Sampled-data synchronization for fuzzy inertial cellular neural networks and its application in secure communication

This paper designs the sampled-data control (SDC) scheme to delve into the synchronization problem of fuzzy inertial cellular neural networks (FICNNs). Technically, the rate at which the information or activation of cellular neuronal transmission made can be described in a first-order differential m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks Jg. 180; S. 106671
Hauptverfasser: Subramaniam, Sasikala, Mani, Prakash
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Ltd 01.12.2024
Schlagworte:
ISSN:0893-6080, 1879-2782, 1879-2782
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper designs the sampled-data control (SDC) scheme to delve into the synchronization problem of fuzzy inertial cellular neural networks (FICNNs). Technically, the rate at which the information or activation of cellular neuronal transmission made can be described in a first-order differential model, but the network response concerning the received information may be dependent on time that can be modeled as a second-order (inertial) cellular neural network (ICNN) model. Generally, a fuzzy cellular neural network (FCNN) is a combination of fuzzy logic and a cellular neural network. Fuzzy logic models are composed of input and output templates which are in the form of a sum of product operations that help to evaluate the information transmission on a rule-basis. Hence, this study proposes a user-controlled FICNNs model with the same dynamic properties as FICNN model. In this regard, the synchronization approach is considerably effective in ensuring the dynamical properties of the drive (without control input) and response (with external control input). Theoretically, the synchronization between the drive-response can be ensured by analyzing the error model derived from the drive-response but due to nonlinearities, the Lyapunov stability theory can be utilized to derive sufficient stability conditions in terms of linear matrix inequalities (LMIs) that will guarantee the convergence of the error model onto the origin. Distinct from the existing stability conditions, this paper derives the stability conditions by involving the delay information in the form of a quadratic function with lower and upper bounds, which are evaluated through the negative determination lemma (NDL). Besides, numerical simulations that support the validation of proposed theoretical frameworks are discussed. As a direct application, the FICNN model is considered as a cryptosystem in image encryption and decryption algorithm, and the corresponding outcomes are illustrated along with security measures.
AbstractList This paper designs the sampled-data control (SDC) scheme to delve into the synchronization problem of fuzzy inertial cellular neural networks (FICNNs). Technically, the rate at which the information or activation of cellular neuronal transmission made can be described in a first-order differential model, but the network response concerning the received information may be dependent on time that can be modeled as a second-order (inertial) cellular neural network (ICNN) model. Generally, a fuzzy cellular neural network (FCNN) is a combination of fuzzy logic and a cellular neural network. Fuzzy logic models are composed of input and output templates which are in the form of a sum of product operations that help to evaluate the information transmission on a rule-basis. Hence, this study proposes a user-controlled FICNNs model with the same dynamic properties as FICNN model. In this regard, the synchronization approach is considerably effective in ensuring the dynamical properties of the drive (without control input) and response (with external control input). Theoretically, the synchronization between the drive-response can be ensured by analyzing the error model derived from the drive-response but due to nonlinearities, the Lyapunov stability theory can be utilized to derive sufficient stability conditions in terms of linear matrix inequalities (LMIs) that will guarantee the convergence of the error model onto the origin. Distinct from the existing stability conditions, this paper derives the stability conditions by involving the delay information in the form of a quadratic function with lower and upper bounds, which are evaluated through the negative determination lemma (NDL). Besides, numerical simulations that support the validation of proposed theoretical frameworks are discussed. As a direct application, the FICNN model is considered as a cryptosystem in image encryption and decryption algorithm, and the corresponding outcomes are illustrated along with security measures.
This paper designs the sampled-data control (SDC) scheme to delve into the synchronization problem of fuzzy inertial cellular neural networks (FICNNs). Technically, the rate at which the information or activation of cellular neuronal transmission made can be described in a first-order differential model, but the network response concerning the received information may be dependent on time that can be modeled as a second-order (inertial) cellular neural network (ICNN) model. Generally, a fuzzy cellular neural network (FCNN) is a combination of fuzzy logic and a cellular neural network. Fuzzy logic models are composed of input and output templates which are in the form of a sum of product operations that help to evaluate the information transmission on a rule-basis. Hence, this study proposes a user-controlled FICNNs model with the same dynamic properties as FICNN model. In this regard, the synchronization approach is considerably effective in ensuring the dynamical properties of the drive (without control input) and response (with external control input). Theoretically, the synchronization between the drive-response can be ensured by analyzing the error model derived from the drive-response but due to nonlinearities, the Lyapunov stability theory can be utilized to derive sufficient stability conditions in terms of linear matrix inequalities (LMIs) that will guarantee the convergence of the error model onto the origin. Distinct from the existing stability conditions, this paper derives the stability conditions by involving the delay information in the form of a quadratic function with lower and upper bounds, which are evaluated through the negative determination lemma (NDL). Besides, numerical simulations that support the validation of proposed theoretical frameworks are discussed. As a direct application, the FICNN model is considered as a cryptosystem in image encryption and decryption algorithm, and the corresponding outcomes are illustrated along with security measures.This paper designs the sampled-data control (SDC) scheme to delve into the synchronization problem of fuzzy inertial cellular neural networks (FICNNs). Technically, the rate at which the information or activation of cellular neuronal transmission made can be described in a first-order differential model, but the network response concerning the received information may be dependent on time that can be modeled as a second-order (inertial) cellular neural network (ICNN) model. Generally, a fuzzy cellular neural network (FCNN) is a combination of fuzzy logic and a cellular neural network. Fuzzy logic models are composed of input and output templates which are in the form of a sum of product operations that help to evaluate the information transmission on a rule-basis. Hence, this study proposes a user-controlled FICNNs model with the same dynamic properties as FICNN model. In this regard, the synchronization approach is considerably effective in ensuring the dynamical properties of the drive (without control input) and response (with external control input). Theoretically, the synchronization between the drive-response can be ensured by analyzing the error model derived from the drive-response but due to nonlinearities, the Lyapunov stability theory can be utilized to derive sufficient stability conditions in terms of linear matrix inequalities (LMIs) that will guarantee the convergence of the error model onto the origin. Distinct from the existing stability conditions, this paper derives the stability conditions by involving the delay information in the form of a quadratic function with lower and upper bounds, which are evaluated through the negative determination lemma (NDL). Besides, numerical simulations that support the validation of proposed theoretical frameworks are discussed. As a direct application, the FICNN model is considered as a cryptosystem in image encryption and decryption algorithm, and the corresponding outcomes are illustrated along with security measures.
ArticleNumber 106671
Author Mani, Prakash
Subramaniam, Sasikala
Author_xml – sequence: 1
  givenname: Sasikala
  orcidid: 0000-0002-4868-0354
  surname: Subramaniam
  fullname: Subramaniam, Sasikala
– sequence: 2
  givenname: Prakash
  orcidid: 0000-0003-0420-4249
  surname: Mani
  fullname: Mani, Prakash
  email: prakash.m@vit.ac.in
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39260012$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URLeFb4CQj1yy-N_aDgckVEGLVIkDcLYcZyK8JHawnaLdT4-XLBw4wGk0o_ebsd-7QhchBkDoOSVbSqh8td8GWAKULSNM1JGUij5CG6pV2zCl2QXaEN3yRhJNLtFVzntCiNSCP0GXvGWSEMo2qHyy0zxC3_S2WJwPwX1NMfijLT4GPMSEh-V4PGAfIBVvR-xgHJfRJlyvp9rXF_yI6VvGNvTYl1rnefRu5X3AGdySALs4TUs4z5-ix4MdMzw712v05f27zzd3zf3H2w83b-8bxyUrjZKDogJ6p7XlA6ead4zu2MBoL5RSXHBFOjkIZncdb1UnJewshZ2QIBjTA79GL9e9c4rfF8jFTD6fPmADxCUbTgkXQtKWVemLs3TpJujNnPxk08H8dqoKxCpwKeacYPgjocScAjF7swZiToGYNZCKvf4Lc778MqEk68f_wW9WGKpJDx6Syc5DcND7BK6YPvp_L_gJhhaqhA
CitedBy_id crossref_primary_10_1016_j_neunet_2025_108041
crossref_primary_10_1016_j_amc_2024_129257
crossref_primary_10_1016_j_cnsns_2025_108997
crossref_primary_10_1016_j_neucom_2025_131111
crossref_primary_10_1016_j_cnsns_2024_108472
crossref_primary_10_1016_j_fraope_2025_100215
crossref_primary_10_1016_j_neunet_2025_108033
crossref_primary_10_1016_j_cnsns_2025_109152
crossref_primary_10_1016_j_neunet_2024_107042
crossref_primary_10_1080_00207721_2025_2556432
crossref_primary_10_3934_math_2025549
crossref_primary_10_1016_j_cnsns_2025_109017
Cites_doi 10.1016/j.neunet.2020.05.016
10.1016/j.neunet.2023.12.035
10.1109/JAS.2023.123372
10.1177/01423312221140630
10.1002/(SICI)1097-007X(199901/02)27:1<171::AID-CTA47>3.0.CO;2-X
10.1016/j.neucom.2024.127288
10.1109/TFUZZ.2023.3241151
10.1016/j.ijleo.2013.09.040
10.1080/00207721.2020.1764128
10.1016/j.fss.2022.08.002
10.1007/s00034-022-02132-1
10.1109/TCYB.2018.2877410
10.1016/j.neunet.2023.11.022
10.1016/j.neunet.2024.106124
10.1109/TFUZZ.2024.3365816
10.3934/math.2021617
10.1109/31.7600
10.1016/j.neunet.2021.12.021
10.1023/A:1016331805575
10.1016/j.matcom.2021.03.021
10.1109/TNNLS.2022.3202799
10.1016/j.matcom.2023.04.008
10.1016/j.automatica.2018.06.017
10.1016/j.amc.2022.127671
10.1016/j.automatica.2019.108764
10.1016/j.jfranklin.2015.01.004
10.1016/j.eswa.2023.121500
10.1007/s11063-023-11211-6
10.1016/j.neucom.2020.09.014
10.1109/TSMCB.2012.2230441
10.1007/978-1-4842-5364-9_6
10.1109/ACCESS.2023.3266656
10.1109/81.473566
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright © 2024 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neunet.2024.106671
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
ExternalDocumentID 39260012
10_1016_j_neunet_2024_106671
S0893608024005951
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABDPE
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
ID FETCH-LOGICAL-c362t-76f714edc88a3f3183b2152f21d477734370b6f42a5b397b66e5a1e546e4228f3
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001311640900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0893-6080
1879-2782
IngestDate Thu Oct 02 10:11:38 EDT 2025
Mon Jul 21 05:39:52 EDT 2025
Tue Nov 18 22:38:10 EST 2025
Sat Nov 29 05:33:09 EST 2025
Sat Nov 09 15:59:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sampled-data control
Encryption process
Linear matrix inequalities
Lyapunov stability theory
Inertial cellular neural networks
Language English
License Copyright © 2024 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-76f714edc88a3f3183b2152f21d477734370b6f42a5b397b66e5a1e546e4228f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0420-4249
0000-0002-4868-0354
PMID 39260012
PQID 3103446192
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3103446192
pubmed_primary_39260012
crossref_primary_10_1016_j_neunet_2024_106671
crossref_citationtrail_10_1016_j_neunet_2024_106671
elsevier_sciencedirect_doi_10_1016_j_neunet_2024_106671
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
2024-Dec
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chang, Wang, Zhang, Wang (b6) 2023; 211
Zhang, Cao (b40) 2023; 440
Li, Wu, Cao (b24) 2022; 148
Liang, Ding, Jing, Xie (b25) 2024; 237
Zhang, Wang, Wang, Wang, Lin (b42) 2023; 31
Lokumarambage, Gowrisetty, Rezaei, Sivalingam, Rajatheva, Fernando (b28) 2023; 11
Murre (b30) 2014
Aouiti, Sakthivel, Touati (b3) 2020; 51
Ganesan, Mani, Shanmugam, Annamalai (b11) 2022; 35
Rekeczky, Tahy, Végh, Roska (b34) 1999; 27
Han, Kommuri, Jin (b12) 2024; 172
Shanmugam, Mani, Rajan, Joo (b36) 2018; 50
Wang, Hu, Hu, Zhou, Wen (b37) 2024; 574
Hua, Shi, Wu, Han, Zhong (b15) 2023; 10
Ayyappan, Mani, Kashkynbayev, Rajan (b4) 2024; 32
Zhang, Long, He, Yao, Jiang, Wu (b41) 2020; 113
Park, Lee, Lee (b33) 2015; 352
Seuret, Liu, Gouaisbaut (b35) 2018; 95
Liu, Shu, Chen, Zhong (b27) 2023; 459
Aizenberg, Butakoff (b1) 2002; 32
Ketkar, Moolayil, Ketkar, Moolayil (b20) 2021
Cao, Udhayakumar, Veerakumari, Rakkiyappan (b5) 2022; 201
Hu, Song, Li, Ma (b14) 2023; 42
Ouyang, Shao, Jiang, Nguang, Shen (b32) 2020; 128
Chua, Yang (b8) 1988; 35
Haykin (b13) 2009
Nishizono, K., & Nishio, Y. (2006). Image processing of gray scale images by fuzzy cellular neural network. In
Ding, Zhu (b10) 2020; 68
Kumar, Das, Yadav, Cao, Huang (b22) 2021; 6
(pp. 90–93).
Medsker, Jain (b29) 1999
Wu, Shi, Su, Chu (b38) 2013; 43
Johnson, Acemoglu (b18) 2023
Aouiti, El Abed, Karray (b2) 2018
Chua, Roska (b7) 2002
Liu, Chen, Zhao, Li (b26) 2024; 172
Kadir, Hamdulla, Guo (b19) 2014; 125
Li, Li, Wang, Wang, Hu (b23) 2023; 55
Yang, Zou, Liu (b39) 2023; 45
Crounse, Chua (b9) 1995; 42
Kong, Zhu, Sakthivel, Mohammadzadeh (b21) 2021; 422
Hui, Liu, Zhu, Cao (b17) 2024; 170
Huang, Deng, Wan, Yu, Sun (b16) 2022; 70
Yang (10.1016/j.neunet.2024.106671_b39) 2023; 45
Kumar (10.1016/j.neunet.2024.106671_b22) 2021; 6
Medsker (10.1016/j.neunet.2024.106671_b29) 1999
Wang (10.1016/j.neunet.2024.106671_b37) 2024; 574
Kadir (10.1016/j.neunet.2024.106671_b19) 2014; 125
Murre (10.1016/j.neunet.2024.106671_b30) 2014
Chua (10.1016/j.neunet.2024.106671_b7) 2002
Huang (10.1016/j.neunet.2024.106671_b16) 2022; 70
Ouyang (10.1016/j.neunet.2024.106671_b32) 2020; 128
Zhang (10.1016/j.neunet.2024.106671_b42) 2023; 31
10.1016/j.neunet.2024.106671_b31
Hui (10.1016/j.neunet.2024.106671_b17) 2024; 170
Aouiti (10.1016/j.neunet.2024.106671_b2) 2018
Ganesan (10.1016/j.neunet.2024.106671_b11) 2022; 35
Han (10.1016/j.neunet.2024.106671_b12) 2024; 172
Zhang (10.1016/j.neunet.2024.106671_b41) 2020; 113
Ding (10.1016/j.neunet.2024.106671_b10) 2020; 68
Aizenberg (10.1016/j.neunet.2024.106671_b1) 2002; 32
Haykin (10.1016/j.neunet.2024.106671_b13) 2009
Cao (10.1016/j.neunet.2024.106671_b5) 2022; 201
Li (10.1016/j.neunet.2024.106671_b23) 2023; 55
Lokumarambage (10.1016/j.neunet.2024.106671_b28) 2023; 11
Kong (10.1016/j.neunet.2024.106671_b21) 2021; 422
Chua (10.1016/j.neunet.2024.106671_b8) 1988; 35
Hua (10.1016/j.neunet.2024.106671_b15) 2023; 10
Chang (10.1016/j.neunet.2024.106671_b6) 2023; 211
Liu (10.1016/j.neunet.2024.106671_b27) 2023; 459
Crounse (10.1016/j.neunet.2024.106671_b9) 1995; 42
Ketkar (10.1016/j.neunet.2024.106671_b20) 2021
Liu (10.1016/j.neunet.2024.106671_b26) 2024; 172
Zhang (10.1016/j.neunet.2024.106671_b40) 2023; 440
Li (10.1016/j.neunet.2024.106671_b24) 2022; 148
Seuret (10.1016/j.neunet.2024.106671_b35) 2018; 95
Hu (10.1016/j.neunet.2024.106671_b14) 2023; 42
Shanmugam (10.1016/j.neunet.2024.106671_b36) 2018; 50
Park (10.1016/j.neunet.2024.106671_b33) 2015; 352
Ayyappan (10.1016/j.neunet.2024.106671_b4) 2024; 32
Aouiti (10.1016/j.neunet.2024.106671_b3) 2020; 51
Liang (10.1016/j.neunet.2024.106671_b25) 2024; 237
Johnson (10.1016/j.neunet.2024.106671_b18) 2023
Rekeczky (10.1016/j.neunet.2024.106671_b34) 1999; 27
Wu (10.1016/j.neunet.2024.106671_b38) 2013; 43
References_xml – start-page: 197
  year: 2021
  end-page: 242
  ident: b20
  article-title: Convolutional neural networks
  publication-title: Deep Learning with Python: Learn Best Practices of Deep Learning Models with PyTorch
– volume: 11
  start-page: 37149
  year: 2023
  end-page: 37163
  ident: b28
  article-title: Wireless end-to-end image transmission system using semantic communications
  publication-title: IEEE Access
– volume: 68
  start-page: 2097
  year: 2020
  end-page: 2101
  ident: b10
  article-title: A note on sampled-data synchronization of memristor networks subject to actuator failures and two different activations
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
– volume: 10
  start-page: 1319
  year: 2023
  end-page: 1321
  ident: b15
  article-title: Sliding mode control for recurrent neural networks with time-varying delays and impulsive effects
  publication-title: IEEE/CAA Journal of Automatica Sinica
– volume: 172
  start-page: 1
  year: 2024
  end-page: 13
  ident: b12
  article-title: Novel criteria of sampled-data synchronization controller design for gated recurrent unit neural networks under mismatched parameters
  publication-title: Neural Networks
– year: 2014
  ident: b30
  article-title: Learning and categorization in modular neural networks
– volume: 574
  start-page: 1
  year: 2024
  end-page: 9
  ident: b37
  article-title: Finite-time synchronization of delayed fuzzy inertial neural networks via intermittent control
  publication-title: Neurocomputing
– volume: 125
  start-page: 1671
  year: 2014
  end-page: 1675
  ident: b19
  article-title: Color image encryption using skew tent map and hyper chaotic system of 6th-order CNN
  publication-title: Optik
– volume: 113
  start-page: 1
  year: 2020
  end-page: 6
  ident: b41
  article-title: A relaxed quadratic function negative-determination lemma and its application to time-delay systems
  publication-title: Automatica
– volume: 32
  start-page: 2999
  year: 2024
  end-page: 3011
  ident: b4
  article-title: Prescribed-time quantified intermittent control for stochastic FCNN and a novel cryptosystem
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 51
  start-page: 1392
  year: 2020
  end-page: 1405
  ident: b3
  article-title: Global dissipativity of fuzzy cellular neural networks with inertial term and proportional delays
  publication-title: International Journal of Systems Science
– reference: Nishizono, K., & Nishio, Y. (2006). Image processing of gray scale images by fuzzy cellular neural network. In
– year: 2023
  ident: b18
  article-title: Power and progress: our thousand-year struggle over technology and prosperity
– volume: 35
  start-page: 5198
  year: 2022
  end-page: 5210
  ident: b11
  article-title: Synchronization of stochastic neural networks using looped-Lyapunov functional and its application to secure communication
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 43
  start-page: 1796
  year: 2013
  end-page: 1806
  ident: b38
  article-title: Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled data
  publication-title: IEEE Transactions on Cybernetics
– volume: 148
  start-page: 13
  year: 2022
  end-page: 22
  ident: b24
  article-title: Exponential synchronization for variable-order fractional discontinuous complex dynamical networks with short memory via impulsive control
  publication-title: Neural Networks
– volume: 459
  start-page: 22
  year: 2023
  end-page: 42
  ident: b27
  article-title: Fixed-time synchronization criteria of fuzzy inertial neural networks via Lyapunov functions with indefinite derivatives and its application to image encryption
  publication-title: Fuzzy Sets and Systems
– volume: 31
  start-page: 3000
  year: 2023
  end-page: 3014
  ident: b42
  article-title: Event-triggered synchronization for delayed quaternion-valued inertial fuzzy neural networks via nonreduced order approach
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 42
  start-page: 199
  year: 2023
  end-page: 215
  ident: b14
  article-title: Intermittent control for synchronization of Markov jump inertial neural networks with reaction–diffusion terms via non-reduced-order method
  publication-title: Circuits, Systems, and Signal Processing
– volume: 237
  start-page: 1
  year: 2024
  end-page: 10
  ident: b25
  article-title: Aperiodic intermittent event-triggered synchronization control for discrete-time complex dynamical networks
  publication-title: Expert Systems with Applications
– volume: 422
  start-page: 295
  year: 2021
  end-page: 313
  ident: b21
  article-title: Fixed-time synchronization analysis for discontinuous fuzzy inertial neural networks with parameter uncertainties
  publication-title: Neurocomputing
– volume: 440
  start-page: 1
  year: 2023
  end-page: 20
  ident: b40
  article-title: New results on fixed/predefined-time synchronization of delayed fuzzy inertial discontinuous neural networks: Non-reduced order approach
  publication-title: Applied Mathematics and Computation
– volume: 27
  start-page: 171
  year: 1999
  end-page: 207
  ident: b34
  article-title: Cellular neural network-based spatio-temporal nonlinear filtering and endocardial boundary detection in echocardiography
  publication-title: International Journal of Circuit Theory and Applications
– volume: 32
  start-page: 169
  year: 2002
  end-page: 188
  ident: b1
  article-title: Image processing using cellular neural networks based on multi-valued and universal binary neurons
  publication-title: Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology
– volume: 35
  start-page: 1257
  year: 1988
  end-page: 1272
  ident: b8
  article-title: Cellular neural networks: Theory
  publication-title: IEEE Transactions on Circuits and Systems
– volume: 55
  start-page: 9503
  year: 2023
  end-page: 9520
  ident: b23
  article-title: Synchronization of fuzzy inertial neural networks with time-varying delays via fixed-time and preassigned-time control
  publication-title: Neural Processing Letters
– volume: 50
  start-page: 911
  year: 2018
  end-page: 922
  ident: b36
  article-title: Adaptive synchronization of reaction–diffusion neural networks and its application to secure communication
  publication-title: IEEE Transactions on Cybernetics
– volume: 170
  start-page: 46
  year: 2024
  end-page: 54
  ident: b17
  article-title: Event-triggered impulsive cluster synchronization of coupled reaction–diffusion neural networks and its application to image encryption
  publication-title: Neural Networks
– year: 2009
  ident: b13
  article-title: Neural networks and learning machines, 3/E
– volume: 45
  start-page: 1933
  year: 2023
  end-page: 1946
  ident: b39
  article-title: Finite/fixed-time synchronization control of fuzzy inertial cellular neural networks with mixed delays
  publication-title: Transactions of the Institute of Measurement and Control
– volume: 128
  start-page: 158
  year: 2020
  end-page: 171
  ident: b32
  article-title: Impulsive synchronization of coupled delayed neural networks with actuator saturation and its application to image encryption
  publication-title: Neural Networks
– volume: 70
  start-page: 1455
  year: 2022
  end-page: 1459
  ident: b16
  article-title: Sampled-data stabilization for stochastic systems subject to input saturation and its application to synchronization of two Chua’s circuits
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
– year: 1999
  ident: b29
  article-title: Recurrent neural networks: design and applications
– volume: 352
  start-page: 1378
  year: 2015
  end-page: 1396
  ident: b33
  article-title: Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems
  publication-title: Journal of the Franklin Institute
– volume: 6
  start-page: 10620
  year: 2021
  end-page: 10642
  ident: b22
  article-title: Synchronizations of fuzzy cellular neural networks with proportional time-delay
  publication-title: AIMS Mathematics
– year: 2002
  ident: b7
  article-title: Cellular neural networks and visual computing: foundations and applications
– volume: 42
  start-page: 583
  year: 1995
  end-page: 601
  ident: b9
  article-title: Methods for image processing and pattern formation in cellular neural networks: A tutorial
  publication-title: IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications
– start-page: 1
  year: 2018
  end-page: 8
  ident: b2
  article-title: Finite time synchronization for delayed fuzzy inertial cellular neural networks
  publication-title: 2018 IEEE international conference on fuzzy systems (FUZZ-IEEE)
– volume: 95
  start-page: 488
  year: 2018
  end-page: 493
  ident: b35
  article-title: Generalized reciprocally convex combination lemmas and its application to time-delay systems
  publication-title: Automatica
– volume: 172
  start-page: 1
  year: 2024
  end-page: 14
  ident: b26
  article-title: Event-triggered hybrid impulsive control for synchronization of fractional-order multilayer signed networks under cyber attacks
  publication-title: Neural Networks
– volume: 201
  start-page: 564
  year: 2022
  end-page: 587
  ident: b5
  article-title: Memory sampled data control for switched-type neural networks and its application in image secure communications
  publication-title: Mathematics and Computers in Simulation
– volume: 211
  start-page: 329
  year: 2023
  end-page: 340
  ident: b6
  article-title: A new method to study global exponential stability of inertial neural networks with multiple time-varying transmission delays
  publication-title: Mathematics and Computers in Simulation
– reference: (pp. 90–93).
– volume: 128
  start-page: 158
  year: 2020
  ident: 10.1016/j.neunet.2024.106671_b32
  article-title: Impulsive synchronization of coupled delayed neural networks with actuator saturation and its application to image encryption
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2020.05.016
– volume: 172
  start-page: 1
  year: 2024
  ident: 10.1016/j.neunet.2024.106671_b12
  article-title: Novel criteria of sampled-data synchronization controller design for gated recurrent unit neural networks under mismatched parameters
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2023.12.035
– volume: 10
  start-page: 1319
  issue: 5
  year: 2023
  ident: 10.1016/j.neunet.2024.106671_b15
  article-title: Sliding mode control for recurrent neural networks with time-varying delays and impulsive effects
  publication-title: IEEE/CAA Journal of Automatica Sinica
  doi: 10.1109/JAS.2023.123372
– volume: 45
  start-page: 1933
  issue: 10
  year: 2023
  ident: 10.1016/j.neunet.2024.106671_b39
  article-title: Finite/fixed-time synchronization control of fuzzy inertial cellular neural networks with mixed delays
  publication-title: Transactions of the Institute of Measurement and Control
  doi: 10.1177/01423312221140630
– volume: 27
  start-page: 171
  issue: 1
  year: 1999
  ident: 10.1016/j.neunet.2024.106671_b34
  article-title: Cellular neural network-based spatio-temporal nonlinear filtering and endocardial boundary detection in echocardiography
  publication-title: International Journal of Circuit Theory and Applications
  doi: 10.1002/(SICI)1097-007X(199901/02)27:1<171::AID-CTA47>3.0.CO;2-X
– volume: 574
  start-page: 1
  year: 2024
  ident: 10.1016/j.neunet.2024.106671_b37
  article-title: Finite-time synchronization of delayed fuzzy inertial neural networks via intermittent control
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2024.127288
– volume: 31
  start-page: 3000
  issue: 9
  year: 2023
  ident: 10.1016/j.neunet.2024.106671_b42
  article-title: Event-triggered synchronization for delayed quaternion-valued inertial fuzzy neural networks via nonreduced order approach
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2023.3241151
– year: 2009
  ident: 10.1016/j.neunet.2024.106671_b13
– volume: 125
  start-page: 1671
  issue: 5
  year: 2014
  ident: 10.1016/j.neunet.2024.106671_b19
  article-title: Color image encryption using skew tent map and hyper chaotic system of 6th-order CNN
  publication-title: Optik
  doi: 10.1016/j.ijleo.2013.09.040
– year: 2014
  ident: 10.1016/j.neunet.2024.106671_b30
– volume: 51
  start-page: 1392
  issue: 8
  year: 2020
  ident: 10.1016/j.neunet.2024.106671_b3
  article-title: Global dissipativity of fuzzy cellular neural networks with inertial term and proportional delays
  publication-title: International Journal of Systems Science
  doi: 10.1080/00207721.2020.1764128
– volume: 459
  start-page: 22
  year: 2023
  ident: 10.1016/j.neunet.2024.106671_b27
  article-title: Fixed-time synchronization criteria of fuzzy inertial neural networks via Lyapunov functions with indefinite derivatives and its application to image encryption
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2022.08.002
– volume: 42
  start-page: 199
  issue: 1
  year: 2023
  ident: 10.1016/j.neunet.2024.106671_b14
  article-title: Intermittent control for synchronization of Markov jump inertial neural networks with reaction–diffusion terms via non-reduced-order method
  publication-title: Circuits, Systems, and Signal Processing
  doi: 10.1007/s00034-022-02132-1
– volume: 50
  start-page: 911
  issue: 3
  year: 2018
  ident: 10.1016/j.neunet.2024.106671_b36
  article-title: Adaptive synchronization of reaction–diffusion neural networks and its application to secure communication
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2018.2877410
– volume: 68
  start-page: 2097
  issue: 6
  year: 2020
  ident: 10.1016/j.neunet.2024.106671_b10
  article-title: A note on sampled-data synchronization of memristor networks subject to actuator failures and two different activations
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
– volume: 170
  start-page: 46
  year: 2024
  ident: 10.1016/j.neunet.2024.106671_b17
  article-title: Event-triggered impulsive cluster synchronization of coupled reaction–diffusion neural networks and its application to image encryption
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2023.11.022
– volume: 172
  start-page: 1
  year: 2024
  ident: 10.1016/j.neunet.2024.106671_b26
  article-title: Event-triggered hybrid impulsive control for synchronization of fractional-order multilayer signed networks under cyber attacks
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2024.106124
– volume: 32
  start-page: 2999
  issue: 5
  year: 2024
  ident: 10.1016/j.neunet.2024.106671_b4
  article-title: Prescribed-time quantified intermittent control for stochastic FCNN and a novel cryptosystem
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2024.3365816
– volume: 6
  start-page: 10620
  issue: 10
  year: 2021
  ident: 10.1016/j.neunet.2024.106671_b22
  article-title: Synchronizations of fuzzy cellular neural networks with proportional time-delay
  publication-title: AIMS Mathematics
  doi: 10.3934/math.2021617
– volume: 35
  start-page: 1257
  issue: 10
  year: 1988
  ident: 10.1016/j.neunet.2024.106671_b8
  article-title: Cellular neural networks: Theory
  publication-title: IEEE Transactions on Circuits and Systems
  doi: 10.1109/31.7600
– year: 2023
  ident: 10.1016/j.neunet.2024.106671_b18
– volume: 148
  start-page: 13
  year: 2022
  ident: 10.1016/j.neunet.2024.106671_b24
  article-title: Exponential synchronization for variable-order fractional discontinuous complex dynamical networks with short memory via impulsive control
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2021.12.021
– volume: 32
  start-page: 169
  year: 2002
  ident: 10.1016/j.neunet.2024.106671_b1
  article-title: Image processing using cellular neural networks based on multi-valued and universal binary neurons
  publication-title: Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology
  doi: 10.1023/A:1016331805575
– start-page: 1
  year: 2018
  ident: 10.1016/j.neunet.2024.106671_b2
  article-title: Finite time synchronization for delayed fuzzy inertial cellular neural networks
– volume: 70
  start-page: 1455
  issue: 4
  year: 2022
  ident: 10.1016/j.neunet.2024.106671_b16
  article-title: Sampled-data stabilization for stochastic systems subject to input saturation and its application to synchronization of two Chua’s circuits
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
– volume: 201
  start-page: 564
  year: 2022
  ident: 10.1016/j.neunet.2024.106671_b5
  article-title: Memory sampled data control for switched-type neural networks and its application in image secure communications
  publication-title: Mathematics and Computers in Simulation
  doi: 10.1016/j.matcom.2021.03.021
– volume: 35
  start-page: 5198
  issue: 4
  year: 2022
  ident: 10.1016/j.neunet.2024.106671_b11
  article-title: Synchronization of stochastic neural networks using looped-Lyapunov functional and its application to secure communication
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2022.3202799
– year: 1999
  ident: 10.1016/j.neunet.2024.106671_b29
– volume: 211
  start-page: 329
  year: 2023
  ident: 10.1016/j.neunet.2024.106671_b6
  article-title: A new method to study global exponential stability of inertial neural networks with multiple time-varying transmission delays
  publication-title: Mathematics and Computers in Simulation
  doi: 10.1016/j.matcom.2023.04.008
– volume: 95
  start-page: 488
  year: 2018
  ident: 10.1016/j.neunet.2024.106671_b35
  article-title: Generalized reciprocally convex combination lemmas and its application to time-delay systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2018.06.017
– volume: 440
  start-page: 1
  year: 2023
  ident: 10.1016/j.neunet.2024.106671_b40
  article-title: New results on fixed/predefined-time synchronization of delayed fuzzy inertial discontinuous neural networks: Non-reduced order approach
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2022.127671
– volume: 113
  start-page: 1
  year: 2020
  ident: 10.1016/j.neunet.2024.106671_b41
  article-title: A relaxed quadratic function negative-determination lemma and its application to time-delay systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2019.108764
– year: 2002
  ident: 10.1016/j.neunet.2024.106671_b7
– volume: 352
  start-page: 1378
  issue: 4
  year: 2015
  ident: 10.1016/j.neunet.2024.106671_b33
  article-title: Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems
  publication-title: Journal of the Franklin Institute
  doi: 10.1016/j.jfranklin.2015.01.004
– volume: 237
  start-page: 1
  year: 2024
  ident: 10.1016/j.neunet.2024.106671_b25
  article-title: Aperiodic intermittent event-triggered synchronization control for discrete-time complex dynamical networks
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.121500
– volume: 55
  start-page: 9503
  issue: 7
  year: 2023
  ident: 10.1016/j.neunet.2024.106671_b23
  article-title: Synchronization of fuzzy inertial neural networks with time-varying delays via fixed-time and preassigned-time control
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-023-11211-6
– volume: 422
  start-page: 295
  year: 2021
  ident: 10.1016/j.neunet.2024.106671_b21
  article-title: Fixed-time synchronization analysis for discontinuous fuzzy inertial neural networks with parameter uncertainties
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.09.014
– volume: 43
  start-page: 1796
  issue: 6
  year: 2013
  ident: 10.1016/j.neunet.2024.106671_b38
  article-title: Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled data
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TSMCB.2012.2230441
– start-page: 197
  year: 2021
  ident: 10.1016/j.neunet.2024.106671_b20
  article-title: Convolutional neural networks
  publication-title: Deep Learning with Python: Learn Best Practices of Deep Learning Models with PyTorch
  doi: 10.1007/978-1-4842-5364-9_6
– volume: 11
  start-page: 37149
  year: 2023
  ident: 10.1016/j.neunet.2024.106671_b28
  article-title: Wireless end-to-end image transmission system using semantic communications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3266656
– ident: 10.1016/j.neunet.2024.106671_b31
– volume: 42
  start-page: 583
  issue: 10
  year: 1995
  ident: 10.1016/j.neunet.2024.106671_b9
  article-title: Methods for image processing and pattern formation in cellular neural networks: A tutorial
  publication-title: IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications
  doi: 10.1109/81.473566
SSID ssj0006843
Score 2.5076137
Snippet This paper designs the sampled-data control (SDC) scheme to delve into the synchronization problem of fuzzy inertial cellular neural networks (FICNNs)....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106671
SubjectTerms Algorithms
Communication
Computer Security
Computer Simulation
Encryption process
Fuzzy Logic
Humans
Inertial cellular neural networks
Linear matrix inequalities
Lyapunov stability theory
Neural Networks, Computer
Nonlinear Dynamics
Sampled-data control
Title Sampled-data synchronization for fuzzy inertial cellular neural networks and its application in secure communication
URI https://dx.doi.org/10.1016/j.neunet.2024.106671
https://www.ncbi.nlm.nih.gov/pubmed/39260012
https://www.proquest.com/docview/3103446192
Volume 180
WOSCitedRecordID wos001311640900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZg44EX7oxymYzEq6dcHF8eJzQECCqkDtS3yEltsa3KpqVFU38959hxmhamARIvUWvVl-b7cnKOfS6EvEmSygrQRBhWr2Yg_RyrBDx42lnNHRjZta889-2THI_VdKq_dMU4W19OQDaNurrSF_8VamgDsDF09i_g7geFBvgMoMMVYIfrHwE_MZjwd8bQ9xMTEtQ-_e1q7VTolqsVRvuhRzVmB7HzufdFxdSW8L0JjuFtf6wwOOPG3ZEWd-jRx30QWTJUccebw6xPncAux2QbgYET056cmXn_Uvgcakth_qQz034fbkZkfMuxo4-SWbskeUGmc4aE2JS6yW8leNhMOD2A_wwLPcBJoFGIUKhlKzf2BIfGkdETttAYSr-byUKDhN49_HA0_di_lIUKDpRxKTGK0rv6_TrXdVrKdVaI10aOH5B7nRlBDwP8D8kt2zwi92OJDtpJ7MdkMWQD3WIDBTZQzwYa2UAjG2hgA40wUmADBTbQARugFw1soBtseEK-vjs6fvuedYU2WA36y4JJ4WTK7axWyuQOpXyF5Y5dls64lDLnuUwq4Xhmigr010oIW5jUFlxYzCDn8qdkpzlv7DNCbZZpbtPCalvzQiVaKVsZYwpQhESVmhHJ440t6y4LPRZDmZfR3fC0DHCUCEcZ4BgR1ve6CFlYbvi9jJiVnSYZNMQSaHZDz9cR4hIELd5009jzZVtiQT7Ocb9hRPYC9v1awMjwhsPzf573Bbm7fp5ekp3F5dK-InfqH4uT9nKf3JZTtd9x-idCm7Sd
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sampled-data+synchronization+for+fuzzy+inertial+cellular+neural+networks+and+its+application+in+secure+communication&rft.jtitle=Neural+networks&rft.au=Subramaniam%2C+Sasikala&rft.au=Mani%2C+Prakash&rft.date=2024-12-01&rft.pub=Elsevier+Ltd&rft.issn=0893-6080&rft.volume=180&rft_id=info:doi/10.1016%2Fj.neunet.2024.106671&rft.externalDocID=S0893608024005951
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon