaker publication-title: Computing in Science and Engineering – reference: Goodfellow, I. J., Courville, A., & Bengio, Y. (2011). Spike-and-slab sparse coding for unsupervised feature discovery. In – volume: 11 start-page: 195 year: 1993 end-page: 215 ident: br002425 article-title: Using knowledge-based neural networks to improve algorithms: Refining the Chou–Fasman algorithm for protein folding publication-title: Machine Learning – year: 1985 ident: br002935 article-title: Learning-logic. Technical report TR-47 – reference: (pp. 759–766). – volume: 20 start-page: 1165 year: 2008 end-page: 1178 ident: br004100 article-title: Unsupervised learning of individuals and categories from images publication-title: Neural Computation – start-page: 895 year: 1995 end-page: 898 ident: br001075 article-title: Sparse coding in the primate cortex publication-title: The handbook of brain theory and neural networks – reference: Lee, H., Pham, P. T., Largman, Y., & Ng, A. Y. (2009). Unsupervised feature learning for audio classification using convolutional deep belief networks. In – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: br001665 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Networks – reference: Gonzalez-Dominguez, J., Lopez-Moreno, I., Sak, H., Gonzalez-Rodriguez, J., & Moreno, P. J. (2014). Automatic language identification using long short-term memory recurrent neural networks. In – reference: Koutník, J., Gomez, F., & Schmidhuber, J. (2010). Evolving neural networks in compressed weight space. In – start-page: 244 year: 1993 ident: br000575 article-title: A fast stochastic error-descent algorithm for supervised learning and optimization publication-title: Advances in neural information processing systems, vol. 5 – reference: Gauss, C. F. (1809). Theoria motus corporum coelestium in sectionibus conicis solem ambientium. – year: 1969 ident: br000530 article-title: Applied optimal control: optimization, estimation, and control – start-page: 194 year: 1986 end-page: 281 ident: br003715 article-title: Parallel distributed processing: Explorations in the microstructure of cognition publication-title: Information processing in dynamical systems: foundations of harmony theory, vol. 1 – year: 1987 ident: br003205 article-title: The utility driven dynamic error propagation network. Technical report CUED/F-INFENG/TR.1 – reference: [cs.CV]. – volume: 24 start-page: 23 year: 1970 end-page: 26 ident: br001260 article-title: A family of variable-metric methods derived by variational means publication-title: Mathematics of Computation – year: 2014 ident: br001315 article-title: An empirical investigation of catastrophic forgetting in gradient-based neural networks. TR – reference: Schmidhuber, J. (1990d). An on-line algorithm for dynamic reinforcement learning and planning in reactive environments. In – year: 1957 ident: br000335 article-title: Dynamic programming – year: 1991 ident: br001525 article-title: Introduction to the theory of neural computation – volume: 50 start-page: 969 year: 2009 end-page: 978 ident: br003295 article-title: Semantic hashing publication-title: International Journal of Approximate Reasoning – volume: 11 start-page: 1257 year: 1985 end-page: 1268 ident: br000205 article-title: A 15 year perspective on automatic programming publication-title: IEEE Transactions on Software Engineering – reference: (pp. 30–37). – start-page: 1 year: 2011 end-page: 7 ident: br000725 article-title: Intrinsically motivated evolutionary search for vision-based reinforcement learning publication-title: Proceedings of the 2011 IEEE conference on development and learning and epigenetic robotics IEEE-ICDL-EPIROB, vol. 2 – volume: 6 start-page: 933 year: 1993 end-page: 946 ident: br001290 article-title: Neural network control for a closed-loop system using feedback-error-learning publication-title: Neural Networks – start-page: 1609 year: 2008 end-page: 1616 ident: br003855 article-title: A convergent publication-title: Advances in neural information processing systems (NIPS’08), vol. 21 – volume: 1 start-page: 427 year: 2001 end-page: 438 ident: br000300 article-title: Learning iterative image reconstruction in the neural abstraction pyramid publication-title: International Journal of Computational Intelligence and Applications – volume: 24 start-page: 767 year: 2011 end-page: 778 ident: br001125 article-title: Increasing robustness against background noise: visual pattern recognition by a neocognitron publication-title: Neural Networks – reference: Werbos, P. J. (1989b). Neural networks for control and system identification. In – volume: 19 start-page: 577 year: 1965 end-page: 593 ident: br000505 article-title: A class of methods for solving nonlinear simultaneous equations publication-title: Mathematics of Computation – year: 1999 ident: br003570 article-title: On supervised learning from sequential data with applications for speech recognition – start-page: 241 year: 1969 end-page: 252 ident: br004050 article-title: PROW: a step toward automatic program writing publication-title: Proceedings of the 1st international joint conference on artificial intelligence – reference: (pp. 483–487). – year: 1967 ident: br001765 article-title: Cybernetics and forecasting techniques – start-page: 490 year: 2006 end-page: 503 ident: br002820 article-title: Sampling strategies for bag-of-features image classification publication-title: Proc. ECCV 2006 – reference: (pp. 2183–2187). – reference: Pachitariu, M., & Sahani, M. (2013). Regularization and nonlinearities for neural language models: when are they needed? arXiv Preprint – volume: 41 start-page: 230 year: 1936 end-page: 267 ident: br003955 article-title: On computable numbers, with an application to the Entscheidungsproblem publication-title: Proceedings of the London Mathematical Society, Series 2 – reference: Goodfellow, I. J., Bulatov, Y., Ibarz, J., Arnoud, S., & Shet, V. (2014). Multi-digit number recognition from street view imagery using deep convolutional neural networks. ArXiv Preprint – volume: 14 start-page: 85 year: 1973 end-page: 100 ident: br004045 article-title: Self-organization of orientation sensitive cells in the striate cortex publication-title: Kybernetik – reference: (pp. 92–101). – volume: 12 start-page: 2451 year: 2000 end-page: 2471 ident: br001185 article-title: Learning to forget: continual prediction with LSTM publication-title: Neural Computation – year: 1908 ident: br001425 article-title: Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques encastrées. Mémoires présentés par divers savants à l’Académie des sciences de l’Institut de France: Éxtrait – year: 1999 ident: br001700 article-title: Sparse code shrinkage: denoising by maximum likelihood estimation publication-title: Advances in neural information processing systems (NIPS), vol. 12 – volume: 280 start-page: 20122863 year: 2013 ident: br000670 article-title: The evolutionary origins of modularity publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 23 year: 1976 ident: br001395 article-title: Adaptive pattern classification and universal recoding, 2: feedback, expectation, olfaction, and illusions publication-title: Biological Cybernetics – reference: Otsuka, M., Yoshimoto, J., & Doya, K. (2010). Free-energy-based reinforcement learning in a partially observable environment. In – start-page: 2348 year: 2011 end-page: 2356 ident: br001325 article-title: Practical variational inference for neural networks publication-title: Advances in neural information processing systems (NIPS) – volume: 4 start-page: 207 year: 1991 end-page: 224 ident: br002210 article-title: A Gaussian potential function network with hierarchically self-organizing learning publication-title: Neural Networks – year: 2010 ident: br002890 article-title: Goal-oriented representation of the external world: a free-energy-based approach – start-page: 2310 year: 2013 end-page: 2318 ident: br003750 article-title: Compete to compute publication-title: Advances in neural information processing systems (NIPS) – year: 2012 ident: br003905 article-title: Lecture 6.5—RmsProp: Divide the gradient by a running average of its recent magnitude publication-title: COURSERA: Neural Networks for Machine Learning – year: 1989 ident: br004085 article-title: Learning from delayed rewards – volume: 64 start-page: 165 year: 1990 end-page: 170 ident: br001070 article-title: Forming sparse representations by local anti-Hebbian learning publication-title: Biological Cybernetics – volume: 37 start-page: 115 year: 2014 end-page: 123 ident: br004395 article-title: Hierarchical spatiotemporal feature extraction using recurrent online clustering publication-title: Pattern Recognition Letters – start-page: 4 year: 2012 ident: br002085 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in neural information processing systems – year: 1961 ident: br000525 article-title: A steepest-ascent method for solving optimum programming problems. Technical report BR-1303 – volume: 18 start-page: 280 year: 1968 end-page: 315 ident: br002315 article-title: Mathematical models for cellular interaction in development publication-title: Journal of Theoretical Biology – year: 1997 ident: br002610 article-title: Machine learning – start-page: 831 year: 1992 end-page: 838 ident: br004000 article-title: Principles of risk minimization for learning theory publication-title: Advances in neural information processing systems (NIPS), vol. 4 – reference: Gomez, F. J., & Miikkulainen, R. (2003). Active guidance for a finless rocket using neuroevolution. In – start-page: 309 year: 1992 end-page: 316 ident: br004095 article-title: Induction of finite-state automata using second-order recurrent networks publication-title: Advances in neural information processing systems, vol. 4 – start-page: 31 year: 2011 end-page: 40 ident: br001220 article-title: Sequential constant size compressor for reinforcement learning publication-title: Proc. fourth conference on artificial general intelligence – year: 1995 ident: br002755 article-title: Bayesian learning for neural networks – reference: (pp. 2809–2813). – reference: Behnke, S. (2003a). Discovering hierarchical speech features using convolutional non-negative matrix factorization. In – volume: 34 start-page: 997 year: 2004 end-page: 1006 ident: br001870 article-title: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics – volume: 4 start-page: 173 year: 1992 end-page: 193 ident: br002825 article-title: Simplifying neural networks by soft weight sharing publication-title: Neural Computation – volume: 22 start-page: 3207 year: 2010 end-page: 3220 ident: br000630 article-title: Deep big simple neural nets for handwritten digit recogntion publication-title: Neural Computation – start-page: 1 year: 2006 end-page: 6 ident: br003365 article-title: Implementing synaptic plasticity in a VLSI spiking neural network model publication-title: International joint conference on neural networks – reference: (pp. 833–840). – volume: 4 start-page: 237 year: 1996 end-page: 285 ident: br001890 article-title: Reinforcement learning: A survey publication-title: Journal of AI Research – reference: Singh, S. P. (1994). Reinforcement learning algorithms for average-payoff Markovian decision processes. In – year: 2001 ident: br001860 article-title: Graphical models: foundations of neural computation – reference: Euler, L. (1744). Methodus inveniendi. – reference: Baird, L. C. (1995). Residual algorithms: Reinforcement learning with function approximation. In – volume: 15 start-page: 319 year: 2001 end-page: 350 ident: br000260 article-title: Infinite-horizon policy-gradient estimation publication-title: Journal of Artificial Intelligence Research – reference: Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014). Large-scale video classification with convolutional neural networks. In – year: 1994 ident: br002660 article-title: Architecture selection strategies for neural networks: Application to corporate bond rating prediction publication-title: Neural networks in the capital markets – volume: 15 start-page: 194 year: 2012 end-page: 196 ident: br003790 article-title: Emergence of a ‘visual number sense’ in hierarchical generative models publication-title: Nature Neuroscience – volume: 5 start-page: 473 year: 1993 end-page: 482 ident: br001935 article-title: Robustness in multilayer perceptrons publication-title: Neural Computation – reference: (pp. 974–981). – year: 2013 ident: br001215 article-title: Rich feature hierarchies for accurate object detection and semantic segmentation. Technical report – volume: 1 start-page: 87 year: 1989 end-page: 111 ident: br004295 article-title: Experimental analysis of the real-time recurrent learning algorithm publication-title: Connection Science – volume: 13 start-page: 341 year: 2003 end-page: 379 ident: br000225 article-title: Recent advances in hierarchical reinforcement learning publication-title: Discrete Event Dynamic Systems – volume: J62-A start-page: 658 year: 1979 end-page: 665 ident: br001115 article-title: Neural network model for a mechanism of pattern recognition unaffected by shift in position—Neocognitron publication-title: Transactions of the IECE – year: 2013 ident: br002620 article-title: Playing Atari with deep reinforcement learning. Technical report – reference: (pp. 4354–4357). – volume: Vol. 2130 start-page: 684 year: 2001 end-page: 691 ident: br001975 article-title: Unsupervised learning in LSTM recurrent neural networks publication-title: Proc. intl. conf. on artificial neural networks – volume: 28 start-page: 105 year: 1997 end-page: 130 ident: br003535 article-title: Shifting inductive bias with success-story algorithm, adaptive Levin search, and incremental self-improvement publication-title: Machine Learning – volume: 112 start-page: 181 year: 1999 end-page: 211 ident: br003850 article-title: Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning publication-title: Artificial Intelligence – volume: 53 start-page: 370 year: 1763 end-page: 418 ident: br000280 article-title: An essay toward solving a problem in the doctrine of chances publication-title: Philosophical Transactions of the Royal Society of London – volume: 1 start-page: 270 year: 1989 end-page: 280 ident: br004300 article-title: A learning algorithm for continually running fully recurrent networks publication-title: Neural Computation – reference: Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural network acoustic models. In – volume: 7 start-page: 669 year: 1993 end-page: 688 ident: br000500 article-title: Signature verification using a Siamese time delay neural network publication-title: International Journal of Pattern Recognition and Artificial Intelligence – reference: -cut—dynamic discovery of sub-goals in reinforcement learning. In – start-page: 52 year: 1990 end-page: 61 ident: br003395 article-title: Learning algorithms for networks with internal and external feedback publication-title: Proc. of the 1990 connectionist models summer school – volume: 47 start-page: 25 year: 2014 end-page: 39 ident: br001040 article-title: Training restricted Boltzmann machines: an introduction publication-title: Pattern Recognition – reference: (pp. 4620–4626). – volume: 5 start-page: 59 year: 1994 end-page: 66 ident: br000545 article-title: A constructive algorithm that converges for real-valued input patterns publication-title: International Journal of Neural Systems – year: 1998 ident: br003540 publication-title: Advances in kernel methods—support vector learning – volume: 5 start-page: 289 year: 1993 end-page: 304 ident: br003130 article-title: Redundancy reduction as a strategy for unsupervised learning publication-title: Neural Computation – volume: 22 start-page: 247 year: 1986 end-page: 259 ident: br002130 article-title: A self-optimizing, nonsymmetrical neural net for content addressable memory and pattern recognition publication-title: Physica D – year: 1995 ident: br002585 article-title: Neural networks for control – year: 1989 ident: br004270 article-title: Complexity of exact gradient computation algorithms for recurrent neural networks. Technical report NU-CCS-89-27 – volume: 70 start-page: 119 year: 1994 end-page: 165 ident: br003930 article-title: Knowledge-based artificial neural networks publication-title: Artificial Intelligence – volume: 65 start-page: 386 year: 1958 ident: br003235 article-title: The perceptron: a probabilistic model for information storage and organization in the brain publication-title: Psychological Review – start-page: 875 year: 1991 end-page: 882 ident: br004110 article-title: Generalization by weight-elimination with application to forecasting publication-title: Advances in neural information processing systems (NIPS), vol. 3 – volume: 47 start-page: 1642 year: 2014 end-page: 1652 ident: br004405 article-title: Neural network language models for off-line handwriting recognition publication-title: Pattern Recognition – volume: 45 start-page: 434 year: 1997 end-page: 444 ident: br000340 article-title: A blind source separation technique using second-order statistics publication-title: IEEE Transactions on Signal Processing – volume: Vol. 7700 start-page: 687 year: 2012 end-page: 707 ident: br004435 article-title: Forecasting with recurrent neural networks: 12 tricks publication-title: Neural networks: tricks of the trade – volume: 22 start-page: 11 year: 1996 end-page: 32 ident: br002680 article-title: Efficient reinforcement learning through symbiotic evolution publication-title: Machine Learning – reference: (pp. 820–825). – volume: 338 start-page: 1202 year: 2012 end-page: 1205 ident: br000915 article-title: A large-scale model of the functioning brain publication-title: Science – start-page: 493 year: 1996 end-page: 499 ident: br001535 article-title: Hierarchical recurrent neural networks for long-term dependencies publication-title: Advances in neural information processing systems, vol. 8 – year: 2009 ident: br001480 publication-title: The elements of statistical learning – start-page: 1050 year: 1998 end-page: 1056 ident: br003060 article-title: Multi-time models for temporally abstract planning publication-title: Advances in neural information processing systems (NIPS) – start-page: 279 year: 1990 end-page: 284 ident: br002005 article-title: Self-organizing hierarchical feature maps publication-title: International joint conference on neural networks – reference: Wang, S., & Manning, C. (2013). Fast dropout training. In – volume: 73 start-page: 415 issue: 3 year: 2012 ident: 10.1016/j.neunet.2014.09.003_br000830 article-title: How does the brain solve visual object recognition? publication-title: Neuron doi: 10.1016/j.neuron.2012.01.010 – start-page: 1 year: 2011 ident: 10.1016/j.neunet.2014.09.003_br000725 article-title: Intrinsically motivated evolutionary search for vision-based reinforcement learning – volume: 63 start-page: 487 issue: 6 year: 1990 ident: 10.1016/j.neunet.2014.09.003_br001060 article-title: Evolving neural networks publication-title: Biological Cybernetics doi: 10.1007/BF00199581 – volume: Vol. 2766 year: 2003 ident: 10.1016/j.neunet.2014.09.003_br000315 – start-page: 34 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br003020 article-title: Holographic recurrent networks – volume: 12 start-page: 2451 issue: 10 year: 2000 ident: 10.1016/j.neunet.2014.09.003_br001185 article-title: Learning to forget: continual prediction with LSTM publication-title: Neural Computation doi: 10.1162/089976600300015015 – volume: 79 start-page: 2554 year: 1982 ident: 10.1016/j.neunet.2014.09.003_br001660 article-title: Neural networks and physical systems with emergent collective computational abilities publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.79.8.2554 – volume: 5 start-page: 157 issue: 2 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br000365 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.279181 – volume: 9 start-page: 1 issue: 1 year: 1997 ident: 10.1016/j.neunet.2014.09.003_br001610 article-title: Flat minima publication-title: Neural Computation doi: 10.1162/neco.1997.9.1.1 – volume: 4 start-page: 237 year: 1996 ident: 10.1016/j.neunet.2014.09.003_br001890 article-title: Reinforcement learning: A survey publication-title: Journal of AI Research – volume: 23 start-page: 349 issue: 3 year: 2007 ident: 10.1016/j.neunet.2014.09.003_br000490 article-title: Simulation of networks of spiking neurons: a review of tools and strategies publication-title: Journal of Computational Neuroscience doi: 10.1007/s10827-007-0038-6 – volume: 6 start-page: 933 issue: 7 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br001290 article-title: Neural network control for a closed-loop system using feedback-error-learning publication-title: Neural Networks doi: 10.1016/S0893-6080(09)80004-X – volume: 60 start-page: 1126 issue: 6 year: 2008 ident: 10.1016/j.neunet.2014.09.003_br002080 article-title: Matching categorical object representations in inferior temporal cortex of man and monkey publication-title: Neuron doi: 10.1016/j.neuron.2008.10.043 – year: 2001 ident: 10.1016/j.neunet.2014.09.003_br002140 – start-page: 576 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br004120 article-title: Cresceptron: a self-organizing neural network which grows adaptively – year: 2002 ident: 10.1016/j.neunet.2014.09.003_br001195 – volume: 10 start-page: 683 issue: 4 year: 1997 ident: 10.1016/j.neunet.2014.09.003_br000770 article-title: Non-linear feature extraction by redundancy reduction in an unsupervised stochastic neural network publication-title: Neural Networks doi: 10.1016/S0893-6080(96)00110-4 – ident: 10.1016/j.neunet.2014.09.003_br000870 – volume: 7 issue: 9 year: 2013 ident: 10.1016/j.neunet.2014.09.003_br002380 article-title: An intrinsic value system for developing multiple invariant representations with incremental slowness learning publication-title: Frontiers in Neurorobotics – year: 2013 ident: 10.1016/j.neunet.2014.09.003_br002860 – year: 2014 ident: 10.1016/j.neunet.2014.09.003_br001315 – start-page: 112 year: 2004 ident: 10.1016/j.neunet.2014.09.003_br000230 article-title: Intrinsically motivated learning of hierarchical collections of skills – start-page: 593 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br001500 article-title: Theory of the backpropagation neural network – start-page: 308 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br002320 article-title: Comparison of two unsupervised neural network models for redundancy reduction – volume: 42 start-page: 265 issue: 1 year: 1990 ident: 10.1016/j.neunet.2014.09.003_br001450 article-title: A stochastic version of the delta rule publication-title: Physica D: Nonlinear Phenomena doi: 10.1016/0167-2789(90)90081-Y – year: 2013 ident: 10.1016/j.neunet.2014.09.003_br003485 – year: 1998 ident: 10.1016/j.neunet.2014.09.003_br003840 – volume: 8 start-page: 1 issue: 1 year: 1996 ident: 10.1016/j.neunet.2014.09.003_br002395 article-title: Lower bounds for the computational power of networks of spiking neurons publication-title: Neural Computation doi: 10.1162/neco.1996.8.1.1 – volume: 6 start-page: 147 issue: 1 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br002960 article-title: Fast exact multiplication by the Hessian publication-title: Neural Computation doi: 10.1162/neco.1994.6.1.147 – volume: 11 start-page: 185 issue: 2 year: 1968 ident: 10.1016/j.neunet.2014.09.003_br004055 article-title: An information theoretic measure for classification publication-title: The Computer Journal doi: 10.1093/comjnl/11.2.185 – volume: 8 start-page: 229 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br004275 article-title: Simple statistical gradient-following algorithms for connectionist reinforcement learning publication-title: Machine Learning doi: 10.1007/BF00992696 – volume: 4 start-page: 559 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br000105 article-title: Understanding retinal color coding from first principles publication-title: Neural Computation doi: 10.1162/neco.1992.4.4.559 – volume: PP start-page: 1 issue: 99 year: 2014 ident: 10.1016/j.neunet.2014.09.003_br002775 article-title: Minitaur, an event-driven FPGA-based spiking network accelerator publication-title: IEEE Transactions on Very Large Scale Integration (VLSI) Systems – start-page: 6015 year: 2000 ident: 10.1016/j.neunet.2014.09.003_br000865 article-title: The growing hierarchical self-organizing map – volume: 64 start-page: 165 year: 1990 ident: 10.1016/j.neunet.2014.09.003_br001070 article-title: Forming sparse representations by local anti-Hebbian learning publication-title: Biological Cybernetics doi: 10.1007/BF02331346 – volume: 18 start-page: 602 issue: 5–6 year: 2005 ident: 10.1016/j.neunet.2014.09.003_br001360 article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures publication-title: Neural Networks doi: 10.1016/j.neunet.2005.06.042 – volume: 1 start-page: 151 issue: 1 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br000250 article-title: What size net gives valid generalization? publication-title: Neural Computation doi: 10.1162/neco.1989.1.1.151 – volume: 8 start-page: 997 issue: 5 year: 1997 ident: 10.1016/j.neunet.2014.09.003_br003080 article-title: Adaptive critic design publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.623201 – volume: 4 start-page: 243 issue: 2 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br003425 article-title: A fixed size storage O(n3) time complexity learning algorithm for fully recurrent continually running networks publication-title: Neural Computation doi: 10.1162/neco.1992.4.2.243 – volume: 16 start-page: 985 issue: 7 year: 2003 ident: 10.1016/j.neunet.2014.09.003_br003310 article-title: Inter-module credit assignment in modular reinforcement learning publication-title: Neural Networks doi: 10.1016/S0893-6080(02)00235-6 – volume: 37 start-page: 103 year: 2013 ident: 10.1016/j.neunet.2014.09.003_br001130 article-title: Artificial vision by multi-layered neural networks: neocognitron and its advances publication-title: Neural Networks doi: 10.1016/j.neunet.2012.09.016 – volume: 72 start-page: 3634 issue: 23 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br002630 article-title: Separation of independent signals using time-delayed correlations publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.72.3634 – start-page: 317 year: 2005 ident: 10.1016/j.neunet.2014.09.003_br003145 article-title: Neural fitted Q iteration—first experiences with a data efficient neural reinforcement learning method – volume: 2 start-page: 135 issue: 1 and 2 year: 1991 ident: 10.1016/j.neunet.2014.09.003_br003505 article-title: Learning to generate artificial fovea trajectories for target detection publication-title: International Journal of Neural Systems – year: 2001 ident: 10.1016/j.neunet.2014.09.003_br001595 article-title: Gradient flow in recurrent nets: the difficulty of learning long-term dependencies – year: 2013 ident: 10.1016/j.neunet.2014.09.003_br000910 – ident: 10.1016/j.neunet.2014.09.003_br001915 doi: 10.1109/CVPR.2014.223 – volume: 12 start-page: 2121 year: 2011 ident: 10.1016/j.neunet.2014.09.003_br000895 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: The Journal of Machine Learning – start-page: 769 year: 2009 ident: 10.1016/j.neunet.2014.09.003_br001805 article-title: Natural image denoising with convolutional networks – year: 1992 ident: 10.1016/j.neunet.2014.09.003_br003660 – start-page: 6645 year: 2013 ident: 10.1016/j.neunet.2014.09.003_br001355 article-title: Speech recognition with deep recurrent neural networks – volume: 42 start-page: 1291 issue: 6 year: 2012 ident: 10.1016/j.neunet.2014.09.003_br001380 article-title: A survey of actor-critic reinforcement learning: standard and natural policy gradients publication-title: IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews doi: 10.1109/TSMCC.2012.2218595 – volume: 10 start-page: 857 issue: 5 year: 1997 ident: 10.1016/j.neunet.2014.09.003_br003450 article-title: Discovering neural nets with low Kolmogorov complexity and high generalization capability publication-title: Neural Networks doi: 10.1016/S0893-6080(96)00127-X – volume: 32 start-page: 333 year: 2012 ident: 10.1016/j.neunet.2014.09.003_br000645 article-title: Multi-column deep neural network for traffic sign classification publication-title: Neural Networks doi: 10.1016/j.neunet.2012.02.023 – start-page: 200 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br004340 article-title: Bayesian backpropagation over i-o functions rather than weights – ident: 10.1016/j.neunet.2014.09.003_br001780 doi: 10.1109/ICSMC.1990.142119 – volume: 5 start-page: 140 issue: 1 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br000060 article-title: Statistical theory of learning curves under entropic loss criterion publication-title: Neural Computation doi: 10.1162/neco.1993.5.1.140 – start-page: 1786 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br004105 article-title: Results of the time series prediction competition at the Santa Fe Institute – volume: 195 start-page: 215 issue: 1 year: 1968 ident: 10.1016/j.neunet.2014.09.003_br001675 article-title: Receptive fields and functional architecture of monkey striate cortex publication-title: The Journal of Physiology doi: 10.1113/jphysiol.1968.sp008455 – volume: 8 start-page: 183 issue: 3 year: 2000 ident: 10.1016/j.neunet.2014.09.003_br000515 article-title: Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons publication-title: Journal of Computational Neuroscience doi: 10.1023/A:1008925309027 – volume: 5 start-page: 39 issue: 1 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br002465 article-title: Genetic evolution of the topology and weight distribution of neural networks publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.265959 – volume: 1 start-page: 1 issue: 1 year: 1991 ident: 10.1016/j.neunet.2014.09.003_br001000 article-title: Distributed hierarchical processing in the primate cerebral cortex publication-title: Cerebral Cortex doi: 10.1093/cercor/1.1.1 – volume: 40 start-page: 681 issue: 3 year: 2002 ident: 10.1016/j.neunet.2014.09.003_br000010 article-title: Learning algorithms for Markov decision processes with average cost publication-title: SIAM Journal on Control and Optimization doi: 10.1137/S0363012999361974 – ident: 10.1016/j.neunet.2014.09.003_br000940 – year: 1966 ident: 10.1016/j.neunet.2014.09.003_br001065 – volume: 7 start-page: 889 year: 1995 ident: 10.1016/j.neunet.2014.09.003_br000760 article-title: The Helmholtz machine publication-title: Neural Computation doi: 10.1162/neco.1995.7.5.889 – volume: Vol. 5212 start-page: 234 year: 2008 ident: 10.1016/j.neunet.2014.09.003_br003255 article-title: State-dependent exploration for policy gradient methods – start-page: 1 year: 2013 ident: 10.1016/j.neunet.2014.09.003_br004370 article-title: Hierarchical modular optimization of convolutional networks achieves representations similar to macaque IT and human ventral stream – ident: 10.1016/j.neunet.2014.09.003_br004390 doi: 10.1109/ICDAR.2013.218 – volume: 5 start-page: 527 year: 1995 ident: 10.1016/j.neunet.2014.09.003_br001755 article-title: The review of problems solvable by algorithms of the group method of data handling (GMDH) publication-title: Pattern Recognition and Image Analysis/Raspoznavaniye Obrazov I Analiz Izobrazhenii – ident: 10.1016/j.neunet.2014.09.003_br001300 – volume: 1 start-page: 47 issue: 1 year: 1986 ident: 10.1016/j.neunet.2014.09.003_br002615 article-title: Explanation-based generalization: A unifying view publication-title: Machine Learning doi: 10.1007/BF00116250 – start-page: 482 year: 1995 ident: 10.1016/j.neunet.2014.09.003_br004250 article-title: Learning to count without a counter: A case study of dynamics and activation landscapes in recurrent networks – ident: 10.1016/j.neunet.2014.09.003_br000035 – volume: 15 start-page: 346 issue: 3 year: 2011 ident: 10.1016/j.neunet.2014.09.003_br000675 article-title: On the performance of indirect encoding across the continuum of regularity publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2010.2104157 – volume: 148 start-page: 574 year: 1959 ident: 10.1016/j.neunet.2014.09.003_br004245 article-title: Receptive fields of single neurones in the cat’s striate cortex publication-title: Journal of Physiology doi: 10.1113/jphysiol.1959.sp006308 – start-page: 81 year: 2012 ident: 10.1016/j.neunet.2014.09.003_br000605 article-title: Tikhonov-type regularization for restricted Boltzmann machines – year: 2010 ident: 10.1016/j.neunet.2014.09.003_br002890 – start-page: 533 year: 2012 ident: 10.1016/j.neunet.2014.09.003_br002900 article-title: Local feature based online mode detection with recurrent neural networks – year: 1988 ident: 10.1016/j.neunet.2014.09.003_br004290 – volume: 6 start-page: 1155 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br002470 article-title: First-order recurrent neural networks and deterministic finite state automata publication-title: Neural Computation doi: 10.1162/neco.1994.6.6.1155 – volume: 4 start-page: 2051 issue: 8 year: 1984 ident: 10.1016/j.neunet.2014.09.003_br000805 article-title: Stimulus-selective properties of inferior temporal neurons in the macaque publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.04-08-02051.1984 – volume: 21 start-page: 1392 issue: 9 year: 2008 ident: 10.1016/j.neunet.2014.09.003_br004345 article-title: Learning to play go using recursive neural networks publication-title: Neural Networks doi: 10.1016/j.neunet.2008.02.002 – year: 1986 ident: 10.1016/j.neunet.2014.09.003_br004260 – volume: Vol. 2130 start-page: 684 year: 2001 ident: 10.1016/j.neunet.2014.09.003_br001975 article-title: Unsupervised learning in LSTM recurrent neural networks – volume: 50 start-page: 2061 issue: 10 year: 1962 ident: 10.1016/j.neunet.2014.09.003_br002735 article-title: An active pulse transmission line simulating nerve axon publication-title: Proceedings of the IRE doi: 10.1109/JRPROC.1962.288235 – start-page: 11 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br003320 article-title: An optimality principle for unsupervised learning – volume: 2 start-page: 17 issue: 1–2 year: 1991 ident: 10.1016/j.neunet.2014.09.003_br000285 article-title: Unsupervised learning procedures for neural networks publication-title: International Journal of Neural Systems doi: 10.1142/S0129065791000030 – volume: 280 start-page: 20122863 issue: 1755 year: 2013 ident: 10.1016/j.neunet.2014.09.003_br000670 article-title: The evolutionary origins of modularity publication-title: Proceedings of the Royal Society B: Biological Sciences doi: 10.1098/rspb.2012.2863 – volume: 59 start-page: 4498 issue: 4 year: 1999 ident: 10.1016/j.neunet.2014.09.003_br001930 article-title: Hebbian learning and spiking neurons publication-title: Physical Review E doi: 10.1103/PhysRevE.59.4498 – year: 1992 ident: 10.1016/j.neunet.2014.09.003_br002065 – volume: 6 start-page: 1212 issue: 5 year: 1995 ident: 10.1016/j.neunet.2014.09.003_br002965 article-title: Gradient calculations for dynamic recurrent neural networks: A survey publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.410363 – volume: 338 start-page: 1202 issue: 6111 year: 2012 ident: 10.1016/j.neunet.2014.09.003_br000915 article-title: A large-scale model of the functioning brain publication-title: Science doi: 10.1126/science.1225266 – volume: 35 start-page: 221 issue: 1 year: 2013 ident: 10.1016/j.neunet.2014.09.003_br001815 article-title: 3D convolutional neural networks for human action recognition publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2012.59 – volume: 53 start-page: 370 year: 1763 ident: 10.1016/j.neunet.2014.09.003_br000280 article-title: An essay toward solving a problem in the doctrine of chances publication-title: Philosophical Transactions of the Royal Society of London doi: 10.1098/rstl.1763.0053 – volume: Vol. 2130 start-page: 87 year: 2001 ident: 10.1016/j.neunet.2014.09.003_br001625 article-title: Learning to learn using gradient descent – start-page: 1458 year: 1991 ident: 10.1016/j.neunet.2014.09.003_br003410 article-title: Curious model-building control systems – volume: 17 start-page: 487 issue: 2 year: 2005 ident: 10.1016/j.neunet.2014.09.003_br004310 article-title: Loading deep networks is hard: The pyramidal case publication-title: Neural Computation doi: 10.1162/0899766053011519 – start-page: 895 year: 1995 ident: 10.1016/j.neunet.2014.09.003_br001075 article-title: Sparse coding in the primate cortex – ident: 10.1016/j.neunet.2014.09.003_br003700 – ident: 10.1016/j.neunet.2014.09.003_br002540 doi: 10.1007/3-540-36755-1_25 – start-page: 265 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br004060 article-title: Time series prediction by using a connectionist network with internal delay lines – start-page: 815 year: 1998 ident: 10.1016/j.neunet.2014.09.003_br002285 article-title: Inferring sparse, overcomplete image codes using an efficient coding framework – year: 2005 ident: 10.1016/j.neunet.2014.09.003_br003705 article-title: Intrinsically motivated reinforcement learning – volume: 7 issue: 178 year: 2013 ident: 10.1016/j.neunet.2014.09.003_br002830 article-title: Real-time classification and sensor fusion with a spiking deep belief network publication-title: Frontiers in Neuroscience – ident: 10.1016/j.neunet.2014.09.003_br002740 – volume: 39 year: 1977 ident: 10.1016/j.neunet.2014.09.003_br000795 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society B doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: 10.1016/j.neunet.2014.09.003_br003360 – volume: 6 start-page: 559 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br001025 article-title: What is the goal of sensory coding? publication-title: Neural Computation doi: 10.1162/neco.1994.6.4.559 – volume: 24 start-page: 677 year: 2014 ident: 10.1016/j.neunet.2014.09.003_br001635 article-title: Emergence of complex computational structures from chaotic neural networks through reward-modulated Hebbian learning publication-title: Cerebral Cortex doi: 10.1093/cercor/bhs348 – volume: 6 start-page: 669 issue: 3 year: 1995 ident: 10.1016/j.neunet.2014.09.003_br004400 article-title: Dynamic learning rate optimization of the backpropagation algorithm publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.377972 – volume: 1 start-page: 160 year: 1962 ident: 10.1016/j.neunet.2014.09.003_br004200 article-title: Associative storage and retrieval of digital information in networks of adaptive neurons publication-title: Biological Prototypes and Synthetic Systems doi: 10.1007/978-1-4684-1716-6_25 – volume: 38 start-page: 173 year: 1931 ident: 10.1016/j.neunet.2014.09.003_br001250 article-title: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I publication-title: Monatshefte für Mathematik und Physik doi: 10.1007/BF01700692 – start-page: 216 year: 2002 ident: 10.1016/j.neunet.2014.09.003_br003455 article-title: The speed prior: a new simplicity measure yielding near-optimal computable predictions – volume: 1 start-page: 412 issue: 3 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br000215 article-title: Finding minimum entropy codes publication-title: Neural Computation doi: 10.1162/neco.1989.1.3.412 – ident: 10.1016/j.neunet.2014.09.003_br001310 – volume: 36 start-page: 193 issue: 4 year: 1980 ident: 10.1016/j.neunet.2014.09.003_br001120 article-title: Neocognitron: A self-organizing neural network for a mechanism of pattern recognition unaffected by shift in position publication-title: Biological Cybernetics doi: 10.1007/BF00344251 – start-page: 683 year: 2013 ident: 10.1016/j.neunet.2014.09.003_br000495 article-title: High-performance OCR for printed English and Fraktur using LSTM networks – year: 1995 ident: 10.1016/j.neunet.2014.09.003_br002585 – year: 1992 ident: 10.1016/j.neunet.2014.09.003_br004080 article-title: Kolmogorov complexity and computational complexity – volume: 316 start-page: 688 issue: 5825 year: 2007 ident: 10.1016/j.neunet.2014.09.003_br003475 article-title: Prototype resilient, self-modeling robots publication-title: Science doi: 10.1126/science.316.5825.688c – volume: 18 start-page: 383 issue: 4 year: 1973 ident: 10.1016/j.neunet.2014.09.003_br000890 article-title: The computational solution of optimal control problems with time lag publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.1973.1100330 – ident: 10.1016/j.neunet.2014.09.003_br003600 – volume: 3 start-page: 139 issue: 2 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br001200 article-title: Associative memory in a network of spiking neurons publication-title: Network: Computation in Neural Systems doi: 10.1088/0954-898X/3/2/004 – ident: 10.1016/j.neunet.2014.09.003_br000835 doi: 10.1109/IVS.1994.639472 – volume: 28 start-page: 349 year: 2007 ident: 10.1016/j.neunet.2014.09.003_br001830 article-title: Closed-loop learning of visual control policies publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.2110 – volume: 71 start-page: 1180 year: 2008 ident: 10.1016/j.neunet.2014.09.003_br003000 article-title: Natural actor-critic publication-title: Neurocomputing doi: 10.1016/j.neucom.2007.11.026 – volume: 4 start-page: 124 year: 2013 ident: 10.1016/j.neunet.2014.09.003_br002875 article-title: Recurrent processing during object recognition publication-title: Frontiers in Psychology doi: 10.3389/fpsyg.2013.00124 – year: 1988 ident: 10.1016/j.neunet.2014.09.003_br000935 article-title: Spline smoothing and nonparametric regression – year: 1980 ident: 10.1016/j.neunet.2014.09.003_br003745 – year: 1991 ident: 10.1016/j.neunet.2014.09.003_br001525 – ident: 10.1016/j.neunet.2014.09.003_br004410 – year: 1990 ident: 10.1016/j.neunet.2014.09.003_br001875 – ident: 10.1016/j.neunet.2014.09.003_br003165 – volume: 13 start-page: 341 issue: 4 year: 2003 ident: 10.1016/j.neunet.2014.09.003_br000225 article-title: Recent advances in hierarchical reinforcement learning publication-title: Discrete Event Dynamic Systems doi: 10.1023/A:1025696116075 – ident: 10.1016/j.neunet.2014.09.003_br002040 – year: 2009 ident: 10.1016/j.neunet.2014.09.003_br001370 – start-page: 3489 year: 2009 ident: 10.1016/j.neunet.2014.09.003_br002570 article-title: Cartesian genetic programming – volume: 37 start-page: 93 issue: 3 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br004205 article-title: Neural networks: Applications in industry, business and science publication-title: Communications of the ACM doi: 10.1145/175247.175257 – volume: 8 start-page: 1135 issue: 6 year: 1996 ident: 10.1016/j.neunet.2014.09.003_br000570 article-title: The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction publication-title: Neural Computation doi: 10.1162/neco.1996.8.6.1135 – year: 1992 ident: 10.1016/j.neunet.2014.09.003_br003515 – volume: 41 start-page: 230 year: 1936 ident: 10.1016/j.neunet.2014.09.003_br003955 article-title: On computable numbers, with an application to the Entscheidungsproblem publication-title: Proceedings of the London Mathematical Society, Series 2 – ident: 10.1016/j.neunet.2014.09.003_br003990 – year: 1995 ident: 10.1016/j.neunet.2014.09.003_br001505 article-title: Overview of neural hardware – year: 1994 ident: 10.1016/j.neunet.2014.09.003_br001640 – volume: Vol. 1524 year: 1998 ident: 10.1016/j.neunet.2014.09.003_br002880 – volume: 24 start-page: 2994 issue: 11 year: 2012 ident: 10.1016/j.neunet.2014.09.003_br002020 article-title: Incremental slow feature analysis: Adaptive low-complexity slow feature updating from high-dimensional input streams publication-title: Neural Computation doi: 10.1162/NECO_a_00344 – year: 1985 ident: 10.1016/j.neunet.2014.09.003_br004075 – volume: 112 start-page: 181 issue: 1–2 year: 1999 ident: 10.1016/j.neunet.2014.09.003_br003850 article-title: Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(99)00052-1 – volume: 35 start-page: 1798 issue: 8 year: 2013 ident: 10.1016/j.neunet.2014.09.003_br000355 article-title: Representation learning: a review and new perspectives publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2013.50 – volume: 19 start-page: 53 year: 1969 ident: 10.1016/j.neunet.2014.09.003_br001385 article-title: Some networks that can learn, remember, and reproduce any number of complicated space–time patterns, I publication-title: Journal of Mathematics and Mechanics – ident: 10.1016/j.neunet.2014.09.003_br003560 – start-page: 701 year: 2012 ident: 10.1016/j.neunet.2014.09.003_br001095 article-title: Long-short term memory neural networks language modeling for handwriting recognition – start-page: 6 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br000030 article-title: Application of time-bounded Kolmogorov complexity in complexity theory – ident: 10.1016/j.neunet.2014.09.003_br000325 doi: 10.1109/IJCNN.1998.685873 – volume: 345 start-page: 668 issue: 6197 year: 2014 ident: 10.1016/j.neunet.2014.09.003_br002545 article-title: A million spiking-neuron integrated circuit with a scalable communication network and interface publication-title: Science doi: 10.1126/science.1254642 – year: 1909 ident: 10.1016/j.neunet.2014.09.003_br000450 – volume: 14 start-page: 1413 issue: 5 year: 1973 ident: 10.1016/j.neunet.2014.09.003_br002265 article-title: On the notion of a random sequence publication-title: Soviet Mathematics Doklady – volume: Vol. 2(1) year: 2009 ident: 10.1016/j.neunet.2014.09.003_br000350 – volume: 19 start-page: 321 issue: 20 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br000820 article-title: Logic program synthesis publication-title: Journal of Logic Programming doi: 10.1016/0743-1066(94)90029-9 – volume: 2 start-page: 68 year: 2003 ident: 10.1016/j.neunet.2014.09.003_br002035 article-title: Modified GMDH method and models quality evaluation by visualization publication-title: Control Systems and Computers – volume: 1 start-page: 541 issue: 4 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br002160 article-title: Back-propagation applied to handwritten zip code recognition publication-title: Neural Computation doi: 10.1162/neco.1989.1.4.541 – volume: Vol. 3696 start-page: 575 year: 2005 ident: 10.1016/j.neunet.2014.09.003_br000370 article-title: Classifying unprompted speech by retraining LSTM nets – volume: 12 start-page: 1333 issue: 6 year: 2001 ident: 10.1016/j.neunet.2014.09.003_br001180 article-title: LSTM recurrent networks learn simple context free and context sensitive languages publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.963769 – start-page: 337 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br003895 article-title: Learning via task decomposition – volume: 22 start-page: 545 issue: 5 year: 1982 ident: 10.1016/j.neunet.2014.09.003_br000815 article-title: Spatial frequency selectivity of cells in macaque visual cortex publication-title: Vision Research doi: 10.1016/0042-6989(82)90113-4 – start-page: 667 year: 1991 ident: 10.1016/j.neunet.2014.09.003_br004210 article-title: Evolving neural network controllers for unstable systems – start-page: 1273 year: 2007 ident: 10.1016/j.neunet.2014.09.003_br003630 article-title: Recursive ICA – volume: 19 start-page: 757 issue: 3 year: 2007 ident: 10.1016/j.neunet.2014.09.003_br003525 article-title: Training recurrent networks by Evolino publication-title: Neural Computation doi: 10.1162/neco.2007.19.3.757 – start-page: 343 year: 1991 ident: 10.1016/j.neunet.2014.09.003_br003170 article-title: Incremental development of complex behaviors through automatic construction of sensory-motor hierarchies – volume: 3 start-page: 23 year: 1990 ident: 10.1016/j.neunet.2014.09.003_br002120 article-title: A time-delay neural network architecture for isolated word recognition publication-title: Neural Networks doi: 10.1016/0893-6080(90)90044-L – ident: 10.1016/j.neunet.2014.09.003_br000295 doi: 10.1109/IJCNN.1999.831160 – start-page: 151 year: 1971 ident: 10.1016/j.neunet.2014.09.003_br000710 article-title: The complexity of theorem-proving procedures – volume: 22 start-page: 2013 issue: 10 year: 2005 ident: 10.1016/j.neunet.2014.09.003_br002255 article-title: Coding of color and form in the geniculostriate visual pathway publication-title: Journal of the Optical Society of America A doi: 10.1364/JOSAA.22.002013 – volume: 7 start-page: 1129 issue: 6 year: 1995 ident: 10.1016/j.neunet.2014.09.003_br000330 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Computation doi: 10.1162/neco.1995.7.6.1129 – volume: 8 start-page: 643 issue: 3 year: 1996 ident: 10.1016/j.neunet.2014.09.003_br000070 article-title: The effects of adding noise during backpropagation training on a generalization performance publication-title: Neural Computation doi: 10.1162/neco.1996.8.3.643 – year: 2003 ident: 10.1016/j.neunet.2014.09.003_br001270 – volume: 1 start-page: 87 issue: 1 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br004295 article-title: Experimental analysis of the real-time recurrent learning algorithm publication-title: Connection Science doi: 10.1080/09540098908915631 – year: 1961 ident: 10.1016/j.neunet.2014.09.003_br000525 – ident: 10.1016/j.neunet.2014.09.003_br001375 – volume: 6 start-page: 792 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br001465 article-title: Improving model accuracy using optimal linear combinations of trained neural networks publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.377990 – year: 2014 ident: 10.1016/j.neunet.2014.09.003_br000600 – start-page: 762 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br002640 article-title: Training feedforward neural networks using genetic algorithms – year: 1969 ident: 10.1016/j.neunet.2014.09.003_br002600 – volume: 93 start-page: 429 issue: 26 year: 1946 ident: 10.1016/j.neunet.2014.09.003_br001140 article-title: Theory of communication. Part 1: the analysis of information publication-title: Electrical Engineers-Part III: Journal of the Institution of Radio and Communication Engineering – year: 2005 ident: 10.1016/j.neunet.2014.09.003_br001280 article-title: Co-evolving recurrent neurons learn deep memory POMDPs – year: 1991 ident: 10.1016/j.neunet.2014.09.003_br000345 – ident: 10.1016/j.neunet.2014.09.003_br000270 – ident: 10.1016/j.neunet.2014.09.003_br004240 doi: 10.1109/CEC.2008.4631255 – volume: 1 start-page: 425 issue: 4 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br004175 article-title: Learning in artificial neural networks: A statistical perspective publication-title: Neural Computation doi: 10.1162/neco.1989.1.4.425 – volume: CT-16 start-page: 330 year: 1969 ident: 10.1016/j.neunet.2014.09.003_br000860 article-title: Automated network design—the frequency-domain case publication-title: IEEE Transactions on Circuit Theory doi: 10.1109/TCT.1969.1082967 – year: 1992 ident: 10.1016/j.neunet.2014.09.003_br003340 – year: 1987 ident: 10.1016/j.neunet.2014.09.003_br003205 – volume: 34 start-page: 997 issue: 2 year: 2004 ident: 10.1016/j.neunet.2014.09.003_br001870 article-title: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics doi: 10.1109/TSMCB.2003.818557 – volume: 4 start-page: 2379 year: 1987 ident: 10.1016/j.neunet.2014.09.003_br001020 article-title: Relations between the statistics of natural images and the response properties of cortical cells publication-title: Journal of the Optical Society of America doi: 10.1364/JOSAA.4.002379 – year: 1962 ident: 10.1016/j.neunet.2014.09.003_br003240 – volume: 16 start-page: 683 issue: 5 year: 2003 ident: 10.1016/j.neunet.2014.09.003_br000990 article-title: Simple and conditioned adaptive behavior from Kalman filter trained recurrent networks publication-title: Neural Networks doi: 10.1016/S0893-6080(03)00127-8 – start-page: 493 year: 1996 ident: 10.1016/j.neunet.2014.09.003_br001535 article-title: Hierarchical recurrent neural networks for long-term dependencies – start-page: 302 year: 2012 ident: 10.1016/j.neunet.2014.09.003_br001730 article-title: Mode detection in online handwritten documents using BLSTM neural networks – year: 1993 ident: 10.1016/j.neunet.2014.09.003_br003815 – volume: Vol. 37 start-page: 65 year: 1996 ident: 10.1016/j.neunet.2014.09.003_br001605 article-title: Bridging long time lags by weight guessing and Long Short-Term Memory – volume: 22 start-page: 511 issue: 2 year: 2010 ident: 10.1016/j.neunet.2014.09.003_br003950 article-title: Convolutional networks can learn to generate affinity graphs for image segmentation publication-title: Neural Computation doi: 10.1162/neco.2009.10-08-881 – volume: 50 start-page: 969 issue: 7 year: 2009 ident: 10.1016/j.neunet.2014.09.003_br003295 article-title: Semantic hashing publication-title: International Journal of Approximate Reasoning doi: 10.1016/j.ijar.2008.11.006 – volume: 19 start-page: 716 issue: 6 year: 1974 ident: 10.1016/j.neunet.2014.09.003_br000025 article-title: A new look at the statistical model identification publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.1974.1100705 – volume: 37 start-page: 1311 issue: 6 year: 2004 ident: 10.1016/j.neunet.2014.09.003_br002835 article-title: GPU implementation of neural networks publication-title: Pattern Recognition doi: 10.1016/j.patcog.2004.01.013 – volume: 5 start-page: 241 issue: 2 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br004335 article-title: Stacked generalization publication-title: Neural Networks doi: 10.1016/S0893-6080(05)80023-1 – volume: 5 start-page: 30 issue: 1 year: 1962 ident: 10.1016/j.neunet.2014.09.003_br000885 article-title: The numerical solution of variational problems publication-title: Journal of Mathematical Analysis and Applications doi: 10.1016/0022-247X(62)90004-5 – volume: 14 start-page: 85 issue: 2 year: 1973 ident: 10.1016/j.neunet.2014.09.003_br004045 article-title: Self-organization of orientation sensitive cells in the striate cortex publication-title: Kybernetik doi: 10.1007/BF00288907 – start-page: 406 year: 1963 ident: 10.1016/j.neunet.2014.09.003_br002595 article-title: Steps toward artificial intelligence – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.neunet.2014.09.003_br002170 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of the IEEE doi: 10.1109/5.726791 – start-page: 580 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br000790 article-title: Non-linear dimensionality reduction – volume: 16 start-page: 59 issue: 1 year: 2004 ident: 10.1016/j.neunet.2014.09.003_br003980 article-title: A machine learning method for extracting symbolic knowledge from recurrent neural networks publication-title: Neural Computation doi: 10.1162/08997660460733994 – start-page: 801 year: 2007 ident: 10.1016/j.neunet.2014.09.003_br002195 article-title: Efficient sparse coding algorithms – ident: 10.1016/j.neunet.2014.09.003_br003290 doi: 10.21437/Interspeech.2014-305 – start-page: 293 year: 1997 ident: 10.1016/j.neunet.2014.09.003_br003530 article-title: Reinforcement learning with self-modifying policies – ident: 10.1016/j.neunet.2014.09.003_br004155 doi: 10.1109/CDC.1989.70114 – volume: 37 start-page: W515 issue: Suppl 2 year: 2009 ident: 10.1016/j.neunet.2014.09.003_br003880 article-title: NNcon: improved protein contact map prediction using 2D-recursive neural networks publication-title: Nucleic Acids Research doi: 10.1093/nar/gkp305 – start-page: 873 year: 2009 ident: 10.1016/j.neunet.2014.09.003_br003095 article-title: Large-scale deep unsupervised learning using graphics processors – year: 1993 ident: 10.1016/j.neunet.2014.09.003_br004420 – ident: 10.1016/j.neunet.2014.09.003_br000305 doi: 10.1007/3-540-46084-5_213 – ident: 10.1016/j.neunet.2014.09.003_br002550 – year: 1968 ident: 10.1016/j.neunet.2014.09.003_br002690 article-title: Data analysis, including statistics – volume: 4 start-page: 141 issue: 2 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br000245 article-title: First- and second-order methods for learning: between steepest descent and Newton’s method publication-title: Neural Computation doi: 10.1162/neco.1992.4.2.141 – volume: 10 start-page: 821 issue: 4 year: 1998 ident: 10.1016/j.neunet.2014.09.003_br003940 article-title: Neural networks with dynamic synapses publication-title: Neural Computation doi: 10.1162/089976698300017502 – start-page: 379 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br002580 article-title: Designing neural networks using genetic algorithms – year: 2003 ident: 10.1016/j.neunet.2014.09.003_br000780 – volume: 18 start-page: 280 year: 1968 ident: 10.1016/j.neunet.2014.09.003_br002315 article-title: Mathematical models for cellular interaction in development publication-title: Journal of Theoretical Biology doi: 10.1016/0022-5193(68)90079-9 – year: 1988 ident: 10.1016/j.neunet.2014.09.003_br004265 – volume: 40 start-page: 185 issue: 1 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br001540 article-title: Connectionist learning procedures publication-title: Artificial Intelligence doi: 10.1016/0004-3702(89)90049-0 – volume: 10 start-page: 251 issue: 2 year: 1998 ident: 10.1016/j.neunet.2014.09.003_br000050 article-title: Natural gradient works efficiently in learning publication-title: Neural Computation doi: 10.1162/089976698300017746 – start-page: 3084 year: 2013 ident: 10.1016/j.neunet.2014.09.003_br000115 article-title: Adaptive dropout for training deep neural networks – volume: 29 start-page: 850 issue: 9 year: 1986 ident: 10.1016/j.neunet.2014.09.003_br003735 article-title: Learning to program = learning to construct mechanisms and explanations publication-title: Communications of the ACM doi: 10.1145/6592.6594 – volume: 48 start-page: 17 issue: 1 year: 2002 ident: 10.1016/j.neunet.2014.09.003_br000445 article-title: Error-backpropagation in temporally encoded networks of spiking neurons publication-title: Neurocomputing doi: 10.1016/S0925-2312(01)00658-0 – volume: 9 start-page: 937 issue: May year: 2008 ident: 10.1016/j.neunet.2014.09.003_br001285 article-title: Accelerated neural evolution through cooperatively coevolved synapses publication-title: Journal of Machine Learning Research – year: 1989 ident: 10.1016/j.neunet.2014.09.003_br001255 – volume: 2 start-page: 173 year: 1990 ident: 10.1016/j.neunet.2014.09.003_br002420 article-title: Analysis of Linsker’s simulation of Hebbian rules publication-title: Neural Computation doi: 10.1162/neco.1990.2.2.173 – volume: 15 start-page: 1931 issue: 8 year: 2004 ident: 10.1016/j.neunet.2014.09.003_br003920 article-title: Architectural bias in recurrent neural networks: Fractal analysis publication-title: Neural Computation doi: 10.1162/08997660360675099 – volume: 86 start-page: 2259 issue: 11 year: 1998 ident: 10.1016/j.neunet.2014.09.003_br000995 article-title: A signal processing framework based on dynamic neural networks with application to problems in adaptation, filtering, and classification publication-title: Proceedings of the IEEE doi: 10.1109/5.726790 – start-page: 303 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br004070 article-title: Optimal stopping and effective machine complexity in learning – ident: 10.1016/j.neunet.2014.09.003_br003185 doi: 10.1109/DEVLRN.2011.6037326 – year: 1991 ident: 10.1016/j.neunet.2014.09.003_br001590 – volume: 58 start-page: 345 year: 1936 ident: 10.1016/j.neunet.2014.09.003_br000615 article-title: An unsolvable problem of elementary number theory publication-title: The American Journal of Mathematics doi: 10.2307/2371045 – volume: 13 start-page: 431 issue: 3 year: 2002 ident: 10.1016/j.neunet.2014.09.003_br001690 article-title: The fastest and shortest algorithm for all well-defined problems publication-title: International Journal of Foundations of Computer Science doi: 10.1142/S0129054102001199 – year: 1977 ident: 10.1016/j.neunet.2014.09.003_br001105 – volume: 21 year: 1983 ident: 10.1016/j.neunet.2014.09.003_br002245 article-title: Theory formation by heuristic search publication-title: Machine Learning – volume: 7 start-page: 1 year: 1964 ident: 10.1016/j.neunet.2014.09.003_br003725 article-title: A formal theory of inductive inference. Part I publication-title: Information and Control doi: 10.1016/S0019-9958(64)90223-2 – volume: 41 start-page: 757 issue: 10 year: 1996 ident: 10.1016/j.neunet.2014.09.003_br000085 article-title: Mixing floating- and fixed-point formats for neural network learning on neuroprocessors publication-title: Microprocessing and Microprogramming doi: 10.1016/0165-6074(96)00012-9 – ident: 10.1016/j.neunet.2014.09.003_br000635 – volume: 4 start-page: 1 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br001170 article-title: Neural networks and the bias/variance dilemma publication-title: Neural Computation doi: 10.1162/neco.1992.4.1.1 – ident: 10.1016/j.neunet.2014.09.003_br001030 doi: 10.1109/IJCNN.2008.4633916 – year: 2010 ident: 10.1016/j.neunet.2014.09.003_br001160 – volume: 194 start-page: 431 year: 1976 ident: 10.1016/j.neunet.2014.09.003_br004305 article-title: How patterned neural connections can be set up by self-organization publication-title: Proceedings of the Royal Society of London. Series B doi: 10.1098/rspb.1976.0087 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.neunet.2014.09.003_br001615 article-title: Long short-term memory publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – year: 2003 ident: 10.1016/j.neunet.2014.09.003_br002870 – volume: 49 start-page: 409 year: 1952 ident: 10.1016/j.neunet.2014.09.003_br001530 article-title: Methods of conjugate gradients for solving linear systems publication-title: Journal of Research of the National Bureau of Standards doi: 10.6028/jres.049.044 – volume: 6 start-page: 163 issue: 2 year: 1963 ident: 10.1016/j.neunet.2014.09.003_br001050 article-title: A rapidly convergent descent method for minimization publication-title: The Computer Journal doi: 10.1093/comjnl/6.2.163 – ident: 10.1016/j.neunet.2014.09.003_br001090 – year: 2014 ident: 10.1016/j.neunet.2014.09.003_br000800 – year: 1993 ident: 10.1016/j.neunet.2014.09.003_br002185 article-title: Automatic learning rate maximization by on-line estimation of the Hessian’s eigenvectors – year: 1805 ident: 10.1016/j.neunet.2014.09.003_br002220 – year: 1965 ident: 10.1016/j.neunet.2014.09.003_br004255 – ident: 10.1016/j.neunet.2014.09.003_br000875 – start-page: 2849 year: 2008 ident: 10.1016/j.neunet.2014.09.003_br001950 article-title: SpiNNaker: mapping neural networks onto a massively-parallel chip multiprocessor – ident: 10.1016/j.neunet.2014.09.003_br003625 – start-page: 190 year: 1991 ident: 10.1016/j.neunet.2014.09.003_br000960 article-title: The recurrent cascade-correlation learning algorithm – volume: 121 start-page: 471 year: 1997 ident: 10.1016/j.neunet.2014.09.003_br001850 article-title: Serial order: a parallel distributed processing approach publication-title: Advances in Psychology doi: 10.1016/S0166-4115(97)80111-2 – volume: 14 start-page: 409 issue: 1 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br002565 article-title: A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between on- and off-center inputs publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.14-01-00409.1994 – start-page: 396 year: 1990 ident: 10.1016/j.neunet.2014.09.003_br002165 article-title: Handwritten digit recognition with a back-propagation network – start-page: 340 year: 1990 ident: 10.1016/j.neunet.2014.09.003_br000560 article-title: Operational fault tolerance of CMAC networks – volume: 13 start-page: 382 year: 1971 ident: 10.1016/j.neunet.2014.09.003_br002885 article-title: Über die Berechnung von Ableitungen publication-title: Wissenschaftliche Zeitschrift der Technischen Hochschule für Chemie – volume: 6 start-page: 57 issue: 1 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br000090 article-title: An efficient implementation of BP on RISC-based workstations publication-title: Neurocomputing doi: 10.1016/0925-2312(94)90034-5 – volume: 6 start-page: 4650 issue: 5 year: 2010 ident: 10.1016/j.neunet.2014.09.003_br003355 article-title: Metalearning publication-title: Scholarpedia doi: 10.4249/scholarpedia.4650 – volume: 18 start-page: 173 issue: 2 year: 2006 ident: 10.1016/j.neunet.2014.09.003_br003465 article-title: Developmental robotics, optimal artificial curiosity, creativity, music, and the fine arts publication-title: Connection Science doi: 10.1080/09540090600768658 – volume: 14 start-page: 1569 issue: 6 year: 2003 ident: 10.1016/j.neunet.2014.09.003_br001770 article-title: Simple model of spiking neurons publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2003.820440 – volume: 60 start-page: 91 year: 2004 ident: 10.1016/j.neunet.2014.09.003_br002375 article-title: Distinctive image features from scale-invariant key-points publication-title: International Journal of Computer Vision doi: 10.1023/B:VISI.0000029664.99615.94 – year: 1975 ident: 10.1016/j.neunet.2014.09.003_br001645 – volume: 6 issue: 8 year: 2010 ident: 10.1016/j.neunet.2014.09.003_br002230 article-title: Reinforcement learning on slow features of high-dimensional input streams publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1000894 – volume: 22 start-page: 159 year: 1996 ident: 10.1016/j.neunet.2014.09.003_br002455 article-title: Average reward reinforcement learning: Foundations, algorithms, and empirical results publication-title: Machine Learning doi: 10.1007/BF00114727 – year: 1957 ident: 10.1016/j.neunet.2014.09.003_br000335 – volume: 6 start-page: 215 issue: 2 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br003900 article-title: TD-gammon, a self-teaching backgammon program, achieves master-level play publication-title: Neural Computation doi: 10.1162/neco.1994.6.2.215 – volume: 3 start-page: 349 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br002695 article-title: A focused back-propagation algorithm for temporal sequence recognition publication-title: Complex Systems – ident: 10.1016/j.neunet.2014.09.003_br000680 – volume: 5 start-page: 565 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br002730 article-title: Non-linear neurons in the low noise limit: a factorial code maximises information transfer publication-title: Networks doi: 10.1088/0954-898X/5/4/008 – ident: 10.1016/j.neunet.2014.09.003_br003090 – year: 2013 ident: 10.1016/j.neunet.2014.09.003_br003490 article-title: PowerPlay: training an increasingly general problem solver by continually searching for the simplest still unsolvable problem publication-title: Frontiers in Psychology doi: 10.3389/fpsyg.2013.00313 – volume: 1 year: 1988 ident: 10.1016/j.neunet.2014.09.003_br004145 article-title: Generalization of backpropagation with application to a recurrent gas market model publication-title: Neural Networks doi: 10.1016/0893-6080(88)90007-X – volume: 11 start-page: 436 issue: 2 year: 2000 ident: 10.1016/j.neunet.2014.09.003_br002930 article-title: Constructive neural network learning algorithms for multi-category pattern classification publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.839013 – volume: 17 start-page: 419 issue: 5 year: 2001 ident: 10.1016/j.neunet.2014.09.003_br000535 article-title: Efficient large-scale sequence comparison by locality-sensitive hashing publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.5.419 – ident: 10.1016/j.neunet.2014.09.003_br001335 doi: 10.1145/1143844.1143891 – year: 1988 ident: 10.1016/j.neunet.2014.09.003_br002000 – volume: 4 start-page: 323 year: 1974 ident: 10.1016/j.neunet.2014.09.003_br002750 article-title: Learning automata—a survey publication-title: IEEE Transactions on Systems, Man and Cybernetics doi: 10.1109/TSMC.1974.5408453 – volume: 1 start-page: 1 year: 1965 ident: 10.1016/j.neunet.2014.09.003_br002015 article-title: Three approaches to the quantitative definition of information publication-title: Problems of Information Transmission – volume: 22 start-page: 436 issue: 3 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br002510 article-title: Noise injection into inputs in back-propagation learning publication-title: IEEE Transactions on Systems, Man and Cybernetics doi: 10.1109/21.155944 – ident: 10.1016/j.neunet.2014.09.003_br001205 – year: 1993 ident: 10.1016/j.neunet.2014.09.003_br003445 – ident: 10.1016/j.neunet.2014.09.003_br003925 – volume: 21 start-page: 215 year: 1979 ident: 10.1016/j.neunet.2014.09.003_br001265 article-title: Generalized cross-validation as a method for choosing a good ridge parameter publication-title: Technometrics doi: 10.1080/00401706.1979.10489751 – volume: 13 start-page: 227 year: 2000 ident: 10.1016/j.neunet.2014.09.003_br000850 article-title: Hierarchical reinforcement learning with the MAXQ value function decomposition publication-title: Journal of Artificial Intelligence Research (JAIR) doi: 10.1613/jair.639 – ident: 10.1016/j.neunet.2014.09.003_br003285 doi: 10.21437/Interspeech.2014-80 – year: 1997 ident: 10.1016/j.neunet.2014.09.003_br000040 – volume: 6 start-page: 621 year: 1774 ident: 10.1016/j.neunet.2014.09.003_br002135 article-title: Mémoire sur la probabilité des causes par les évènements publication-title: Mémoires de l’Academie Royale des Sciences Presentés par Divers Savan – ident: 10.1016/j.neunet.2014.09.003_br001080 – ident: 10.1016/j.neunet.2014.09.003_br001240 – ident: 10.1016/j.neunet.2014.09.003_br001305 – volume: 15 start-page: 319 issue: 1 year: 2001 ident: 10.1016/j.neunet.2014.09.003_br000260 article-title: Infinite-horizon policy-gradient estimation publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.806 – start-page: 1061 year: 2013 ident: 10.1016/j.neunet.2014.09.003_br002050 article-title: Evolving large-scale neural networks for vision-based reinforcement learning – volume: 6 start-page: 219 issue: 2 year: 1998 ident: 10.1016/j.neunet.2014.09.003_br004220 article-title: HQ-learning publication-title: Adaptive Behavior doi: 10.1177/105971239700600202 – ident: 10.1016/j.neunet.2014.09.003_br000900 – start-page: 164 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br001470 article-title: Second order derivatives for network pruning: optimal brain surgeon – year: 1997 ident: 10.1016/j.neunet.2014.09.003_br002295 – ident: 10.1016/j.neunet.2014.09.003_br003405 doi: 10.1109/IJCNN.1990.137723 – year: 1994 ident: 10.1016/j.neunet.2014.09.003_br000200 – start-page: 271 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br000750 article-title: Feudal reinforcement learning – volume: 22 start-page: 1345 issue: 10 year: 2010 ident: 10.1016/j.neunet.2014.09.003_br002925 article-title: A survey on transfer learning publication-title: The IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2009.191 – volume: 5 start-page: 603 year: 1991 ident: 10.1016/j.neunet.2014.09.003_br000540 article-title: Bayesian back-propagation publication-title: Complex Systems – volume: 29 start-page: 82 issue: 6 year: 2012 ident: 10.1016/j.neunet.2014.09.003_br001555 article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2012.2205597 – volume: 25 start-page: 805 issue: 3 year: 2013 ident: 10.1016/j.neunet.2014.09.003_br000610 article-title: Enhanced gradient for training restricted Boltzmann machines publication-title: Neural Computation doi: 10.1162/NECO_a_00397 – ident: 10.1016/j.neunet.2014.09.003_br000465 – start-page: 241 issue: 16 year: 2003 ident: 10.1016/j.neunet.2014.09.003_br002980 article-title: Kalman filters improve LSTM network performance in problems unsolvable by traditional recurrent nets publication-title: Neural Networks doi: 10.1016/S0893-6080(02)00219-8 – volume: 22 start-page: 207 issue: 2 year: 2000 ident: 10.1016/j.neunet.2014.09.003_br003965 article-title: Optimal linear combination of neural networks for improving classification performance publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.825759 – volume: 308 start-page: 529 year: 2005 ident: 10.1016/j.neunet.2014.09.003_br000385 article-title: Parallel and serial neural mechanisms for visual search in macaque area V4 publication-title: Science doi: 10.1126/science.1109676 – year: 1987 ident: 10.1016/j.neunet.2014.09.003_br000840 – volume: 45 start-page: 434 issue: 2 year: 1997 ident: 10.1016/j.neunet.2014.09.003_br000340 article-title: A blind source separation technique using second-order statistics publication-title: IEEE Transactions on Signal Processing doi: 10.1109/78.554307 – volume: 35 start-page: 1847 issue: 8 year: 2013 ident: 10.1016/j.neunet.2014.09.003_br002095 article-title: Deep hierarchies in the primate visual cortex: what can we learn for computer vision? publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2012.272 – start-page: 315 year: 1996 ident: 10.1016/j.neunet.2014.09.003_br002520 article-title: Learning to use selective attention and short-term memory in sequential tasks – start-page: 1 year: 2000 ident: 10.1016/j.neunet.2014.09.003_br000845 article-title: Ensemble methods in machine learning – year: 1999 ident: 10.1016/j.neunet.2014.09.003_br003970 – ident: 10.1016/j.neunet.2014.09.003_br001945 doi: 10.1109/CEC.2010.5586547 – volume: 7 start-page: 877 year: 2006 ident: 10.1016/j.neunet.2014.09.003_br004195 article-title: Evolutionary function approximation for reinforcement learning publication-title: Journal of Machine Learning Research – year: 1970 ident: 10.1016/j.neunet.2014.09.003_br004025 article-title: Applications of pattern recognition technology – ident: 10.1016/j.neunet.2014.09.003_br000520 – volume: 9 start-page: 1127 issue: 5 year: 1997 ident: 10.1016/j.neunet.2014.09.003_br000405 article-title: Analysis of dynamical recognizers publication-title: Neural Computation doi: 10.1162/neco.1997.9.5.1127 – volume: 22 start-page: 59 issue: 1–3 year: 1996 ident: 10.1016/j.neunet.2014.09.003_br003935 article-title: Feature-based methods for large scale dynamic programming publication-title: Machine Learning doi: 10.1007/BF00114724 – start-page: 873 year: 2007 ident: 10.1016/j.neunet.2014.09.003_br002200 article-title: Sparse deep belief net model for visual area V2 – volume: 1 start-page: 233 issue: 3 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br003655 article-title: Combining explanation-based and neural learning: An algorithm and empirical results publication-title: Connection Science doi: 10.1080/09540098908915640 – volume: Vol. 43 year: 1990 ident: 10.1016/j.neunet.2014.09.003_br001475 – volume: 7 start-page: 115 year: 1943 ident: 10.1016/j.neunet.2014.09.003_br002525 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bulletin of Mathematical Biophysics doi: 10.1007/BF02478259 – volume: 14 start-page: 1080 issue: 3 year: 1986 ident: 10.1016/j.neunet.2014.09.003_br003195 article-title: Stochastic complexity and modeling publication-title: The Annals of Statistics doi: 10.1214/aos/1176350051 – ident: 10.1016/j.neunet.2014.09.003_br002895 – ident: 10.1016/j.neunet.2014.09.003_br002910 – volume: 1 start-page: 270 issue: 2 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br004300 article-title: A learning algorithm for continually running fully recurrent networks publication-title: Neural Computation doi: 10.1162/neco.1989.1.2.270 – volume: 21 start-page: 105 year: 1988 ident: 10.1016/j.neunet.2014.09.003_br002335 article-title: Self-organization in a perceptual network publication-title: IEEE Computer doi: 10.1109/2.36 – start-page: 199 year: 2006 ident: 10.1016/j.neunet.2014.09.003_br003470 article-title: Gödel machines: Fully self-referential optimal universal self-improvers – start-page: 177 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br001455 article-title: Comparing biases for minimal network construction with back-propagation – volume: 2 start-page: 164 year: 1944 ident: 10.1016/j.neunet.2014.09.003_br002260 article-title: A method for the solution of certain problems in least squares publication-title: Quarterly of Applied Mathematics doi: 10.1090/qam/10666 – ident: 10.1016/j.neunet.2014.09.003_br003685 doi: 10.1109/ICDAR.2003.1227801 – volume: 40 start-page: 63 issue: 1 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br002605 article-title: Explanation-based learning: A problem solving perspective publication-title: Artificial Intelligence doi: 10.1016/0004-3702(89)90047-7 – year: 1996 ident: 10.1016/j.neunet.2014.09.003_br003775 article-title: A recurrent network that performs a contextsensitive prediction task – volume: 4 start-page: 173 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br002825 article-title: Simplifying neural networks by soft weight sharing publication-title: Neural Computation doi: 10.1162/neco.1992.4.4.473 – volume: 12 start-page: 91 issue: 5 year: 2010 ident: 10.1016/j.neunet.2014.09.003_br001825 article-title: Modeling spiking neural networks on SpiNNaker publication-title: Computing in Science and Engineering doi: 10.1109/MCSE.2010.112 – year: 1994 ident: 10.1016/j.neunet.2014.09.003_br003180 – volume: 6 start-page: 182 issue: 1 year: 1995 ident: 10.1016/j.neunet.2014.09.003_br000150 article-title: Gradient descent learning algorithms overview: A general dynamical systems perspective publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.363438 – volume: 14 start-page: 715 issue: 4 year: 2002 ident: 10.1016/j.neunet.2014.09.003_br004315 article-title: Slow feature analysis: Unsupervised learning of invariances publication-title: Neural Computation doi: 10.1162/089976602317318938 – volume: 9 start-page: 1015 issue: 5 year: 1997 ident: 10.1016/j.neunet.2014.09.003_br001960 article-title: Reduction of the Hodgkin–Huxley equations to a single-variable threshold model publication-title: Neural Computation doi: 10.1162/neco.1997.9.5.1015 – start-page: 467 year: 1684 ident: 10.1016/j.neunet.2014.09.003_br002240 article-title: Nova methodus pro maximis et minimis, itemque tangentibus, quae nec fractas, nec irrationales quantitates moratur, et singulare pro illis calculi genus publication-title: Acta Eruditorum – volume: 7 start-page: 923 issue: 5 year: 1990 ident: 10.1016/j.neunet.2014.09.003_br002460 article-title: Preattentive texture discrimination with early vision mechanisms publication-title: Journal of the Optical Society of America A doi: 10.1364/JOSAA.7.000923 – ident: 10.1016/j.neunet.2014.09.003_br003915 – volume: 2 start-page: 359 issue: 5 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br001665 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Networks doi: 10.1016/0893-6080(89)90020-8 – year: 1969 ident: 10.1016/j.neunet.2014.09.003_br000530 – ident: 10.1016/j.neunet.2014.09.003_br001895 – volume: 37 start-page: 233 year: 1991 ident: 10.1016/j.neunet.2014.09.003_br002070 article-title: Nonlinear principal component analysis using autoassociative neural networks publication-title: AIChE Journal doi: 10.1002/aic.690370209 – year: 2012 ident: 10.1016/j.neunet.2014.09.003_br004230 – start-page: 598 year: 1990 ident: 10.1016/j.neunet.2014.09.003_br002175 article-title: Optimal brain damage – start-page: 847 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br002655 article-title: The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems – ident: 10.1016/j.neunet.2014.09.003_br002940 – start-page: 2852 year: 2012 ident: 10.1016/j.neunet.2014.09.003_br000620 article-title: Deep neural networks segment neuronal membranes in electron microscopy images – year: 1984 ident: 10.1016/j.neunet.2014.09.003_br000980 – volume: 5 start-page: 279 issue: 2 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br003085 article-title: Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.279191 – volume: 1 start-page: 61 issue: 1 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br002840 article-title: Neural networks, principal components, and subspaces publication-title: International Journal of Neural Systems doi: 10.1142/S0129065789000475 – year: 2001 ident: 10.1016/j.neunet.2014.09.003_br001860 – start-page: 21 year: 1988 ident: 10.1016/j.neunet.2014.09.003_br002155 article-title: A theoretical framework for back-propagation – ident: 10.1016/j.neunet.2014.09.003_br001210 doi: 10.1109/IJCNN.1989.118645 – start-page: 11 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br004425 article-title: Developing population codes by minimizing description length – volume: 14 start-page: 2709 issue: 11 year: 2002 ident: 10.1016/j.neunet.2014.09.003_br003680 article-title: Training a single sigmoidal neuron is hard publication-title: Neural Computation doi: 10.1162/089976602760408035 – volume: 36 start-page: 111 year: 1974 ident: 10.1016/j.neunet.2014.09.003_br003795 article-title: Cross-validatory choice and assessment of statistical predictions publication-title: Journal of the Royal Statistical Society B doi: 10.1111/j.2517-6161.1974.tb00994.x – start-page: 500 year: 1991 ident: 10.1016/j.neunet.2014.09.003_br003420 article-title: Reinforcement learning in Markovian and non-Markovian environments – volume: 45 start-page: 2673 year: 1997 ident: 10.1016/j.neunet.2014.09.003_br003575 article-title: Bidirectional recurrent neural networks publication-title: IEEE Transactions on Signal Processing doi: 10.1109/78.650093 – year: 1974 ident: 10.1016/j.neunet.2014.09.003_br004130 – volume: 31 start-page: 1 year: 1978 ident: 10.1016/j.neunet.2014.09.003_br000430 article-title: Learning processes in multilayer threshold nets publication-title: Biological Cybernetics doi: 10.1007/BF00337365 – start-page: 87 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br003510 article-title: Continuous history compression – volume: 1 start-page: 295 issue: 3 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br000210 article-title: Unsupervised learning publication-title: Neural Computation doi: 10.1162/neco.1989.1.3.295 – volume: 2 start-page: 1019 issue: 11 year: 1999 ident: 10.1016/j.neunet.2014.09.003_br003160 article-title: Hierarchical models of object recognition in cortex publication-title: Nature Neuroscience doi: 10.1038/14819 – ident: 10.1016/j.neunet.2014.09.003_br001510 – volume: 6 start-page: 842 issue: 5 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br003675 article-title: Loading deep networks is hard publication-title: Neural Computation doi: 10.1162/neco.1994.6.5.842 – start-page: 189 year: 2003 ident: 10.1016/j.neunet.2014.09.003_br003225 article-title: Hardware spiking neural network with run-time reconfigurable connectivity in an autonomous robot – volume: 22 start-page: 3207 issue: 12 year: 2010 ident: 10.1016/j.neunet.2014.09.003_br000630 article-title: Deep big simple neural nets for handwritten digit recogntion publication-title: Neural Computation doi: 10.1162/NECO_a_00052 – year: 1994 ident: 10.1016/j.neunet.2014.09.003_br002660 article-title: Architecture selection strategies for neural networks: Application to corporate bond rating prediction – start-page: 52 year: 1990 ident: 10.1016/j.neunet.2014.09.003_br003395 article-title: Learning algorithms for networks with internal and external feedback – ident: 10.1016/j.neunet.2014.09.003_br003070 doi: 10.1109/IJCNN.2002.1007449 – volume: 287 start-page: 239 issue: 1 year: 2002 ident: 10.1016/j.neunet.2014.09.003_br002225 article-title: Neural circuits for pattern recognition with small total wire length publication-title: Theoretical Computer Science doi: 10.1016/S0304-3975(02)00097-X – year: 2001 ident: 10.1016/j.neunet.2014.09.003_br002075 – year: 2014 ident: 10.1016/j.neunet.2014.09.003_br003645 article-title: Learning deep and wide: A spectral method for learning deep networks publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2014.2308519 – ident: 10.1016/j.neunet.2014.09.003_br001345 – ident: 10.1016/j.neunet.2014.09.003_br002390 – start-page: 323 year: 1995 ident: 10.1016/j.neunet.2014.09.003_br004170 article-title: Adaptive back-propagation in on-line learning of multilayer networks – year: 2014 ident: 10.1016/j.neunet.2014.09.003_br002300 article-title: Deep learning based imaging data completion for improved brain disease diagnosis – year: 2005 ident: 10.1016/j.neunet.2014.09.003_br001405 – start-page: 318 year: 1986 ident: 10.1016/j.neunet.2014.09.003_br003260 article-title: Learning internal representations by error propagation – volume: 3 start-page: 210 year: 1959 ident: 10.1016/j.neunet.2014.09.003_br003315 article-title: Some studies in machine learning using the game of checkers publication-title: IBM Journal of Research and Development doi: 10.1147/rd.33.0210 – volume: 5 issue: 73 year: 2011 ident: 10.1016/j.neunet.2014.09.003_br001740 article-title: Neuromorphic silicon neuron circuits publication-title: Frontiers in Neuroscience – volume: 117 start-page: 500 issue: 4 year: 1952 ident: 10.1016/j.neunet.2014.09.003_br001630 article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve publication-title: The Journal of Physiology doi: 10.1113/jphysiol.1952.sp004764 – volume: 2 start-page: 261 issue: 2–3 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br002115 article-title: Clustering properties of hierarchical self-organizing maps publication-title: Journal of Mathematical Imaging and Vision doi: 10.1007/BF00118594 – volume: 12 start-page: 574 issue: 2 year: 2011 ident: 10.1016/j.neunet.2014.09.003_br004325 article-title: On-line driver distraction detection using long short-term memory publication-title: IEEE Transactions on Intelligent Transportation Systems (TITS) doi: 10.1109/TITS.2011.2119483 – volume: 10 start-page: 99 year: 2002 ident: 10.1016/j.neunet.2014.09.003_br003770 article-title: Evolving neural networks through augmenting topologies publication-title: Evolutionary Computation doi: 10.1162/106365602320169811 – volume: 5 start-page: 59 issue: 1 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br000545 article-title: A constructive algorithm that converges for real-valued input patterns publication-title: International Journal of Neural Systems doi: 10.1142/S0129065794000074 – start-page: 23 year: 2001 ident: 10.1016/j.neunet.2014.09.003_br003075 article-title: Dynamical neural networks for control – volume: 7 start-page: 375 issue: 2 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br003135 article-title: Stock performance modeling using neural networks: a comparative study with regression models publication-title: Neural Networks doi: 10.1016/0893-6080(94)90030-2 – volume: 47 start-page: 1642 issue: 4 year: 2014 ident: 10.1016/j.neunet.2014.09.003_br004405 article-title: Neural network language models for off-line handwriting recognition publication-title: Pattern Recognition doi: 10.1016/j.patcog.2013.10.020 – volume: 14 start-page: 629 issue: 6–7 year: 2001 ident: 10.1016/j.neunet.2014.09.003_br002345 article-title: Orientation-selective aVLSI spiking neurons publication-title: Neural Networks doi: 10.1016/S0893-6080(01)00054-5 – ident: 10.1016/j.neunet.2014.09.003_br001275 doi: 10.1007/3-540-45110-2_105 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 10.1016/j.neunet.2014.09.003_br001565 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Computation doi: 10.1162/neco.2006.18.7.1527 – ident: 10.1016/j.neunet.2014.09.003_br002530 doi: 10.1109/IJCNN.2000.861532 – year: 1980 ident: 10.1016/j.neunet.2014.09.003_br003710 – volume: 22 start-page: 1521 issue: 13–14 year: 2008 ident: 10.1016/j.neunet.2014.09.003_br002515 article-title: A system for robotic heart surgery that learns to tie knots using recurrent neural networks publication-title: Advanced Robotics doi: 10.1163/156855308X360604 – year: 2006 ident: 10.1016/j.neunet.2014.09.003_br000400 – year: 1994 ident: 10.1016/j.neunet.2014.09.003_br003270 – start-page: 115 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br003175 article-title: Learning sequential tasks by incrementally adding higher orders – volume: 24 start-page: 767 issue: 7 year: 2011 ident: 10.1016/j.neunet.2014.09.003_br001125 article-title: Increasing robustness against background noise: visual pattern recognition by a neocognitron publication-title: Neural Networks doi: 10.1016/j.neunet.2011.03.017 – volume: 24 start-page: 377 year: 1987 ident: 10.1016/j.neunet.2014.09.003_br000425 article-title: Occam’s razor publication-title: Information Processing Letters doi: 10.1016/0020-0190(87)90114-1 – volume: 40 start-page: 18 year: 2013 ident: 10.1016/j.neunet.2014.09.003_br001135 article-title: Training multi-layered neural network neocognitron publication-title: Neural Networks doi: 10.1016/j.neunet.2013.01.001 – volume: 8 start-page: 549 issue: 4 year: 1995 ident: 10.1016/j.neunet.2014.09.003_br001910 article-title: Generalizations of principal component analysis, optimization problems, and neural networks publication-title: Neural Networks doi: 10.1016/0893-6080(94)00098-7 – start-page: 1 year: 2006 ident: 10.1016/j.neunet.2014.09.003_br003365 article-title: Implementing synaptic plasticity in a VLSI spiking neural network model – start-page: 151 year: 1986 ident: 10.1016/j.neunet.2014.09.003_br003265 article-title: Feature discovery by competitive learning – ident: 10.1016/j.neunet.2014.09.003_br002445 doi: 10.2991/agi.2010.22 – volume: 5 start-page: 402 issue: 3 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br000165 article-title: Neural networks for fingerprint recognition publication-title: Neural Computation doi: 10.1162/neco.1993.5.3.402 – volume: 36 start-page: 287 issue: 3 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br000695 article-title: Independent component analysis—a new concept? publication-title: Signal Processing doi: 10.1016/0165-1684(94)90029-9 – volume: 13 start-page: 1331 issue: 6 year: 2002 ident: 10.1016/j.neunet.2014.09.003_br003115 article-title: The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2002.804221 – ident: 10.1016/j.neunet.2014.09.003_br003370 doi: 10.1007/978-3-642-15825-4_10 – volume: 46 start-page: 77 year: 1990 ident: 10.1016/j.neunet.2014.09.003_br003035 article-title: Recursive distributed representation publication-title: Artificial Intelligence doi: 10.1016/0004-3702(90)90005-K – year: 1977 ident: 10.1016/j.neunet.2014.09.003_br003910 – ident: 10.1016/j.neunet.2014.09.003_br001005 doi: 10.1007/978-3-540-74695-9_23 – volume: 31 issue: 5 year: 2009 ident: 10.1016/j.neunet.2014.09.003_br001350 article-title: A novel connectionist system for improved unconstrained handwriting recognition publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2008.137 – ident: 10.1016/j.neunet.2014.09.003_br002495 – volume: 18 start-page: 620 issue: 2 year: 2010 ident: 10.1016/j.neunet.2014.09.003_br004235 article-title: Recurrent policy gradients publication-title: Logic Journal of IGPL doi: 10.1093/jigpal/jzp049 – volume: 4 start-page: 575 year: 2003 ident: 10.1016/j.neunet.2014.09.003_br000185 article-title: The principled design of large-scale recursive neural network architectures—DAG-RNNs and the protein structure prediction problem publication-title: Journal of Machine Learning Research – start-page: 8609 year: 2013 ident: 10.1016/j.neunet.2014.09.003_br000730 article-title: Improving deep neural networks for LVCSR using rectified linear units and dropout – volume: 381 start-page: 607 issue: 6583 year: 1996 ident: 10.1016/j.neunet.2014.09.003_br002850 article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images publication-title: Nature doi: 10.1038/381607a0 – ident: 10.1016/j.neunet.2014.09.003_br002475 doi: 10.1109/ICASSP.2014.6853982 – volume: 9 start-page: 123 issue: 1 year: 1997 ident: 10.1016/j.neunet.2014.09.003_br003280 article-title: Partial BFGS update and efficient step-length calculation for three-layer neural networks publication-title: Neural Computation doi: 10.1162/neco.1997.9.1.123 – year: 1996 ident: 10.1016/j.neunet.2014.09.003_br000055 article-title: A new learning algorithm for blind signal separation – start-page: 473 issue: 7 year: 1976 ident: 10.1016/j.neunet.2014.09.003_br001725 article-title: Sequential GMDH algorithm and its application to river flow prediction publication-title: IEEE Transactions on Systems, Man and Cybernetics doi: 10.1109/TSMC.1976.4309532 – volume: 35 start-page: 1915 issue: 8 year: 2013 ident: 10.1016/j.neunet.2014.09.003_br000975 article-title: Learning hierarchical features for scene labeling publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2012.231 – year: 1961 ident: 10.1016/j.neunet.2014.09.003_br003040 – volume: 7 start-page: 687 issue: 4 year: 1996 ident: 10.1016/j.neunet.2014.09.003_br003785 article-title: A single spike suffices: the simplest form of stochastic resonance in model neurons publication-title: Network: Computation in Neural Systems doi: 10.1088/0954-898X/7/4/005 – start-page: 189 year: 2000 ident: 10.1016/j.neunet.2014.09.003_br001175 article-title: Recurrent nets that time and count – year: 1995 ident: 10.1016/j.neunet.2014.09.003_br002755 – volume: 13 start-page: 547 year: 1966 ident: 10.1016/j.neunet.2014.09.003_br000580 article-title: On the length of programs for computing finite binary sequences publication-title: Journal of the ACM doi: 10.1145/321356.321363 – year: 2006 ident: 10.1016/j.neunet.2014.09.003_br002180 article-title: Off-road obstacle avoidance through end-to-end learning – volume: 352 start-page: 1177 year: 1997 ident: 10.1016/j.neunet.2014.09.003_br001560 article-title: Generative models for discovering sparse distributed representations publication-title: Philosophical Transactions of the Royal Society B doi: 10.1098/rstb.1997.0101 – volume: 9 start-page: 41 issue: 1 year: 1996 ident: 10.1016/j.neunet.2014.09.003_br002855 article-title: Extraction of rules from discrete-time recurrent neural networks publication-title: Neural Networks doi: 10.1016/0893-6080(95)00086-0 – year: 1990 ident: 10.1016/j.neunet.2014.09.003_br003390 – start-page: 967 year: 1991 ident: 10.1016/j.neunet.2014.09.003_br003415 article-title: Learning to generate sub-goals for action sequences – volume: 310 start-page: 863 issue: 5749 year: 2005 ident: 10.1016/j.neunet.2014.09.003_br001685 article-title: Fast readout of object identity from macaque inferior temporal cortex publication-title: Science doi: 10.1126/science.1117593 – volume: 1 start-page: 4 issue: 1 year: 1990 ident: 10.1016/j.neunet.2014.09.003_br002745 article-title: Identification and control of dynamical systems using neural networks publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.80202 – start-page: 155 year: 1991 ident: 10.1016/j.neunet.2014.09.003_br000440 article-title: The Tempo 2 algorithm: adjusting time-delays by supervised learning – ident: 10.1016/j.neunet.2014.09.003_br004350 doi: 10.1109/CVPR.2014.98 – year: 1999 ident: 10.1016/j.neunet.2014.09.003_br003570 – start-page: 4 year: 2012 ident: 10.1016/j.neunet.2014.09.003_br002085 article-title: Imagenet classification with deep convolutional neural networks – start-page: 499 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br003550 article-title: Unsupervised discrimination of clustered data via optimization of binary information gain – ident: 10.1016/j.neunet.2014.09.003_br001295 doi: 10.21437/Interspeech.2014-483 – year: 1999 ident: 10.1016/j.neunet.2014.09.003_br001700 article-title: Sparse code shrinkage: denoising by maximum likelihood estimation – year: 1988 ident: 10.1016/j.neunet.2014.09.003_br001845 – year: 1991 ident: 10.1016/j.neunet.2014.09.003_br000455 – volume: 33 start-page: 11515 issue: 28 year: 2013 ident: 10.1016/j.neunet.2014.09.003_br001970 article-title: Emergence of dynamic memory traces in cortical microcircuit models through STDP publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.5044-12.2013 – ident: 10.1016/j.neunet.2014.09.003_br000740 doi: 10.1145/1276958.1277155 – volume: 7 issue: 272 year: 2014 ident: 10.1016/j.neunet.2014.09.003_br002770 article-title: Event-driven contrastive divergence for spiking neuromorphic systems publication-title: Frontiers in Neuroscience – ident: 10.1016/j.neunet.2014.09.003_br004065 – volume: 65 start-page: 386 issue: 6 year: 1958 ident: 10.1016/j.neunet.2014.09.003_br003235 article-title: The perceptron: a probabilistic model for information storage and organization in the brain publication-title: Psychological Review doi: 10.1037/h0042519 – volume: 40 start-page: 1098 year: 1952 ident: 10.1016/j.neunet.2014.09.003_br001680 article-title: A method for construction of minimum-redundancy codes publication-title: Proceedings IRE doi: 10.1109/JRPROC.1952.273898 – ident: 10.1016/j.neunet.2014.09.003_br001940 doi: 10.1109/CVPR.2014.249 – volume: 335 start-page: 23 issue: 1273 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br002985 article-title: Organization and functions of cells responsive to faces in the temporal cortex [and discussion] publication-title: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences doi: 10.1098/rstb.1992.0003 – year: 2014 ident: 10.1016/j.neunet.2014.09.003_br003835 – start-page: 875 year: 1991 ident: 10.1016/j.neunet.2014.09.003_br004110 article-title: Generalization by weight-elimination with application to forecasting – volume: 5 start-page: 289 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br003130 article-title: Redundancy reduction as a strategy for unsupervised learning publication-title: Neural Computation doi: 10.1162/neco.1993.5.2.289 – start-page: 38 year: 2001 ident: 10.1016/j.neunet.2014.09.003_br001055 article-title: Evolution of spiking neural controllers for autonomous vision-based robots – volume: 9 start-page: 159 issue: 2 year: 2001 ident: 10.1016/j.neunet.2014.09.003_br001445 article-title: Completely derandomized self-adaptation in evolution strategies publication-title: Evolutionary Computation doi: 10.1162/106365601750190398 – volume: 16 start-page: 146 issue: 2 year: 1976 ident: 10.1016/j.neunet.2014.09.003_br002330 article-title: Taylor expansion of the accumulated rounding error publication-title: BIT Numerical Mathematics doi: 10.1007/BF01931367 – year: 2001 ident: 10.1016/j.neunet.2014.09.003_br001705 – year: 1985 ident: 10.1016/j.neunet.2014.09.003_br000715 article-title: A representation for the adaptive generation of simple sequential programs – volume: 3 start-page: 115 year: 2002 ident: 10.1016/j.neunet.2014.09.003_br001190 article-title: Learning precise timing with LSTM recurrent networks publication-title: Journal of Machine Learning Research – volume: 24 start-page: 2248 issue: 11 year: 2012 ident: 10.1016/j.neunet.2014.09.003_br004355 article-title: The limits of feedforward vision: Recurrent processing promotes robust object recognition when objects are degraded publication-title: Journal of Cognitive Neuroscience doi: 10.1162/jocn_a_00282 – ident: 10.1016/j.neunet.2014.09.003_br001225 doi: 10.1109/ICIP.2013.6738831 – volume: 31 start-page: 377 year: 1979 ident: 10.1016/j.neunet.2014.09.003_br000720 article-title: Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation publication-title: Numerische Mathematik doi: 10.1007/BF01404567 – start-page: 627 year: 1991 ident: 10.1016/j.neunet.2014.09.003_br002700 article-title: Discovering discrete distributed representations with iterative competitive learning – year: 2001 ident: 10.1016/j.neunet.2014.09.003_br000375 – year: 1993 ident: 10.1016/j.neunet.2014.09.003_br002635 – volume: 36 start-page: 1249 issue: 9 year: 2000 ident: 10.1016/j.neunet.2014.09.003_br000410 article-title: A survey of computational complexity results in systems and control publication-title: Automatica doi: 10.1016/S0005-1098(00)00050-9 – volume: 18 start-page: 415 issue: 2 year: 2006 ident: 10.1016/j.neunet.2014.09.003_br000965 article-title: A simple Hebbian/anti-Hebbian network learns the sparse, independent components of natural images publication-title: Neural Computation doi: 10.1162/089976606775093891 – volume: 30 start-page: 947 issue: 10 year: 1960 ident: 10.1016/j.neunet.2014.09.003_br001925 article-title: Gradient theory of optimal flight paths publication-title: ARS Journal doi: 10.2514/8.5282 – year: 1987 ident: 10.1016/j.neunet.2014.09.003_br003375 – start-page: 909 year: 2006 ident: 10.1016/j.neunet.2014.09.003_br003860 article-title: Cross-entropy optimization for independent process analysis – volume: 25 start-page: 109 issue: 2 year: 1997 ident: 10.1016/j.neunet.2014.09.003_br004125 article-title: Learning recognition and segmentation using the cresceptron publication-title: International Journal of Computer Vision doi: 10.1023/A:1007967800668 – year: 1986 ident: 10.1016/j.neunet.2014.09.003_br001840 – ident: 10.1016/j.neunet.2014.09.003_br001600 – ident: 10.1016/j.neunet.2014.09.003_br002215 – start-page: 194 year: 1986 ident: 10.1016/j.neunet.2014.09.003_br003715 article-title: Parallel distributed processing: Explorations in the microstructure of cognition – volume: Vol. 1502 year: 1998 ident: 10.1016/j.neunet.2014.09.003_br001900 article-title: Computation in recurrent neural networks: from counters to iterated function systems – ident: 10.1016/j.neunet.2014.09.003_br000550 – start-page: 253 year: 2004 ident: 10.1016/j.neunet.2014.09.003_br000745 article-title: Locality-sensitive hashing scheme based on p-stable distributions – year: 1687 ident: 10.1016/j.neunet.2014.09.003_br002795 – ident: 10.1016/j.neunet.2014.09.003_br000195 – volume: 61 start-page: 241 issue: 4 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br003200 article-title: Self-organizing semantic maps publication-title: Biological Cybernetics doi: 10.1007/BF00203171 – start-page: 2729 year: 2011 ident: 10.1016/j.neunet.2014.09.003_br003875 article-title: Learning invariance through imitation – start-page: 325 year: 2012 ident: 10.1016/j.neunet.2014.09.003_br004185 article-title: Evolutionary computation for reinforcement learning – volume: 28 start-page: 41 issue: 1 year: 1997 ident: 10.1016/j.neunet.2014.09.003_br000565 article-title: Multitask learning publication-title: Machine Learning doi: 10.1023/A:1007379606734 – ident: 10.1016/j.neunet.2014.09.003_br001015 doi: 10.21437/Interspeech.2014-445 – volume: 114 start-page: 679 year: 1965 ident: 10.1016/j.neunet.2014.09.003_br002010 article-title: On the representation of continuous functions of several variables by superposition of continuous functions of one variable and addition publication-title: Doklady Akademii Nauk SSSR – volume: 19 start-page: 2229 issue: 59 year: 1987 ident: 10.1016/j.neunet.2014.09.003_br003015 article-title: Generalization of back-propagation to recurrent neural networks publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.59.2229 – volume: 33 start-page: 9565 issue: 23 year: 2013 ident: 10.1016/j.neunet.2014.09.003_br000480 article-title: Matching recall and storage in sequence learning with spiking neural networks publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.4098-12.2013 – volume: 304 start-page: 78 year: 2004 ident: 10.1016/j.neunet.2014.09.003_br001800 article-title: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication publication-title: Science doi: 10.1126/science.1091277 – volume: 50 start-page: 461 year: 2003 ident: 10.1016/j.neunet.2014.09.003_br004020 article-title: A training algorithm for classification of high-dimensional data publication-title: Neurocomputing doi: 10.1016/S0925-2312(02)00635-5 – year: 2013 ident: 10.1016/j.neunet.2014.09.003_br002620 – volume: 5 start-page: 197 year: 1990 ident: 10.1016/j.neunet.2014.09.003_br003350 article-title: The strength of weak learnability publication-title: Machine Learning doi: 10.1007/BF00116037 – volume: 306 start-page: 50 issue: 6 year: 2012 ident: 10.1016/j.neunet.2014.09.003_br002480 article-title: The human brain project publication-title: Scientific American doi: 10.1038/scientificamerican0612-50 – volume: Vol. 7700 year: 2012 ident: 10.1016/j.neunet.2014.09.003_br002645 – start-page: 153 year: 2007 ident: 10.1016/j.neunet.2014.09.003_br000360 article-title: Greedy layer-wise training of deep networks – volume: 71 start-page: 856 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br001980 article-title: Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex publication-title: Journal of Neurophysiology doi: 10.1152/jn.1994.71.3.856 – ident: 10.1016/j.neunet.2014.09.003_br002370 doi: 10.1109/ICCV.1999.790410 – volume: 94 start-page: 295 issue: 1 year: 2005 ident: 10.1016/j.neunet.2014.09.003_br000775 article-title: Neurodynamics of biased competition and cooperation for attention: a model with spiking neurons publication-title: Journal of Neurophysiology doi: 10.1152/jn.01095.2004 – start-page: 265 year: 2006 ident: 10.1016/j.neunet.2014.09.003_br002765 article-title: High dimensional classification with Bayesian neural networks and Dirichlet diffusion trees – ident: 10.1016/j.neunet.2014.09.003_br000510 doi: 10.1109/ICASSP.2014.6854518 – start-page: 1453 year: 2011 ident: 10.1016/j.neunet.2014.09.003_br003755 article-title: The German traffic sign recognition benchmark: A multi-class classification competition – ident: 10.1016/j.neunet.2014.09.003_br004375 – volume: 11 start-page: 431 issue: 2 year: 1963 ident: 10.1016/j.neunet.2014.09.003_br002485 article-title: An algorithm for least-squares estimation of nonlinear parameters publication-title: Journal of the Society for Industrial & Applied Mathematics doi: 10.1137/0111030 – volume: 70 start-page: 75 issue: 1 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br001655 article-title: Generative learning structures and processes for generalized connectionist networks publication-title: Information Sciences doi: 10.1016/0020-0255(93)90049-R – year: 2009 ident: 10.1016/j.neunet.2014.09.003_br001480 – year: 1994 ident: 10.1016/j.neunet.2014.09.003_br001785 article-title: Genetic L-system programming – start-page: 491 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br002725 article-title: Synaptic weight noise during MLP learning enhances fault-tolerance, generalisation and learning trajectory – start-page: 15 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br003690 article-title: Evolving virtual creatures doi: 10.1145/192161.192167 – year: 1999 ident: 10.1016/j.neunet.2014.09.003_br000810 article-title: The loading problem for pyramidal neural networks publication-title: Electronic Journal on Mathematics of Computation – start-page: 950 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br002090 article-title: A simple weight decay can improve generalization – start-page: 29 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br002650 article-title: Fast learning in multi-resolution hierarchies – ident: 10.1016/j.neunet.2014.09.003_br002205 doi: 10.1145/1553374.1553453 – start-page: 831 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br004000 article-title: Principles of risk minimization for learning theory – volume: 4 start-page: 234 issue: 2 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br003430 article-title: Learning complex, extended sequences using the principle of history compression publication-title: Neural Computation doi: 10.1162/neco.1992.4.2.234 – volume: 4 start-page: 863 issue: 6 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br003435 article-title: Learning factorial codes by predictability minimization publication-title: Neural Computation doi: 10.1162/neco.1992.4.6.863 – volume: SMC-13 start-page: 834 year: 1983 ident: 10.1016/j.neunet.2014.09.003_br000235 article-title: Neuronlike adaptive elements that can solve difficult learning control problems publication-title: IEEE Transactions on Systems, Man and Cybernetics doi: 10.1109/TSMC.1983.6313077 – start-page: 2348 year: 2011 ident: 10.1016/j.neunet.2014.09.003_br001325 article-title: Practical variational inference for neural networks – volume: J62-A start-page: 658 issue: 10 year: 1979 ident: 10.1016/j.neunet.2014.09.003_br001115 article-title: Neural network model for a mechanism of pattern recognition unaffected by shift in position—Neocognitron publication-title: Transactions of the IECE – start-page: 244 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br000575 article-title: A fast stochastic error-descent algorithm for supervised learning and optimization – volume: 210C start-page: 78 year: 2014 ident: 10.1016/j.neunet.2014.09.003_br000190 article-title: The dropout learning algorithm publication-title: Artificial Intelligence doi: 10.1016/j.artint.2014.02.004 – volume: 1 start-page: 145 issue: 2 year: 1986 ident: 10.1016/j.neunet.2014.09.003_br000785 article-title: Explanation-based learning: an alternative view publication-title: Machine Learning doi: 10.1007/BF00114116 – ident: 10.1016/j.neunet.2014.09.003_br003210 – year: 1995 ident: 10.1016/j.neunet.2014.09.003_br001885 – volume: 14 start-page: 1723 issue: 7 year: 2002 ident: 10.1016/j.neunet.2014.09.003_br003545 article-title: Fast curvature matrix–vector products for second-order gradient descent publication-title: Neural Computation doi: 10.1162/08997660260028683 – start-page: 107 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br002710 article-title: Skeletonization: A technique for trimming the fat from a network via relevance assessment – ident: 10.1016/j.neunet.2014.09.003_br003580 doi: 10.1016/B978-1-55860-307-3.50045-9 – year: 2014 ident: 10.1016/j.neunet.2014.09.003_br003865 – year: 1989 ident: 10.1016/j.neunet.2014.09.003_br004270 – year: 1908 ident: 10.1016/j.neunet.2014.09.003_br001425 – volume: 3 start-page: 331 issue: 4 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br000240 article-title: Accelerated backpropagation learning: two optimization methods publication-title: Complex Systems – volume: 22 start-page: 283 year: 1996 ident: 10.1016/j.neunet.2014.09.003_br002975 article-title: Incremental multi-step Q-learning publication-title: Machine Learning doi: 10.1007/BF00114731 – volume: 21 start-page: 682 issue: 4 year: 2008 ident: 10.1016/j.neunet.2014.09.003_br003005 article-title: Reinforcement learning of motor skills with policy gradients publication-title: Neural Networks doi: 10.1016/j.neunet.2008.02.003 – volume: 1 start-page: 445 issue: 6 year: 1961 ident: 10.1016/j.neunet.2014.09.003_br001045 article-title: Impulses and physiological states in theoretical models of nerve membrane publication-title: Biophysical Journal doi: 10.1016/S0006-3495(61)86902-6 – volume: 28 start-page: 2449 year: 2012 ident: 10.1016/j.neunet.2014.09.003_br000855 article-title: Deep architectures for protein contact map prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts475 – volume: 13 start-page: 43 issue: 3 year: 1968 ident: 10.1016/j.neunet.2014.09.003_br001745 article-title: The group method of data handling—a rival of the method of stochastic approximation publication-title: Soviet Automatic Control – start-page: 429 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br003380 article-title: Accelerated learning in back-propagation nets – start-page: 735 year: 2010 ident: 10.1016/j.neunet.2014.09.003_br002490 article-title: Deep learning via Hessian-free optimization – start-page: 649 year: 1995 ident: 10.1016/j.neunet.2014.09.003_br001820 article-title: Effects of noise on convergence and generalization in recurrent networks – ident: 10.1016/j.neunet.2014.09.003_br004150 doi: 10.1109/IJCNN.1989.118583 – ident: 10.1016/j.neunet.2014.09.003_br000145 doi: 10.1109/IROS.2003.1250667 – volume: 7 start-page: 783 issue: 5 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br002590 article-title: Perturbation response in feedforward networks publication-title: Neural Networks doi: 10.1016/0893-6080(94)90100-7 – ident: 10.1016/j.neunet.2014.09.003_br002625 doi: 10.1109/ICASSP.2010.5495651 – ident: 10.1016/j.neunet.2014.09.003_br003825 doi: 10.1145/1569901.1569976 – volume: 7 start-page: 565 year: 1995 ident: 10.1016/j.neunet.2014.09.003_br000765 article-title: Competition and multiple cause models publication-title: Neural Computation doi: 10.1162/neco.1995.7.3.565 – ident: 10.1016/j.neunet.2014.09.003_br002145 – volume: 8 start-page: 38 year: 2014 ident: 10.1016/j.neunet.2014.09.003_br003140 article-title: Stochastic variational learning in recurrent spiking networks publication-title: Frontiers in Computational Neuroscience – volume: 17 year: 1987 ident: 10.1016/j.neunet.2014.09.003_br004140 article-title: Building and understanding adaptive systems: A statistical/numerical approach to factory automation and brain research publication-title: IEEE Transactions on Systems, Man and Cybernetics doi: 10.1109/TSMC.1987.289329 – ident: 10.1016/j.neunet.2014.09.003_br001955 – start-page: 215 year: 2010 ident: 10.1016/j.neunet.2014.09.003_br000905 article-title: Free-energy based reinforcement learning for vision-based navigation with high-dimensional sensory inputs – ident: 10.1016/j.neunet.2014.09.003_br003495 doi: 10.1007/978-3-642-22887-2_25 – volume: 15 start-page: 194 issue: 2 year: 2012 ident: 10.1016/j.neunet.2014.09.003_br003790 article-title: Emergence of a ‘visual number sense’ in hierarchical generative models publication-title: Nature Neuroscience doi: 10.1038/nn.2996 – year: 2001 ident: 10.1016/j.neunet.2014.09.003_br000555 – ident: 10.1016/j.neunet.2014.09.003_br002945 – year: 1996 ident: 10.1016/j.neunet.2014.09.003_br000380 – start-page: 22 year: 1996 ident: 10.1016/j.neunet.2014.09.003_br000470 article-title: Linear least-squares algorithms for temporal difference learning publication-title: Machine Learning – year: 1993 ident: 10.1016/j.neunet.2014.09.003_br000685 – volume: 2 start-page: 625 year: 1988 ident: 10.1016/j.neunet.2014.09.003_br003720 article-title: Accelerated learning in layered neural networks publication-title: Complex Systems – volume: 4 start-page: 77 issue: 6 year: 1991 ident: 10.1016/j.neunet.2014.09.003_br003665 article-title: Turing computability with neural nets publication-title: Applied Mathematics Letters doi: 10.1016/0893-9659(91)90080-F – volume: 14 start-page: 179 issue: 2 year: 1990 ident: 10.1016/j.neunet.2014.09.003_br000920 article-title: Finding structure in time publication-title: Cognitive Science doi: 10.1207/s15516709cog1402_1 – year: 1996 ident: 10.1016/j.neunet.2014.09.003_br002190 – volume: 62 start-page: 193 year: 1990 ident: 10.1016/j.neunet.2014.09.003_br003250 article-title: Development of feature detectors by self-organization: A network model publication-title: Biological Cybernetics doi: 10.1007/BF00198094 – volume: 21 start-page: 858 issue: 5 year: 2010 ident: 10.1016/j.neunet.2014.09.003_br003065 article-title: A convolutional learning system for object classification in 3-D LIDAR data publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2010.2044802 – volume: 4 start-page: 882 issue: 5 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br000395 article-title: Curvature-driven smoothing: A learning algorithm for feed-forward networks publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.248466 – ident: 10.1016/j.neunet.2014.09.003_br004015 – year: 2012 ident: 10.1016/j.neunet.2014.09.003_br001580 – start-page: 968 year: 1999 ident: 10.1016/j.neunet.2014.09.003_br000130 article-title: Gradient descent for general reinforcement learning – volume: 23 start-page: 819 issue: 7 year: 2010 ident: 10.1016/j.neunet.2014.09.003_br004360 article-title: Evolving spiking neural networks for audiovisual information processing publication-title: Neural Networks doi: 10.1016/j.neunet.2010.04.009 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.neunet.2014.09.003_br001570 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – ident: 10.1016/j.neunet.2014.09.003_br000625 doi: 10.1007/978-3-642-40763-5_51 – volume: Vol. 8150 start-page: 246 year: 2013 ident: 10.1016/j.neunet.2014.09.003_br003055 article-title: Voxel classification based on triplanar convolutional neural networks applied to cartilage segmentation in knee MRI – volume: 11 start-page: 195 issue: 2–3 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br002425 article-title: Using knowledge-based neural networks to improve algorithms: Refining the Chou–Fasman algorithm for protein folding publication-title: Machine Learning doi: 10.1007/BF00993077 – ident: 10.1016/j.neunet.2014.09.003_br002235 – volume: 14 start-page: 1771 issue: 8 year: 2002 ident: 10.1016/j.neunet.2014.09.003_br001545 article-title: Training products of experts by minimizing contrastive divergence publication-title: Neural Computation doi: 10.1162/089976602760128018 – volume: 6 start-page: 383 issue: 4 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br000075 article-title: Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network publication-title: Protein Engineering doi: 10.1093/protein/6.4.383 – year: 2006 ident: 10.1016/j.neunet.2014.09.003_br003110 article-title: Efficient learning of sparse representations with an energy-based model – year: 2006 ident: 10.1016/j.neunet.2014.09.003_br001485 – start-page: 73 year: 2011 ident: 10.1016/j.neunet.2014.09.003_br001735 article-title: Keyword spotting in online handwritten documents containing text and non-text using BLSTM neural networks – year: 1971 ident: 10.1016/j.neunet.2014.09.003_br003125 – volume: 14 start-page: 1347 issue: 6 year: 2002 ident: 10.1016/j.neunet.2014.09.003_br000880 article-title: Multiple model-based reinforcement learning publication-title: Neural Computation doi: 10.1162/089976602753712972 – volume: 14 start-page: 3683 year: 2013 ident: 10.1016/j.neunet.2014.09.003_br000930 article-title: How to solve classification and regression problems on high-dimensional data with a supervised extension of slow feature analysis publication-title: Journal of Machine Learning Research – volume: 24 start-page: 1271 issue: 5 year: 2012 ident: 10.1016/j.neunet.2014.09.003_br003885 article-title: Learning invariance from natural images inspired by observations in the primary visual cortex publication-title: Neural Computation doi: 10.1162/NECO_a_00268 – year: 1965 ident: 10.1016/j.neunet.2014.09.003_br001760 – volume: 5 start-page: 13 issue: 4 year: 2010 ident: 10.1016/j.neunet.2014.09.003_br000095 article-title: Deep machine learning—a new frontier in artificial intelligence research publication-title: IEEE Computational Intelligence Magazine doi: 10.1109/MCI.2010.938364 – year: 1989 ident: 10.1016/j.neunet.2014.09.003_br004085 – ident: 10.1016/j.neunet.2014.09.003_br001155 – volume: 24 start-page: 647 issue: 111 year: 1970 ident: 10.1016/j.neunet.2014.09.003_br003635 article-title: Conditioning of quasi-Newton methods for function minimization publication-title: Mathematics of Computation doi: 10.1090/S0025-5718-1970-0274029-X – start-page: 199 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br003890 article-title: The evolution of mental models – volume: 7 start-page: 1329 issue: 6 year: 1996 ident: 10.1016/j.neunet.2014.09.003_br002310 article-title: Learning long-term dependencies in NARX recurrent neural networks publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.548162 – volume: 36 start-page: 81 issue: 1 year: 2000 ident: 10.1016/j.neunet.2014.09.003_br003800 article-title: When pyramidal neurons lock, when they respond chaotically, and when they like to synchronize publication-title: Neuroscience Research doi: 10.1016/S0168-0102(99)00108-X – volume: 14 start-page: 2531 issue: 11 year: 2002 ident: 10.1016/j.neunet.2014.09.003_br002410 article-title: Real-time computing without stable states: A new framework for neural computation based on perturbations publication-title: Neural Computation doi: 10.1162/089976602760407955 – volume: Vol. 4131 start-page: 71 year: 2006 ident: 10.1016/j.neunet.2014.09.003_br003345 article-title: Learning long term dependencies with recurrent neural networks – year: 1974 ident: 10.1016/j.neunet.2014.09.003_br003585 – volume: 1 start-page: 44 issue: 1 year: 1990 ident: 10.1016/j.neunet.2014.09.003_br002045 article-title: Unsupervised learning in noise publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.80204 – ident: 10.1016/j.neunet.2014.09.003_br000950 doi: 10.1109/IJCNN.1992.287238 – volume: 3 start-page: 166 issue: 8 year: 2007 ident: 10.1016/j.neunet.2014.09.003_br001085 article-title: Slowness and sparseness lead to place, head-direction, and spatial-view cells publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.0030166 – volume: 32 start-page: 41 issue: 1 year: 1998 ident: 10.1016/j.neunet.2014.09.003_br001035 article-title: The hierarchical hidden Markov model: analysis and applications publication-title: Machine Learning doi: 10.1023/A:1007469218079 – volume: 21 start-page: 199 issue: 3 year: 1995 ident: 10.1016/j.neunet.2014.09.003_br002670 article-title: The parti-game algorithm for variable resolution reinforcement learning in multidimensional state-spaces publication-title: Machine Learning doi: 10.1007/BF00993591 – volume: 4 start-page: 461 year: 1990 ident: 10.1016/j.neunet.2014.09.003_br001965 article-title: Designing neural networks using genetic algorithms with graph generation system publication-title: Complex Systems – start-page: 1057 year: 1999 ident: 10.1016/j.neunet.2014.09.003_br003845 article-title: Policy gradient methods for reinforcement learning with function approximation – volume: 13 start-page: 3406 issue: 8 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br004440 article-title: A spiking network model of short-term active memory publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.13-08-03406.1993 – ident: 10.1016/j.neunet.2014.09.003_br002970 – volume: 6 start-page: 271 issue: 3 year: 1996 ident: 10.1016/j.neunet.2014.09.003_br003945 article-title: Population dynamics and theta rhythm phase precession of hippocampal place cell firing: a spiking neuron model publication-title: Hippocampus doi: 10.1002/(SICI)1098-1063(1996)6:3<271::AID-HIPO5>3.3.CO;2-Q – volume: 160 start-page: 106 year: 1962 ident: 10.1016/j.neunet.2014.09.003_br001670 article-title: Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex publication-title: Journal of Physiology (London) doi: 10.1113/jphysiol.1962.sp006837 – volume: Vol. 3944 start-page: 28 year: 2006 ident: 10.1016/j.neunet.2014.09.003_br002760 article-title: Classification with Bayesian neural networks – year: 1985 ident: 10.1016/j.neunet.2014.09.003_br002935 – start-page: 586 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br003150 article-title: A direct adaptive method for faster backpropagation learning: The Rprop algorithm – volume: 24 start-page: 1 issue: 1 year: 1991 ident: 10.1016/j.neunet.2014.09.003_br001880 article-title: Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture publication-title: Signal Processing doi: 10.1016/0165-1684(91)90079-X – ident: 10.1016/j.neunet.2014.09.003_br000275 doi: 10.1007/978-3-642-04277-5_76 – volume: 17 start-page: 140 issue: 2 year: 2007 ident: 10.1016/j.neunet.2014.09.003_br000700 article-title: Transformation of shape information in the ventral pathway publication-title: Current Opinion in Neurobiology doi: 10.1016/j.conb.2007.03.002 – volume: 43 start-page: 59 issue: 1 year: 1982 ident: 10.1016/j.neunet.2014.09.003_br001995 article-title: Self-organized formation of topologically correct feature maps publication-title: Biological Cybernetics doi: 10.1007/BF00337288 – volume: 5 start-page: 1063 year: 2004 ident: 10.1016/j.neunet.2014.09.003_br003300 article-title: Reinforcement learning with factored states and actions publication-title: Journal of Machine Learning Research – volume: 20 start-page: 1417 issue: 9 year: 2009 ident: 10.1016/j.neunet.2014.09.003_br003610 article-title: Caviar: A 45 k neuron, 5 m synapse, 12 g connects/s AER hardware sensory–processing–learning–actuating system for high-speed visual object recognition and tracking publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2009.2023653 – year: 1961 ident: 10.1016/j.neunet.2014.09.003_br001865 – start-page: 393 year: 2010 ident: 10.1016/j.neunet.2014.09.003_br001235 article-title: Exponential natural evolution strategies – volume: 4 start-page: 175 issue: 1 year: 2008 ident: 10.1016/j.neunet.2014.09.003_br002030 article-title: Multi-layered GMDH-type neural network self-selecting optimum neural network architecture and its application to 3-dimensional medical image recognition of blood vessels publication-title: International Journal of Innovative Computing, Information and Control – start-page: 2588 year: 2003 ident: 10.1016/j.neunet.2014.09.003_br001715 article-title: Neuroevolution for reinforcement learning using evolution strategies – start-page: 552 year: 2005 ident: 10.1016/j.neunet.2014.09.003_br001230 article-title: A novel approach for the implementation of large scale spiking neural networks on FPGA hardware – volume: 22 start-page: 1473 issue: 6 year: 2010 ident: 10.1016/j.neunet.2014.09.003_br002535 article-title: Learning to represent spatial transformations with factored higher-order Boltzmann machines publication-title: Neural Computation doi: 10.1162/neco.2010.01-09-953 – year: 2003 ident: 10.1016/j.neunet.2014.09.003_br000005 – volume: 30 start-page: 20 issue: 4 year: 1999 ident: 10.1016/j.neunet.2014.09.003_br001110 article-title: Phoneme boundary estimation using bidirectional recurrent neural networks and its applications publication-title: Systems and Computers in Japan doi: 10.1002/(SICI)1520-684X(199904)30:4<20::AID-SCJ3>3.0.CO;2-E – volume: 10 start-page: 1659 issue: 9 year: 1997 ident: 10.1016/j.neunet.2014.09.003_br002400 article-title: Networks of spiking neurons: the third generation of neural network models publication-title: Neural Networks doi: 10.1016/S0893-6080(97)00011-7 – year: 2012 ident: 10.1016/j.neunet.2014.09.003_br003905 article-title: Lecture 6.5—RmsProp: Divide the gradient by a running average of its recent magnitude publication-title: COURSERA: Neural Networks for Machine Learning – ident: 10.1016/j.neunet.2014.09.003_br002060 – volume: 5 start-page: 156 issue: 2 year: 1960 ident: 10.1016/j.neunet.2014.09.003_br003805 article-title: Conditional Markov processes publication-title: Theory of Probability and Its Applications doi: 10.1137/1105015 – volume: 4 start-page: 1107 year: 2003 ident: 10.1016/j.neunet.2014.09.003_br002110 article-title: Least-squares policy iteration publication-title: Journal of Machine Learning Research – volume: 12 start-page: 197 issue: 3–4 year: 2000 ident: 10.1016/j.neunet.2014.09.003_br000435 article-title: Context-free and context-sensitive dynamics in recurrent neural networks publication-title: Connection Science doi: 10.1080/095400900750060122 – ident: 10.1016/j.neunet.2014.09.003_br001165 doi: 10.21437/Interspeech.2014-151 – ident: 10.1016/j.neunet.2014.09.003_br003120 – volume: 5 start-page: 473 issue: 1 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br001935 article-title: Robustness in multilayer perceptrons publication-title: Neural Computation doi: 10.1162/neco.1993.5.3.473 – volume: 2 start-page: 219 issue: 3 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br004365 article-title: Sequential behavior and learning in evolved dynamical neural networks publication-title: Adaptive Behavior doi: 10.1177/105971239400200301 – year: 1980 ident: 10.1016/j.neunet.2014.09.003_br002805 – ident: 10.1016/j.neunet.2014.09.003_br000970 doi: 10.21437/Interspeech.2014-443 – ident: 10.1016/j.neunet.2014.09.003_br001330 – year: 2014 ident: 10.1016/j.neunet.2014.09.003_br001920 article-title: Neucube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data publication-title: Neural Networks doi: 10.1016/j.neunet.2014.01.006 – year: 1991 ident: 10.1016/j.neunet.2014.09.003_br003025 – volume: 15 start-page: 937 year: 1999 ident: 10.1016/j.neunet.2014.09.003_br000160 article-title: Exploiting the past and the future in protein secondary structure prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/15.11.937 – volume: 47 start-page: 25 year: 2014 ident: 10.1016/j.neunet.2014.09.003_br001040 article-title: Training restricted Boltzmann machines: an introduction publication-title: Pattern Recognition doi: 10.1016/j.patcog.2013.05.025 – volume: 6 start-page: 837 issue: 4 year: 1995 ident: 10.1016/j.neunet.2014.09.003_br000180 article-title: Learning in linear networks: a survey publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.392248 – start-page: 1609 year: 2008 ident: 10.1016/j.neunet.2014.09.003_br003855 article-title: A convergent O(n) algorithm for off-policy temporal-difference learning with linear function approximation – year: 2012 ident: 10.1016/j.neunet.2014.09.003_br003480 – ident: 10.1016/j.neunet.2014.09.003_br003830 – volume: 3 start-page: 213 year: 2002 ident: 10.1016/j.neunet.2014.09.003_br000475 article-title: R-MAX—a general polynomial time algorithm for near-optimal reinforcement learning publication-title: Journal of Machine Learning Research – start-page: 221 year: 1996 ident: 10.1016/j.neunet.2014.09.003_br004010 article-title: Learning fine motion by using the hierarchical extended Kohonen map – volume: 40 start-page: 1063 issue: 6 year: 2003 ident: 10.1016/j.neunet.2014.09.003_br003620 article-title: Learning in spiking neural networks by reinforcement of stochastic synaptic transmission publication-title: Neuron doi: 10.1016/S0896-6273(03)00761-X – ident: 10.1016/j.neunet.2014.09.003_br003400 – start-page: 577 year: 2008 ident: 10.1016/j.neunet.2014.09.003_br001340 article-title: Unconstrained on-line handwriting recognition with recurrent neural networks – year: 1991 ident: 10.1016/j.neunet.2014.09.003_br001810 article-title: Delayed reinforcement learning with multiple time scale hierarchical backpropagated adaptive critics – volume: 4 start-page: 273 issue: 4 year: 2012 ident: 10.1016/j.neunet.2014.09.003_br004385 article-title: A developmental approach to structural self-organization in reservoir computing publication-title: IEEE Transactions on Autonomous Mental Development doi: 10.1109/TAMD.2012.2182765 – start-page: 625 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br001100 article-title: A growing neural gas network learns topologies – year: 1996 ident: 10.1016/j.neunet.2014.09.003_br001400 – volume: 4 start-page: 8 year: 2013 ident: 10.1016/j.neunet.2014.09.003_br003245 article-title: Mitosis detection in breast cancer histological images—an ICPR 2012 contest publication-title: Journal of Pathology Informatics doi: 10.4103/2153-3539.112693 – start-page: 241 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br004280 article-title: Training recurrent networks using the extended Kalman filter – volume: 22 start-page: 1744 issue: 11 year: 2011 ident: 10.1016/j.neunet.2014.09.003_br000595 article-title: Learning speaker-specific characteristics with a deep neural architecture publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2011.2167240 – volume: 33 start-page: 105 issue: 1 year: 1998 ident: 10.1016/j.neunet.2014.09.003_br004225 article-title: Fast online Q(λ) publication-title: Machine Learning doi: 10.1023/A:1007562800292 – start-page: 151 year: 1990 ident: 10.1016/j.neunet.2014.09.003_br003670 article-title: Speeding up back-propagation – volume: IT-24 start-page: 422 issue: 5 year: 1978 ident: 10.1016/j.neunet.2014.09.003_br003730 article-title: Complexity-based induction systems publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.1978.1055913 – ident: 10.1016/j.neunet.2014.09.003_br000590 – start-page: 190 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br002810 article-title: How to evolve autonomous robots: Different approaches in evolutionary robotics – start-page: 162 year: 1991 ident: 10.1016/j.neunet.2014.09.003_br000825 article-title: A theory for neural networks with time delays – start-page: 196 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br003520 article-title: Planning simple trajectories using neural subgoal generators – start-page: 275 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br002705 article-title: Induction of multiscale temporal structure – start-page: 345 year: 1995 ident: 10.1016/j.neunet.2014.09.003_br001775 article-title: Reinforcement learning algorithm for partially observable Markov decision problems – ident: 10.1016/j.neunet.2014.09.003_br002055 doi: 10.1145/1830483.1830596 – volume: 6 start-page: 203 issue: 1 year: 1995 ident: 10.1016/j.neunet.2014.09.003_br002715 article-title: Fast neural net simulation with a DSP processor array publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.363436 – volume: 14 start-page: 2497 issue: 10 year: 2002 ident: 10.1016/j.neunet.2014.09.003_br003975 article-title: Many-layered learning publication-title: Neural Computation doi: 10.1162/08997660260293319 – volume: 6 start-page: 127 issue: 1 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br000390 article-title: A learning algorithm for multilayered neural networks based on linear least squares problems publication-title: Neural Networks doi: 10.1016/S0893-6080(05)80077-2 – start-page: 534 year: 1996 ident: 10.1016/j.neunet.2014.09.003_br004215 article-title: Solving POMDPs with Levin search and EIRA – volume: 58 start-page: 1233 issue: 6 year: 1987 ident: 10.1016/j.neunet.2014.09.003_br001835 article-title: An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex publication-title: Journal of Neurophysiology doi: 10.1152/jn.1987.58.6.1233 – start-page: 2310 year: 2013 ident: 10.1016/j.neunet.2014.09.003_br003750 article-title: Compete to compute – volume: 6 start-page: 163 issue: 2 year: 1997 ident: 10.1016/j.neunet.2014.09.003_br003325 article-title: Experiments with reinforcement learning in problems with continuous state and action spaces publication-title: Adaptive Behavior doi: 10.1177/105971239700600201 – volume: 15 start-page: 185 issue: 2 year: 2009 ident: 10.1016/j.neunet.2014.09.003_br003765 article-title: A hypercube-based encoding for evolving large-scale neural networks publication-title: Artificial Life doi: 10.1162/artl.2009.15.2.15202 – volume: 4 start-page: 203 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br004380 article-title: A review of evolutionary artificial neural networks publication-title: International Journal of Intelligent Systems – ident: 10.1016/j.neunet.2014.09.003_br000120 – ident: 10.1016/j.neunet.2014.09.003_br000945 doi: 10.1109/ICASSP.2013.6637694 – year: 1997 ident: 10.1016/j.neunet.2014.09.003_br002610 – volume: 8 start-page: 773 issue: 4 year: 1996 ident: 10.1016/j.neunet.2014.09.003_br003500 article-title: Semilinear predictability minimization produces well-known feature detectors publication-title: Neural Computation doi: 10.1162/neco.1996.8.4.773 – volume: 50 start-page: 105 issue: C year: 2003 ident: 10.1016/j.neunet.2014.09.003_br001720 article-title: Empirical evaluation of the improved Rprop learning algorithm publication-title: Neurocomputing doi: 10.1016/S0925-2312(01)00700-7 – year: 1989 ident: 10.1016/j.neunet.2014.09.003_br003230 article-title: The ‘moving targets’ training method – year: 1696 ident: 10.1016/j.neunet.2014.09.003_br002290 – start-page: 241 year: 1969 ident: 10.1016/j.neunet.2014.09.003_br004050 article-title: PROW: a step toward automatic program writing – start-page: 1061 year: 2000 ident: 10.1016/j.neunet.2014.09.003_br002685 article-title: Robust reinforcement learning – volume: 36 year: 1980 ident: 10.1016/j.neunet.2014.09.003_br002915 article-title: On associative memory publication-title: Biological Cybernetics doi: 10.1007/BF00337019 – ident: 10.1016/j.neunet.2014.09.003_br003030 – volume: 16 start-page: 955 issue: 7 year: 2003 ident: 10.1016/j.neunet.2014.09.003_br000585 article-title: Incremental training of first order recurrent neural networks to predict a context-sensitive language publication-title: Neural Networks doi: 10.1016/S0893-6080(03)00054-6 – volume: 11 start-page: 5 issue: 1 year: 1999 ident: 10.1016/j.neunet.2014.09.003_br003220 article-title: A recurrent neural network that learns to count publication-title: Connection Science doi: 10.1080/095400999116340 – start-page: 357 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br002800 article-title: The truck backer-upper: An example of self learning in neural networks – ident: 10.1016/j.neunet.2014.09.003_br003695 – start-page: 309 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br004095 article-title: Induction of finite-state automata using second-order recurrent networks – ident: 10.1016/j.neunet.2014.09.003_br000125 doi: 10.1016/B978-1-55860-377-6.50013-X – volume: 8 start-page: 279 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br004090 article-title: Q-learning publication-title: Machine Learning doi: 10.1007/BF00992698 – volume: 5 start-page: 117 issue: 1 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br000420 article-title: Training a 3-node neural network is NP-complete publication-title: Neural Networks doi: 10.1016/S0893-6080(05)80010-3 – start-page: 15 year: 2006 ident: 10.1016/j.neunet.2014.09.003_br004165 article-title: Backwards differentiation in AD and neural nets: Past links and new opportunities – volume: 5 start-page: 123 issue: 2 year: 1997 ident: 10.1016/j.neunet.2014.09.003_br003305 article-title: Probabilistic incremental program evolution publication-title: Evolutionary Computation doi: 10.1162/evco.1997.5.2.123 – ident: 10.1016/j.neunet.2014.09.003_br001320 – year: 2012 ident: 10.1016/j.neunet.2014.09.003_br002105 – year: 1967 ident: 10.1016/j.neunet.2014.09.003_br001765 – volume: 4 start-page: 491 year: 1990 ident: 10.1016/j.neunet.2014.09.003_br004285 article-title: An efficient gradient-based algorithm for on-line training of recurrent network trajectories publication-title: Neural Computation – start-page: 1 year: 2012 ident: 10.1016/j.neunet.2014.09.003_br003190 article-title: A unified approach to evolving plasticity and neural geometry – volume: 268 start-page: 1158 year: 1995 ident: 10.1016/j.neunet.2014.09.003_br001550 article-title: The wake-sleep algorithm for unsupervised neural networks publication-title: Science doi: 10.1126/science.7761831 – start-page: 1050 year: 1998 ident: 10.1016/j.neunet.2014.09.003_br003060 article-title: Multi-time models for temporally abstract planning – start-page: 689 year: 2011 ident: 10.1016/j.neunet.2014.09.003_br003045 article-title: Sum–product networks: A new deep architecture – ident: 10.1016/j.neunet.2014.09.003_br003155 – volume: 2 start-page: 53 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br000175 article-title: Neural networks and principal component analysis: learning from examples without local minima publication-title: Neural Networks doi: 10.1016/0893-6080(89)90014-2 – volume: 3 start-page: 14 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br002785 article-title: Maximally fault tolerant neural networks publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.105414 – volume: 8 start-page: 1541 issue: 7 year: 1996 ident: 10.1016/j.neunet.2014.09.003_br000170 article-title: Hybrid modeling, HMM/NN architectures, and protein applications publication-title: Neural Computation doi: 10.1162/neco.1996.8.7.1541 – volume: 5 start-page: 3698 issue: 11 year: 2010 ident: 10.1016/j.neunet.2014.09.003_br002995 article-title: Policy gradient methods publication-title: Scholarpedia doi: 10.4249/scholarpedia.3698 – volume: 147 start-page: 5 issue: 1 year: 2003 ident: 10.1016/j.neunet.2014.09.003_br002440 article-title: On the undecidability of probabilistic planning and related stochastic optimization problems publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(02)00378-8 – volume: 64 start-page: 152 issue: 4 year: 2009 ident: 10.1016/j.neunet.2014.09.003_br001515 article-title: Neuroevolution strategies for episodic reinforcement learning publication-title: Journal of Algorithms doi: 10.1016/j.jalgor.2009.04.002 – year: 1990 ident: 10.1016/j.neunet.2014.09.003_br001855 – volume: 47 start-page: 329 issue: 3 year: 1982 ident: 10.1016/j.neunet.2014.09.003_br002990 article-title: Visual neurones responsive to faces in the monkey temporal cortex publication-title: Experimental Brain Research doi: 10.1007/BF00239352 – year: 2013 ident: 10.1016/j.neunet.2014.09.003_br000660 – start-page: 267 year: 1973 ident: 10.1016/j.neunet.2014.09.003_br000020 article-title: Information theory and an extension of the maximum likelihood principle – volume: 24 start-page: 123 year: 1996 ident: 10.1016/j.neunet.2014.09.003_br000485 article-title: Bagging predictors publication-title: Machine Learning doi: 10.1007/BF00058655 – year: 1994 ident: 10.1016/j.neunet.2014.09.003_br000460 – start-page: 279 year: 1990 ident: 10.1016/j.neunet.2014.09.003_br002005 article-title: Self-organizing hierarchical feature maps – volume: 17 start-page: 126 issue: 2 year: 2001 ident: 10.1016/j.neunet.2014.09.003_br001520 article-title: A hierarchical unsupervised growing neural network for clustering gene expression patterns publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.2.126 – volume: 5 start-page: 552 issue: 5 year: 1995 ident: 10.1016/j.neunet.2014.09.003_br002355 article-title: Shape representation in the inferior temporal cortex of monkeys publication-title: Current Biology doi: 10.1016/S0960-9822(95)00108-4 – volume: 4 start-page: 12 issue: 4 year: 2012 ident: 10.1016/j.neunet.2014.09.003_br004035 article-title: On the computational complexity of stochastic controller optimization in POMDPs publication-title: ACM Transactions on Computation Theory doi: 10.1145/2382559.2382563 – start-page: 362 year: 1995 ident: 10.1016/j.neunet.2014.09.003_br002340 article-title: Learning policies for partially observable environments: scaling up – volume: 14 start-page: 321 issue: 3 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br003650 article-title: Combining symbolic and neural learning publication-title: Machine Learning doi: 10.1007/BF00993982 – volume: 47 issue: 5 year: 2005 ident: 10.1016/j.neunet.2014.09.003_br001245 article-title: Reinforcing the driving quality of soccer playing robots by anticipation publication-title: IT—Information Technology doi: 10.1524/itit.2005.47.5_2005.250 – ident: 10.1016/j.neunet.2014.09.003_br001435 doi: 10.1109/ROBOT.2004.1302446 – year: 2001 ident: 10.1016/j.neunet.2014.09.003_br001795 – ident: 10.1016/j.neunet.2014.09.003_br000640 doi: 10.1109/IJCNN.2011.6033458 – start-page: 387 year: 2002 ident: 10.1016/j.neunet.2014.09.003_br003615 article-title: On the role of object-specific features for real world object recognition in biological vision – volume: 59 start-page: 5 issue: 1 year: 2005 ident: 10.1016/j.neunet.2014.09.003_br004190 article-title: Evolving keepaway soccer players through task decomposition publication-title: Machine Learning doi: 10.1007/s10994-005-0460-9 – year: 2013 ident: 10.1016/j.neunet.2014.09.003_br001215 – year: 1995 ident: 10.1016/j.neunet.2014.09.003_br003275 – ident: 10.1016/j.neunet.2014.09.003_br003960 doi: 10.1145/2463372.2463484 – start-page: 29 year: 1998 ident: 10.1016/j.neunet.2014.09.003_br000985 article-title: Enhanced multi-stream Kalman filter training for recurrent networks – volume: 7 start-page: 985 issue: 6 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br001460 article-title: Design and evolution of modular neural network architectures publication-title: Neural Networks doi: 10.1016/S0893-6080(05)80155-8 – volume: 11 start-page: 697 issue: 3 year: 2000 ident: 10.1016/j.neunet.2014.09.003_br000110 article-title: New results on recurrent network training: unifying the algorithms and accelerating convergence publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.846741 – year: 1995 ident: 10.1016/j.neunet.2014.09.003_br004005 – volume: 82 start-page: 35 issue: 1 year: 1960 ident: 10.1016/j.neunet.2014.09.003_br001905 article-title: A new approach to linear filtering and prediction problems publication-title: Journal of Basic Engineering doi: 10.1115/1.3662552 – start-page: 1143 year: 1998 ident: 10.1016/j.neunet.2014.09.003_br002025 article-title: GMDH neural network algorithm using the heuristic self-organization method and its application to the pattern identification problem – start-page: 180 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br003810 article-title: Time warping invariant neural networks – volume: 22 start-page: 203 year: 1970 ident: 10.1016/j.neunet.2014.09.003_br000015 article-title: Statistical predictor identification publication-title: Annals of the Institute of Statistical Mathematics doi: 10.1007/BF02506337 – volume: Vol. 1524 start-page: 373 year: 1996 ident: 10.1016/j.neunet.2014.09.003_br002790 article-title: How to train neural networks – volume: 1 start-page: 403 issue: 4 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br003385 article-title: A local learning algorithm for dynamic feedforward and recurrent networks publication-title: Connection Science doi: 10.1080/09540098908915650 – volume: 12 start-page: 2519 year: 2000 ident: 10.1016/j.neunet.2014.09.003_br002405 article-title: On the computational power of winner-take-all publication-title: Neural Computation doi: 10.1162/089976600300014827 – ident: 10.1016/j.neunet.2014.09.003_br000415 – year: 1994 ident: 10.1016/j.neunet.2014.09.003_br002435 – start-page: 282 year: 1986 ident: 10.1016/j.neunet.2014.09.003_br001575 article-title: Learning and relearning in Boltzmann machines – start-page: 737 year: 1991 ident: 10.1016/j.neunet.2014.09.003_br002845 article-title: Data compression, feature extraction, and autoassociation in feedforward neural networks – volume: 11 start-page: 1 issue: 1 year: 2003 ident: 10.1016/j.neunet.2014.09.003_br001440 article-title: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES) publication-title: Evolutionary Computation doi: 10.1162/106365603321828970 – ident: 10.1016/j.neunet.2014.09.003_br000655 doi: 10.1109/IJCNN.2012.6252544 – year: 2006 ident: 10.1016/j.neunet.2014.09.003_br001430 article-title: Dimensionality reduction by learning an invariant mapping – volume: 53 start-page: 1563 issue: 7 year: 2013 ident: 10.1016/j.neunet.2014.09.003_br002385 article-title: Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules publication-title: Journal of Chemical Information and Modeling doi: 10.1021/ci400187y – year: 2013 ident: 10.1016/j.neunet.2014.09.003_br002905 article-title: Intrinsically motivated learning of real world sensorimotor skills with developmental constraints – start-page: 160 year: 2008 ident: 10.1016/j.neunet.2014.09.003_br000690 article-title: A unified architecture for natural language processing: deep neural networks with multitask learning – volume: 23 year: 1976 ident: 10.1016/j.neunet.2014.09.003_br001395 article-title: Adaptive pattern classification and universal recoding, 2: feedback, expectation, olfaction, and illusions publication-title: Biological Cybernetics doi: 10.1007/BF00340335 – year: 2005 ident: 10.1016/j.neunet.2014.09.003_br001695 – start-page: 61 year: 2013 ident: 10.1016/j.neunet.2014.09.003_br003820 article-title: A linear time natural evolution strategy for non-separable functions – volume: 23 start-page: 269 issue: 3 year: 1984 ident: 10.1016/j.neunet.2014.09.003_br002250 article-title: Why AM an EURISKO appear to work publication-title: Artificial Intelligence doi: 10.1016/0004-3702(84)90016-X – volume: 23 start-page: 551 issue: 4 year: 2010 ident: 10.1016/j.neunet.2014.09.003_br003595 article-title: Parameter-exploring policy gradients publication-title: Neural Networks doi: 10.1016/j.neunet.2009.12.004 – start-page: 428 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br000665 article-title: Evolving recurrent dynamical networks for robot control – start-page: 29 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br000290 article-title: Improving the convergence of back-propagation learning with second order methods – ident: 10.1016/j.neunet.2014.09.003_br003590 – year: 1992 ident: 10.1016/j.neunet.2014.09.003_br004180 – volume: 8 start-page: 895 issue: 5 year: 1996 ident: 10.1016/j.neunet.2014.09.003_br002865 article-title: Biologically plausible error-driven learning using local activation differences: The generalized recirculation algorithm publication-title: Neural Computation doi: 10.1162/neco.1996.8.5.895 – volume: 11 start-page: 679 issue: 3 year: 1999 ident: 10.1016/j.neunet.2014.09.003_br001620 article-title: Feature extraction through LOCOCODE publication-title: Neural Computation doi: 10.1162/089976699300016629 – year: 2011 ident: 10.1016/j.neunet.2014.09.003_br002360 – volume: 1 start-page: 131 issue: 1 year: 1990 ident: 10.1016/j.neunet.2014.09.003_br002500 article-title: Three-dimensional neural net for learning visuomotor coordination of a robot arm publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.80212 – volume: 70 start-page: 119 issue: 1 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br003930 article-title: Knowledge-based artificial neural networks publication-title: Artificial Intelligence doi: 10.1016/0004-3702(94)90105-8 – volume: 5 start-page: 240 issue: 2 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br000705 article-title: Recurrent neural networks and robust time series prediction publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.279188 – year: 1993 ident: 10.1016/j.neunet.2014.09.003_br002305 – volume: 13 start-page: 103 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br002665 article-title: Prioritized sweeping: Reinforcement learning with less data and less time publication-title: Machine Learning doi: 10.1007/BF00993104 – start-page: 31 year: 2011 ident: 10.1016/j.neunet.2014.09.003_br001220 article-title: Sequential constant size compressor for reinforcement learning – ident: 10.1016/j.neunet.2014.09.003_br003870 – ident: 10.1016/j.neunet.2014.09.003_br004135 – volume: 16 start-page: 299 issue: 3 year: 1967 ident: 10.1016/j.neunet.2014.09.003_br000045 article-title: A theory of adaptive pattern classifiers publication-title: IEEE Transactions on Electronic Computers doi: 10.1109/PGEC.1967.264666 – volume: 3 start-page: 5 issue: 1 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br002815 article-title: Learning and evolution in neural networks publication-title: Adaptive Behavior doi: 10.1177/105971239400300102 – volume: 75 start-page: 1515 issue: 4 year: 1996 ident: 10.1016/j.neunet.2014.09.003_br002450 article-title: Model circuit of spiking neurons generating directional selectivity in simple cells publication-title: Journal of Neurophysiology doi: 10.1152/jn.1996.75.4.1515 – volume: 31 start-page: 152 issue: 2 year: 1988 ident: 10.1016/j.neunet.2014.09.003_br001145 article-title: Connectionist expert systems publication-title: Communications of the ACM doi: 10.1145/42372.42377 – volume: 27 start-page: 37 year: 2012 ident: 10.1016/j.neunet.2014.09.003_br000155 article-title: Autoencoders, unsupervised learning, and deep architectures publication-title: Journal of Machine Learning Research – ident: 10.1016/j.neunet.2014.09.003_br003010 – start-page: 1 year: 2007 ident: 10.1016/j.neunet.2014.09.003_br003105 article-title: Unsupervised learning of invariant feature hierarchies with applications to object recognition – volume: 1 start-page: 295 issue: 4 year: 1988 ident: 10.1016/j.neunet.2014.09.003_br001790 article-title: Increased rates of convergence through learning rate adaptation publication-title: Neural Networks doi: 10.1016/0893-6080(88)90003-2 – volume: 141 start-page: 245 issue: 4 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br003985 article-title: Original approach for the localisation of objects in images publication-title: IEE Proceedings Vision, Image, and Signal Processing doi: 10.1049/ip-vis:19941301 – volume: 28 start-page: 105 year: 1997 ident: 10.1016/j.neunet.2014.09.003_br003535 article-title: Shifting inductive bias with success-story algorithm, adaptive Levin search, and incremental self-improvement publication-title: Machine Learning doi: 10.1023/A:1007383707642 – start-page: 115 year: 1987 ident: 10.1016/j.neunet.2014.09.003_br000220 article-title: Learning receptive fields – volume: 7 start-page: 30 issue: 1 year: 1995 ident: 10.1016/j.neunet.2014.09.003_br002280 article-title: Control of nonlinear dynamical systems using neural networks. II. Observability, identification, and control publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.478390 – start-page: 1335 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br004115 article-title: Hierarchical chunking in classifier systems – ident: 10.1016/j.neunet.2014.09.003_br002150 – volume: 24 start-page: 23 issue: 109 year: 1970 ident: 10.1016/j.neunet.2014.09.003_br001260 article-title: A family of variable-metric methods derived by variational means publication-title: Mathematics of Computation doi: 10.1090/S0025-5718-1970-0258249-6 – volume: 14 start-page: 97 issue: 2 year: 2005 ident: 10.1016/j.neunet.2014.09.003_br000320 article-title: Face localization and tracking in the neural abstraction pyramid publication-title: Neural Computing and Applications doi: 10.1007/s00521-004-0444-x – volume: XXVII start-page: 379 year: 1948 ident: 10.1016/j.neunet.2014.09.003_br003640 article-title: A mathematical theory of communication (parts I and II) publication-title: Bell System Technical Journal doi: 10.1002/j.1538-7305.1948.tb01338.x – start-page: 207 year: 2012 ident: 10.1016/j.neunet.2014.09.003_br003995 article-title: Reinforcement learning in continuous state and action spaces – volume: 54 start-page: 211 year: 2004 ident: 10.1016/j.neunet.2014.09.003_br003460 article-title: Optimal ordered problem solver publication-title: Machine Learning doi: 10.1023/B:MACH.0000015880.99707.b2 – ident: 10.1016/j.neunet.2014.09.003_br003605 doi: 10.1109/IJCNN.2011.6033589 – volume: 59 start-page: 257 year: 1988 ident: 10.1016/j.neunet.2014.09.003_br004040 article-title: Accelerating the convergence of the back-propagation method publication-title: Biological Cybernetics doi: 10.1007/BF00332914 – start-page: 1554 year: 1966 ident: 10.1016/j.neunet.2014.09.003_br000255 article-title: Statistical inference for probabilistic functions of finite state Markov chains publication-title: The Annals of Mathematical Statistics doi: 10.1214/aoms/1177699147 – volume: 14 start-page: 671 issue: 6 year: 2006 ident: 10.1016/j.neunet.2014.09.003_br004320 article-title: A GMDH neural network-based approach to robust fault diagnosis: Application to the DAMADICS benchmark problem publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2005.04.007 – start-page: 114 year: 2010 ident: 10.1016/j.neunet.2014.09.003_br001410 article-title: Multi-dimensional deep memory atari-go players for parameter exploring policy gradients – year: 1970 ident: 10.1016/j.neunet.2014.09.003_br002325 – start-page: 23 year: 1995 ident: 10.1016/j.neunet.2014.09.003_br003330 article-title: Evolving neural control systems publication-title: IEEE Expert doi: 10.1109/64.393139 – start-page: 11 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br001585 article-title: Keeping neural networks simple – year: 2001 ident: 10.1016/j.neunet.2014.09.003_br001490 – ident: 10.1016/j.neunet.2014.09.003_br002430 – volume: 11 start-page: 625 year: 2010 ident: 10.1016/j.neunet.2014.09.003_br000925 article-title: Why does unsupervised pre-training help deep learning? publication-title: Journal of Machine Learning Research – year: 1997 ident: 10.1016/j.neunet.2014.09.003_br002675 – start-page: 490 year: 2006 ident: 10.1016/j.neunet.2014.09.003_br002820 article-title: Sampling strategies for bag-of-features image classification – volume: 4 start-page: 703 issue: 2 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br002920 article-title: On the information storage capacity of local learning rules publication-title: Neural Computation doi: 10.1162/neco.1992.4.5.703 – volume: 37 start-page: 115 year: 2014 ident: 10.1016/j.neunet.2014.09.003_br004395 article-title: Hierarchical spatiotemporal feature extraction using recurrent online clustering publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2013.07.013 – volume: 20 start-page: 1165 issue: 5 year: 2008 ident: 10.1016/j.neunet.2014.09.003_br004100 article-title: Unsupervised learning of individuals and categories from images publication-title: Neural Computation doi: 10.1162/neco.2007.03-07-493 – start-page: 563 year: 1996 ident: 10.1016/j.neunet.2014.09.003_br003555 article-title: Tempering backpropagation networks: not all weights are created equal – ident: 10.1016/j.neunet.2014.09.003_br001150 – start-page: 438 year: 2004 ident: 10.1016/j.neunet.2014.09.003_br000140 article-title: Hierarchical reinforcement learning based on subgoal discovery and subpolicy specialization – year: 1949 ident: 10.1016/j.neunet.2014.09.003_br001495 – volume: 20 start-page: 30 issue: 1 year: 2012 ident: 10.1016/j.neunet.2014.09.003_br000735 article-title: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition publication-title: IEEE Transactions on Audio, Speech and Language Processing doi: 10.1109/TASL.2011.2134090 – volume: 100 start-page: 353 issue: 4 year: 1972 ident: 10.1016/j.neunet.2014.09.003_br001990 article-title: Correlation matrix memories publication-title: IEEE Transactions on Computers doi: 10.1109/TC.1972.5008975 – start-page: 545 year: 2009 ident: 10.1016/j.neunet.2014.09.003_br001365 article-title: Offline handwriting recognition with multidimensional recurrent neural networks – volume: 5 issue: 2 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br004430 article-title: Discrete recurrent neural networks for grammatical inference publication-title: IEEE Transactions on Neural Networks – volume: Vol. 7700 start-page: 687 year: 2012 ident: 10.1016/j.neunet.2014.09.003_br004435 article-title: Forecasting with recurrent neural networks: 12 tricks – start-page: 364 issue: 4 year: 1971 ident: 10.1016/j.neunet.2014.09.003_br001750 article-title: Polynomial theory of complex systems publication-title: IEEE Transactions on Systems, Man and Cybernetics doi: 10.1109/TSMC.1971.4308320 – volume: 11 start-page: 1257 issue: 11 year: 1985 ident: 10.1016/j.neunet.2014.09.003_br000205 article-title: A 15 year perspective on automatic programming publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.1985.231877 – start-page: 471 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br001420 article-title: Structural risk minimization for character recognition – volume: 19 start-page: 577 issue: 92 year: 1965 ident: 10.1016/j.neunet.2014.09.003_br000505 article-title: A class of methods for solving nonlinear simultaneous equations publication-title: Mathematics of Computation doi: 10.1090/S0025-5718-1965-0198670-6 – year: 1998 ident: 10.1016/j.neunet.2014.09.003_br003540 – ident: 10.1016/j.neunet.2014.09.003_br001710 – volume: 4 start-page: 448 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br002415 article-title: A practical Bayesian framework for backprop networks publication-title: Neural Computation doi: 10.1162/neco.1992.4.3.448 – start-page: 2619 year: 2004 ident: 10.1016/j.neunet.2014.09.003_br001985 article-title: Policy gradient reinforcement learning for fast quadrupedal locomotion – ident: 10.1016/j.neunet.2014.09.003_br002505 doi: 10.1109/ICIP.2013.6738559 – start-page: 472 year: 1988 ident: 10.1016/j.neunet.2014.09.003_br001650 article-title: A network of neuron-like units that learns to perceive by generation as well as reweighting of its links – volume: 1 start-page: 427 issue: 4 year: 2001 ident: 10.1016/j.neunet.2014.09.003_br000300 article-title: Learning iterative image reconstruction in the neural abstraction pyramid publication-title: International Journal of Computational Intelligence and Applications doi: 10.1142/S1469026801000342 – start-page: 191 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br003440 article-title: An introspective network that can learn to run its own weight change algorithm – volume: 8 start-page: 373 issue: 6 year: 1995 ident: 10.1016/j.neunet.2014.09.003_br000080 article-title: Survey and critique of techniques for extracting rules from trained artificial neural networks publication-title: Knowledge-Based Systems doi: 10.1016/0950-7051(96)81920-4 – start-page: 121 year: 2000 ident: 10.1016/j.neunet.2014.09.003_br002575 article-title: Cartesian genetic programming – start-page: 35 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br002275 article-title: Fast pruning using principal components – volume: 9 start-page: 1385 issue: 8 year: 1996 ident: 10.1016/j.neunet.2014.09.003_br000755 article-title: Varieties of Helmholtz machine publication-title: Neural Networks doi: 10.1016/S0893-6080(96)00009-3 – volume: 9 start-page: e1003037 issue: 4 year: 2013 ident: 10.1016/j.neunet.2014.09.003_br002780 article-title: Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1003037 – year: 1998 ident: 10.1016/j.neunet.2014.09.003_br002350 – start-page: 283 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br004160 article-title: Neural networks, system identification, and control in the chemical industries – volume: 22 start-page: 247 year: 1986 ident: 10.1016/j.neunet.2014.09.003_br002130 article-title: A self-optimizing, nonsymmetrical neural net for content addressable memory and pattern recognition publication-title: Physica D doi: 10.1016/0167-2789(86)90244-7 – volume: 9 start-page: 265 issue: 3 year: 1973 ident: 10.1016/j.neunet.2014.09.003_br002270 article-title: Universal sequential search problems publication-title: Problems of Information Transmission – volume: 46 start-page: 2131 issue: 4 year: 1992 ident: 10.1016/j.neunet.2014.09.003_br003565 article-title: Learning by maximization the information transfer through nonlinear noisy neurons and “noise breakdown” publication-title: Physical Review A doi: 10.1103/PhysRevA.46.2131 – ident: 10.1016/j.neunet.2014.09.003_br000310 doi: 10.1109/IJCNN.2003.1224004 – start-page: 87 year: 1998 ident: 10.1016/j.neunet.2014.09.003_br003215 article-title: Recurrent neural networks can learn to implement symbol-sensitive counting – year: 2014 ident: 10.1016/j.neunet.2014.09.003_br001415 article-title: Deep learning for real-time Atari game play using offline Monte-Carlo tree search planning – year: 2013 ident: 10.1016/j.neunet.2014.09.003_br004415 – ident: 10.1016/j.neunet.2014.09.003_br001010 – ident: 10.1016/j.neunet.2014.09.003_br002555 – volume: 32 start-page: 323 year: 2012 ident: 10.1016/j.neunet.2014.09.003_br003760 article-title: Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition publication-title: Neural Networks doi: 10.1016/j.neunet.2012.02.016 – volume: 7 start-page: 669 issue: 4 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br000500 article-title: Signature verification using a Siamese time delay neural network publication-title: International Journal of Pattern Recognition and Artificial Intelligence doi: 10.1142/S0218001493000339 – start-page: 1973 year: 1999 ident: 10.1016/j.neunet.2014.09.003_br002950 article-title: Evolving structure and function of neurocontrollers – year: 1988 ident: 10.1016/j.neunet.2014.09.003_br000955 – volume: 1 start-page: 263 issue: 2 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br002955 article-title: Learning state space trajectories in recurrent neural networks publication-title: Neural Computation doi: 10.1162/neco.1989.1.2.263 – volume: 22 start-page: 11 year: 1996 ident: 10.1016/j.neunet.2014.09.003_br002680 article-title: Efficient reinforcement learning through symbiotic evolution publication-title: Machine Learning doi: 10.1007/BF00114722 – volume: 3 start-page: 919 issue: 9 year: 2000 ident: 10.1016/j.neunet.2014.09.003_br003740 article-title: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity publication-title: Nature Neuroscience doi: 10.1038/78829 – volume: 2 start-page: 417 issue: 4 year: 1995 ident: 10.1016/j.neunet.2014.09.003_br002560 article-title: Evolving mobile robots in simulated and real environments publication-title: Artificial Life doi: 10.1162/artl.1995.2.4.417 – volume: 55 start-page: 252 issue: 2 year: 2013 ident: 10.1016/j.neunet.2014.09.003_br004330 article-title: Keyword spotting exploiting long short-term memory publication-title: Speech Communication doi: 10.1016/j.specom.2012.08.006 – volume: 4 start-page: 207 issue: 2 year: 1991 ident: 10.1016/j.neunet.2014.09.003_br002210 article-title: A Gaussian potential function network with hierarchically self-organizing learning publication-title: Neural Networks doi: 10.1016/0893-6080(91)90005-P – ident: 10.1016/j.neunet.2014.09.003_br000265 – start-page: 27 year: 1994 ident: 10.1016/j.neunet.2014.09.003_br003335 article-title: Unsupervised learning of mixtures of multiple causes in binary data – volume: 1 start-page: 103 issue: 3 year: 1936 ident: 10.1016/j.neunet.2014.09.003_br003050 article-title: Finite combinatory processes-formulation 1 publication-title: The Journal of Symbolic Logic doi: 10.2307/2269031 – volume: 8 start-page: 373 issue: 4 year: 1997 ident: 10.1016/j.neunet.2014.09.003_br000065 article-title: Dynamics of a recurrent network of spiking neurons before and following learning publication-title: Network: Computation in Neural Systems doi: 10.1088/0954-898X/8/4/003 – start-page: 1475 year: 2002 ident: 10.1016/j.neunet.2014.09.003_br000135 article-title: Reinforcement learning with long short-term memory – ident: 10.1016/j.neunet.2014.09.003_br002720 – volume: 1 start-page: 365 issue: 4 year: 1989 ident: 10.1016/j.neunet.2014.09.003_br000100 article-title: Dynamic node creation in backpropagation neural networks publication-title: Connection Science doi: 10.1080/09540098908915647 – start-page: 79 year: 1951 ident: 10.1016/j.neunet.2014.09.003_br002100 article-title: On information and sufficiency publication-title: The Annals of Mathematical Statistics doi: 10.1214/aoms/1177729694 – start-page: 1096 year: 2008 ident: 10.1016/j.neunet.2014.09.003_br004030 article-title: Extracting and composing robust features with denoising autoencoders – ident: 10.1016/j.neunet.2014.09.003_br000650 doi: 10.1109/CVPR.2012.6248110 – ident: 10.1016/j.neunet.2014.09.003_br002125 doi: 10.1109/IJCNN.2010.5596468 – volume: 20 start-page: 353 issue: 3 year: 2007 ident: 10.1016/j.neunet.2014.09.003_br003780 article-title: Online reservoir adaptation by intrinsic plasticity for backpropagation–decorrelation and echo state learning publication-title: Neural Networks doi: 10.1016/j.neunet.2007.04.011 – volume: 4 start-page: 333 issue: 4 year: 1993 ident: 10.1016/j.neunet.2014.09.003_br003100 article-title: Multiprocessor and memory architecture of the neurocomputer SYNAPSE-1 publication-title: International Journal of Neural Systems doi: 10.1142/S0129065793000274 – ident: 10.1016/j.neunet.2014.09.003_br002365 doi: 10.1109/CIG.2009.5286504 – volume: 23 start-page: 187 year: 1976 ident: 10.1016/j.neunet.2014.09.003_br001390 article-title: Adaptive pattern classification and universal recoding, 1: parallel development and coding of neural feature detectors publication-title: Biological Cybernetics doi: 10.1007/BF00344744 |
| SSID | ssj0006843 |
| Score | 2.6697614 |
| SecondaryResourceType | review_article |
| Snippet | In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 85 |
| SubjectTerms | Artificial Intelligence - classification Artificial Intelligence - standards Artificial Intelligence - trends Deep learning Evolutionary computation Reinforcement learning Supervised learning Unsupervised learning |
| Title | Deep learning in neural networks: An overview |
| URI | https://dx.doi.org/10.1016/j.neunet.2014.09.003 https://www.ncbi.nlm.nih.gov/pubmed/25462637 https://www.proquest.com/docview/1662427875 |
| Volume | 61 |
| WOSCitedRecordID | wos000347595400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbNpode-n5sH0GFXhVsy3r1tk1T2lBCoSnszciSTHZJlSW7G_LzM7Ikb9MQ0hZ6MUZItqTPnhlJM_Mh9I5ZZbTVlNiupqSutCJtiOQCTVuEWHTbuj67_ldxeCinU_UtsfAtezoB4b28uFCL_wo1lAHYIXT2L-AeHgoFcA-gwxVgh-sfAf_RuUUmg-jDVULKSgDCR4fvZdoKDK6bw7HAPOdwulJzc0hz_HNmj9dthPcgHK5_2AtRm7_uGZTstz2DIZhl4znUyxtFCS8isdKui_JQCkUqIa8IzJg9PUm8SLiTdGcZ4zCvieW4QzDfhQHDEIJDXcwuW9CNGhqcA7-HjoR-wNoPLBDKttB2JZiSI7Q9-bI_PRg0LZfRKzJ3PIdG9v571991k-lx09KiNzGOHqL7aW2AJxHTR-iO84_Rg8y7gZMYfoJIgBhniPHM4wgxzsC9xxOPM8BP0Y9P-0d7n0mivSAGrIkVEYZZIalVqhPaSS5hjduZ0klW1UI53YEJXbaaa8WkYyXnLRihRVsyW3eKUk2foZE_9e4FwqDpWOusNtzo2kqniq4wjgtqoAmUjBHNM9KYlBM-UJOcNNn5b97EeWzCPDaFCrlkx4gMrRYxJ8ot9UWe7CbZddFea-D7uKXl24xNA2IvnGVp707XywaGXQWWGMHG6HkEbehLoHioOBUv__m9r9C9zW_zGo1WZ2v3Bt0156vZ8mwHbYmp3Ekf4yXMsIXA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+in+neural+networks%3A+An+overview&rft.jtitle=Neural+networks&rft.au=Schmidhuber%2C+J%C3%BCrgen&rft.date=2015-01-01&rft.pub=Elsevier+Ltd&rft.issn=0893-6080&rft.eissn=1879-2782&rft.volume=61&rft.spage=85&rft.epage=117&rft_id=info:doi/10.1016%2Fj.neunet.2014.09.003&rft.externalDocID=S0893608014002135 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |