Trends in extreme learning machines: A review
Extreme learning machine (ELM) has gained increasing interest from various research fields recently. In this review, we aim to report the current state of the theoretical research and practical advances on this subject. We first give an overview of ELM from the theoretical perspective, including the...
Uložené v:
| Vydané v: | Neural networks Ročník 61; s. 32 - 48 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier Ltd
01.01.2015
|
| Predmet: | |
| ISSN: | 0893-6080, 1879-2782, 1879-2782 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Extreme learning machine (ELM) has gained increasing interest from various research fields recently. In this review, we aim to report the current state of the theoretical research and practical advances on this subject. We first give an overview of ELM from the theoretical perspective, including the interpolation theory, universal approximation capability, and generalization ability. Then we focus on the various improvements made to ELM which further improve its stability, sparsity and accuracy under general or specific conditions. Apart from classification and regression, ELM has recently been extended for clustering, feature selection, representational learning and many other learning tasks. These newly emerging algorithms greatly expand the applications of ELM. From implementation aspect, hardware implementation and parallel computation techniques have substantially sped up the training of ELM, making it feasible for big data processing and real-time reasoning. Due to its remarkable efficiency, simplicity, and impressive generalization performance, ELM have been applied in a variety of domains, such as biomedical engineering, computer vision, system identification, and control and robotics. In this review, we try to provide a comprehensive view of these advances in ELM together with its future perspectives. |
|---|---|
| AbstractList | Extreme learning machine (ELM) has gained increasing interest from various research fields recently. In this review, we aim to report the current state of the theoretical research and practical advances on this subject. We first give an overview of ELM from the theoretical perspective, including the interpolation theory, universal approximation capability, and generalization ability. Then we focus on the various improvements made to ELM which further improve its stability, sparsity and accuracy under general or specific conditions. Apart from classification and regression, ELM has recently been extended for clustering, feature selection, representational learning and many other learning tasks. These newly emerging algorithms greatly expand the applications of ELM. From implementation aspect, hardware implementation and parallel computation techniques have substantially sped up the training of ELM, making it feasible for big data processing and real-time reasoning. Due to its remarkable efficiency, simplicity, and impressive generalization performance, ELM have been applied in a variety of domains, such as biomedical engineering, computer vision, system identification, and control and robotics. In this review, we try to provide a comprehensive view of these advances in ELM together with its future perspectives. Extreme learning machine (ELM) has gained increasing interest from various research fields recently. In this review, we aim to report the current state of the theoretical research and practical advances on this subject. We first give an overview of ELM from the theoretical perspective, including the interpolation theory, universal approximation capability, and generalization ability. Then we focus on the various improvements made to ELM which further improve its stability, sparsity and accuracy under general or specific conditions. Apart from classification and regression, ELM has recently been extended for clustering, feature selection, representational learning and many other learning tasks. These newly emerging algorithms greatly expand the applications of ELM. From implementation aspect, hardware implementation and parallel computation techniques have substantially sped up the training of ELM, making it feasible for big data processing and real-time reasoning. Due to its remarkable efficiency, simplicity, and impressive generalization performance, ELM have been applied in a variety of domains, such as biomedical engineering, computer vision, system identification, and control and robotics. In this review, we try to provide a comprehensive view of these advances in ELM together with its future perspectives.Extreme learning machine (ELM) has gained increasing interest from various research fields recently. In this review, we aim to report the current state of the theoretical research and practical advances on this subject. We first give an overview of ELM from the theoretical perspective, including the interpolation theory, universal approximation capability, and generalization ability. Then we focus on the various improvements made to ELM which further improve its stability, sparsity and accuracy under general or specific conditions. Apart from classification and regression, ELM has recently been extended for clustering, feature selection, representational learning and many other learning tasks. These newly emerging algorithms greatly expand the applications of ELM. From implementation aspect, hardware implementation and parallel computation techniques have substantially sped up the training of ELM, making it feasible for big data processing and real-time reasoning. Due to its remarkable efficiency, simplicity, and impressive generalization performance, ELM have been applied in a variety of domains, such as biomedical engineering, computer vision, system identification, and control and robotics. In this review, we try to provide a comprehensive view of these advances in ELM together with its future perspectives. |
| Author | Huang, Gao You, Keyou Huang, Guang-Bin Song, Shiji |
| Author_xml | – sequence: 1 givenname: Gao orcidid: 0000-0002-7251-0988 surname: Huang fullname: Huang, Gao email: huang-g09@mails.tsinghua.edu.cn organization: Department of Automation, Tsinghua University, Beijing 100084, China – sequence: 2 givenname: Guang-Bin orcidid: 0000-0002-2480-4965 surname: Huang fullname: Huang, Guang-Bin email: egbhuang@ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore – sequence: 3 givenname: Shiji surname: Song fullname: Song, Shiji email: shijis@mail.tsinghua.edu.cn organization: Department of Automation, Tsinghua University, Beijing 100084, China – sequence: 4 givenname: Keyou orcidid: 0000-0003-4355-5340 surname: You fullname: You, Keyou email: youky@mail.tsinghua.edu.cn organization: Department of Automation, Tsinghua University, Beijing 100084, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25462632$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkMtOwzAQRS1URB_wBwhlySbBj9SJu0CqKl5SJTZlbTnOBFwlTrETHn-Pq7QbFrAazejcK82ZopFtLSB0SXBCMOE328RCb6FLKCZpOCUYkxM0IXkmYprldIQmOBcs5jjHYzT1fosx5nnKztCYzlNOOaMTFG8c2NJHxkbw1TloIKpBOWvsa9Qo_WYs-EW0jBx8GPg8R6eVqj1cHOYMvdzfbVaP8fr54Wm1XMeacdrFnOSCVllVVJgIWlCqtGKZAoyVYkKIgpZZwdKi0IJoVYqwqTlmusiUYDrN2QxdD70717734DvZGK-hrpWFtveScE5TmolUBPTqgPZFA6XcOdMo9y2PLwZgMQDatd47qKQ2nepMazunTC0JlnufcisHn3Lvc38NPkM4_RU-9v8Tux1iECQFcU56bcBqKI0D3cmyNX8X_AC_5pAJ |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2017_12_015 crossref_primary_10_1016_j_compeleceng_2020_106641 crossref_primary_10_1016_j_jksuci_2018_09_008 crossref_primary_10_1109_ACCESS_2020_2965769 crossref_primary_10_1007_s10115_019_01339_0 crossref_primary_10_1016_j_fuel_2024_133109 crossref_primary_10_1016_j_neucom_2017_01_117 crossref_primary_10_1016_j_catena_2019_02_012 crossref_primary_10_1007_s11269_021_02822_6 crossref_primary_10_1016_j_eswa_2017_04_013 crossref_primary_10_1007_s00521_016_2453_y crossref_primary_10_1007_s13042_019_00952_3 crossref_primary_10_1016_j_neucom_2017_01_115 crossref_primary_10_1155_2022_1735573 crossref_primary_10_1016_j_jretconser_2023_103299 crossref_primary_10_1007_s00521_016_2342_4 crossref_primary_10_1016_j_neucom_2021_11_026 crossref_primary_10_1038_s41598_024_64217_y crossref_primary_10_3390_app9132761 crossref_primary_10_3390_analytica6030029 crossref_primary_10_1016_j_knosys_2018_06_029 crossref_primary_10_1016_j_neucom_2016_01_071 crossref_primary_10_1007_s00521_020_05414_4 crossref_primary_10_1016_j_knosys_2016_10_019 crossref_primary_10_1109_TCYB_2017_2648261 crossref_primary_10_3390_su17125249 crossref_primary_10_1016_j_psep_2024_03_014 crossref_primary_10_1103_PhysRevApplied_23_044024 crossref_primary_10_1007_s10661_016_5094_9 crossref_primary_10_1016_j_ijrefrig_2023_09_005 crossref_primary_10_1016_j_bspc_2023_104663 crossref_primary_10_1088_1757_899X_914_1_012033 crossref_primary_10_1016_j_ijfatigue_2025_108899 crossref_primary_10_1007_s11277_017_5119_x crossref_primary_10_1016_j_dib_2020_105213 crossref_primary_10_1016_j_neunet_2018_01_007 crossref_primary_10_1109_ACCESS_2020_2998437 crossref_primary_10_1002_sec_1582 crossref_primary_10_1007_s41688_017_0004_z crossref_primary_10_1016_j_enbuild_2016_09_002 crossref_primary_10_3390_agriculture13020357 crossref_primary_10_3390_aerospace6110117 crossref_primary_10_1016_j_jhydrol_2016_09_035 crossref_primary_10_1016_j_engappai_2023_107559 crossref_primary_10_1016_j_eswa_2022_118006 crossref_primary_10_1016_j_ress_2018_04_015 crossref_primary_10_1080_00949655_2024_2439453 crossref_primary_10_1007_s00500_016_2372_y crossref_primary_10_1155_2015_103796 crossref_primary_10_1007_s12559_018_9598_1 crossref_primary_10_1007_s10586_017_0825_4 crossref_primary_10_3390_s151026877 crossref_primary_10_1016_j_neucom_2018_05_074 crossref_primary_10_1109_ACCESS_2022_3178709 crossref_primary_10_3390_plants9030368 crossref_primary_10_1016_j_compbiolchem_2020_107368 crossref_primary_10_1109_ACCESS_2018_2848966 crossref_primary_10_1007_s13218_015_0372_1 crossref_primary_10_1109_TAES_2023_3288506 crossref_primary_10_3390_s18030742 crossref_primary_10_1007_s10898_018_0701_7 crossref_primary_10_1016_j_neucom_2017_01_120 crossref_primary_10_1007_s12559_022_10093_5 crossref_primary_10_1016_j_neucom_2017_01_126 crossref_primary_10_1007_s13369_018_3508_4 crossref_primary_10_1016_j_neucom_2017_09_047 crossref_primary_10_1007_s11045_016_0393_4 crossref_primary_10_1016_j_neucom_2021_04_049 crossref_primary_10_1016_j_semcancer_2021_04_013 crossref_primary_10_1007_s00477_016_1265_z crossref_primary_10_1016_j_jksuci_2023_101576 crossref_primary_10_1155_2015_682907 crossref_primary_10_1016_j_nima_2022_166637 crossref_primary_10_1109_TIM_2023_3251416 crossref_primary_10_1016_j_optcom_2024_131471 crossref_primary_10_3389_fmed_2025_1540297 crossref_primary_10_1016_j_neucom_2018_04_012 crossref_primary_10_1109_ACCESS_2021_3080456 crossref_primary_10_1109_TSP_2021_3130964 crossref_primary_10_1038_s41928_022_00719_9 crossref_primary_10_1177_0142331215589610 crossref_primary_10_3390_electronics12173608 crossref_primary_10_3233_IDT_180325 crossref_primary_10_1016_j_neucom_2015_04_018 crossref_primary_10_1016_j_smhl_2024_100502 crossref_primary_10_1155_2023_6418897 crossref_primary_10_4018_IJDCF_2019010106 crossref_primary_10_1007_s13042_022_01636_1 crossref_primary_10_1016_j_neucom_2018_05_057 crossref_primary_10_1016_j_neunet_2018_10_014 crossref_primary_10_3390_math7100947 crossref_primary_10_1016_j_neucom_2018_12_080 crossref_primary_10_1007_s11063_024_11492_5 crossref_primary_10_1016_j_pecs_2022_101010 crossref_primary_10_1016_j_cie_2024_109931 crossref_primary_10_1016_j_neucom_2023_126704 crossref_primary_10_1007_s10489_018_01403_2 crossref_primary_10_1007_s10103_022_03513_3 crossref_primary_10_1016_j_neucom_2015_04_002 crossref_primary_10_1007_s12517_022_09906_6 crossref_primary_10_1080_00207721_2020_1765047 crossref_primary_10_1016_j_neucom_2018_05_066 crossref_primary_10_1016_j_neucom_2021_04_027 crossref_primary_10_1016_j_asoc_2018_01_036 crossref_primary_10_1016_j_engappai_2025_111369 crossref_primary_10_1109_ACCESS_2015_2506601 crossref_primary_10_1016_j_neucom_2018_05_064 crossref_primary_10_3390_s20226491 crossref_primary_10_1017_S0269964816000061 crossref_primary_10_1016_j_neucom_2016_05_113 crossref_primary_10_1016_j_cjche_2020_09_060 crossref_primary_10_1109_ACCESS_2020_2965303 crossref_primary_10_1016_j_envpol_2018_05_072 crossref_primary_10_1016_j_neucom_2017_09_090 crossref_primary_10_1016_j_neucom_2016_05_115 crossref_primary_10_1155_2022_5433474 crossref_primary_10_1016_j_neucom_2016_05_116 crossref_primary_10_1007_s11831_022_09860_2 crossref_primary_10_1007_s13748_017_0136_2 crossref_primary_10_1109_ACCESS_2021_3112552 crossref_primary_10_1016_j_engappai_2023_107757 crossref_primary_10_3390_rs14122737 crossref_primary_10_1007_s10479_020_03690_w crossref_primary_10_1016_j_neucom_2017_08_040 crossref_primary_10_1007_s11071_021_06987_y crossref_primary_10_1109_TII_2018_2793905 crossref_primary_10_1016_j_neucom_2024_129298 crossref_primary_10_1049_el_2015_2360 crossref_primary_10_1016_j_asoc_2019_106028 crossref_primary_10_1016_j_patcog_2016_10_019 crossref_primary_10_1007_s10115_024_02279_0 crossref_primary_10_1016_j_seta_2023_103088 crossref_primary_10_1007_s11042_019_7543_2 crossref_primary_10_1155_2019_3476521 crossref_primary_10_1007_s10462_016_9461_2 crossref_primary_10_1109_ACCESS_2020_2985381 crossref_primary_10_1021_jasms_4c00318 crossref_primary_10_1016_j_patrec_2019_01_011 crossref_primary_10_3390_buildings15071200 crossref_primary_10_1007_s11036_021_01737_1 crossref_primary_10_1016_j_cognition_2017_12_015 crossref_primary_10_3390_s23136187 crossref_primary_10_1109_TAFFC_2017_2763943 crossref_primary_10_3390_bios12030144 crossref_primary_10_1016_j_neucom_2020_08_050 crossref_primary_10_1016_j_sigpro_2016_11_008 crossref_primary_10_1109_LGRS_2016_2517178 crossref_primary_10_1016_j_neucom_2018_12_078 crossref_primary_10_1007_s12273_019_0548_y crossref_primary_10_1155_2017_4194251 crossref_primary_10_1007_s12652_020_02340_0 crossref_primary_10_3390_su9050754 crossref_primary_10_1109_TASE_2021_3074873 crossref_primary_10_1016_j_petrol_2020_106929 crossref_primary_10_1109_TCAD_2018_2878162 crossref_primary_10_1109_ACCESS_2018_2887260 crossref_primary_10_1109_TIE_2016_2597119 crossref_primary_10_1007_s00607_021_01011_y crossref_primary_10_1109_TITS_2018_2850057 crossref_primary_10_1016_j_jvcir_2018_11_035 crossref_primary_10_1109_JIOT_2021_3071152 crossref_primary_10_1007_s12559_021_09914_w crossref_primary_10_1007_s10462_022_10283_5 crossref_primary_10_1007_s11063_021_10452_7 crossref_primary_10_1002_sam_11493 crossref_primary_10_1016_j_neucom_2019_01_070 crossref_primary_10_1016_j_watres_2022_118111 crossref_primary_10_1155_2021_5588426 crossref_primary_10_1016_j_knosys_2021_106964 crossref_primary_10_1016_j_bspc_2025_107899 crossref_primary_10_1007_s00521_023_08354_x crossref_primary_10_3390_en10111784 crossref_primary_10_1016_j_neucom_2015_04_041 crossref_primary_10_1007_s12652_018_0994_x crossref_primary_10_1016_j_scitotenv_2023_162043 crossref_primary_10_1016_j_microc_2025_114056 crossref_primary_10_1080_1448837X_2019_1578044 crossref_primary_10_1109_TSMC_2017_2720702 crossref_primary_10_1016_j_engappai_2020_104062 crossref_primary_10_1007_s11042_018_6500_9 crossref_primary_10_1109_TITS_2019_2949432 crossref_primary_10_1109_ACCESS_2020_2987930 crossref_primary_10_1109_ACCESS_2022_3196769 crossref_primary_10_3390_su14074020 crossref_primary_10_1145_2816795_2818121 crossref_primary_10_1016_j_jag_2021_102370 crossref_primary_10_1088_1361_6501_ad9108 crossref_primary_10_1016_j_cie_2024_109907 crossref_primary_10_3390_en15249512 crossref_primary_10_1007_s00521_019_04398_0 crossref_primary_10_7717_peerj_cs_411 crossref_primary_10_3390_en13164236 crossref_primary_10_1007_s11063_018_9890_9 crossref_primary_10_1016_j_est_2022_104996 crossref_primary_10_5004_dwt_2021_26903 crossref_primary_10_1109_ACCESS_2018_2868713 crossref_primary_10_1109_ACCESS_2019_2932909 crossref_primary_10_1109_TSMC_2019_2907672 crossref_primary_10_1155_2022_4998200 crossref_primary_10_3390_en14196279 crossref_primary_10_1016_j_apenergy_2016_12_080 crossref_primary_10_1007_s10044_019_00844_w crossref_primary_10_1016_j_cageo_2017_02_001 crossref_primary_10_35453_NEDJR_ASCN_2018_0006 crossref_primary_10_1007_s11740_019_00923_1 crossref_primary_10_1109_ACCESS_2020_3047933 crossref_primary_10_1016_j_eswa_2022_119164 crossref_primary_10_1109_TSMC_2017_2690673 crossref_primary_10_1109_ACCESS_2021_3063028 crossref_primary_10_1007_s11063_023_11248_7 crossref_primary_10_3390_math12121895 crossref_primary_10_1186_s12938_018_0604_3 crossref_primary_10_3390_ijgi10090617 crossref_primary_10_3390_pr11010277 crossref_primary_10_3389_feart_2021_596860 crossref_primary_10_1016_j_segan_2018_07_001 crossref_primary_10_1016_j_sna_2020_112479 crossref_primary_10_3233_JIFS_179281 crossref_primary_10_1155_2020_8015156 crossref_primary_10_1155_2018_1824317 crossref_primary_10_1007_s10489_018_1273_4 crossref_primary_10_3390_biology11040532 crossref_primary_10_1016_j_asoc_2016_08_013 crossref_primary_10_1109_JLT_2020_3035810 crossref_primary_10_1002_joc_8530 crossref_primary_10_1007_s10915_021_01650_5 crossref_primary_10_1016_j_engappai_2016_10_010 crossref_primary_10_1007_s13042_017_0746_9 crossref_primary_10_1016_j_inffus_2017_01_004 crossref_primary_10_1515_tjj_2016_0050 crossref_primary_10_3233_MGS_200321 crossref_primary_10_1002_qute_202100027 crossref_primary_10_3390_coatings12091320 crossref_primary_10_1016_j_enconman_2021_115189 crossref_primary_10_3390_electronics8090921 crossref_primary_10_3390_sym12081292 crossref_primary_10_1016_j_jece_2022_108552 crossref_primary_10_1016_j_oceaneng_2017_12_002 crossref_primary_10_3390_e27040363 crossref_primary_10_1007_s11053_021_09960_z crossref_primary_10_1155_2022_2477769 crossref_primary_10_1016_j_neunet_2015_10_011 crossref_primary_10_1002_stc_1997 crossref_primary_10_5194_acp_20_6159_2020 crossref_primary_10_1016_j_ast_2024_109662 crossref_primary_10_1016_j_neunet_2015_05_002 crossref_primary_10_1109_ACCESS_2019_2894500 crossref_primary_10_1186_s12984_016_0183_0 crossref_primary_10_1109_LCOMM_2021_3052683 crossref_primary_10_1016_j_ins_2019_09_049 crossref_primary_10_1007_s00521_023_08702_x crossref_primary_10_3892_ol_2022_13630 crossref_primary_10_1016_j_commatsci_2021_110619 crossref_primary_10_1007_s00521_015_1909_9 crossref_primary_10_1155_2016_2618265 crossref_primary_10_1016_j_neucom_2016_12_098 crossref_primary_10_1016_j_eswa_2023_121366 crossref_primary_10_1109_ACCESS_2021_3076345 crossref_primary_10_1007_s40820_024_01489_z crossref_primary_10_1007_s10489_024_05470_6 crossref_primary_10_1016_j_jenvman_2023_119555 crossref_primary_10_3390_su12083075 crossref_primary_10_1016_j_asoc_2020_106756 crossref_primary_10_1016_j_eswa_2016_08_052 crossref_primary_10_1016_j_rser_2019_01_014 crossref_primary_10_1016_j_neunet_2015_04_002 crossref_primary_10_1007_s00500_018_3085_1 crossref_primary_10_1016_j_ipm_2024_103718 crossref_primary_10_1061__ASCE_HE_1943_5584_0001625 crossref_primary_10_1080_15567249_2021_1872119 crossref_primary_10_1016_j_biosystemseng_2018_04_022 crossref_primary_10_1016_j_jhydrol_2021_126670 crossref_primary_10_1007_s13735_017_0128_9 crossref_primary_10_1016_j_fss_2016_11_007 crossref_primary_10_1108_IJCST_07_2018_0091 crossref_primary_10_1016_j_amc_2023_128230 crossref_primary_10_1002_wer_1642 crossref_primary_10_1016_j_compag_2017_05_017 crossref_primary_10_1007_s11063_017_9745_9 crossref_primary_10_1016_j_sigpro_2023_109102 crossref_primary_10_1109_TCYB_2023_3293196 crossref_primary_10_1016_j_rser_2019_01_009 crossref_primary_10_3390_rs11171983 crossref_primary_10_1109_ACCESS_2020_2995586 crossref_primary_10_1063_5_0268110 crossref_primary_10_1016_j_ipm_2018_01_010 crossref_primary_10_3390_info15080507 crossref_primary_10_1002_suco_202400552 crossref_primary_10_1109_TGRS_2016_2578438 crossref_primary_10_1016_j_jfranklin_2020_04_033 crossref_primary_10_1007_s00500_021_06645_w crossref_primary_10_1007_s40095_022_00488_3 crossref_primary_10_1080_21642583_2021_1992684 crossref_primary_10_1109_TNNLS_2018_2855446 crossref_primary_10_1007_s11069_023_05998_9 crossref_primary_10_1016_j_adhoc_2025_103920 crossref_primary_10_3390_en15093198 crossref_primary_10_1016_j_est_2024_113086 crossref_primary_10_1016_j_uclim_2022_101382 crossref_primary_10_1109_TCPMT_2022_3167638 crossref_primary_10_1186_s13634_020_00695_2 crossref_primary_10_1109_MCI_2015_2405352 crossref_primary_10_1016_j_geoen_2024_213533 crossref_primary_10_1016_j_jhydrol_2018_03_063 crossref_primary_10_1007_s00477_016_1338_z crossref_primary_10_1007_s42107_025_01385_w crossref_primary_10_1088_1755_1315_467_1_012081 crossref_primary_10_1016_j_knosys_2019_04_008 crossref_primary_10_56530_spectroscopy_sl7768t8 crossref_primary_10_1111_jfpe_70179 crossref_primary_10_3390_math10162971 crossref_primary_10_1016_j_image_2015_09_004 crossref_primary_10_1016_j_neucom_2016_03_114 crossref_primary_10_1109_TGRS_2021_3076099 crossref_primary_10_3390_electronics11050715 crossref_primary_10_1007_s13202_022_01593_z crossref_primary_10_1002_for_2663 crossref_primary_10_1007_s00521_021_06402_y crossref_primary_10_1007_s42417_022_00793_5 crossref_primary_10_1016_j_jhydrol_2020_124974 crossref_primary_10_3390_math7070629 crossref_primary_10_1088_2634_4386_ac7db7 crossref_primary_10_1016_j_envpol_2020_115434 crossref_primary_10_1016_j_knosys_2019_04_002 crossref_primary_10_1016_j_snb_2020_129162 crossref_primary_10_1109_MITS_2022_3210226 crossref_primary_10_1109_TII_2019_2921032 crossref_primary_10_1371_journal_pone_0220870 crossref_primary_10_1016_j_cor_2023_106480 crossref_primary_10_1016_j_asoc_2020_106433 crossref_primary_10_1109_TMM_2018_2865834 crossref_primary_10_3390_app12189021 crossref_primary_10_1016_j_atech_2022_100115 crossref_primary_10_1016_j_neucom_2016_04_070 crossref_primary_10_1016_j_engappai_2016_04_003 crossref_primary_10_1016_j_mineng_2018_12_004 crossref_primary_10_3390_informatics8020033 crossref_primary_10_1016_j_foodchem_2022_132666 crossref_primary_10_1007_s12594_021_1821_0 crossref_primary_10_3390_s18082640 crossref_primary_10_1007_s12652_022_04355_1 crossref_primary_10_1016_j_ymssp_2017_09_013 crossref_primary_10_1007_s10489_020_02140_1 crossref_primary_10_1109_TIM_2025_3557124 crossref_primary_10_1109_TCYB_2021_3061094 crossref_primary_10_1007_s42979_020_00232_w crossref_primary_10_1109_ACCESS_2018_2864871 crossref_primary_10_1016_j_molliq_2017_11_166 crossref_primary_10_1007_s00521_023_09090_y crossref_primary_10_1109_TIP_2016_2598679 crossref_primary_10_1007_s11356_023_30180_w crossref_primary_10_1109_JSYST_2017_2688359 crossref_primary_10_1016_j_ijbiomac_2024_131485 crossref_primary_10_1016_j_neucom_2016_12_078 crossref_primary_10_1007_s10915_023_02162_0 crossref_primary_10_1007_s13369_020_05115_z crossref_primary_10_1007_s10845_023_02303_0 crossref_primary_10_3390_app12073388 crossref_primary_10_1109_ACCESS_2020_3012983 crossref_primary_10_1109_TNNLS_2020_3015869 crossref_primary_10_1007_s11063_020_10263_2 crossref_primary_10_1016_j_scitotenv_2022_154226 crossref_primary_10_1007_s11517_021_02333_x crossref_primary_10_1016_j_geoderma_2024_116953 crossref_primary_10_1080_00387010_2015_1089446 crossref_primary_10_1038_s41598_023_49363_z crossref_primary_10_1007_s11042_021_11007_7 crossref_primary_10_1016_j_measurement_2020_108135 crossref_primary_10_1186_s13174_021_00145_8 crossref_primary_10_1016_j_chaos_2020_110423 crossref_primary_10_1016_j_jfranklin_2020_05_031 crossref_primary_10_3390_s19061453 crossref_primary_10_1108_IJCST_07_2015_0076 crossref_primary_10_7595_management_fon_2017_0023 crossref_primary_10_1016_j_iswa_2022_200098 crossref_primary_10_1016_j_aci_2018_10_001 crossref_primary_10_1016_j_patcog_2017_02_036 crossref_primary_10_1016_j_saa_2019_03_113 crossref_primary_10_1109_COMST_2019_2915923 crossref_primary_10_2166_nh_2022_144 crossref_primary_10_1007_s13369_016_2338_5 crossref_primary_10_1016_j_isatra_2023_02_026 crossref_primary_10_3390_biomimetics6020032 crossref_primary_10_1016_j_compmedimag_2016_07_011 crossref_primary_10_1007_s10489_020_01890_2 crossref_primary_10_3390_app13148558 crossref_primary_10_1016_j_isatra_2024_10_028 crossref_primary_10_3390_s21113877 crossref_primary_10_1016_j_neunet_2016_09_004 crossref_primary_10_1109_JPHOT_2018_2817843 crossref_primary_10_3390_s23052453 crossref_primary_10_1007_s12555_019_0989_1 crossref_primary_10_1016_j_amc_2020_125159 crossref_primary_10_1016_j_ymssp_2018_12_009 crossref_primary_10_3390_s18010173 crossref_primary_10_1016_j_jcp_2021_110585 crossref_primary_10_1109_ACCESS_2025_3570502 crossref_primary_10_1109_TNNLS_2018_2845857 crossref_primary_10_1007_s11571_020_09585_7 crossref_primary_10_1080_07373937_2018_1494185 crossref_primary_10_1049_iet_sen_2020_0119 crossref_primary_10_1007_s00521_019_04479_0 crossref_primary_10_1016_j_engappai_2016_06_015 crossref_primary_10_1007_s11356_022_22904_1 crossref_primary_10_1108_AA_12_2016_161 crossref_primary_10_1007_s10044_020_00880_x crossref_primary_10_1016_j_eswa_2024_123559 crossref_primary_10_1016_j_apenergy_2022_120333 crossref_primary_10_1109_TSMC_2017_2757029 crossref_primary_10_1007_s10489_022_03251_7 crossref_primary_10_1109_TGRS_2019_2952236 crossref_primary_10_3390_math12010103 crossref_primary_10_1155_2022_1433835 crossref_primary_10_3390_app10124125 crossref_primary_10_1016_j_compag_2024_108942 crossref_primary_10_3390_s18061705 crossref_primary_10_1155_2020_2837916 crossref_primary_10_1038_s41467_025_56079_3 crossref_primary_10_1007_s13042_019_01028_y crossref_primary_10_3390_w9110880 crossref_primary_10_1007_s12559_020_09761_1 crossref_primary_10_1007_s13042_020_01235_y crossref_primary_10_1016_j_engappai_2020_103980 crossref_primary_10_1155_2017_7273061 crossref_primary_10_1007_s00521_018_3353_0 crossref_primary_10_1016_j_asoc_2018_04_007 crossref_primary_10_1016_j_jlp_2025_105754 crossref_primary_10_3390_agronomy11112290 crossref_primary_10_3389_fenrg_2022_914026 crossref_primary_10_1155_2020_8206245 crossref_primary_10_3390_axioms12020204 crossref_primary_10_1155_2016_8091267 crossref_primary_10_3390_e23040440 crossref_primary_10_1016_j_engappai_2019_02_012 crossref_primary_10_1080_03019233_2020_1771892 crossref_primary_10_1007_s10619_021_07361_y crossref_primary_10_1007_s13042_017_0776_3 crossref_primary_10_1049_sfw2_12029 crossref_primary_10_1109_ACCESS_2020_2994773 crossref_primary_10_1080_02331934_2025_2523918 crossref_primary_10_3390_pr11051346 crossref_primary_10_1051_matecconf_20165803010 crossref_primary_10_1680_jemmr_24_00046 crossref_primary_10_1049_ise2_8381148 crossref_primary_10_2166_hydro_2021_067 crossref_primary_10_1016_j_ress_2021_108278 crossref_primary_10_1063_5_0281169 crossref_primary_10_1155_2019_7620948 crossref_primary_10_3389_fncom_2021_738885 crossref_primary_10_1016_j_neucom_2015_08_061 crossref_primary_10_1155_2022_1994046 crossref_primary_10_1016_j_commatsci_2022_111699 crossref_primary_10_1016_j_scs_2019_101601 crossref_primary_10_1155_2020_3490536 crossref_primary_10_3390_fi11110245 crossref_primary_10_1007_s00521_024_09617_x crossref_primary_10_1007_s00704_025_05798_0 crossref_primary_10_1080_01431161_2024_2318771 crossref_primary_10_1177_1369433218788635 crossref_primary_10_3390_app13064018 crossref_primary_10_3390_drones7010002 crossref_primary_10_1007_s12559_018_9606_5 crossref_primary_10_3390_s18041046 crossref_primary_10_1016_j_asoc_2016_02_039 crossref_primary_10_1016_j_petlm_2021_12_002 crossref_primary_10_29026_oea_2025_240315 crossref_primary_10_3390_mi14112023 crossref_primary_10_3390_su13073744 crossref_primary_10_1016_j_asr_2022_08_002 crossref_primary_10_1016_j_heliyon_2024_e25432 crossref_primary_10_1007_s11042_018_6491_6 crossref_primary_10_3390_rs11070740 crossref_primary_10_1016_j_neucom_2018_01_005 crossref_primary_10_1007_s12293_017_0238_1 crossref_primary_10_1007_s11042_024_18295_9 crossref_primary_10_1007_s11063_018_9952_z crossref_primary_10_1016_j_neucom_2020_07_151 crossref_primary_10_1515_jwld_2016_0004 crossref_primary_10_1016_j_apm_2020_10_028 crossref_primary_10_3390_app12094724 crossref_primary_10_3390_sym11070944 crossref_primary_10_1016_j_asoc_2018_05_015 crossref_primary_10_1016_j_foodres_2025_116561 crossref_primary_10_1007_s00170_019_04203_1 crossref_primary_10_1016_j_compag_2018_10_014 crossref_primary_10_3390_app10093210 crossref_primary_10_1016_j_heliyon_2024_e37650 crossref_primary_10_1007_s11063_018_9865_x crossref_primary_10_1177_0958305X18787258 crossref_primary_10_1007_s00521_021_06370_3 crossref_primary_10_1515_cppm_2019_0107 crossref_primary_10_1007_s10341_025_01292_z crossref_primary_10_3389_fneur_2024_1413071 crossref_primary_10_1016_j_neuri_2022_100075 crossref_primary_10_1016_j_ymssp_2021_108673 crossref_primary_10_1177_09544070251366345 crossref_primary_10_1007_s10489_024_05651_3 crossref_primary_10_1016_j_apenergy_2019_04_126 crossref_primary_10_1007_s12665_015_5135_7 crossref_primary_10_1007_s10666_022_09843_4 crossref_primary_10_1016_j_compeleceng_2018_11_012 crossref_primary_10_3390_jmse10111683 crossref_primary_10_1007_s11069_022_05361_4 crossref_primary_10_1007_s40314_016_0377_x crossref_primary_10_1016_j_ecolind_2023_110560 crossref_primary_10_1155_2021_6794213 crossref_primary_10_3390_a11050056 crossref_primary_10_1109_ACCESS_2020_2966690 crossref_primary_10_1109_TBDATA_2020_2988778 crossref_primary_10_1007_s00521_016_2372_y crossref_primary_10_1016_j_jprocont_2021_07_013 crossref_primary_10_1016_j_seta_2018_11_008 crossref_primary_10_1007_s00521_016_2394_5 crossref_primary_10_3390_sym14061186 crossref_primary_10_1007_s12040_019_1194_6 crossref_primary_10_1016_j_neunet_2020_07_018 crossref_primary_10_1016_j_jconhyd_2023_104151 crossref_primary_10_1016_j_cma_2023_116578 crossref_primary_10_7717_peerj_6926 crossref_primary_10_1109_TNNLS_2017_2654357 crossref_primary_10_1108_K_12_2021_1252 crossref_primary_10_1007_s11356_024_33405_8 crossref_primary_10_1016_j_ijpe_2016_10_021 crossref_primary_10_1109_TIFS_2017_2766583 crossref_primary_10_1177_1687814017751446 crossref_primary_10_3390_app9235042 crossref_primary_10_1016_j_knosys_2017_05_013 crossref_primary_10_1080_07373937_2019_1675077 crossref_primary_10_3390_app9153140 crossref_primary_10_1016_j_jestch_2018_04_013 crossref_primary_10_1109_MCI_2015_2405316 crossref_primary_10_3233_JIFS_212068 crossref_primary_10_1016_j_neucom_2015_07_069 crossref_primary_10_1007_s00500_020_04678_1 crossref_primary_10_1007_s11356_021_14079_y crossref_primary_10_1177_09596518231196901 crossref_primary_10_1016_j_enconman_2019_05_020 crossref_primary_10_1016_j_advengsoft_2017_09_004 crossref_primary_10_3390_pr11030693 crossref_primary_10_3390_app12010009 crossref_primary_10_1007_s13042_024_02164_w crossref_primary_10_1109_OAJPE_2025_3585994 crossref_primary_10_1080_08839514_2018_1560545 crossref_primary_10_3390_atmos12101345 crossref_primary_10_1016_j_jhydrol_2016_03_017 crossref_primary_10_1155_2022_4509612 crossref_primary_10_1016_j_neucom_2015_12_113 crossref_primary_10_1080_1573062X_2019_1637002 crossref_primary_10_1111_coin_12242 crossref_primary_10_1080_00387010_2018_1475398 crossref_primary_10_1155_2017_1239164 crossref_primary_10_1016_j_neunet_2018_11_006 crossref_primary_10_3390_app11093867 crossref_primary_10_1007_s40314_024_03010_z crossref_primary_10_3390_min12060750 crossref_primary_10_1016_j_foodchem_2024_141373 crossref_primary_10_1016_j_measurement_2021_109923 crossref_primary_10_1016_j_ipm_2022_102945 crossref_primary_10_2136_sssaj2016_11_0376 crossref_primary_10_1016_j_jfca_2022_104843 crossref_primary_10_1007_s10922_020_09557_6 crossref_primary_10_1109_ACCESS_2020_3028959 crossref_primary_10_3390_su15010380 crossref_primary_10_1016_j_bspc_2025_107909 crossref_primary_10_1016_j_psep_2025_106772 crossref_primary_10_1109_TCST_2020_3015514 crossref_primary_10_1109_ACCESS_2022_3227327 crossref_primary_10_1007_s42107_025_01278_y crossref_primary_10_1016_j_ins_2024_120559 crossref_primary_10_1109_ACCESS_2021_3054483 crossref_primary_10_1016_j_samod_2021_100002 crossref_primary_10_1007_s00107_023_02027_1 crossref_primary_10_1109_TNNLS_2016_2614998 crossref_primary_10_1109_ACCESS_2019_2894014 crossref_primary_10_1007_s42243_023_01067_4 crossref_primary_10_1029_2018SW002061 crossref_primary_10_1049_iet_gtd_2019_0531 crossref_primary_10_1007_s00170_017_0549_x crossref_primary_10_1016_j_smhl_2023_100386 crossref_primary_10_1016_j_egyr_2022_05_262 crossref_primary_10_1016_j_jobe_2024_111471 crossref_primary_10_3390_s19020263 crossref_primary_10_3390_a11100158 crossref_primary_10_1038_srep14945 crossref_primary_10_1109_ACCESS_2019_2943515 crossref_primary_10_1016_j_enconman_2018_04_082 crossref_primary_10_1088_1757_899X_569_5_052108 crossref_primary_10_1109_ACCESS_2018_2869306 crossref_primary_10_3390_pr9091578 crossref_primary_10_1007_s12065_019_00295_6 crossref_primary_10_1016_j_asoc_2018_08_046 crossref_primary_10_1016_j_knosys_2017_04_007 crossref_primary_10_1063_5_0273379 crossref_primary_10_1089_3dp_2023_0182 crossref_primary_10_3390_catal7100306 crossref_primary_10_1016_j_neucom_2017_10_034 crossref_primary_10_1515_bmt_2016_0097 crossref_primary_10_1109_TCYB_2018_2816981 crossref_primary_10_1177_0144598720911724 crossref_primary_10_1016_j_neucom_2016_08_050 crossref_primary_10_1016_j_neucom_2017_03_092 crossref_primary_10_1177_1045389X19844007 crossref_primary_10_1016_j_eja_2025_127760 crossref_primary_10_1007_s12065_018_0193_x crossref_primary_10_1109_ACCESS_2020_3010938 crossref_primary_10_3390_app9030614 crossref_primary_10_1016_j_biosystemseng_2021_09_010 crossref_primary_10_1016_j_rsma_2022_102332 crossref_primary_10_1016_j_patcog_2019_07_005 crossref_primary_10_3390_su141912784 crossref_primary_10_1007_s40430_021_03121_2 crossref_primary_10_1016_j_compbiomed_2019_05_006 crossref_primary_10_1680_jgeen_19_00297 crossref_primary_10_1109_TASE_2019_2936821 crossref_primary_10_1016_j_neucom_2019_06_040 crossref_primary_10_1111_exsy_13432 crossref_primary_10_1109_TCDS_2019_2960766 crossref_primary_10_1109_ACCESS_2020_3048078 crossref_primary_10_1016_j_jclepro_2022_130414 crossref_primary_10_1007_s00521_019_04480_7 crossref_primary_10_1007_s10661_023_11566_2 crossref_primary_10_1007_s13042_020_01184_6 crossref_primary_10_1109_TSMC_2019_2931003 crossref_primary_10_1155_2019_9765468 crossref_primary_10_1007_s11063_020_10358_w crossref_primary_10_1007_s42979_021_00607_7 crossref_primary_10_1016_j_cma_2021_114188 crossref_primary_10_1016_j_enconman_2018_02_006 crossref_primary_10_1016_j_neucom_2015_04_103 crossref_primary_10_3233_AIC_190620 crossref_primary_10_1007_s12293_018_0270_9 crossref_primary_10_1007_s00202_020_01075_7 crossref_primary_10_1007_s40710_016_0172_0 crossref_primary_10_1016_j_enbuild_2018_06_056 crossref_primary_10_1007_s12145_020_00508_y crossref_primary_10_1016_j_ascom_2020_100383 crossref_primary_10_1016_j_jss_2021_111026 crossref_primary_10_1016_j_mechmachtheory_2019_03_036 crossref_primary_10_1007_s00521_021_05806_0 crossref_primary_10_1109_TNNLS_2020_3029198 crossref_primary_10_1016_j_scitotenv_2020_140338 crossref_primary_10_1109_ACCESS_2018_2890111 crossref_primary_10_1093_bib_bby095 crossref_primary_10_1002_fuce_201900085 crossref_primary_10_3892_ol_2018_9761 crossref_primary_10_1016_j_agwat_2024_109253 crossref_primary_10_1016_j_neucom_2024_128061 crossref_primary_10_3390_ijgi11010071 crossref_primary_10_1007_s11227_022_04936_z crossref_primary_10_1109_LPT_2020_2993141 crossref_primary_10_1016_j_ecoinf_2016_01_008 crossref_primary_10_1002_ese3_2036 crossref_primary_10_3390_a14010018 crossref_primary_10_1016_j_compag_2018_09_032 crossref_primary_10_1016_j_eswa_2019_112877 crossref_primary_10_1186_s13040_020_00223_w crossref_primary_10_1007_s11356_021_12418_7 crossref_primary_10_1016_j_saa_2022_121348 crossref_primary_10_1016_j_compag_2016_05_017 crossref_primary_10_1109_ACCESS_2021_3067363 crossref_primary_10_1016_j_fss_2018_02_014 crossref_primary_10_1016_j_neunet_2019_10_004 crossref_primary_10_1111_jtxs_12740 crossref_primary_10_1007_s00500_022_07318_y crossref_primary_10_1016_j_measurement_2019_107411 crossref_primary_10_1016_j_neunet_2019_11_007 crossref_primary_10_1016_j_rineng_2024_102724 crossref_primary_10_1109_TIM_2023_3306510 crossref_primary_10_1016_j_jcp_2022_111290 crossref_primary_10_1016_j_conengprac_2019_07_016 crossref_primary_10_1016_j_neucom_2020_03_046 crossref_primary_10_1016_j_engstruct_2019_05_048 crossref_primary_10_1016_j_inffus_2017_07_003 crossref_primary_10_1016_j_tre_2020_102189 crossref_primary_10_1109_JPHOT_2021_3086005 crossref_primary_10_1016_j_neucom_2023_126618 crossref_primary_10_1016_j_neunet_2016_04_009 crossref_primary_10_1016_j_neunet_2016_04_008 crossref_primary_10_1007_s42484_025_00239_7 crossref_primary_10_1007_s00477_019_01680_4 crossref_primary_10_1016_j_neucom_2015_01_095 crossref_primary_10_1016_j_optlastec_2020_106909 crossref_primary_10_1109_ACCESS_2019_2951153 crossref_primary_10_7717_peerj_cs_1732 crossref_primary_10_1016_j_eswa_2016_11_025 crossref_primary_10_3233_JIFS_189141 crossref_primary_10_5004_dwt_2020_26160 crossref_primary_10_1007_s00521_017_3242_y crossref_primary_10_1038_s41598_021_82977_9 crossref_primary_10_1088_1757_899X_490_4_042053 crossref_primary_10_1049_iet_cvi_2018_5590 crossref_primary_10_1088_1755_1315_304_4_042006 crossref_primary_10_1155_2022_6446080 crossref_primary_10_1016_j_physa_2025_130515 crossref_primary_10_1109_ACCESS_2021_3114619 crossref_primary_10_1016_j_fuel_2020_118358 crossref_primary_10_1016_j_engappai_2023_106314 crossref_primary_10_1016_j_jprocont_2019_11_002 crossref_primary_10_1016_j_knosys_2015_10_012 crossref_primary_10_3390_s20154191 crossref_primary_10_4108_eetpht_10_5542 crossref_primary_10_1016_j_neucom_2016_05_006 crossref_primary_10_1016_j_patcog_2017_05_008 crossref_primary_10_1088_1361_6501_ad3295 crossref_primary_10_1007_s00500_018_3031_2 crossref_primary_10_1016_j_bspc_2022_104023 crossref_primary_10_2166_ws_2023_050 crossref_primary_10_1088_1741_2552_ab7264 crossref_primary_10_1016_j_oceaneng_2020_107777 crossref_primary_10_1016_j_compag_2015_08_008 crossref_primary_10_1007_s13369_024_09148_6 crossref_primary_10_1016_j_energy_2023_128776 crossref_primary_10_1109_ACCESS_2017_2672722 crossref_primary_10_1007_s11356_020_08996_7 crossref_primary_10_3390_sym12060876 crossref_primary_10_1016_j_jobe_2022_105444 crossref_primary_10_1109_ACCESS_2018_2815503 crossref_primary_10_1007_s13042_016_0615_y crossref_primary_10_1007_s12559_016_9409_5 crossref_primary_10_1016_j_neucom_2018_05_135 crossref_primary_10_3390_ani14202951 crossref_primary_10_1016_j_measurement_2020_108186 crossref_primary_10_1515_jisys_2018_0058 crossref_primary_10_1007_s00521_017_3300_5 crossref_primary_10_1016_j_neucom_2016_06_069 crossref_primary_10_3390_mca29030040 crossref_primary_10_3390_app13158796 crossref_primary_10_1007_s00371_018_1493_y crossref_primary_10_1007_s40722_025_00394_w crossref_primary_10_1016_j_neucom_2017_05_096 crossref_primary_10_1016_j_solener_2019_08_032 crossref_primary_10_1007_s00521_022_08034_2 crossref_primary_10_1155_2017_8395252 crossref_primary_10_1016_j_jksuci_2023_03_001 crossref_primary_10_1007_s11947_025_04005_2 crossref_primary_10_3389_fpubh_2022_925901 crossref_primary_10_1007_s12555_022_0518_5 crossref_primary_10_3233_JIFS_16724 crossref_primary_10_1016_j_cja_2024_03_037 crossref_primary_10_1016_j_neucom_2017_03_018 crossref_primary_10_1108_EC_06_2024_0507 crossref_primary_10_3390_a18020087 crossref_primary_10_1016_j_pec_2023_108076 crossref_primary_10_1177_18758967251356822 crossref_primary_10_17221_109_2024_CJFS crossref_primary_10_1016_j_knosys_2021_106841 crossref_primary_10_1016_j_jhydrol_2024_131787 crossref_primary_10_1016_j_ifacol_2017_08_2209 crossref_primary_10_1007_s12559_016_9440_6 crossref_primary_10_3389_fmolb_2022_962743 crossref_primary_10_1016_j_saa_2019_02_089 crossref_primary_10_1016_j_compag_2016_03_025 crossref_primary_10_1016_j_aquaeng_2024_102408 crossref_primary_10_1080_07373937_2019_1607873 crossref_primary_10_1108_IMDS_06_2019_0351 crossref_primary_10_3390_en12040673 crossref_primary_10_1108_INTR_01_2022_0042 crossref_primary_10_1007_s12665_019_8202_7 crossref_primary_10_1016_j_knosys_2017_02_016 crossref_primary_10_3233_IDA_184377 crossref_primary_10_1016_j_ygeno_2019_11_004 crossref_primary_10_1016_j_resourpol_2019_101414 crossref_primary_10_1007_s10586_019_02957_7 crossref_primary_10_1007_s13042_018_0833_6 crossref_primary_10_1016_j_neunet_2016_11_004 crossref_primary_10_1007_s13042_015_0478_7 crossref_primary_10_1007_s12559_018_9557_x crossref_primary_10_5306_wjco_v13_i2_125 crossref_primary_10_1007_s00500_024_09918_2 crossref_primary_10_3390_ma10050543 crossref_primary_10_1016_j_asoc_2015_08_036 crossref_primary_10_1016_j_advengsoft_2018_07_002 crossref_primary_10_3390_app12115712 crossref_primary_10_1016_j_neucom_2017_04_036 crossref_primary_10_1016_j_neucom_2020_04_098 crossref_primary_10_1007_s00521_018_3458_5 crossref_primary_10_2166_ws_2021_419 crossref_primary_10_3390_ijgi8090417 crossref_primary_10_1016_j_neucom_2018_09_062 crossref_primary_10_1016_j_jhydrol_2023_130138 crossref_primary_10_1093_jrsssa_qnad033 crossref_primary_10_1109_TIM_2021_3084312 crossref_primary_10_1088_1757_899X_794_1_012017 crossref_primary_10_1080_15567036_2023_2205353 crossref_primary_10_1016_j_knosys_2020_105479 crossref_primary_10_1007_s10044_023_01174_8 crossref_primary_10_1016_j_ymssp_2017_01_048 crossref_primary_10_1016_j_measurement_2021_109322 crossref_primary_10_1016_j_jfoodeng_2015_06_007 crossref_primary_10_1007_s11053_020_09676_6 crossref_primary_10_1088_1748_0221_20_06_P06008 crossref_primary_10_1016_j_geothermics_2023_102727 crossref_primary_10_1080_15567036_2020_1755390 crossref_primary_10_3390_en12081449 crossref_primary_10_3390_rs15194713 crossref_primary_10_1007_s00477_021_02129_3 crossref_primary_10_3390_app10103656 crossref_primary_10_1016_j_microc_2021_106635 crossref_primary_10_1016_j_neucom_2017_05_058 crossref_primary_10_1007_s00500_018_3109_x crossref_primary_10_1007_s12665_022_10542_2 crossref_primary_10_1007_s11694_024_02402_3 crossref_primary_10_3390_su15086876 crossref_primary_10_3390_app122211700 crossref_primary_10_3389_fphy_2021_653875 crossref_primary_10_1007_s10489_017_1062_5 crossref_primary_10_1007_s42452_020_03611_3 crossref_primary_10_1016_j_sigpro_2020_107855 crossref_primary_10_1016_j_procs_2016_05_507 crossref_primary_10_1016_j_jpowsour_2021_230892 crossref_primary_10_1016_j_neunet_2016_07_004 crossref_primary_10_1016_j_advengsoft_2016_02_011 crossref_primary_10_1016_j_eswa_2017_09_037 crossref_primary_10_1016_j_apenergy_2019_113686 crossref_primary_10_1016_j_engappai_2025_110789 crossref_primary_10_1016_j_envsoft_2024_106190 crossref_primary_10_1002_adfm_202302929 crossref_primary_10_3390_app15073530 crossref_primary_10_3390_s19153424 crossref_primary_10_1016_j_jhazmat_2020_122761 crossref_primary_10_3390_jmse7090312 crossref_primary_10_3390_electronics8111308 crossref_primary_10_1007_s11709_021_0697_9 crossref_primary_10_1109_TETCI_2021_3107496 crossref_primary_10_1016_j_seta_2021_101048 crossref_primary_10_1016_j_compbiomed_2023_106847 crossref_primary_10_1038_s41598_024_63908_w crossref_primary_10_1007_s12046_022_01805_6 crossref_primary_10_1016_j_jpowsour_2025_236928 crossref_primary_10_1016_j_jclepro_2019_118773 crossref_primary_10_3390_s22249764 crossref_primary_10_1016_j_bspc_2015_03_010 crossref_primary_10_1016_j_jmmm_2021_168865 crossref_primary_10_1007_s10489_020_01773_6 crossref_primary_10_1016_j_fss_2017_12_006 crossref_primary_10_1016_j_geoderma_2018_05_030 crossref_primary_10_1016_j_neucom_2018_09_092 crossref_primary_10_2196_57883 crossref_primary_10_1007_s12555_015_0151_7 crossref_primary_10_1145_3427476 crossref_primary_10_1177_1729881418792992 crossref_primary_10_1007_s11063_020_10343_3 crossref_primary_10_1108_IMDS_07_2019_0361 crossref_primary_10_1016_j_asoc_2019_04_019 crossref_primary_10_1016_j_coastaleng_2017_12_012 crossref_primary_10_3390_ani12141744 crossref_primary_10_1016_j_fss_2024_109256 crossref_primary_10_3390_s21134606 crossref_primary_10_1371_journal_pone_0138493 crossref_primary_10_1016_j_jfranklin_2020_06_027 crossref_primary_10_1177_0962280218767985 crossref_primary_10_1007_s13042_016_0535_x crossref_primary_10_1016_j_etran_2025_100406 crossref_primary_10_3390_s17040879 crossref_primary_10_1016_j_compeleceng_2024_109499 crossref_primary_10_3390_agronomy14010145 crossref_primary_10_3390_sym12040632 crossref_primary_10_1007_s10843_025_00385_w crossref_primary_10_1007_s13042_022_01550_6 crossref_primary_10_1109_ACCESS_2020_3006495 crossref_primary_10_1007_s12559_018_9548_y crossref_primary_10_1016_j_scitotenv_2018_01_202 crossref_primary_10_1016_j_jclepro_2020_124023 crossref_primary_10_1016_j_ifacol_2018_05_017 crossref_primary_10_3390_info11050281 crossref_primary_10_1155_2022_7693393 crossref_primary_10_1007_s10729_024_09682_7 crossref_primary_10_1016_j_neunet_2016_06_001 crossref_primary_10_3390_ijerph192215414 crossref_primary_10_3390_app14156532 crossref_primary_10_1016_j_physa_2019_124034 crossref_primary_10_1089_big_2021_0311 crossref_primary_10_1016_j_geoderma_2018_05_035 crossref_primary_10_1016_j_jhydrol_2022_127434 crossref_primary_10_1007_s00773_016_0396_8 crossref_primary_10_1016_j_cie_2019_02_024 crossref_primary_10_1109_ACCESS_2018_2839340 crossref_primary_10_1016_j_neucom_2019_03_086 crossref_primary_10_1016_j_neucom_2018_08_062 crossref_primary_10_1016_j_neucom_2015_10_033 crossref_primary_10_1016_j_ecoenv_2022_113400 crossref_primary_10_3390_ma18081887 crossref_primary_10_1007_s00521_021_05951_6 crossref_primary_10_1109_ACCESS_2017_2678990 crossref_primary_10_1007_s10489_017_1098_6 crossref_primary_10_1007_s11063_019_10186_7 crossref_primary_10_1007_s13042_020_01158_8 crossref_primary_10_1007_s13042_020_01234_z crossref_primary_10_3233_IFS_151792 crossref_primary_10_1155_2023_3854295 crossref_primary_10_1016_j_apr_2022_101352 crossref_primary_10_1007_s12517_020_5273_4 crossref_primary_10_1016_j_neunet_2015_06_002 crossref_primary_10_1007_s40710_019_00353_2 crossref_primary_10_1016_j_asoc_2019_105924 crossref_primary_10_1016_j_saa_2024_125626 crossref_primary_10_1016_j_jhydrol_2022_127452 crossref_primary_10_1038_s41593_019_0477_1 crossref_primary_10_1007_s00521_017_3099_0 crossref_primary_10_1016_j_knosys_2019_104977 crossref_primary_10_1109_JIOT_2022_3230971 crossref_primary_10_3390_app11115103 crossref_primary_10_1016_j_buildenv_2025_112749 crossref_primary_10_1177_09544062221136490 crossref_primary_10_3390_ma13225227 crossref_primary_10_1080_10298436_2020_1776281 crossref_primary_10_1016_j_ifacol_2016_03_131 crossref_primary_10_1007_s11042_023_14634_4 crossref_primary_10_1016_j_eswa_2019_05_039 crossref_primary_10_1016_j_neunet_2020_03_022 crossref_primary_10_1016_j_psep_2021_10_047 crossref_primary_10_3390_sym11020190 crossref_primary_10_1016_j_ecolind_2022_109155 crossref_primary_10_1029_2018WR024620 crossref_primary_10_1016_j_neucom_2015_11_095 crossref_primary_10_1016_j_jhydrol_2024_131009 crossref_primary_10_1080_19648189_2016_1169225 crossref_primary_10_1007_s13042_020_01232_1 crossref_primary_10_1016_j_atmosres_2018_05_012 crossref_primary_10_1016_j_chaos_2015_11_033 crossref_primary_10_1016_j_neucom_2023_02_012 crossref_primary_10_1109_ACCESS_2019_2925893 crossref_primary_10_1016_j_measurement_2024_115094 crossref_primary_10_1109_ACCESS_2019_2922385 crossref_primary_10_1016_j_jprocont_2020_03_012 crossref_primary_10_1016_j_knosys_2020_106230 crossref_primary_10_1109_TITS_2020_3015530 crossref_primary_10_1007_s42835_020_00561_z crossref_primary_10_3390_s20051262 crossref_primary_10_1007_s12293_016_0184_3 crossref_primary_10_1109_LRA_2023_3339090 crossref_primary_10_1016_j_engfailanal_2022_106115 crossref_primary_10_1016_j_neucom_2018_08_028 crossref_primary_10_1007_s42417_022_00498_9 crossref_primary_10_1016_j_neucom_2019_04_092 crossref_primary_10_1007_s11063_019_10022_y crossref_primary_10_3390_math12193110 crossref_primary_10_1109_TR_2020_2996261 crossref_primary_10_1016_j_cageo_2021_104837 crossref_primary_10_1002_etep_2560 crossref_primary_10_3390_s18010285 crossref_primary_10_1007_s00521_018_3415_3 crossref_primary_10_1007_s11063_020_10286_9 crossref_primary_10_1007_s11063_024_11443_0 crossref_primary_10_1016_j_knosys_2023_111033 crossref_primary_10_1109_TSMC_2017_2693209 crossref_primary_10_3390_e20010073 crossref_primary_10_1109_TNNLS_2016_2607757 crossref_primary_10_1007_s10489_021_02654_2 crossref_primary_10_1016_j_compeleceng_2024_110040 crossref_primary_10_1088_1361_6641_ac8c66 crossref_primary_10_1016_j_knosys_2020_106468 crossref_primary_10_1080_00207160_2019_1607842 crossref_primary_10_3390_w14192972 crossref_primary_10_1155_2018_1214301 crossref_primary_10_3390_s18010298 crossref_primary_10_3390_math10162888 crossref_primary_10_1007_s13042_020_01114_6 crossref_primary_10_1016_j_foodchem_2025_144431 crossref_primary_10_3390_en14185619 crossref_primary_10_1016_j_jhydrol_2023_129925 crossref_primary_10_1016_j_patrec_2016_01_024 crossref_primary_10_1007_s13042_017_0666_8 crossref_primary_10_1016_j_saa_2021_120791 crossref_primary_10_1007_s13198_019_00935_1 crossref_primary_10_3390_app11136238 crossref_primary_10_3233_IDT_170296 crossref_primary_10_1016_j_apenergy_2019_114232 crossref_primary_10_1007_s00366_021_01381_z crossref_primary_10_1109_TITS_2019_2897990 crossref_primary_10_1155_2020_3287589 crossref_primary_10_1007_s11042_024_19508_x crossref_primary_10_3390_pr11071928 crossref_primary_10_1016_j_eswa_2023_120095 crossref_primary_10_3390_app11104412 crossref_primary_10_1109_LGRS_2019_2933906 crossref_primary_10_1007_s10489_015_0699_1 crossref_primary_10_1109_MCI_2016_2572540 crossref_primary_10_1007_s11356_017_9283_z crossref_primary_10_1016_j_compeleceng_2021_107008 crossref_primary_10_1109_TIE_2021_3101001 crossref_primary_10_1007_s40203_021_00090_1 crossref_primary_10_1016_j_est_2025_116997 crossref_primary_10_1016_j_jhydrol_2018_11_069 crossref_primary_10_1016_j_neucom_2015_10_028 crossref_primary_10_1016_j_eneco_2019_104648 crossref_primary_10_1016_j_neucom_2019_03_079 crossref_primary_10_1051_shsconf_202316601077 crossref_primary_10_1016_j_resourpol_2021_102148 crossref_primary_10_1016_j_agwat_2021_107423 crossref_primary_10_1016_j_neunet_2024_106202 crossref_primary_10_1007_s11069_023_06238_w crossref_primary_10_3390_app11135808 crossref_primary_10_1016_j_scitotenv_2018_08_221 crossref_primary_10_1007_s11063_014_9405_2 crossref_primary_10_1016_j_rser_2015_07_173 crossref_primary_10_1109_TCYB_2018_2886580 crossref_primary_10_1371_journal_pone_0134350 crossref_primary_10_1007_s10462_023_10478_4 crossref_primary_10_1016_j_patrec_2015_07_031 crossref_primary_10_1016_j_asoc_2025_113789 crossref_primary_10_1016_j_commatsci_2016_08_035 crossref_primary_10_1016_j_energy_2024_132086 crossref_primary_10_1155_2021_8324272 crossref_primary_10_1016_j_neucom_2019_05_098 crossref_primary_10_3390_healthcare10101892 crossref_primary_10_1016_j_physa_2019_01_113 crossref_primary_10_1016_j_physa_2019_122830 crossref_primary_10_1007_s11063_022_10772_2 crossref_primary_10_1109_JPHOT_2025_3542831 crossref_primary_10_1007_s13246_024_01454_5 crossref_primary_10_1016_j_compbiomed_2021_104505 crossref_primary_10_1109_ACCESS_2019_2934742 crossref_primary_10_3390_en15155385 crossref_primary_10_1007_s00521_020_04994_5 crossref_primary_10_1007_s10586_021_03232_4 crossref_primary_10_1016_j_oceaneng_2024_118993 crossref_primary_10_1007_s11269_020_02631_3 crossref_primary_10_1016_j_microc_2025_113765 crossref_primary_10_1016_j_bdr_2017_05_002 crossref_primary_10_1016_j_neucom_2018_11_098 crossref_primary_10_1590_1807_1929_agriambi_v29n6e287460 crossref_primary_10_1007_s10845_020_01663_1 crossref_primary_10_3390_en11010145 crossref_primary_10_1016_j_mechatronics_2016_09_001 crossref_primary_10_1177_1063293X19832946 crossref_primary_10_1016_j_ymssp_2019_106272 crossref_primary_10_1109_ACCESS_2019_2943453 crossref_primary_10_26866_jees_2025_4_r_301 crossref_primary_10_1016_j_renene_2020_05_158 crossref_primary_10_1186_s12859_020_03790_1 crossref_primary_10_1016_j_infsof_2018_10_004 crossref_primary_10_1016_j_chemolab_2017_06_006 crossref_primary_10_1016_j_neucom_2019_10_108 crossref_primary_10_1016_j_fcr_2024_109427 crossref_primary_10_3390_ma13051023 crossref_primary_10_1016_j_foodchem_2025_143516 crossref_primary_10_1016_j_jhydrol_2018_12_060 crossref_primary_10_1109_TITS_2019_2933410 crossref_primary_10_1007_s11063_017_9752_x crossref_primary_10_1007_s12559_016_9414_8 crossref_primary_10_1007_s11063_020_10282_z crossref_primary_10_1364_AO_388463 crossref_primary_10_1016_j_est_2023_108995 crossref_primary_10_1016_j_jmapro_2021_12_063 crossref_primary_10_1109_TIE_2023_3342324 crossref_primary_10_1016_j_engappai_2015_05_010 crossref_primary_10_1080_22797254_2019_1581582 crossref_primary_10_1109_ACCESS_2020_3035398 crossref_primary_10_1109_JBHI_2024_3491593 crossref_primary_10_1016_j_compag_2018_03_010 crossref_primary_10_1002_ese3_849 crossref_primary_10_1016_j_saa_2021_120186 crossref_primary_10_1016_j_jhydrol_2020_124670 crossref_primary_10_1080_01431161_2018_1452070 crossref_primary_10_1016_j_patcog_2020_107194 crossref_primary_10_1007_s11416_020_00354_y crossref_primary_10_1007_s10489_022_03404_8 crossref_primary_10_1109_TSMC_2020_2982226 crossref_primary_10_1016_j_neucom_2015_12_050 crossref_primary_10_1108_GKMC_01_2023_0014 crossref_primary_10_2166_hydro_2021_178 crossref_primary_10_1109_TGRS_2022_3151339 crossref_primary_10_3390_met10070904 crossref_primary_10_1109_TNNLS_2019_2900956 crossref_primary_10_1109_ACCESS_2020_2965284 crossref_primary_10_1002_advs_202106043 crossref_primary_10_1016_j_jairtraman_2023_102488 crossref_primary_10_1007_s11063_021_10435_8 crossref_primary_10_1007_s10462_020_09836_3 crossref_primary_10_1016_j_compag_2020_105653 crossref_primary_10_1155_2020_8852705 crossref_primary_10_1111_coin_12136 crossref_primary_10_1016_j_ast_2017_10_024 crossref_primary_10_1002_srin_202400602 crossref_primary_10_3390_rs12244015 crossref_primary_10_31083_j_jin_2019_03_164 crossref_primary_10_4018_IJIIT_2017100103 crossref_primary_10_1109_JPHOT_2023_3243219 crossref_primary_10_1016_j_jhydrol_2020_124657 crossref_primary_10_1007_s40815_016_0196_7 crossref_primary_10_1016_j_jocs_2016_12_008 crossref_primary_10_1016_j_neucom_2020_07_074 crossref_primary_10_1016_j_asoc_2021_107120 crossref_primary_10_1016_j_oceaneng_2019_05_045 crossref_primary_10_1016_j_enconman_2022_116096 crossref_primary_10_1088_1742_6596_2319_1_012014 crossref_primary_10_1016_j_ifacol_2021_04_200 crossref_primary_10_1016_j_neunet_2018_05_011 crossref_primary_10_1016_j_neucom_2018_10_063 crossref_primary_10_1007_s11356_023_25596_3 crossref_primary_10_1109_TIM_2018_2890329 crossref_primary_10_1016_j_infrared_2019_103013 crossref_primary_10_1007_s11831_024_10100_y crossref_primary_10_1016_j_saa_2024_124396 crossref_primary_10_1109_TSMC_2017_2735997 crossref_primary_10_1080_00207233_2024_2313349 crossref_primary_10_1016_j_compeleceng_2022_108000 crossref_primary_10_1007_s40435_025_01730_6 crossref_primary_10_1016_j_bdr_2017_07_002 crossref_primary_10_1109_MGRS_2016_2616418 crossref_primary_10_1007_s13369_023_07851_4 crossref_primary_10_1007_s11082_018_1519_8 crossref_primary_10_3390_w11020353 crossref_primary_10_32604_cmc_2020_013458 crossref_primary_10_1016_j_applthermaleng_2019_114569 crossref_primary_10_1109_TNSRE_2020_3028203 crossref_primary_10_1016_j_eswa_2017_05_050 crossref_primary_10_1371_journal_pone_0332439 crossref_primary_10_1080_10298436_2021_1892109 crossref_primary_10_1016_j_jhydrol_2022_128592 crossref_primary_10_1007_s12161_018_01429_9 crossref_primary_10_1016_j_neunet_2015_09_003 crossref_primary_10_1016_j_envres_2017_01_035 crossref_primary_10_2166_ws_2020_277 crossref_primary_10_1007_s43236_021_00302_z crossref_primary_10_1007_s10586_018_1808_9 |
| Cites_doi | 10.1016/j.engappai.2011.03.003 10.1016/j.neucom.2010.12.037 10.1016/j.asoc.2008.07.005 10.1016/j.neucom.2012.11.035 10.1109/TNNLS.2013.2275948 10.1080/01431160902788636 10.1016/j.neucom.2011.12.050 10.1109/TCBB.2010.13 10.1109/TNN.2010.2103956 10.1109/72.572102 10.1016/j.neucom.2010.01.020 10.1016/j.neucom.2011.12.047 10.1016/j.ins.2011.09.015 10.1016/j.eswa.2010.12.089 10.1016/j.patcog.2012.02.002 10.1007/s10916-012-9825-3 10.1109/TII.2012.2206396 10.1016/j.neucom.2013.04.028 10.15837/ijccc.2012.3.1387 10.12785/amis/070349 10.1016/j.neucom.2011.12.053 10.1007/s00500-012-0824-6 10.1016/j.eswa.2012.04.012 10.1007/s00521-011-0806-0 10.1109/TCSI.2012.2189060 10.1016/j.foodchem.2012.05.011 10.1177/1550059411435861 10.1016/j.neucom.2012.01.042 10.1016/j.neucom.2010.02.019 10.1016/j.neucom.2012.12.040 10.1007/s00521-011-0572-z 10.1109/TNN.2006.880583 10.1016/j.neucom.2010.12.039 10.1016/j.eplepsyres.2011.04.013 10.1016/j.compag.2011.04.001 10.1109/TCYB.2014.2307349 10.1016/j.neucom.2012.02.040 10.1088/0957-0233/23/8/085101 10.1515/1556-3758.2737 10.1109/TRO.2011.2130030 10.1049/iet-gtd.2012.0541 10.1016/j.jweia.2013.03.005 10.1016/j.patrec.2011.12.002 10.1016/j.neucom.2010.11.029 10.1016/j.neucom.2011.12.052 10.1002/int.4550080406 10.1016/j.neucom.2005.12.126 10.1109/CISP.2009.5303973 10.1007/s00521-012-0892-7 10.1016/j.neunet.2012.04.002 10.1109/JSTSP.2012.2199463 10.1109/TSMCB.2008.2010506 10.1016/j.neucom.2010.02.001 10.1162/089976603321780317 10.1016/j.neucom.2010.11.030 10.1016/j.neucom.2012.02.042 10.1007/s00500-012-0830-8 10.1016/j.neucom.2011.12.064 10.1109/TNNLS.2013.2281839 10.1016/j.knosys.2012.07.002 10.1162/neco.1991.3.2.213 10.1016/j.asoc.2012.06.016 10.1080/2150704X.2013.805279 10.1186/1471-2105-14-S8-S10 10.1016/j.neunet.2014.01.015 10.1109/72.329697 10.1007/s12559-014-9255-2 10.1016/j.neucom.2010.11.033 10.1016/j.neucom.2012.02.043 10.1109/TNN.2009.2024147 10.1109/TPWRS.2012.2190627 10.1016/j.neucom.2009.11.033 10.1007/s00521-011-0808-y 10.1016/j.patcog.2011.03.013 10.1016/j.energy.2012.06.022 10.1016/j.neunet.2013.11.002 10.1016/j.neucom.2010.11.034 10.1109/TNNLS.2013.2296048 10.1109/TCSII.2012.2204112 10.1016/j.neucom.2011.06.013 10.1016/j.eswa.2013.04.025 10.1007/s00500-012-0817-5 10.1007/s00500-012-0823-7 10.1023/A:1018628609742 10.1016/j.neucom.2010.11.035 10.1007/s00500-012-0831-7 10.1016/j.neucom.2012.01.040 10.1016/j.neucom.2012.02.041 10.1109/TNN.2009.2014061 10.1109/TCYB.2014.2298235 10.1037/h0042519 10.1016/j.compbiomed.2012.07.001 10.1016/j.knosys.2012.11.003 10.1016/j.neucom.2010.11.037 10.1002/jcc.23168 10.1007/s11063-012-9246-9 10.1109/TASE.2011.2173800 10.1016/j.neucom.2012.02.003 10.1155/2012/790526 10.1016/j.neucom.2011.12.045 10.1561/2200000006 10.1007/s00500-012-0820-x 10.1007/s00521-012-0866-9 10.1007/s11517-012-1010-9 10.1016/j.neucom.2012.06.045 10.1109/TAC.2005.852557 10.1016/j.neucom.2010.12.041 10.1016/j.patcog.2012.06.007 10.1142/S0219720012500151 10.1109/TNN.2010.2073482 10.1016/j.neucom.2012.08.010 10.1049/el.2012.3642 10.1016/j.neucom.2007.07.025 10.1093/bioinformatics/btr549 10.1016/j.eswa.2011.07.013 10.1117/12.863827 10.1186/1475-925X-8-31 10.1038/323533a0 10.1007/s00521-011-0796-y 10.1371/journal.pone.0064704 10.1007/s11063-011-9186-9 10.1016/j.eswa.2013.01.011 10.1016/j.ces.2011.06.030 10.1007/s00894-012-1410-7 10.1016/j.jneumeth.2010.04.018 10.1109/TNN.2009.2036259 10.1007/s10115-009-0220-4 10.1016/j.asoc.2013.03.008 10.1016/j.neucom.2009.11.049 10.1007/s00521-012-0891-8 10.1007/s11063-012-9236-y 10.1007/s10916-011-9806-y 10.1103/RevModPhys.34.135 10.1016/S1574-0706(05)01009-8 10.1016/j.neucom.2010.12.035 10.1016/j.ins.2011.11.003 10.1016/j.neunet.2012.09.020 10.1109/TNNLS.2011.2178124 10.1016/j.eswa.2010.07.014 10.1109/TPWRS.2012.2183899 10.1109/TNNLS.2012.2202289 10.1007/s00521-012-0860-2 10.1109/LGRS.2013.2286078 10.1016/j.eswa.2011.08.123 10.1109/TSMCB.2011.2168604 10.1109/5.58326 10.1007/s11063-013-9295-8 10.1109/IJCNN.1989.118281 10.1016/j.neucom.2010.12.043 10.2478/v10006-012-0051-4 10.1016/j.neucom.2008.01.005 10.1109/72.80341 10.1109/TASE.2008.2005640 10.1007/s00521-011-0803-3 10.1109/TNN.2006.875977 10.1109/TNNLS.2012.2218616 10.1016/j.neucom.2009.02.013 10.1016/j.neucom.2009.12.007 10.1007/s00500-012-0822-8 10.1016/j.energy.2013.03.057 10.1016/j.neucom.2007.02.009 10.1109/LSP.2010.2053356 10.1016/j.neucom.2007.10.008 10.1002/jcc.21969 10.1007/s13042-011-0019-y 10.1016/j.neucom.2010.12.038 10.1016/j.neucom.2011.12.055 10.1103/RevModPhys.34.123 10.1166/jmihi.2012.1100 10.1007/s00521-012-0853-1 10.1016/j.ijpe.2010.07.008 10.1007/BF00994018 10.1016/j.jneumeth.2012.07.003 10.1016/j.neunet.2012.11.011 10.1016/j.neucom.2010.11.036 10.3168/jds.2013-6659 10.1016/0893-6080(95)00099-2 10.1109/TCSVT.2011.2177182 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Ltd |
| Copyright_xml | – notice: 2014 Elsevier Ltd |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.neunet.2014.10.001 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1879-2782 |
| EndPage | 48 |
| ExternalDocumentID | 25462632 10_1016_j_neunet_2014_10_001 S0893608014002214 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 |
| ID | FETCH-LOGICAL-c362t-61892f7fbf0192b22aca37ae00aa3999b2d7b34bbc91cad9d7ba503cb7a93c483 |
| ISICitedReferencesCount | 1402 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000347595400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0893-6080 1879-2782 |
| IngestDate | Mon Sep 29 06:35:01 EDT 2025 Thu Apr 03 07:01:00 EDT 2025 Sat Nov 29 02:39:45 EST 2025 Tue Nov 18 21:49:46 EST 2025 Fri Feb 23 02:28:36 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Feature learning Regression Extreme learning machine Clustering Classification |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c362t-61892f7fbf0192b22aca37ae00aa3999b2d7b34bbc91cad9d7ba503cb7a93c483 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-4355-5340 0000-0002-2480-4965 0000-0002-7251-0988 |
| PMID | 25462632 |
| PQID | 1662427949 |
| PQPubID | 23479 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_1662427949 pubmed_primary_25462632 crossref_citationtrail_10_1016_j_neunet_2014_10_001 crossref_primary_10_1016_j_neunet_2014_10_001 elsevier_sciencedirect_doi_10_1016_j_neunet_2014_10_001 |
| PublicationCentury | 2000 |
| PublicationDate | January 2015 2015-01-00 2015-Jan 20150101 |
| PublicationDateYYYYMMDD | 2015-01-01 |
| PublicationDate_xml | – month: 01 year: 2015 text: January 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neural networks |
| PublicationTitleAlternate | Neural Netw |
| PublicationYear | 2015 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Frenay, Verleysen (br000245) 2011; 74 Man, Lee, Wang, Cao, Miao (br000540) 2011; 74 Benoit, van Heeswijk, Miche, Verleysen, Lendasse (br000075) 2013; 102 Luo, Vong, Wong (br000510) 2014; 25 Cheng, Tay, Huang (br000160) 2012 Miche, Sorjamaa, Bas, Simula, Jutten, Lendasse (br000555) 2010; 21 Rao, Mitra (br000655) 1971 Rosenblatt (br000685) 1962 Xu, Dong, Zhao, Zhang, Wong (br000920) 2012; 27 Poria, S., Cambria, E., Winterstein, G., & Huang, G.-B. (2014). Sentic patterns: Dependency-based rules for concept-level sentiment analysis. Kan, Lim, Ong, Tan, Yeo (br000350) 2013; 22 Basu, Shuo, Zhou, Lim, Huang (br000050) 2013; 102 Balbay, Avci, Sahin, Coteli (br000030) 2012; 8 Liu, Lin, Fang, Xu (br000485) 2014 Cao, Liu, Park (br000125) 2013; 102 Chang, Han, Yao, Chen, Xu (br000130) 2010; 4 Wang, Jin, Geng, Sun, Xu, Lu (br000840) 2013; 34 Decherchi, Gastaldo, Zunino, Cambria, Redi (br000205) 2013; 102 Huang, Chen (br000295) 2008; 71 Bai, Huang, Wang, Wang, Westover (br000025) 2014 Balbay, Kaya, Sahin (br000035) 2012; 44 Martínez-Rego, Fontenla-Romero, Pérez-Sánchez, Alonso-Betanzos (br000585) 2010 Yu, Choi, Hui (br000995) 2011; 38 Yuan, Zhou, Li, Cai (br000975) 2011; 96 Yu, Chen, Liu, Huang (br000990) 2013; 28 . Li, Li, Rong (br000425) 2013; 22 Wang, Han (br000830) 2012; 61 Tian, Mao (br000795) 2010; 7 Kosmatopoulos, Kouvelas (br000380) 2009; 20 Nian, He, Lendasse (br000590) 2013; 22 Wang, Xu, Sun, Gao, Li, Li (br000860) 2012; 33 Deng, Li, Irwin (br000210) 2011; 74 Sanchez-Monedero, Hervas-Martinez, Gutierrez, Ruz, Moreno, Cruz-Ramirez (br000705) 2010; 20 Soria-Olivas, Gomez-Sanchis, Jarman, Vila-Frances, Martinez, Magdalena (br000760) 2011; 22 Shi, Cai, Zhu, Zhong, Wang (br000740) 2013; 51 Huang, G.-B. (2014). An insight to extreme learning machines: Random neurons, random features and kernels. Cognitive Computation (Online). Rong, Suresh, Zhao (br000675) 2011; 74 Block, Knight, Rosenblatt (br000085) 1962; 34 Cao, Lin, Huang (br000110) 2010; 73 Zong, Huang (br001085) 2014; 39 Zhang, Slaughter (br001035) 2011; 77 Zhang, Zhang (br001050) 2011; 66 Zhang, Ji (br001025) 2013; 49 Rahimi, A., & Recht, B. (2008b). Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning. In Huang, Zhou, Ding, Zhang (br000335) 2012; 42 Barea, Boquete, Ortega, Lopez, Rodriguez-Ascariz (br000045) 2012; 39 Yang, Xu, Zhao, Wang, Dong (br000945) 2011; 74 Zhang, Wang (br001045) 2011; 60 Belkin, Niyogi, Sindhwani (br000065) 2006; 7 Liu, Wang (br000490) 2010; 17 Feng, Wang, Yang (br000235) 2012; 7 Zhai, Xu, Wang (br001015) 2012; 16 White (br000875) 2006 Malar, Kandaswamy, Chakravarthy, Dharan (br000520) 2012; 42 Knowledge-Based Systems. He, Shang, Zhuang, Shi (br000270) 2013; 102 Huang, Li, Chen, Siew (br000310) 2008; 71 Creech, Jiang (br000185) 2012; Vol. 1479 Rahimi, A., & Recht, B. (2007). Random features for large-scale kernel machines. In Song, Crowcroft, Zhang (br000750) 2012; 210 Decherchi, Gastaldo, Leoncini, Zunino (br000200) 2012; 59 Wang, Qian, Feng (br000850) 2013; 22 Huang, Song, Wu (br000320) 2012; 59 Kaya, Uyar (br000365) 2013; 13 Cao, Lin, Huang (br000115) 2012; 36 Song, Zhang (br000755) 2013; 40 Kim, Shin, Shin, Lee (br000370) 2009; 8 Li, Zhang, Xu, Luo, Li (br000505) 2013; 9 Muhammad, Tepe, Abdel-Raheem (br000580) 2013; 22 White (br000880) 1992 Xu, Dai, Dong, Zhang, Meng (br000910) 2013; 22 Ye, Squartini, Piazza (br000960) 2013; 116 Savojardo, Fariselli, Casadio (br000725) 2011; 27 Tan, Dong, Chen, He (br000780) 2012; 22 Cao, Lin, Huang, Liu (br000120) 2012; 185 Hagan, Menhaj (br000260) 1994; 5 Suresh, Babu, Kim (br000770) 2009; 9 Huang, Zhu, Siew (br000340) 2006; 70 Huang, Ding, Zhou (br000305) 2010; 74 Xu, Dong, Xu, Meng, Wong (br000915) 2012; 8 Huang, Song, Gupta, Wu (br000315) 2014 Bazi, Alajlan, Melgani, AlHichri, Malek, Yager (br000055) 2014; 11 Choi, Toh, Byun (br000175) 2012; 45 Li, Peng, Irwin (br000465) 2005; 50 Saraswathi, Fernandez-Martinez, Kolinski, Jernigan, Kloczkowski (br000710) 2012; 18 Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2004). Extreme learning machine: a new learning scheme of feedforward neural networks. In Feng, Qian, Zhang (br000230) 2012; 16 Osman, Mashor, Jaafar (br000595) 2012; 2 Huang, Tan, Lin, Huang, Zhou, Chui (br000325) 2012 Lan, Soh, Huang (br000400) 2009; 72 Kosmatopoulos, Kouvelas (br000385) 2009; 20 Zhang, Dong, Xu, Meng, Wong (br001020) 2013; 7 Karpagachelvi, Arthanari, Sivakumar (br000355) 2012; 21 Zhao, Wang, Bi, Gong, Zhao (br001065) 2011; 74 Zhao, Wang, Park (br001070) 2012; 87 Branke, J. (1995). Evolutionary algorithms for neural network design and training. In Chen, Zhao, Wang, Chen (br000165) 2012; 16 Cambria, Gastaldo, Bisio, Zunino (br000105) 2014 Wilamowski, Yu (br000890) 2010; 21 Zong, Huang (br001090) 2011; 74 Chen, Peng, Zhou, Li, Pan (br000155) 2014; 53 Malathi, Marimuthu, Baskar, Ramar (br000530) 2011; 24 Decherchi, Gastaldo, Dahiya, Valle, Zunino (br000195) 2011; 27 Deng, Zheng, Wang (br000215) 2013; 120 Minhas, Baradarani, Seifzadeh, Wu (br000560) 2010; 73 Wang, Do (br000815) 2012; 16 pp. 1313–1320. Zheng, Qian, Lu (br001075) 2013; 22 Yu, Deng (br001005) 2012; 33 Rahimi, Recht (br000645) 2008 Lu, Wang, Yuan, Han (br000515) 2013; 102 vol. 2, pp. 985–990. Rong, Ong, Tan, Zhu (br000670) 2008; 72 Poggio, Girosi (br000625) 1990; 78 (pp. 451–455). Rasheed, Rangwala (br000660) 2012; 10 Li, Wang, Chai (br000500) 2013; 102 Wang, Shao, Miao, Zhai (br000855) 2013; 102 Horata, Chiewchanwattana, Sunat (br000280) 2013; 102 Vols. 1–9. Marques, Grana (br000545) 2013; 114 Gastaldo, Zunino, Cambria, Decherchi (br000255) 2013; 28 Wong, Guo (br000895) 2010; 128 Boquete, Miguel-Jimenez, Ortega, Rodriguez-Ascariz, Perez-Rico, Blanco (br000090) 2012; 39 Liang, Huang, Saratchandran, Sundararajan (br000420) 2006; 17 Yang, Wang, Yuan (br000935) 2012; 23 Zhang, Wang (br001040) 2011; 60 Minhas, Mohammed, Wu (br000570) 2012; 22 Yu, Choi, Hui (br001000) 2012; 9 Kong, Zhang, Liu, Gong, He (br000375) 2013; 96 Man, Lee, Wang, Cao, Khoo (br000535) 2012; 23 Yao (br000955) 1993; 8 Malathi, Marimuthu, Baskar (br000525) 2010; 73 Baradarani, Wu, Ahmadi (br000040) 2013; 46 Wang, Er, Han (br000825) 2014 Lahoz, Lacruz, Mateo (br000395) 2013; 111 Zhao, Li, Xu (br001055) 2013; 7 Zhao, Qi, Wang, Yao (br001060) 2012; 23 He, Xu, Nian, van Heeswijk, Yu, Miche (br000275) 2014; 6 Huang, Chen, Siew (br000300) 2006; 17 Chen, Zhu, Wang (br000170) 2013; 22 Daliri (br000190) 2012; 36 Fernández-Delgado, Cernadas, Barro, Ribeiro, Neves (br000240) 2014; 50 Feng, Huang, Lin, Gay (br000225) 2009; 20 Block (br000080) 1962; 34 Rong, Huang, Sundararajan, Saratchandran (br000665) 2009; 39 Rosenblatt (br000680) 1958; 65 Wong, Wong, Cheung, Vong (br000900) 2013; 55 Lin, Chang, Hsu (br000440) 2013; 39 Zong, Huang, Chen (br001095) 2013; 101 Avci, Coteli (br000020) 2012; 39 Platt (br000615) 1991; 3 Pan, Park, Lu, Wu (br000610) 2012; 16 Li, Ouyang, Chen, Liu (br000460) 2012; 36 Suykens, Vandewalle (br000775) 1999; 9 Lemme, Freire, Barreto, Steil (br000410) 2013; 112 Li, Liu, Ouyang (br000430) 2012; 9 Yu, Miche, Eirola, van Heeswijk, Severin, Lendasse (br001010) 2013; 102 Wang, Li, Cao (br000845) 2012; 16 Yuan, Zhou, Zhang, Li, Cai, Zeng (br000985) 2012; 43 You, Lei, Zhu, Xia, Wang (br000965) 2013; 14 Yang, Wang, Yuan (br000930) 2013; 37 Zhang, Lan, Huang, Xu (br001030) 2012; 23 Cortes, Vapnik (br000180) 1995; 20 Chen, Ding, Cai, Zhao (br000140) 2012; 135 Savitha, Suresh, Sundararajan (br000720) 2012; 187 Wang, Cao, Yuan (br000810) 2011; 74 An, Bhanu (br000010) 2012 Saxe, A., Koh, P. W., Chen, Z., Bhand, M., Suresh, B., & Ng, A. Y. (2011). On random weights and unsupervised feature learning. In Du, Li, Irwin, Deng (br000220) 2013; 102 Martinez-Martinez, Escandell-Montero, Soria-Olivas, Martin-Guerrero, Magdalena-Benedito, Gomez-Sanchis (br000550) 2011; 74 Qu, Shang, Wu, Shen (br000635) 2011; 13 Saavedra-Moreno, Salcedo-Sanz, Carro-Calvo, Gascon-Moreno, Jimenez-Fernandez, Prieto (br000695) 2013; 116 Lin, Liu, Fang, Xu (br000450) 2014 He, Du, Wang, Zhuang, Shi (br000265) 2011; 74 Yuan, Zhou, Li, Cai (br000980) 2011; 96 Yang, Xie, Yoon, Park, Fang, Yang (br000940) 2013; 22 White, H. (1989). An additional hidden unit test for neglected nonlinearity in multilayer feedforward networks. In Zhou, Zhao, Cao (br001080) 2013; 23 Yan, Wang (br000950) 2014; 25 Plutowski, Cottrell, White (br000620) 1996; 9 Vol. 3, p. 5. Liu, Y., Xu, X.J., & Wang, C.Y. (2009). Simple ensemble of extreme learning machine. In Sovilj, Sorjamaa, Yu, Miche, Severin (br000765) 2010; 73 Pal (br000600) 2009; 30 Chen, Cowan, Grant (br000135) 1991; 2 Widrow, Greenblatt, Kim, Park (br000885) 2013; 37 Liu, Jiang, Xiao, Zhang, Mei, Ding (br000480) 2012; 32 Chen, Ou (br000150) 2011; 38 Kwok, Yeung (br000390) 1997; 8 Shi, Lu (br000745) 2013; 102 Belkin, Niyogi (br000060) 2003; 15 Wang, Huang, Luo, Wang, Luo (br000835) 2011; 74 Tang, Deng, Huang, Zhao (br000785) 2014 Yuan, Wang, Cao (br000970) 2011; 74 Liu, Chen, Liu, Zhao (br000470) 2011; 74 Mohammed, Minhas, Wu, Sid-Ahmed (br000575) 2011; 44 Vapnik (br000805) 2000 Chen, Dong, Meng, Ku, Wong, Ngan (br000145) 2012; 27 Kasun, Zhou, Huang (br000360) 2013; 28 Gao, Wang, Yang, Zhang, Tao, Guan (br000250) 2013; 8 Landa-Torres, Ortiz-Garcia, Salcedo-Sanz, Segovia-Vargas, Gil-Lopez, Miranda (br000405) 2012; 6 Le, Q., Sarlos, T., & Smola, A. (2013). Fastfood-approximating kernel expansions in loglinear time. In Liu, Gao, Li (br000475) 2012; 33 Wang, Er, Han (br000820) 2014 Xia, Zhang, Weng, Ye (br000905) 2012; 36 Huang, Wang, Lan (br000330) 2011; 2 Huang, Chen (br000290) 2007; 70 Adamos, Laskaris, Kosmidis, Theophilidis (br000005) 2010; 190 Li, Niu, Liu, Zhang (br000445) 2012; 12 Yang, Mao (br000925) 2013; 28 Avci (br000015) 2013; 40 van Heeswijk, Miche, Oja, Lendasse (br000800) 2011; 74 (pp. 1089–1096). Butcher, Verstraeten, Schrauwen, Day, Haycock (br000100) 2013; 38 Minhas, Mohammed, Wu (br000565) 2010; 73 Pal, Maxwell, Warner (br000605) 2013; 4 Schmidt, Kraaijveld, Duin (br000735) 1992 Li, Li, Zhai, Shiu (br000435) 2012; 16 Sanchez-Monedero, Gutierrez, Fernandez-Navarro, Hervas-Martinez (br000700) 2011; 34 Tang, Han (br000790) 2010; 23 Wefky, Espinosa, de~Santiago, Revenga, Lazaro, Martinez (br000865) 2012 Bengio (br000070) 2009; Minhas (10.1016/j.neunet.2014.10.001_br000560) 2010; 73 Yang (10.1016/j.neunet.2014.10.001_br000925) 2013; 28 Choi (10.1016/j.neunet.2014.10.001_br000175) 2012; 45 Malathi (10.1016/j.neunet.2014.10.001_br000525) 2010; 73 Wilamowski (10.1016/j.neunet.2014.10.001_br000890) 2010; 21 Frenay (10.1016/j.neunet.2014.10.001_br000245) 2011; 74 Yang (10.1016/j.neunet.2014.10.001_br000940) 2013; 22 Rosenblatt (10.1016/j.neunet.2014.10.001_br000685) 1962 Chen (10.1016/j.neunet.2014.10.001_br000150) 2011; 38 Decherchi (10.1016/j.neunet.2014.10.001_br000195) 2011; 27 Rong (10.1016/j.neunet.2014.10.001_br000665) 2009; 39 Yao (10.1016/j.neunet.2014.10.001_br000955) 1993; 8 Marques (10.1016/j.neunet.2014.10.001_br000545) 2013; 114 van Heeswijk (10.1016/j.neunet.2014.10.001_br000800) 2011; 74 Yu (10.1016/j.neunet.2014.10.001_br001000) 2012; 9 Zhao (10.1016/j.neunet.2014.10.001_br001055) 2013; 7 Li (10.1016/j.neunet.2014.10.001_br000500) 2013; 102 Nian (10.1016/j.neunet.2014.10.001_br000590) 2013; 22 He (10.1016/j.neunet.2014.10.001_br000270) 2013; 102 Huang (10.1016/j.neunet.2014.10.001_br000315) 2014 Savojardo (10.1016/j.neunet.2014.10.001_br000725) 2011; 27 Saraswathi (10.1016/j.neunet.2014.10.001_br000715) 2011; 8 Benoit (10.1016/j.neunet.2014.10.001_br000075) 2013; 102 Minhas (10.1016/j.neunet.2014.10.001_br000570) 2012; 22 10.1016/j.neunet.2014.10.001_br000730 10.1016/j.neunet.2014.10.001_br000285 Shi (10.1016/j.neunet.2014.10.001_br000740) 2013; 51 Block (10.1016/j.neunet.2014.10.001_br000080) 1962; 34 Kan (10.1016/j.neunet.2014.10.001_br000350) 2013; 22 Wang (10.1016/j.neunet.2014.10.001_br000815) 2012; 16 Yuan (10.1016/j.neunet.2014.10.001_br000970) 2011; 74 Zong (10.1016/j.neunet.2014.10.001_br001095) 2013; 101 Li (10.1016/j.neunet.2014.10.001_br000445) 2012; 12 He (10.1016/j.neunet.2014.10.001_br000265) 2011; 74 Yang (10.1016/j.neunet.2014.10.001_br000935) 2012; 23 Wang (10.1016/j.neunet.2014.10.001_br000810) 2011; 74 Chen (10.1016/j.neunet.2014.10.001_br000135) 1991; 2 Luo (10.1016/j.neunet.2014.10.001_br000510) 2014; 25 Belkin (10.1016/j.neunet.2014.10.001_br000065) 2006; 7 Man (10.1016/j.neunet.2014.10.001_br000535) 2012; 23 Huang (10.1016/j.neunet.2014.10.001_br000320) 2012; 59 Cortes (10.1016/j.neunet.2014.10.001_br000180) 1995; 20 Huang (10.1016/j.neunet.2014.10.001_br000305) 2010; 74 Horata (10.1016/j.neunet.2014.10.001_br000280) 2013; 102 Gastaldo (10.1016/j.neunet.2014.10.001_br000255) 2013; 28 Cao (10.1016/j.neunet.2014.10.001_br000125) 2013; 102 Baradarani (10.1016/j.neunet.2014.10.001_br000040) 2013; 46 Wang (10.1016/j.neunet.2014.10.001_br000840) 2013; 34 Chen (10.1016/j.neunet.2014.10.001_br000165) 2012; 16 Wong (10.1016/j.neunet.2014.10.001_br000895) 2010; 128 Belkin (10.1016/j.neunet.2014.10.001_br000060) 2003; 15 Landa-Torres (10.1016/j.neunet.2014.10.001_br000405) 2012; 6 Suykens (10.1016/j.neunet.2014.10.001_br000775) 1999; 9 Rumelhart (10.1016/j.neunet.2014.10.001_br000690) 1986; 323 Sanchez-Monedero (10.1016/j.neunet.2014.10.001_br000700) 2011; 34 Bazi (10.1016/j.neunet.2014.10.001_br000055) 2014; 11 Hagan (10.1016/j.neunet.2014.10.001_br000260) 1994; 5 Rong (10.1016/j.neunet.2014.10.001_br000675) 2011; 74 Liang (10.1016/j.neunet.2014.10.001_br000420) 2006; 17 Cheng (10.1016/j.neunet.2014.10.001_br000160) 2012 Rong (10.1016/j.neunet.2014.10.001_br000670) 2008; 72 Block (10.1016/j.neunet.2014.10.001_br000085) 1962; 34 Adamos (10.1016/j.neunet.2014.10.001_br000005) 2010; 190 Rosenblatt (10.1016/j.neunet.2014.10.001_br000680) 1958; 65 Decherchi (10.1016/j.neunet.2014.10.001_br000200) 2012; 59 10.1016/j.neunet.2014.10.001_br000095 Liu (10.1016/j.neunet.2014.10.001_br000485) 2014 Liu (10.1016/j.neunet.2014.10.001_br000480) 2012; 32 Li (10.1016/j.neunet.2014.10.001_br000505) 2013; 9 Qu (10.1016/j.neunet.2014.10.001_br000635) 2011; 13 Avci (10.1016/j.neunet.2014.10.001_br000015) 2013; 40 Rao (10.1016/j.neunet.2014.10.001_br000655) 1971 Yu (10.1016/j.neunet.2014.10.001_br000995) 2011; 38 Xu (10.1016/j.neunet.2014.10.001_br000920) 2012; 27 10.1016/j.neunet.2014.10.001_br000415 Yuan (10.1016/j.neunet.2014.10.001_br000980) 2011; 96 10.1016/j.neunet.2014.10.001_br000650 Yu (10.1016/j.neunet.2014.10.001_br001005) 2012; 33 Lan (10.1016/j.neunet.2014.10.001_br000400) 2009; 72 Lin (10.1016/j.neunet.2014.10.001_br000455) 2013; 28 Zhang (10.1016/j.neunet.2014.10.001_br001040) 2011; 60 Liu (10.1016/j.neunet.2014.10.001_br000470) 2011; 74 Sanchez-Monedero (10.1016/j.neunet.2014.10.001_br000705) 2010; 20 Kasun (10.1016/j.neunet.2014.10.001_br000360) 2013; 28 Kosmatopoulos (10.1016/j.neunet.2014.10.001_br000380) 2009; 20 Chen (10.1016/j.neunet.2014.10.001_br000140) 2012; 135 Bengio (10.1016/j.neunet.2014.10.001_br000070) 2009; 2 Du (10.1016/j.neunet.2014.10.001_br000220) 2013; 102 10.1016/j.neunet.2014.10.001_br000640 Li (10.1016/j.neunet.2014.10.001_br000430) 2012; 9 Wang (10.1016/j.neunet.2014.10.001_br000845) 2012; 16 Kim (10.1016/j.neunet.2014.10.001_br000370) 2009; 8 Martinez-Martinez (10.1016/j.neunet.2014.10.001_br000550) 2011; 74 Li (10.1016/j.neunet.2014.10.001_br000425) 2013; 22 Mohammed (10.1016/j.neunet.2014.10.001_br000575) 2011; 44 Liu (10.1016/j.neunet.2014.10.001_br000490) 2010; 17 Zhang (10.1016/j.neunet.2014.10.001_br001030) 2012; 23 Xia (10.1016/j.neunet.2014.10.001_br000905) 2012; 36 Fernández-Delgado (10.1016/j.neunet.2014.10.001_br000240) 2014; 50 Cao (10.1016/j.neunet.2014.10.001_br000110) 2010; 73 Wang (10.1016/j.neunet.2014.10.001_br000820) 2014 Wang (10.1016/j.neunet.2014.10.001_br000835) 2011; 74 Shi (10.1016/j.neunet.2014.10.001_br000745) 2013; 102 Martínez-Rego (10.1016/j.neunet.2014.10.001_br000585) 2010 10.1016/j.neunet.2014.10.001_br000870 10.1016/j.neunet.2014.10.001_br000630 Tan (10.1016/j.neunet.2014.10.001_br000780) 2012; 22 Wang (10.1016/j.neunet.2014.10.001_br000860) 2012; 33 Karpagachelvi (10.1016/j.neunet.2014.10.001_br000355) 2012; 21 Yan (10.1016/j.neunet.2014.10.001_br000950) 2014; 25 Saavedra-Moreno (10.1016/j.neunet.2014.10.001_br000695) 2013; 116 Kosmatopoulos (10.1016/j.neunet.2014.10.001_br000385) 2009; 20 Balbay (10.1016/j.neunet.2014.10.001_br000030) 2012; 8 Daliri (10.1016/j.neunet.2014.10.001_br000190) 2012; 36 Lemme (10.1016/j.neunet.2014.10.001_br000410) 2013; 112 Song (10.1016/j.neunet.2014.10.001_br000755) 2013; 40 Zhang (10.1016/j.neunet.2014.10.001_br001020) 2013; 7 Pal (10.1016/j.neunet.2014.10.001_br000605) 2013; 4 Zhao (10.1016/j.neunet.2014.10.001_br001070) 2012; 87 Zong (10.1016/j.neunet.2014.10.001_br001085) 2014; 39 Lu (10.1016/j.neunet.2014.10.001_br000515) 2013; 102 10.1016/j.neunet.2014.10.001_br000345 Liu (10.1016/j.neunet.2014.10.001_br000475) 2012; 33 Zhao (10.1016/j.neunet.2014.10.001_br001065) 2011; 74 Soria-Olivas (10.1016/j.neunet.2014.10.001_br000760) 2011; 22 Yu (10.1016/j.neunet.2014.10.001_br001010) 2013; 102 Zhang (10.1016/j.neunet.2014.10.001_br001045) 2011; 60 Chang (10.1016/j.neunet.2014.10.001_br000130) 2010; 4 White (10.1016/j.neunet.2014.10.001_br000875) 2006 Huang (10.1016/j.neunet.2014.10.001_br000330) 2011; 2 Kwok (10.1016/j.neunet.2014.10.001_br000390) 1997; 8 Kong (10.1016/j.neunet.2014.10.001_br000375) 2013; 96 White (10.1016/j.neunet.2014.10.001_br000880) 1992 Widrow (10.1016/j.neunet.2014.10.001_br000885) 2013; 37 Osman (10.1016/j.neunet.2014.10.001_br000595) 2012; 2 Butcher (10.1016/j.neunet.2014.10.001_br000100) 2013; 38 Huang (10.1016/j.neunet.2014.10.001_br000340) 2006; 70 Wang (10.1016/j.neunet.2014.10.001_br000850) 2013; 22 Malar (10.1016/j.neunet.2014.10.001_br000520) 2012; 42 Zhao (10.1016/j.neunet.2014.10.001_br001060) 2012; 23 An (10.1016/j.neunet.2014.10.001_br000010) 2012 Gao (10.1016/j.neunet.2014.10.001_br000250) 2013; 8 Creech (10.1016/j.neunet.2014.10.001_br000185) 2012; Vol. 1479 Huang (10.1016/j.neunet.2014.10.001_br000290) 2007; 70 Bai (10.1016/j.neunet.2014.10.001_br000025) 2014 Chen (10.1016/j.neunet.2014.10.001_br000145) 2012; 27 Basu (10.1016/j.neunet.2014.10.001_br000050) 2013; 102 Deng (10.1016/j.neunet.2014.10.001_br000210) 2011; 74 Huang (10.1016/j.neunet.2014.10.001_br000310) 2008; 71 Yu (10.1016/j.neunet.2014.10.001_br000990) 2013; 28 Pan (10.1016/j.neunet.2014.10.001_br000610) 2012; 16 Vapnik (10.1016/j.neunet.2014.10.001_br000805) 2000 Ye (10.1016/j.neunet.2014.10.001_br000960) 2013; 116 Huang (10.1016/j.neunet.2014.10.001_br000335) 2012; 42 Zhai (10.1016/j.neunet.2014.10.001_br001015) 2012; 16 Yang (10.1016/j.neunet.2014.10.001_br000945) 2011; 74 Li (10.1016/j.neunet.2014.10.001_br000460) 2012; 36 Yang (10.1016/j.neunet.2014.10.001_br000930) 2013; 37 Wong (10.1016/j.neunet.2014.10.001_br000900) 2013; 55 You (10.1016/j.neunet.2014.10.001_br000965) 2013; 14 Li (10.1016/j.neunet.2014.10.001_br000465) 2005; 50 Plutowski (10.1016/j.neunet.2014.10.001_br000620) 1996; 9 Li (10.1016/j.neunet.2014.10.001_br000435) 2012; 16 Avci (10.1016/j.neunet.2014.10.001_br000020) 2012; 39 Wang (10.1016/j.neunet.2014.10.001_br000855) 2013; 102 Zhang (10.1016/j.neunet.2014.10.001_br001050) 2011; 66 Schmidt (10.1016/j.neunet.2014.10.001_br000735) 1992 Tian (10.1016/j.neunet.2014.10.001_br000795) 2010; 7 Zhang (10.1016/j.neunet.2014.10.001_br001035) 2011; 77 Huang (10.1016/j.neunet.2014.10.001_br000295) 2008; 71 10.1016/j.neunet.2014.10.001_br000495 Decherchi (10.1016/j.neunet.2014.10.001_br000205) 2013; 102 Huang (10.1016/j.neunet.2014.10.001_br000300) 2006; 17 Lahoz (10.1016/j.neunet.2014.10.001_br000395) 2013; 111 Tang (10.1016/j.neunet.2014.10.001_br000785) 2014 Cambria (10.1016/j.neunet.2014.10.001_br000105) 2014 Xu (10.1016/j.neunet.2014.10.001_br000910) 2013; 22 Deng (10.1016/j.neunet.2014.10.001_br000215) 2013; 120 Feng (10.1016/j.neunet.2014.10.001_br000225) 2009; 20 Wang (10.1016/j.neunet.2014.10.001_br000825) 2014 Pal (10.1016/j.neunet.2014.10.001_br000600) 2009; 30 Rasheed (10.1016/j.neunet.2014.10.001_br000660) 2012; 10 Zong (10.1016/j.neunet.2014.10.001_br001090) 2011; 74 Boquete (10.1016/j.neunet.2014.10.001_br000090) 2012; 39 Barea (10.1016/j.neunet.2014.10.001_br000045) 2012; 39 Tang (10.1016/j.neunet.2014.10.001_br000790) 2010; 23 Kaya (10.1016/j.neunet.2014.10.001_br000365) 2013; 13 Man (10.1016/j.neunet.2014.10.001_br000540) 2011; 74 Miche (10.1016/j.neunet.2014.10.001_br000555) 2010; |
| References_xml | – volume: 2 start-page: 307 year: 2012 end-page: 312 ident: br000595 article-title: Performance comparison of extreme learning machine algorithms for mycobacterium tuberculosis detection in tissue sections publication-title: Journal of Medical Imaging and Health Informatics – volume: 6 start-page: 388 year: 2012 end-page: 398 ident: br000405 article-title: Evaluating the internationalization success of companies through a hybrid grouping harmony search-extreme learning machine approach publication-title: IEEE Journal of Selected Topics in Signal Processing – volume: 37 start-page: 182 year: 2013 end-page: 188 ident: br000885 article-title: The No-Prop algorithm: A new learning algorithm for multilayer neural networks publication-title: Neural Networks – year: 2014 ident: br000820 article-title: Parsimonious extreme learning machine using recursive orthogonal least squares publication-title: IEEE Transactions on Neural Networks – volume: 102 start-page: 176 year: 2013 end-page: 183 ident: br000515 article-title: Semantic concept detection for video based on extreme learning machine publication-title: Neurocomputing – volume: 4 year: 2010 ident: br000130 article-title: Change detection of land use and land cover in an urban region with spot-5 images and partial lanczos extreme learning machine publication-title: Journal of Applied Remote Sensing – volume: 16 start-page: 1493 year: 2012 end-page: 1502 ident: br001015 article-title: Dynamic ensemble extreme learning machine based on sample entropy publication-title: Soft Computing – volume: 9 start-page: 276 year: 2012 end-page: 287 ident: br001000 article-title: An intelligent quick prediction algorithm with applications in industrial control and loading problems publication-title: IEEE Transactions on Automation Science and Engineering – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: br000340 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing – volume: 96 start-page: 29 year: 2011 end-page: 38 ident: br000975 article-title: Epileptic EEG classification based on extreme learning machine and nonlinear features publication-title: Epilepsy Research – volume: 74 start-page: 2475 year: 2011 end-page: 2482 ident: br000970 article-title: Optimization approximation solution for regression problem based on extreme learning machine publication-title: Neurocomputing – volume: 22 start-page: 491 year: 2013 end-page: 500 ident: br000580 article-title: QAM equalization and symbol detection in OFDM systems using extreme learning machine publication-title: Neural Computing & Applications – volume: 8 start-page: 539 year: 1993 end-page: 567 ident: br000955 article-title: A review of evolutionary artificial neural networks publication-title: International Journal of Intelligent Systems – volume: 44 start-page: 2588 year: 2011 end-page: 2597 ident: br000575 article-title: Human face recognition based on multidimensional pca and extreme learning machine publication-title: Pattern Recognition – volume: 9 start-page: 3351 year: 2012 end-page: 3363 ident: br000430 article-title: A new regularization classification method based on extreme learning machine in network data publication-title: Journal of Information & Computational Science – year: 2000 ident: br000805 article-title: The nature of statistical learning theory – volume: 9 start-page: 293 year: 1999 end-page: 300 ident: br000775 article-title: Least squares support vector machine classifiers publication-title: Neural Processing letters – volume: 7 start-page: 73 year: 2010 end-page: 80 ident: br000795 article-title: An ensemble ELM based on modified AdaBoost.RT algorithm for predicting the temperature of molten steel in ladle furnace publication-title: IEEE Transactions on Automation Science and Engineering – year: 2014 ident: br000785 article-title: Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 28 start-page: 18 year: 2013 end-page: 20 ident: br000255 article-title: Combining ELM with random projections publication-title: IEEE Intelligent Systems – volume: 23 start-page: 345 year: 2010 end-page: 372 ident: br000790 article-title: Ternary reversible extreme learning machines: the incremental tri-training method for semi-supervised classification publication-title: Knowledge and Information Systems – volume: 112 start-page: 179 year: 2013 end-page: 188 ident: br000410 article-title: Kinesthetic teaching of visuomotor coordination for pointing by the humanoid robot icub publication-title: Neurocomputing – volume: 22 start-page: 531 year: 2013 end-page: 539 ident: br000425 article-title: The extreme learning machine learning algorithm with tunable activation function publication-title: Neural Computing & Applications – volume: 114 start-page: 80 year: 2013 end-page: 85 ident: br000545 article-title: Fusion of lattice independent and linear features improving face identification publication-title: Neurocomputing – volume: 13 start-page: 282 year: 2011 end-page: 291 ident: br000635 article-title: Evolutionary fuzzy extreme learning machine for mammographic risk analysis publication-title: International Journal of Fuzzy Systems – volume: 74 start-page: 2582 year: 2011 end-page: 2590 ident: br000675 article-title: Stable indirect adaptive neural controller for a class of nonlinear system publication-title: Neurocomputing – volume: 42 start-page: 513 year: 2012 end-page: 529 ident: br000335 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics – volume: 23 start-page: 1974 year: 2012 end-page: 1986 ident: br000535 article-title: Robust single-hidden layer feedforward network-based pattern classifier publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 39 start-page: 12340 year: 2012 end-page: 12348 ident: br000020 article-title: A new automatic target recognition system based on wavelet extreme learning machine publication-title: Expert Systems with Applications – volume: 44 start-page: 352 year: 2012 end-page: 357 ident: br000035 article-title: Drying of black cumin ( publication-title: Energy – volume: 111 start-page: 90 year: 2013 end-page: 103 ident: br000395 article-title: A multi-objective micro genetic ELM algorithm publication-title: Neurocomputing – volume: 102 start-page: 3 year: 2013 end-page: 9 ident: br000855 article-title: Architecture selection for networks trained with extreme learning machine using localized generalization error model publication-title: Neurocomputing – reference: , pp. 1313–1320. – volume: 72 start-page: 359 year: 2008 end-page: 366 ident: br000670 article-title: A fast pruned-extreme learning machine for classification problem publication-title: Neurocomputing – reference: Huang, G.-B. (2014). An insight to extreme learning machines: Random neurons, random features and kernels. Cognitive Computation (Online). – volume: 6 start-page: 264 year: 2014 end-page: 277 ident: br000275 article-title: Fast face recognition via sparse coding and extreme learning machine publication-title: Cognitive Computation – volume: 8 start-page: 630 year: 1997 end-page: 645 ident: br000390 article-title: Constructive algorithms for structure learning in feedforward neural networks for regression problems publication-title: IEEE Transactions on Neural Networks – volume: 30 start-page: 3835 year: 2009 end-page: 3841 ident: br000600 article-title: Extreme-learning-machine-based land cover classification publication-title: International Journal of Remote Sensing – volume: 22 start-page: 427 year: 2013 end-page: 433 ident: br000590 article-title: 3d object recognition based on a geometrical topology model and extreme learning machine publication-title: Neural Computing & Applications – reference: , Vol. 3, p. 5. – volume: 51 start-page: 417 year: 2013 end-page: 427 ident: br000740 article-title: Semg-based hand motion recognition using cumulative residual entropy and extreme learning machine publication-title: Medical & Biological Engineering & Computing – volume: 102 start-page: 31 year: 2013 end-page: 44 ident: br000280 article-title: Robust extreme learning machine publication-title: Neurocomputing – volume: 73 start-page: 1906 year: 2010 end-page: 1917 ident: br000560 article-title: Human action recognition using extreme learning machine based on visual vocabularies publication-title: Neurocomputing – year: 1971 ident: br000655 article-title: Generalized inverse of matrices and its applications, Vol.~7 – volume: 60 year: 2011 ident: br001045 article-title: Selective forgetting extreme learning machine and its application to time series prediction publication-title: Acta Physica Sinica – volume: 2 start-page: 302 year: 1991 end-page: 309 ident: br000135 article-title: Orthogonal least squares learning algorithm for radial basis function networks publication-title: IEEE Transactions on Neural Networks – volume: 74 start-page: 2526 year: 2011 end-page: 2531 ident: br000245 article-title: Parameter-insensitive kernel in extreme learning for non-linear support vector regression publication-title: Neurocomputing – volume: 22 start-page: 541 year: 2013 end-page: 550 ident: br000170 article-title: A modified extreme learning machine with sigmoidal activation functions publication-title: Neural Computing & Applications – start-page: 60 year: 2010 end-page: 66 ident: br000585 article-title: Fault prognosis of mechanical components using on-line learning neural networks publication-title: Artificial Neural Networks–ICANN 2010 – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: br000180 article-title: Support vector machine publication-title: Machine learning – year: 2014 ident: br000315 article-title: Semi-supervised and unsupervised extreme learning machines publication-title: IEEE Transactions on Cybernetics – volume: 16 start-page: 1477 year: 2012 end-page: 1484 ident: br000845 article-title: Variable activation function extreme learning machine based on residual prediction compensation publication-title: Soft Computing – reference: ) Knowledge-Based Systems. – volume: 102 start-page: 45 year: 2013 end-page: 51 ident: br001010 article-title: Regularized extreme learning machine for regression with missing data publication-title: Neurocomputing – volume: 74 start-page: 3716 year: 2011 end-page: 3721 ident: br000550 article-title: Regularized extreme learning machine for regression problems publication-title: Neurocomputing – volume: 8 year: 2013 ident: br000250 article-title: A novel approach for lie detection based on f-score and extreme learning machine publication-title: Plos One – volume: 7 start-page: 2399 year: 2006 end-page: 2434 ident: br000065 article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples publication-title: The Journal of Machine Learning Research – year: 2014 ident: br000025 article-title: Sparse extreme learning machine for classification publication-title: IEEE Transactions on Cybernetics – start-page: 1 year: 1992 end-page: 4 ident: br000735 article-title: Feed forward neural networks with random weights publication-title: Proceedings of 11th IAPR international conference on pattern recognition methodology and systems – reference: , Vols. 1–9. – volume: 135 start-page: 590 year: 2012 end-page: 595 ident: br000140 article-title: Rapid measurement of total acid content (TAC) in vinegar using near infrared spectroscopy based on efficient variables selection algorithm and nonlinear regression tools publication-title: Food Chemistry – volume: 102 start-page: 10 year: 2013 end-page: 22 ident: br000220 article-title: A novel automatic two-stage locally regularized classifier construction method using the extreme learning machine publication-title: Neurocomputing – volume: 38 start-page: 7373 year: 2011 end-page: 7379 ident: br000995 article-title: An intelligent fast sales forecasting model for fashion products publication-title: Expert Systems with Applications – volume: 187 start-page: 277 year: 2012 end-page: 290 ident: br000720 article-title: Fast learning circular complex-valued extreme learning machine (CC-ELM) for real-valued classification problems publication-title: Information Sciences – volume: 39 start-page: 234 year: 2012 end-page: 238 ident: br000090 article-title: Multifocal electroretinogram diagnosis of glaucoma applying neural networks and structural pattern analysis publication-title: Expert Systems with Applications – volume: 12 start-page: 3132 year: 2012 end-page: 3140 ident: br000445 article-title: Enhanced combination modeling method for combustion efficiency in coal-fired boilers publication-title: Applied Soft Computing – volume: 8 start-page: 995 year: 2012 end-page: 1003 ident: br000915 article-title: An intelligent dynamic security assessment framework for power systems with wind power publication-title: IEEE Transactions on Industrial Informatics – volume: 39 start-page: 2677 year: 2012 end-page: 2683 ident: br000045 article-title: Eog-based eye movements codification for human computer interaction publication-title: Expert Systems with Applications – volume: 22 start-page: 505 year: 2011 end-page: 509 ident: br000760 article-title: Belm: Bayesian extreme learning machine publication-title: IEEE Transactions on Neural Networks – volume: 116 start-page: 49 year: 2013 end-page: 60 ident: br000695 article-title: Very fast training neural-computation techniques for real measure-correlate-predict wind operations in wind farms publication-title: Journal of Wind Engineering and Industrial Aerodynamics – year: 2014 ident: br000450 article-title: Is extreme learning machine feasible? a theoretical assessment (part II) publication-title: IEEE Transactions on Neural Networks nd Learning Systems – volume: 128 start-page: 614 year: 2010 end-page: 624 ident: br000895 article-title: A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm publication-title: International Journal of Production Economics – volume: 13 start-page: 3429 year: 2013 end-page: 3438 ident: br000365 article-title: A hybrid decision support system based on rough set and extreme learning machine for diagnosis of hepatitis disease publication-title: Applied Soft Computing – volume: 23 start-page: 1498 year: 2012 end-page: 1505 ident: br000935 article-title: Bidirectional extreme learning machine for regression problem and its learning effectiveness publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 45 start-page: 2868 year: 2012 end-page: 2883 ident: br000175 article-title: Incremental face recognition for large-scale social network services publication-title: Pattern Recognition – volume: 17 start-page: 1411 year: 2006 end-page: 1423 ident: br000420 article-title: A fast and accurate online sequential learning algorithm for feedforward networks publication-title: IEEE Transactions on Neural Networks – reference: Saxe, A., Koh, P. W., Chen, Z., Bhand, M., Suresh, B., & Ng, A. Y. (2011). On random weights and unsupervised feature learning. In: – volume: 74 start-page: 155 year: 2010 end-page: 163 ident: br000305 article-title: Optimization method based extreme learning machine for classification publication-title: Neurocomputing – volume: 22 start-page: 1529 year: 2012 end-page: 1541 ident: br000570 article-title: Incremental learning in human action recognition based on snippets publication-title: IEEE Transactions on Circuits and Systems for Video Technology – volume: 71 start-page: 3460 year: 2008 end-page: 3468 ident: br000295 article-title: Enhanced random search based incremental extreme learning machine publication-title: Neurocomputing – reference: Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2004). Extreme learning machine: a new learning scheme of feedforward neural networks. In: – volume: 28 start-page: 55 year: 2013 end-page: 59 ident: br000990 article-title: An adaptive and iterative online sequential ELM based multi-degree-of-freedom gesture recognition system publication-title: IEEE Intelligent Systems – volume: 20 start-page: 1009 year: 2009 end-page: 1023 ident: br000385 article-title: Large scale nonlinear control system fine-tuning through learning publication-title: IEEE Transactions on Neural Networks – volume: 34 start-page: 101 year: 2011 end-page: 116 ident: br000700 article-title: Weighting efficient accuracy and minimum sensitivity for evolving multi-class classifiers publication-title: Neural Processing Letters – volume: 28 start-page: 48 year: 2013 end-page: 52 ident: br000925 article-title: Reduced ELMs for causal relation extraction from unstructured text publication-title: IEEE Intelligent Systems – volume: 25 start-page: 457 year: 2014 end-page: 469 ident: br000950 article-title: Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks publication-title: IEEE Transactions on Neural Networks nd Learning Systems – volume: 16 start-page: 1617 year: 2012 end-page: 1625 ident: br000165 article-title: Extreme learning machine-based device displacement free activity recognition model publication-title: Soft Computing – volume: 61 year: 2012 ident: br000830 article-title: Multivariate chaotic time series prediction based on extreme learning machine publication-title: Acta Physica Sinica – volume: 22 start-page: 469 year: 2013 end-page: 477 ident: br000350 article-title: Extreme learning machine terrain-based navigation for unmanned aerial vehicles publication-title: Neural Computing & Applications – volume: Vol. 1479 start-page: 1506 year: 2012 end-page: 1511 ident: br000185 article-title: The application of extreme learning machines to the network intrusion detection problem publication-title: International conference of numerical analysis and applied mathematics – reference: (pp. 451–455). – volume: 9 start-page: 273 year: 1996 end-page: 294 ident: br000620 article-title: Experience with selecting exemplars from clean data publication-title: Neural Networks – volume: 78 start-page: 1481 year: 1990 end-page: 1497 ident: br000625 article-title: Networks for approximation and learning publication-title: Proceedings of the IEEE – volume: 8 year: 2012 ident: br000030 article-title: Modeling of drying process of bittim nuts ( publication-title: International Journal of Food Engineering – volume: 23 start-page: 365 year: 2012 end-page: 371 ident: br001030 article-title: Universal approximation of extreme learning machine with adaptive growth of hidden nodes publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 74 start-page: 2491 year: 2011 end-page: 2501 ident: br000540 article-title: A new robust training algorithm for a class of single-hidden layer feedforward neural networks publication-title: Neurocomputing – volume: 60 year: 2011 ident: br001040 article-title: Incremental regularized extreme learning machine based on cholesky factorization and its application to time series prediction publication-title: Acta Physica Sinica – volume: 27 start-page: 2055 year: 2012 end-page: 2062 ident: br000145 article-title: Electricity price forecasting with extreme learning machine and bootstrapping publication-title: IEEE Transactions on Power Systems – volume: 9 start-page: 207 year: 2013 end-page: 214 ident: br000505 article-title: A semi-supervised extreme learning machine method based on co-training publication-title: Journal of Computational Information Systems – volume: 20 start-page: 1352 year: 2009 end-page: 1357 ident: br000225 article-title: Error minimized extreme learning machine with growth of hidden nodes and incremental learning publication-title: IEEE Transactions on Neural Networks – volume: 33 start-page: 554 year: 2012 end-page: 558 ident: br001005 article-title: Efficient and effective algorithms for training single-hidden-layer neural networks publication-title: Pattern Recognition Letters – volume: 3 start-page: 213 year: 1991 end-page: 225 ident: br000615 article-title: A resource-allocating network for function interpolation publication-title: Neural Computation – reference: . – volume: 71 start-page: 576 year: 2008 end-page: 583 ident: br000310 article-title: Incremental extreme learning machine with fully complex hidden nodes publication-title: Neurocomputing – volume: 55 start-page: 519 year: 2013 end-page: 528 ident: br000900 article-title: Modeling and optimization of biodiesel engine performance using advanced machine learning methods publication-title: Energy – year: 1992 ident: br000880 article-title: Artificial neural networks: approximation and learning theory – volume: 96 start-page: 4921 year: 2013 end-page: 4927 ident: br000375 article-title: Irradiation dose detection of irradiated milk powder using visible and near-infrared spectroscopy and chemometrics publication-title: Journal of Dairy Science – volume: 74 start-page: 2464 year: 2011 end-page: 2474 ident: br000835 article-title: Image deblurring with filters learned by extreme learning machine publication-title: Neurocomputing – volume: 21 start-page: 1331 year: 2012 end-page: 1339 ident: br000355 article-title: Classification of electrocardiogram signals with support vector machines and extreme learning machine publication-title: Neural Computing & Applications – volume: 22 start-page: 501 year: 2013 end-page: 508 ident: br000910 article-title: Extreme learning machine-based predictor for real-time frequency stability assessment of electric power systems publication-title: Neural Computing & Applications – volume: 22 start-page: 685 year: 2012 end-page: 694 ident: br000780 article-title: Neural network based identification of hysteresis in human meridian systems publication-title: International Journal of Applied Mathematics and Computer Science – volume: 7 start-page: 459 year: 2012 end-page: 472 ident: br000235 article-title: Inverse kinematics solution for robot manipulator based on neural network under joint subspace publication-title: International Journal of Computers Communications & Control – year: 1962 ident: br000685 article-title: Principles of neurodynamics: perceptrons and the theory of brain mechanisms – volume: 7 start-page: 1243 year: 2013 end-page: 1250 ident: br001055 article-title: Forecasting model of coal mine water inrush based on extreme learning machine publication-title: Applied Mathematics & Information Sciences – volume: 36 start-page: 3327 year: 2012 end-page: 3337 ident: br000460 article-title: A computer aided diagnosis system for thyroid disease using extreme learning machine publication-title: Journal of Medical Systems – volume: 102 start-page: 78 year: 2013 end-page: 89 ident: br000205 article-title: Circular-ELM for the reduced-reference assessment of perceived image quality publication-title: Neurocomputing – year: 2014 ident: br000825 article-title: Parsimonious extreme learning machine using recursive orthogonal least squares publication-title: IEEE Transactions on Neural Networks nd Learning Systems – volume: 101 start-page: 229 year: 2013 end-page: 242 ident: br001095 article-title: Weighted extreme learning machine for imbalance learning publication-title: Neurocomputing – volume: 102 start-page: 52 year: 2013 end-page: 58 ident: br000270 article-title: Parallel extreme learning machine for regression based on mapreduce publication-title: Neurocomputing – start-page: 2209 year: 2012 end-page: 2212 ident: br000010 article-title: Image super-resolution by extreme learning machine publication-title: 2012 19th IEEE international conference on image processing – volume: 74 start-page: 2422 year: 2011 end-page: 2429 ident: br000210 article-title: Fast automatic two-stage nonlinear model identification based on the extreme learning machine publication-title: Neurocomputing – volume: 39 start-page: 214 year: 2013 end-page: 223 ident: br000440 article-title: Multiple extreme learning machines for a two-class imbalance corporate life cycle prediction publication-title: Knowledge-Based Systems – volume: 102 start-page: 111 year: 2013 end-page: 124 ident: br000075 article-title: Feature selection for nonlinear models with extreme learning machines publication-title: Neurocomputing – volume: 66 start-page: 4702 year: 2011 end-page: 4710 ident: br001050 article-title: Optimization of nonlinear process based on sequential extreme learning machine publication-title: Chemical Engineering Science – year: 2014 ident: br000105 article-title: An ELM-based model for affective analogical reasoning publication-title: Neurocomputing – volume: 5 start-page: 989 year: 1994 end-page: 993 ident: br000260 article-title: Training feedforward networks with the marquardt algorithm publication-title: IEEE Transactions on Neural Networks – volume: 190 start-page: 129 year: 2010 end-page: 142 ident: br000005 article-title: Nass: An empirical approach to spike sorting with overlap resolution based on a hybrid noise-assisted methodology publication-title: Journal of Neuroscience Methods – volume: 33 start-page: 58 year: 2012 end-page: 66 ident: br000475 article-title: A comparative analysis of support vector machines and extreme learning machines publication-title: Neural Networks – volume: 50 start-page: 60 year: 2014 end-page: 71 ident: br000240 article-title: Direct kernel perceptron (DKP): Ultra-fast kernel ELM-based classification with non-iterative closed-form weight calculation publication-title: Neural Networks – volume: 74 start-page: 2430 year: 2011 end-page: 2437 ident: br000800 article-title: GPU-accelerated and parallelized ELM ensembles for large-scale regression publication-title: Neurocomputing – start-page: 555 year: 2008 end-page: 561 ident: br000645 article-title: Uniform approximation of functions with random bases publication-title: Communication, control, and computing, 2008 46th annual allerton conference on – volume: 16 start-page: 1595 year: 2012 end-page: 1606 ident: br000815 article-title: Computational localization of transcription factor binding sites using extreme learning machines publication-title: Soft Computing – volume: 65 start-page: 386 year: 1958 end-page: 408 ident: br000680 article-title: The perceptron: A probabilistic model for information storage and organization in the brain publication-title: Psychological Review – volume: 37 start-page: 277 year: 2013 end-page: 301 ident: br000930 article-title: Parallel chaos search based incremental extreme learning machine publication-title: Neural Processing Letters – volume: 70 start-page: 3056 year: 2007 end-page: 3062 ident: br000290 article-title: Convex incremental extreme learning machine publication-title: Neurocomputing – volume: 20 start-page: 899 year: 2010 end-page: 912 ident: br000705 article-title: Evaluating the performance of evolutionary extreme learning machines by a combination of sensitivity and accuracy measures publication-title: Neural Network World – volume: 11 start-page: 1066 year: 2014 end-page: 1070 ident: br000055 article-title: Differential evolution extreme learning machine for the classification of hyperspectral images publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 39 start-page: 1067 year: 2009 end-page: 1072 ident: br000665 article-title: Online sequential fuzzy extreme learning machine for function approximation and classification problems publication-title: IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics – volume: 39 start-page: 155 year: 2014 end-page: 166 ident: br001085 article-title: Learning to rank with extreme learning machine publication-title: Neural processing letters – volume: 72 start-page: 3391 year: 2009 end-page: 3395 ident: br000400 article-title: Ensemble of online sequential extreme learning machine publication-title: Neurocomputing – volume: 10 year: 2012 ident: br000660 article-title: Metagenomic taxonomic classification using extreme learning machines publication-title: Journal of Bioinformatics and Computational Biology – reference: Poria, S., Cambria, E., Winterstein, G., & Huang, G.-B. (2014). Sentic patterns: Dependency-based rules for concept-level sentiment analysis. ( – reference: Rahimi, A., & Recht, B. (2008b). Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning. In: – volume: 22 start-page: 447 year: 2013 end-page: 456 ident: br001075 article-title: Text categorization based on regularization extreme learning machine publication-title: Neural Computing & Applications – volume: 102 start-page: 135 year: 2013 end-page: 143 ident: br000745 article-title: Eeg-based vigilance estimation using extreme learning machines publication-title: Neurocomputing – volume: 40 start-page: 5477 year: 2013 end-page: 5489 ident: br000755 article-title: Automatic recognition of epileptic EEG patterns via extreme learning machine and multiresolution feature extraction publication-title: Expert Systems with Applications – volume: 49 start-page: 448 year: 2013 end-page: 449 ident: br001025 article-title: Fuzzy extreme learning machine for classification publication-title: Electronics Letters – year: 2014 ident: br000485 article-title: Is extreme learning machine feasible? a theoretical assessment (part I) publication-title: IEEE Transactions on Neural Networks nd Learning Systems – volume: 7 start-page: 391 year: 2013 end-page: 397 ident: br001020 article-title: Short-term load forecasting of australian national electricity market by an ensemble model of extreme learning machine publication-title: IET Generation Transmission & Distribution – volume: 34 start-page: 123 year: 1962 end-page: 135 ident: br000080 article-title: The perceptron: A model for brain function. I publication-title: Reviewers of Modern Physics – volume: 59 start-page: 496 year: 2012 end-page: 500 ident: br000200 article-title: Efficient digital implementation of extreme learning machines for classification publication-title: IEEE Transactions on Circuits and Systems II-Express Briefs – volume: 74 start-page: 2541 year: 2011 end-page: 2551 ident: br001090 article-title: Face recognition based on extreme learning machine publication-title: Neurocomputing – volume: 8 year: 2009 ident: br000370 article-title: Robust algorithm for arrhythmia classification in ecg using extreme learning machine publication-title: Biomedical Engineering Online – volume: 36 start-page: 253 year: 2012 end-page: 259 ident: br000905 article-title: Fashion retailing forecasting based on extreme learning machine with adaptive metrics of inputs publication-title: Knowledge-Based Systems – volume: 53 start-page: 119 year: 2014 end-page: 126 ident: br000155 article-title: Extreme learning machine for ranking: Generalization analysis and applications publication-title: Neural Networks – volume: 73 start-page: 1831 year: 2010 end-page: 1839 ident: br000565 article-title: A fast recognition framework based on extreme learning machine using hybrid object information publication-title: Neurocomputing – reference: (pp. 1089–1096). – volume: 17 start-page: 879 year: 2006 end-page: 892 ident: br000300 article-title: Universal approximation using incremental constructive feedforward networks with random hidden nodes publication-title: IEEE Transactions on Neural Networks – volume: 2 start-page: 1 year: 2009 end-page: 127 ident: br000070 article-title: Learning deep architectures for AI publication-title: Foundations and Trends in Machine Learning – volume: 210 start-page: 132 year: 2012 end-page: 146 ident: br000750 article-title: Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine publication-title: Journal of Neuroscience Methods – volume: 73 start-page: 1976 year: 2010 end-page: 1986 ident: br000765 article-title: OPELM and OPKNN in long-term prediction of time series using projected input data publication-title: Neurocomputing – reference: Rahimi, A., & Recht, B. (2007). Random features for large-scale kernel machines. In – volume: 33 start-page: 231 year: 2012 end-page: 236 ident: br000860 article-title: An effective method for accurate prediction of the first hyperpolarizability of alkalides publication-title: Journal of Computational Chemistry – volume: 40 start-page: 3984 year: 2013 end-page: 3993 ident: br000015 article-title: A new method for expert target recognition system: Genetic wavelet extreme learning machine (GAWELM) publication-title: Expert Systems with Applications – volume: 74 start-page: 2532 year: 2011 end-page: 2540 ident: br000265 article-title: A parallel incremental extreme svm classifier publication-title: Neurocomputing – volume: 22 start-page: 435 year: 2013 end-page: 445 ident: br000940 article-title: Fingerprint matching based on extreme learning machine publication-title: Neural Computing & Applications – volume: 14 year: 2013 ident: br000965 article-title: Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis publication-title: BMC Bioinformatics – volume: 27 start-page: 3123 year: 2011 end-page: 3128 ident: br000725 article-title: Improving the detection of transmembrane beta-barrel chains with n-to-1 extreme learning machines publication-title: Bioinformatics – reference: White, H. (1989). An additional hidden unit test for neglected nonlinearity in multilayer feedforward networks. In: – volume: 43 start-page: 127 year: 2012 end-page: 132 ident: br000985 article-title: EEG classification approach based on the extreme learning machine and wavelet transform publication-title: Clinical EEG and Neuroscience – volume: 102 start-page: 125 year: 2013 end-page: 134 ident: br000050 article-title: Silicon spiking neurons for hardware implementation of extreme learning machines publication-title: Neurocomputing – volume: 42 start-page: 898 year: 2012 end-page: 905 ident: br000520 article-title: A novel approach for detection and classification of mammographic microcalcifications using wavelet analysis and extreme learning machine publication-title: Computers in Biology and Medicine – volume: 74 start-page: 2444 year: 2011 end-page: 2451 ident: br001065 article-title: XML document classification based on ELM publication-title: Neurocomputing – volume: 22 start-page: 479 year: 2013 end-page: 489 ident: br000850 article-title: Predicting consumer sentiments using online sequential extreme learning machine and intuitionistic fuzzy sets publication-title: Neural Computing & Applications – volume: 185 start-page: 66 year: 2012 end-page: 77 ident: br000120 article-title: Voting based extreme learning machine publication-title: Information Sciences – volume: 73 start-page: 1405 year: 2010 end-page: 1416 ident: br000110 article-title: Composite function wavelet neural networks with extreme learning machine publication-title: Neurocomputing – volume: 16 start-page: 1627 year: 2012 end-page: 1637 ident: br000435 article-title: Rts game strategy evaluation using extreme learning machine publication-title: Soft Computing – volume: 16 start-page: 1485 year: 2012 end-page: 1491 ident: br000230 article-title: Evolutionary selection extreme learning machine optimization for regression publication-title: Soft Computing – volume: 96 start-page: 29 year: 2011 end-page: 38 ident: br000980 article-title: Epileptic eeg classification based on extreme learning machine and nonlinear features publication-title: Epilepsy Research – volume: 28 start-page: 35 year: 2013 end-page: 38 ident: br000455 article-title: A secure and practical mechanism of outsourcing extreme learning machine in cloud computing publication-title: IEEE Intelligent Systems – volume: 46 start-page: 57 year: 2013 end-page: 72 ident: br000040 article-title: An efficient illumination invariant face recognition framework via illumination enhancement and dd-dtcwt filtering publication-title: Pattern Recognition – volume: 16 start-page: 1569 year: 2012 end-page: 1584 ident: br000610 article-title: Color image segmentation by fixation-based active learning with ELM publication-title: Soft Computing – volume: 34 start-page: 566 year: 2013 end-page: 575 ident: br000840 article-title: An accurate and efficient method to predict the electronic excitation energies of bodipy fluorescent dyes publication-title: Journal of Computational Chemistry – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: br000690 article-title: Learning representations by back-propagating errors publication-title: Nature – volume: 74 start-page: 2483 year: 2011 end-page: 2490 ident: br000810 article-title: A study on effectiveness of extreme learning machine publication-title: Neurocomputing – year: 2012 ident: br000325 article-title: A semi-automatic approach to the segmentation of liver parenchyma from 3D CT images with extreme learning machine – volume: 8 start-page: 452 year: 2011 end-page: 463 ident: br000715 article-title: ICGA-PSO-ELM approach for accurate multiclass cancer classification resulting in reduced gene sets in which genes encoding secreted proteins are highly represented publication-title: IEEE-ACM Transactions on Computational Biology and Bioinformatics – volume: 38 start-page: 1336 year: 2011 end-page: 1345 ident: br000150 article-title: Sales forecasting system based on gray extreme learning machine with taguchi method in retail industry publication-title: Expert Systems with Applications – volume: 27 start-page: 1253 year: 2012 end-page: 1263 ident: br000920 article-title: A reliable intelligent system for real-time dynamic security assessment of power systems publication-title: IEEE Transactions on Power Systems – volume: 17 start-page: 754 year: 2010 end-page: 757 ident: br000490 article-title: Ensemble based extreme learning machine publication-title: IEEE Signal Processing Letters – volume: 21 start-page: 1793 year: 2010 end-page: 1803 ident: br000890 article-title: Neural network learning without backpropagation publication-title: IEEE Transactions on Neural Networks – volume: 120 start-page: 490 year: 2013 end-page: 498 ident: br000215 article-title: Projection vector machine publication-title: Neurocomputing – volume: 28 start-page: 31 year: 2013 end-page: 34 ident: br000360 article-title: Representational learning with ELMs for big data publication-title: IEEE Intelligent Systems – volume: 74 start-page: 2573 year: 2011 end-page: 2581 ident: br000945 article-title: Predicting the probability of ice storm damages to electricity transmission facilities based on ELM and copula function publication-title: Neurocomputing – volume: 20 start-page: 1009 year: 2009 end-page: 1023 ident: br000380 article-title: Large scale nonlinear control system fine-tuning through learning publication-title: IEEE Transactions on Neural Networks – volume: 73 start-page: 2160 year: 2010 end-page: 2167 ident: br000525 article-title: Intelligent approaches using support vector machine and extreme learning machine for transmission line protection publication-title: Neurocomputing – volume: 18 start-page: 4275 year: 2012 end-page: 4289 ident: br000710 article-title: Fast learning optimized prediction methodology (flopred) for protein secondary structure prediction publication-title: Journal of Molecular Modeling – volume: 38 start-page: 76 year: 2013 end-page: 89 ident: br000100 article-title: Reservoir computing and extreme learning machines for non-linear time-series data analysis publication-title: Neural Networks – volume: 50 start-page: 1211 year: 2005 end-page: 1216 ident: br000465 article-title: A fast nonlinear model identification method publication-title: IEEE Transactions on Automatic Control – volume: 32 start-page: 970 year: 2012 end-page: 973 ident: br000480 article-title: Determination of process variable ph in solid-state fermentation by ft-nir spectroscopy and extreme learning machine (ELM) publication-title: Spectroscopy and Spectral Analysis – volume: 102 start-page: 144 year: 2013 end-page: 153 ident: br000500 article-title: Burning state recognition of rotary kiln using ELMs with heterogeneous features publication-title: Neurocomputing – volume: 9 start-page: 541 year: 2009 end-page: 552 ident: br000770 article-title: No-reference image quality assessment using modified extreme learning machine classifier publication-title: Applied Soft Computing – volume: 23 year: 2012 ident: br001060 article-title: The study of using an extreme learning machine for rapid concentration estimation in multi-component gas mixtures publication-title: Measurement Science & Technology – volume: 36 start-page: 285 year: 2012 end-page: 305 ident: br000115 article-title: Self-adaptive evolutionary extreme learning machine publication-title: Neural Processing Letters – volume: 102 start-page: 90 year: 2013 end-page: 97 ident: br000125 article-title: Image classification based on effective extreme learning machine publication-title: Neurocomputing – volume: 27 start-page: 635 year: 2011 end-page: 639 ident: br000195 article-title: Tactile-data classification of contact materials using computational intelligence publication-title: IEEE Transactions on Robotics – volume: 59 start-page: 2629 year: 2012 end-page: 2637 ident: br000320 article-title: Orthogonal least squares algorithm for training cascade neural networks publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers – volume: 77 start-page: 95 year: 2011 end-page: 104 ident: br001035 article-title: Hyperspectral species mapping for automatic weed control in tomato under thermal environmental stress publication-title: Computers and Electronics in Agriculture – volume: 15 start-page: 1373 year: 2003 end-page: 1396 ident: br000060 article-title: Laplacian eigenmaps for dimensionality reduction and data representation publication-title: Neural Computation – volume: 25 start-page: 836 year: 2014 end-page: 843 ident: br000510 article-title: Sparse bayesian extreme learning machine for multi-classification publication-title: IEEE Transactions on Neural Networks nd Learning Systems – volume: 23 start-page: 283 year: 2013 end-page: 292 ident: br001080 article-title: Surface reconstruction based on extreme learning machine publication-title: Neural Computing & Applications – volume: 24 start-page: 880 year: 2011 end-page: 887 ident: br000530 article-title: Application of extreme learning machine for series compensated transmission line protection publication-title: Engineering Applications of Artificial Intelligence – volume: 21 start-page: 158 year: 2010 end-page: 162 ident: br000555 article-title: OP-ELM: Optimally pruned extreme learning machine publication-title: IEEE Transactions on Neural Networks – volume: 34 start-page: 135 year: 1962 end-page: 142 ident: br000085 article-title: Analysis of a four-layer series-coupled perceptron. II publication-title: Reviewers of Modern Physics – start-page: 1 year: 2012 end-page: 8 ident: br000160 article-title: Extreme learning machines for intrusion detection publication-title: The 2012 International Joint Conference on Neural Networks (IJCNN) – volume: 2 start-page: 107 year: 2011 end-page: 122 ident: br000330 article-title: Extreme learning machines: a survey publication-title: International Journal of Machine Learning and Cybernetics – reference: Branke, J. (1995). Evolutionary algorithms for neural network design and training. In – volume: 4 start-page: 853 year: 2013 end-page: 862 ident: br000605 article-title: Kernel-based extreme learning machine for remote-sensing image classification publication-title: Remote Sensing Letters – volume: 87 start-page: 79 year: 2012 end-page: 89 ident: br001070 article-title: Online sequential extreme learning machine with forgetting mechanism publication-title: Neurocomputing – reference: Le, Q., Sarlos, T., & Smola, A. (2013). Fastfood-approximating kernel expansions in loglinear time. In – reference: , vol. 2, pp. 985–990. – reference: Liu, Y., Xu, X.J., & Wang, C.Y. (2009). Simple ensemble of extreme learning machine. In – volume: 36 start-page: 1001 year: 2012 end-page: 1005 ident: br000190 article-title: A hybrid automatic system for the diagnosis of lung cancer based on genetic algorithm and fuzzy extreme learning machines publication-title: Journal of Medical Systems – volume: 116 start-page: 94 year: 2013 end-page: 101 ident: br000960 article-title: Online sequential extreme learning machine in nonstationary environments publication-title: Neurocomputing – volume: 74 start-page: 2566 year: 2011 end-page: 2572 ident: br000470 article-title: SELM: Semi-supervised ELM with application in sparse calibrated location estimation publication-title: Neurocomputing – year: 2012 ident: br000865 article-title: Electrical drive radiated emissions estimation in terms of input control using extreme learning machines publication-title: Mathematical Problems in Engineering – start-page: 460 year: 2006 end-page: 512 ident: br000875 article-title: Approxiate nonlinear forecasting methods publication-title: Handbook of economics forecasting – volume: 24 start-page: 880 issue: 5 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br000530 article-title: Application of extreme learning machine for series compensated transmission line protection publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2011.03.003 – volume: 60 issue: 8 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br001045 article-title: Selective forgetting extreme learning machine and its application to time series prediction publication-title: Acta Physica Sinica – volume: 74 start-page: 2475 issue: 16 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br000970 article-title: Optimization approximation solution for regression problem based on extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.12.037 – volume: 9 start-page: 541 issue: 2 year: 2009 ident: 10.1016/j.neunet.2014.10.001_br000770 article-title: No-reference image quality assessment using modified extreme learning machine classifier publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2008.07.005 – year: 2000 ident: 10.1016/j.neunet.2014.10.001_br000805 – volume: 111 start-page: 90 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000395 article-title: A multi-objective micro genetic ELM algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.11.035 – volume: 25 start-page: 457 issue: 3 year: 2014 ident: 10.1016/j.neunet.2014.10.001_br000950 article-title: Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks publication-title: IEEE Transactions on Neural Networks nd Learning Systems doi: 10.1109/TNNLS.2013.2275948 – volume: 30 start-page: 3835 issue: 14 year: 2009 ident: 10.1016/j.neunet.2014.10.001_br000600 article-title: Extreme-learning-machine-based land cover classification publication-title: International Journal of Remote Sensing doi: 10.1080/01431160902788636 – volume: 102 start-page: 78 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000205 article-title: Circular-ELM for the reduced-reference assessment of perceived image quality publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.12.050 – volume: 8 start-page: 452 issue: 2 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br000715 article-title: ICGA-PSO-ELM approach for accurate multiclass cancer classification resulting in reduced gene sets in which genes encoding secreted proteins are highly represented publication-title: IEEE-ACM Transactions on Computational Biology and Bioinformatics doi: 10.1109/TCBB.2010.13 – year: 2014 ident: 10.1016/j.neunet.2014.10.001_br000785 article-title: Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 22 start-page: 505 issue: 3 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br000760 article-title: Belm: Bayesian extreme learning machine publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2010.2103956 – volume: 8 start-page: 630 issue: 3 year: 1997 ident: 10.1016/j.neunet.2014.10.001_br000390 article-title: Constructive algorithms for structure learning in feedforward neural networks for regression problems publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.572102 – volume: 73 start-page: 1906 issue: 10–12 year: 2010 ident: 10.1016/j.neunet.2014.10.001_br000560 article-title: Human action recognition using extreme learning machine based on visual vocabularies publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.01.020 – volume: 28 start-page: 31 issue: 5 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000360 article-title: Representational learning with ELMs for big data publication-title: IEEE Intelligent Systems – volume: 102 start-page: 144 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000500 article-title: Burning state recognition of rotary kiln using ELMs with heterogeneous features publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.12.047 – volume: 185 start-page: 66 issue: 1 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000120 article-title: Voting based extreme learning machine publication-title: Information Sciences doi: 10.1016/j.ins.2011.09.015 – volume: 38 start-page: 7373 issue: 6 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br000995 article-title: An intelligent fast sales forecasting model for fashion products publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.12.089 – volume: 9 start-page: 3351 issue: 12 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000430 article-title: A new regularization classification method based on extreme learning machine in network data publication-title: Journal of Information & Computational Science – volume: 45 start-page: 2868 issue: 8 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000175 article-title: Incremental face recognition for large-scale social network services publication-title: Pattern Recognition doi: 10.1016/j.patcog.2012.02.002 – volume: 36 start-page: 3327 issue: 5 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000460 article-title: A computer aided diagnosis system for thyroid disease using extreme learning machine publication-title: Journal of Medical Systems doi: 10.1007/s10916-012-9825-3 – volume: 8 start-page: 995 issue: 4 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000915 article-title: An intelligent dynamic security assessment framework for power systems with wind power publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2012.2206396 – ident: 10.1016/j.neunet.2014.10.001_br000630 – volume: 120 start-page: 490 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000215 article-title: Projection vector machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.04.028 – volume: 7 start-page: 459 issue: 3 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000235 article-title: Inverse kinematics solution for robot manipulator based on neural network under joint subspace publication-title: International Journal of Computers Communications & Control doi: 10.15837/ijccc.2012.3.1387 – volume: 7 start-page: 1243 issue: 3 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br001055 article-title: Forecasting model of coal mine water inrush based on extreme learning machine publication-title: Applied Mathematics & Information Sciences doi: 10.12785/amis/070349 – year: 1971 ident: 10.1016/j.neunet.2014.10.001_br000655 – volume: 102 start-page: 3 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000855 article-title: Architecture selection for networks trained with extreme learning machine using localized generalization error model publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.12.053 – volume: 16 start-page: 1493 issue: 9 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br001015 article-title: Dynamic ensemble extreme learning machine based on sample entropy publication-title: Soft Computing doi: 10.1007/s00500-012-0824-6 – volume: 39 start-page: 12340 issue: 16 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000020 article-title: A new automatic target recognition system based on wavelet extreme learning machine publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.04.012 – volume: 22 start-page: 435 issue: 3-4 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000940 article-title: Fingerprint matching based on extreme learning machine publication-title: Neural Computing & Applications doi: 10.1007/s00521-011-0806-0 – volume: 59 start-page: 2629 issue: 11 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000320 article-title: Orthogonal least squares algorithm for training cascade neural networks publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers doi: 10.1109/TCSI.2012.2189060 – volume: 135 start-page: 590 issue: 2 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000140 article-title: Rapid measurement of total acid content (TAC) in vinegar using near infrared spectroscopy based on efficient variables selection algorithm and nonlinear regression tools publication-title: Food Chemistry doi: 10.1016/j.foodchem.2012.05.011 – volume: 43 start-page: 127 issue: 2 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000985 article-title: EEG classification approach based on the extreme learning machine and wavelet transform publication-title: Clinical EEG and Neuroscience doi: 10.1177/1550059411435861 – volume: 102 start-page: 125 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000050 article-title: Silicon spiking neurons for hardware implementation of extreme learning machines publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.01.042 – volume: 74 start-page: 155 issue: 1-3 year: 2010 ident: 10.1016/j.neunet.2014.10.001_br000305 article-title: Optimization method based extreme learning machine for classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.02.019 – volume: 112 start-page: 179 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000410 article-title: Kinesthetic teaching of visuomotor coordination for pointing by the humanoid robot icub publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.12.040 – volume: 21 start-page: 1331 issue: 6 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000355 article-title: Classification of electrocardiogram signals with support vector machines and extreme learning machine publication-title: Neural Computing & Applications doi: 10.1007/s00521-011-0572-z – volume: 17 start-page: 1411 issue: 6 year: 2006 ident: 10.1016/j.neunet.2014.10.001_br000420 article-title: A fast and accurate online sequential learning algorithm for feedforward networks publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2006.880583 – volume: 74 start-page: 2573 issue: 16 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br000945 article-title: Predicting the probability of ice storm damages to electricity transmission facilities based on ELM and copula function publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.12.039 – volume: 96 start-page: 29 issue: 1–2 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br000980 article-title: Epileptic eeg classification based on extreme learning machine and nonlinear features publication-title: Epilepsy Research doi: 10.1016/j.eplepsyres.2011.04.013 – volume: 77 start-page: 95 issue: 1 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br001035 article-title: Hyperspectral species mapping for automatic weed control in tomato under thermal environmental stress publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2011.04.001 – year: 2014 ident: 10.1016/j.neunet.2014.10.001_br000315 article-title: Semi-supervised and unsupervised extreme learning machines publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2014.2307349 – volume: 102 start-page: 45 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br001010 article-title: Regularized extreme learning machine for regression with missing data publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.02.040 – volume: 23 issue: 8 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br001060 article-title: The study of using an extreme learning machine for rapid concentration estimation in multi-component gas mixtures publication-title: Measurement Science & Technology doi: 10.1088/0957-0233/23/8/085101 – volume: 8 issue: 4 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000030 article-title: Modeling of drying process of bittim nuts (Pistacia terebinthus) in a fixed bed dryer system by using extreme learning machine publication-title: International Journal of Food Engineering doi: 10.1515/1556-3758.2737 – volume: 27 start-page: 635 issue: 3 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br000195 article-title: Tactile-data classification of contact materials using computational intelligence publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2011.2130030 – volume: 7 start-page: 391 issue: 4 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br001020 article-title: Short-term load forecasting of australian national electricity market by an ensemble model of extreme learning machine publication-title: IET Generation Transmission & Distribution doi: 10.1049/iet-gtd.2012.0541 – volume: 116 start-page: 49 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000695 article-title: Very fast training neural-computation techniques for real measure-correlate-predict wind operations in wind farms publication-title: Journal of Wind Engineering and Industrial Aerodynamics doi: 10.1016/j.jweia.2013.03.005 – volume: 33 start-page: 554 issue: 5 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br001005 article-title: Efficient and effective algorithms for training single-hidden-layer neural networks publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2011.12.002 – volume: 74 start-page: 2582 issue: 16 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br000675 article-title: Stable indirect adaptive neural controller for a class of nonlinear system publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.11.029 – volume: 102 start-page: 10 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000220 article-title: A novel automatic two-stage locally regularized classifier construction method using the extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.12.052 – start-page: 555 year: 2008 ident: 10.1016/j.neunet.2014.10.001_br000645 article-title: Uniform approximation of functions with random bases – volume: 8 start-page: 539 issue: 4 year: 1993 ident: 10.1016/j.neunet.2014.10.001_br000955 article-title: A review of evolutionary artificial neural networks publication-title: International Journal of Intelligent Systems doi: 10.1002/int.4550080406 – volume: 70 start-page: 489 issue: 1 year: 2006 ident: 10.1016/j.neunet.2014.10.001_br000340 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – ident: 10.1016/j.neunet.2014.10.001_br000495 doi: 10.1109/CISP.2009.5303973 – volume: 22 start-page: 427 issue: 3–4 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000590 article-title: 3d object recognition based on a geometrical topology model and extreme learning machine publication-title: Neural Computing & Applications doi: 10.1007/s00521-012-0892-7 – volume: 33 start-page: 58 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000475 article-title: A comparative analysis of support vector machines and extreme learning machines publication-title: Neural Networks doi: 10.1016/j.neunet.2012.04.002 – volume: 6 start-page: 388 issue: 4 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000405 article-title: Evaluating the internationalization success of companies through a hybrid grouping harmony search-extreme learning machine approach publication-title: IEEE Journal of Selected Topics in Signal Processing doi: 10.1109/JSTSP.2012.2199463 – volume: 39 start-page: 1067 issue: 4 year: 2009 ident: 10.1016/j.neunet.2014.10.001_br000665 article-title: Online sequential fuzzy extreme learning machine for function approximation and classification problems publication-title: IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics doi: 10.1109/TSMCB.2008.2010506 – volume: 73 start-page: 2160 issue: 10–12 year: 2010 ident: 10.1016/j.neunet.2014.10.001_br000525 article-title: Intelligent approaches using support vector machine and extreme learning machine for transmission line protection publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.02.001 – year: 2014 ident: 10.1016/j.neunet.2014.10.001_br000485 article-title: Is extreme learning machine feasible? a theoretical assessment (part I) publication-title: IEEE Transactions on Neural Networks nd Learning Systems – volume: 15 start-page: 1373 issue: 6 year: 2003 ident: 10.1016/j.neunet.2014.10.001_br000060 article-title: Laplacian eigenmaps for dimensionality reduction and data representation publication-title: Neural Computation doi: 10.1162/089976603321780317 – volume: 74 start-page: 2483 issue: 16 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br000810 article-title: A study on effectiveness of extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.11.030 – volume: 60 issue: 11 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br001040 article-title: Incremental regularized extreme learning machine based on cholesky factorization and its application to time series prediction publication-title: Acta Physica Sinica – volume: 102 start-page: 90 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000125 article-title: Image classification based on effective extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.02.042 – volume: 16 start-page: 1569 issue: 9 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000610 article-title: Color image segmentation by fixation-based active learning with ELM publication-title: Soft Computing doi: 10.1007/s00500-012-0830-8 – volume: 116 start-page: 94 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000960 article-title: Online sequential extreme learning machine in nonstationary environments publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.12.064 – volume: 25 start-page: 836 issue: 4 year: 2014 ident: 10.1016/j.neunet.2014.10.001_br000510 article-title: Sparse bayesian extreme learning machine for multi-classification publication-title: IEEE Transactions on Neural Networks nd Learning Systems doi: 10.1109/TNNLS.2013.2281839 – volume: 36 start-page: 253 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000905 article-title: Fashion retailing forecasting based on extreme learning machine with adaptive metrics of inputs publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2012.07.002 – volume: 3 start-page: 213 issue: 2 year: 1991 ident: 10.1016/j.neunet.2014.10.001_br000615 article-title: A resource-allocating network for function interpolation publication-title: Neural Computation doi: 10.1162/neco.1991.3.2.213 – volume: 12 start-page: 3132 issue: 10 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000445 article-title: Enhanced combination modeling method for combustion efficiency in coal-fired boilers publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2012.06.016 – volume: 4 start-page: 853 issue: 9 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000605 article-title: Kernel-based extreme learning machine for remote-sensing image classification publication-title: Remote Sensing Letters doi: 10.1080/2150704X.2013.805279 – volume: 14 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000965 article-title: Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-S8-S10 – volume: 53 start-page: 119 year: 2014 ident: 10.1016/j.neunet.2014.10.001_br000155 article-title: Extreme learning machine for ranking: Generalization analysis and applications publication-title: Neural Networks doi: 10.1016/j.neunet.2014.01.015 – volume: 5 start-page: 989 issue: 6 year: 1994 ident: 10.1016/j.neunet.2014.10.001_br000260 article-title: Training feedforward networks with the marquardt algorithm publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.329697 – ident: 10.1016/j.neunet.2014.10.001_br000285 doi: 10.1007/s12559-014-9255-2 – volume: 74 start-page: 2491 issue: 16 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br000540 article-title: A new robust training algorithm for a class of single-hidden layer feedforward neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.11.033 – volume: 102 start-page: 176 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000515 article-title: Semantic concept detection for video based on extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.02.043 – volume: 20 start-page: 1352 issue: 8 year: 2009 ident: 10.1016/j.neunet.2014.10.001_br000225 article-title: Error minimized extreme learning machine with growth of hidden nodes and incremental learning publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2009.2024147 – volume: 27 start-page: 2055 issue: 4 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000145 article-title: Electricity price forecasting with extreme learning machine and bootstrapping publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2012.2190627 – ident: 10.1016/j.neunet.2014.10.001_br000640 – volume: 73 start-page: 1976 issue: 10–12 year: 2010 ident: 10.1016/j.neunet.2014.10.001_br000765 article-title: OPELM and OPKNN in long-term prediction of time series using projected input data publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.11.033 – volume: 22 start-page: 447 issue: 3–4 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br001075 article-title: Text categorization based on regularization extreme learning machine publication-title: Neural Computing & Applications doi: 10.1007/s00521-011-0808-y – volume: 9 start-page: 207 issue: 1 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000505 article-title: A semi-supervised extreme learning machine method based on co-training publication-title: Journal of Computational Information Systems – volume: 44 start-page: 2588 issue: 10–11 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br000575 article-title: Human face recognition based on multidimensional pca and extreme learning machine publication-title: Pattern Recognition doi: 10.1016/j.patcog.2011.03.013 – volume: 44 start-page: 352 issue: 1 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000035 article-title: Drying of black cumin (Nigella sativa) in a microwave assisted drying system and modeling using extreme learning machine publication-title: Energy doi: 10.1016/j.energy.2012.06.022 – volume: 50 start-page: 60 year: 2014 ident: 10.1016/j.neunet.2014.10.001_br000240 article-title: Direct kernel perceptron (DKP): Ultra-fast kernel ELM-based classification with non-iterative closed-form weight calculation publication-title: Neural Networks doi: 10.1016/j.neunet.2013.11.002 – year: 2014 ident: 10.1016/j.neunet.2014.10.001_br000450 article-title: Is extreme learning machine feasible? a theoretical assessment (part II) publication-title: IEEE Transactions on Neural Networks nd Learning Systems – volume: 74 start-page: 2430 issue: 16 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br000800 article-title: GPU-accelerated and parallelized ELM ensembles for large-scale regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.11.034 – year: 2014 ident: 10.1016/j.neunet.2014.10.001_br000825 article-title: Parsimonious extreme learning machine using recursive orthogonal least squares publication-title: IEEE Transactions on Neural Networks nd Learning Systems doi: 10.1109/TNNLS.2013.2296048 – volume: 59 start-page: 496 issue: 8 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000200 article-title: Efficient digital implementation of extreme learning machines for classification publication-title: IEEE Transactions on Circuits and Systems II-Express Briefs doi: 10.1109/TCSII.2012.2204112 – volume: 74 start-page: 3716 issue: 17 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br000550 article-title: Regularized extreme learning machine for regression problems publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.06.013 – volume: 40 start-page: 5477 issue: 14 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000755 article-title: Automatic recognition of epileptic EEG patterns via extreme learning machine and multiresolution feature extraction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.04.025 – volume: 32 start-page: 970 issue: 4 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000480 article-title: Determination of process variable ph in solid-state fermentation by ft-nir spectroscopy and extreme learning machine (ELM) publication-title: Spectroscopy and Spectral Analysis – volume: 96 start-page: 29 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br000975 article-title: Epileptic EEG classification based on extreme learning machine and nonlinear features publication-title: Epilepsy Research doi: 10.1016/j.eplepsyres.2011.04.013 – volume: 16 start-page: 1477 issue: 9 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000845 article-title: Variable activation function extreme learning machine based on residual prediction compensation publication-title: Soft Computing doi: 10.1007/s00500-012-0817-5 – volume: 16 start-page: 1485 issue: 9 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000230 article-title: Evolutionary selection extreme learning machine optimization for regression publication-title: Soft Computing doi: 10.1007/s00500-012-0823-7 – volume: 9 start-page: 293 issue: 3 year: 1999 ident: 10.1016/j.neunet.2014.10.001_br000775 article-title: Least squares support vector machine classifiers publication-title: Neural Processing letters doi: 10.1023/A:1018628609742 – volume: 7 start-page: 2399 year: 2006 ident: 10.1016/j.neunet.2014.10.001_br000065 article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples publication-title: The Journal of Machine Learning Research – volume: 74 start-page: 2422 issue: 16 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br000210 article-title: Fast automatic two-stage nonlinear model identification based on the extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.11.035 – year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000325 – volume: 16 start-page: 1627 issue: 9 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000435 article-title: Rts game strategy evaluation using extreme learning machine publication-title: Soft Computing doi: 10.1007/s00500-012-0831-7 – volume: 102 start-page: 52 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000270 article-title: Parallel extreme learning machine for regression based on mapreduce publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.01.040 – volume: 102 start-page: 135 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000745 article-title: Eeg-based vigilance estimation using extreme learning machines publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.02.041 – volume: 20 start-page: 1009 issue: 6 year: 2009 ident: 10.1016/j.neunet.2014.10.001_br000380 article-title: Large scale nonlinear control system fine-tuning through learning publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2009.2014061 – year: 2014 ident: 10.1016/j.neunet.2014.10.001_br000025 article-title: Sparse extreme learning machine for classification publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2014.2298235 – volume: 65 start-page: 386 issue: 6 year: 1958 ident: 10.1016/j.neunet.2014.10.001_br000680 article-title: The perceptron: A probabilistic model for information storage and organization in the brain publication-title: Psychological Review doi: 10.1037/h0042519 – volume: 28 start-page: 35 issue: 5 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000455 article-title: A secure and practical mechanism of outsourcing extreme learning machine in cloud computing publication-title: IEEE Intelligent Systems – volume: 42 start-page: 898 issue: 9 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000520 article-title: A novel approach for detection and classification of mammographic microcalcifications using wavelet analysis and extreme learning machine publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2012.07.001 – volume: 39 start-page: 214 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000440 article-title: Multiple extreme learning machines for a two-class imbalance corporate life cycle prediction publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2012.11.003 – volume: 74 start-page: 2526 issue: 16 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br000245 article-title: Parameter-insensitive kernel in extreme learning for non-linear support vector regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.11.037 – volume: 34 start-page: 566 issue: 7 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000840 article-title: An accurate and efficient method to predict the electronic excitation energies of bodipy fluorescent dyes publication-title: Journal of Computational Chemistry doi: 10.1002/jcc.23168 – volume: 37 start-page: 277 issue: 3 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000930 article-title: Parallel chaos search based incremental extreme learning machine publication-title: Neural Processing Letters doi: 10.1007/s11063-012-9246-9 – volume: 28 start-page: 55 issue: 6 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000990 article-title: An adaptive and iterative online sequential ELM based multi-degree-of-freedom gesture recognition system publication-title: IEEE Intelligent Systems – volume: 9 start-page: 276 issue: 2 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br001000 article-title: An intelligent quick prediction algorithm with applications in industrial control and loading problems publication-title: IEEE Transactions on Automation Science and Engineering doi: 10.1109/TASE.2011.2173800 – volume: 87 start-page: 79 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br001070 article-title: Online sequential extreme learning machine with forgetting mechanism publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.02.003 – year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000865 article-title: Electrical drive radiated emissions estimation in terms of input control using extreme learning machines publication-title: Mathematical Problems in Engineering doi: 10.1155/2012/790526 – volume: 102 start-page: 31 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000280 article-title: Robust extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.12.045 – volume: Vol. 1479 start-page: 1506 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000185 article-title: The application of extreme learning machines to the network intrusion detection problem – ident: 10.1016/j.neunet.2014.10.001_br000095 – volume: 2 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.neunet.2014.10.001_br000070 article-title: Learning deep architectures for AI publication-title: Foundations and Trends in Machine Learning doi: 10.1561/2200000006 – volume: 16 start-page: 1595 issue: 9 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000815 article-title: Computational localization of transcription factor binding sites using extreme learning machines publication-title: Soft Computing doi: 10.1007/s00500-012-0820-x – volume: 22 start-page: 469 issue: 3–4 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000350 article-title: Extreme learning machine terrain-based navigation for unmanned aerial vehicles publication-title: Neural Computing & Applications doi: 10.1007/s00521-012-0866-9 – year: 2014 ident: 10.1016/j.neunet.2014.10.001_br000105 article-title: An ELM-based model for affective analogical reasoning publication-title: Neurocomputing – volume: 51 start-page: 417 issue: 4 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000740 article-title: Semg-based hand motion recognition using cumulative residual entropy and extreme learning machine publication-title: Medical & Biological Engineering & Computing doi: 10.1007/s11517-012-1010-9 – volume: 114 start-page: 80 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000545 article-title: Fusion of lattice independent and linear features improving face identification publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.06.045 – year: 1992 ident: 10.1016/j.neunet.2014.10.001_br000880 – volume: 50 start-page: 1211 issue: 8 year: 2005 ident: 10.1016/j.neunet.2014.10.001_br000465 article-title: A fast nonlinear model identification method publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2005.852557 – volume: 74 start-page: 2541 issue: 16 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br001090 article-title: Face recognition based on extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.12.041 – volume: 46 start-page: 57 issue: 1 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000040 article-title: An efficient illumination invariant face recognition framework via illumination enhancement and dd-dtcwt filtering publication-title: Pattern Recognition doi: 10.1016/j.patcog.2012.06.007 – volume: 10 issue: 5 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000660 article-title: Metagenomic taxonomic classification using extreme learning machines publication-title: Journal of Bioinformatics and Computational Biology doi: 10.1142/S0219720012500151 – ident: 10.1016/j.neunet.2014.10.001_br000650 – volume: 21 start-page: 1793 issue: 11 year: 2010 ident: 10.1016/j.neunet.2014.10.001_br000890 article-title: Neural network learning without backpropagation publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2010.2073482 – volume: 101 start-page: 229 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br001095 article-title: Weighted extreme learning machine for imbalance learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.08.010 – ident: 10.1016/j.neunet.2014.10.001_br000415 – volume: 49 start-page: 448 issue: 7 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br001025 article-title: Fuzzy extreme learning machine for classification publication-title: Electronics Letters doi: 10.1049/el.2012.3642 – volume: 71 start-page: 576 issue: 4 year: 2008 ident: 10.1016/j.neunet.2014.10.001_br000310 article-title: Incremental extreme learning machine with fully complex hidden nodes publication-title: Neurocomputing doi: 10.1016/j.neucom.2007.07.025 – volume: 27 start-page: 3123 issue: 22 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br000725 article-title: Improving the detection of transmembrane beta-barrel chains with n-to-1 extreme learning machines publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr549 – volume: 39 start-page: 234 issue: 1 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000090 article-title: Multifocal electroretinogram diagnosis of glaucoma applying neural networks and structural pattern analysis publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.07.013 – volume: 4 year: 2010 ident: 10.1016/j.neunet.2014.10.001_br000130 article-title: Change detection of land use and land cover in an urban region with spot-5 images and partial lanczos extreme learning machine publication-title: Journal of Applied Remote Sensing doi: 10.1117/12.863827 – volume: 8 year: 2009 ident: 10.1016/j.neunet.2014.10.001_br000370 article-title: Robust algorithm for arrhythmia classification in ecg using extreme learning machine publication-title: Biomedical Engineering Online doi: 10.1186/1475-925X-8-31 – volume: 323 start-page: 533 issue: 9 year: 1986 ident: 10.1016/j.neunet.2014.10.001_br000690 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – start-page: 1 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000160 article-title: Extreme learning machines for intrusion detection – volume: 22 start-page: 491 issue: 3–4 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000580 article-title: QAM equalization and symbol detection in OFDM systems using extreme learning machine publication-title: Neural Computing & Applications doi: 10.1007/s00521-011-0796-y – volume: 8 issue: 6 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000250 article-title: A novel approach for lie detection based on f-score and extreme learning machine publication-title: Plos One doi: 10.1371/journal.pone.0064704 – volume: 22 start-page: 531 issue: 3–4 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000425 article-title: The extreme learning machine learning algorithm with tunable activation function publication-title: Neural Computing & Applications – volume: 34 start-page: 101 issue: 2 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br000700 article-title: Weighting efficient accuracy and minimum sensitivity for evolving multi-class classifiers publication-title: Neural Processing Letters doi: 10.1007/s11063-011-9186-9 – volume: 40 start-page: 3984 issue: 10 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000015 article-title: A new method for expert target recognition system: Genetic wavelet extreme learning machine (GAWELM) publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.01.011 – volume: 66 start-page: 4702 issue: 20 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br001050 article-title: Optimization of nonlinear process based on sequential extreme learning machine publication-title: Chemical Engineering Science doi: 10.1016/j.ces.2011.06.030 – volume: 18 start-page: 4275 issue: 9 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000710 article-title: Fast learning optimized prediction methodology (flopred) for protein secondary structure prediction publication-title: Journal of Molecular Modeling doi: 10.1007/s00894-012-1410-7 – volume: 190 start-page: 129 issue: 1 year: 2010 ident: 10.1016/j.neunet.2014.10.001_br000005 article-title: Nass: An empirical approach to spike sorting with overlap resolution based on a hybrid noise-assisted methodology publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2010.04.018 – volume: 21 start-page: 158 issue: 1 year: 2010 ident: 10.1016/j.neunet.2014.10.001_br000555 article-title: OP-ELM: Optimally pruned extreme learning machine publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2009.2036259 – volume: 23 start-page: 345 issue: 3 year: 2010 ident: 10.1016/j.neunet.2014.10.001_br000790 article-title: Ternary reversible extreme learning machines: the incremental tri-training method for semi-supervised classification publication-title: Knowledge and Information Systems doi: 10.1007/s10115-009-0220-4 – volume: 13 start-page: 3429 issue: 8 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000365 article-title: A hybrid decision support system based on rough set and extreme learning machine for diagnosis of hepatitis disease publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2013.03.008 – volume: 73 start-page: 1831 issue: 10–12 year: 2010 ident: 10.1016/j.neunet.2014.10.001_br000565 article-title: A fast recognition framework based on extreme learning machine using hybrid object information publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.11.049 – start-page: 1 year: 1992 ident: 10.1016/j.neunet.2014.10.001_br000735 article-title: Feed forward neural networks with random weights – volume: 23 start-page: 283 issue: 2 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br001080 article-title: Surface reconstruction based on extreme learning machine publication-title: Neural Computing & Applications doi: 10.1007/s00521-012-0891-8 – volume: 36 start-page: 285 issue: 3 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000115 article-title: Self-adaptive evolutionary extreme learning machine publication-title: Neural Processing Letters doi: 10.1007/s11063-012-9236-y – volume: 36 start-page: 1001 issue: 2 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000190 article-title: A hybrid automatic system for the diagnosis of lung cancer based on genetic algorithm and fuzzy extreme learning machines publication-title: Journal of Medical Systems doi: 10.1007/s10916-011-9806-y – volume: 34 start-page: 135 issue: 1 year: 1962 ident: 10.1016/j.neunet.2014.10.001_br000085 article-title: Analysis of a four-layer series-coupled perceptron. II publication-title: Reviewers of Modern Physics doi: 10.1103/RevModPhys.34.135 – start-page: 460 year: 2006 ident: 10.1016/j.neunet.2014.10.001_br000875 article-title: Approxiate nonlinear forecasting methods doi: 10.1016/S1574-0706(05)01009-8 – volume: 74 start-page: 2464 issue: 16 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br000835 article-title: Image deblurring with filters learned by extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.12.035 – volume: 187 start-page: 277 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000720 article-title: Fast learning circular complex-valued extreme learning machine (CC-ELM) for real-valued classification problems publication-title: Information Sciences doi: 10.1016/j.ins.2011.11.003 – volume: 37 start-page: 182 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000885 article-title: The No-Prop algorithm: A new learning algorithm for multilayer neural networks publication-title: Neural Networks doi: 10.1016/j.neunet.2012.09.020 – volume: 23 start-page: 365 issue: 2 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br001030 article-title: Universal approximation of extreme learning machine with adaptive growth of hidden nodes publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2011.2178124 – volume: 38 start-page: 1336 issue: 3 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br000150 article-title: Sales forecasting system based on gray extreme learning machine with taguchi method in retail industry publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.07.014 – volume: 27 start-page: 1253 issue: 3 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000920 article-title: A reliable intelligent system for real-time dynamic security assessment of power systems publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2012.2183899 – volume: 23 start-page: 1498 issue: 9 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000935 article-title: Bidirectional extreme learning machine for regression problem and its learning effectiveness publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2012.2202289 – volume: 22 start-page: 541 issue: 3–4 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000170 article-title: A modified extreme learning machine with sigmoidal activation functions publication-title: Neural Computing & Applications doi: 10.1007/s00521-012-0860-2 – volume: 11 start-page: 1066 issue: 6 year: 2014 ident: 10.1016/j.neunet.2014.10.001_br000055 article-title: Differential evolution extreme learning machine for the classification of hyperspectral images publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2013.2286078 – volume: 20 start-page: 899 issue: 7 year: 2010 ident: 10.1016/j.neunet.2014.10.001_br000705 article-title: Evaluating the performance of evolutionary extreme learning machines by a combination of sensitivity and accuracy measures publication-title: Neural Network World – volume: 39 start-page: 2677 issue: 3 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000045 article-title: Eog-based eye movements codification for human computer interaction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.08.123 – volume: 42 start-page: 513 issue: 2 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000335 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics doi: 10.1109/TSMCB.2011.2168604 – volume: 78 start-page: 1481 issue: 9 year: 1990 ident: 10.1016/j.neunet.2014.10.001_br000625 article-title: Networks for approximation and learning publication-title: Proceedings of the IEEE doi: 10.1109/5.58326 – volume: 39 start-page: 155 issue: 2 year: 2014 ident: 10.1016/j.neunet.2014.10.001_br001085 article-title: Learning to rank with extreme learning machine publication-title: Neural processing letters doi: 10.1007/s11063-013-9295-8 – ident: 10.1016/j.neunet.2014.10.001_br000870 doi: 10.1109/IJCNN.1989.118281 – start-page: 60 year: 2010 ident: 10.1016/j.neunet.2014.10.001_br000585 article-title: Fault prognosis of mechanical components using on-line learning neural networks – volume: 13 start-page: 282 issue: 4 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br000635 article-title: Evolutionary fuzzy extreme learning machine for mammographic risk analysis publication-title: International Journal of Fuzzy Systems – volume: 74 start-page: 2566 issue: 16 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br000470 article-title: SELM: Semi-supervised ELM with application in sparse calibrated location estimation publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.12.043 – volume: 28 start-page: 18 issue: 5 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000255 article-title: Combining ELM with random projections publication-title: IEEE Intelligent Systems – volume: 22 start-page: 685 issue: 3 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000780 article-title: Neural network based identification of hysteresis in human meridian systems publication-title: International Journal of Applied Mathematics and Computer Science doi: 10.2478/v10006-012-0051-4 – volume: 72 start-page: 359 issue: 1 year: 2008 ident: 10.1016/j.neunet.2014.10.001_br000670 article-title: A fast pruned-extreme learning machine for classification problem publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.01.005 – volume: 2 start-page: 302 issue: 2 year: 1991 ident: 10.1016/j.neunet.2014.10.001_br000135 article-title: Orthogonal least squares learning algorithm for radial basis function networks publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.80341 – volume: 7 start-page: 73 issue: 1 year: 2010 ident: 10.1016/j.neunet.2014.10.001_br000795 article-title: An ensemble ELM based on modified AdaBoost.RT algorithm for predicting the temperature of molten steel in ladle furnace publication-title: IEEE Transactions on Automation Science and Engineering doi: 10.1109/TASE.2008.2005640 – start-page: 2209 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000010 article-title: Image super-resolution by extreme learning machine – volume: 22 start-page: 501 issue: 3–4 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000910 article-title: Extreme learning machine-based predictor for real-time frequency stability assessment of electric power systems publication-title: Neural Computing & Applications doi: 10.1007/s00521-011-0803-3 – volume: 17 start-page: 879 issue: 4 year: 2006 ident: 10.1016/j.neunet.2014.10.001_br000300 article-title: Universal approximation using incremental constructive feedforward networks with random hidden nodes publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2006.875977 – volume: 23 start-page: 1974 issue: 12 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000535 article-title: Robust single-hidden layer feedforward network-based pattern classifier publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2012.2218616 – ident: 10.1016/j.neunet.2014.10.001_br000730 – volume: 72 start-page: 3391 issue: 13–15 year: 2009 ident: 10.1016/j.neunet.2014.10.001_br000400 article-title: Ensemble of online sequential extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.02.013 – volume: 73 start-page: 1405 issue: 7-9 year: 2010 ident: 10.1016/j.neunet.2014.10.001_br000110 article-title: Composite function wavelet neural networks with extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.12.007 – volume: 16 start-page: 1617 issue: 9 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000165 article-title: Extreme learning machine-based device displacement free activity recognition model publication-title: Soft Computing doi: 10.1007/s00500-012-0822-8 – volume: 55 start-page: 519 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000900 article-title: Modeling and optimization of biodiesel engine performance using advanced machine learning methods publication-title: Energy doi: 10.1016/j.energy.2013.03.057 – volume: 70 start-page: 3056 issue: 16 year: 2007 ident: 10.1016/j.neunet.2014.10.001_br000290 article-title: Convex incremental extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2007.02.009 – volume: 17 start-page: 754 issue: 8 year: 2010 ident: 10.1016/j.neunet.2014.10.001_br000490 article-title: Ensemble based extreme learning machine publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2010.2053356 – volume: 28 start-page: 48 issue: 5 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000925 article-title: Reduced ELMs for causal relation extraction from unstructured text publication-title: IEEE Intelligent Systems – volume: 20 start-page: 1009 issue: 6 year: 2009 ident: 10.1016/j.neunet.2014.10.001_br000385 article-title: Large scale nonlinear control system fine-tuning through learning publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2009.2014061 – volume: 71 start-page: 3460 issue: 16 year: 2008 ident: 10.1016/j.neunet.2014.10.001_br000295 article-title: Enhanced random search based incremental extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2007.10.008 – volume: 33 start-page: 231 issue: 2 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000860 article-title: An effective method for accurate prediction of the first hyperpolarizability of alkalides publication-title: Journal of Computational Chemistry doi: 10.1002/jcc.21969 – volume: 2 start-page: 107 issue: 2 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br000330 article-title: Extreme learning machines: a survey publication-title: International Journal of Machine Learning and Cybernetics doi: 10.1007/s13042-011-0019-y – volume: 74 start-page: 2444 issue: 16 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br001065 article-title: XML document classification based on ELM publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.12.038 – volume: 102 start-page: 111 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000075 article-title: Feature selection for nonlinear models with extreme learning machines publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.12.055 – volume: 34 start-page: 123 issue: 1 year: 1962 ident: 10.1016/j.neunet.2014.10.001_br000080 article-title: The perceptron: A model for brain function. I publication-title: Reviewers of Modern Physics doi: 10.1103/RevModPhys.34.123 – volume: 2 start-page: 307 issue: 3 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000595 article-title: Performance comparison of extreme learning machine algorithms for mycobacterium tuberculosis detection in tissue sections publication-title: Journal of Medical Imaging and Health Informatics doi: 10.1166/jmihi.2012.1100 – volume: 6 start-page: 264 year: 2014 ident: 10.1016/j.neunet.2014.10.001_br000275 article-title: Fast face recognition via sparse coding and extreme learning machine publication-title: Cognitive Computation – volume: 22 start-page: 479 issue: 3–4 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000850 article-title: Predicting consumer sentiments using online sequential extreme learning machine and intuitionistic fuzzy sets publication-title: Neural Computing & Applications doi: 10.1007/s00521-012-0853-1 – volume: 128 start-page: 614 issue: 2 year: 2010 ident: 10.1016/j.neunet.2014.10.001_br000895 article-title: A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2010.07.008 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.neunet.2014.10.001_br000180 article-title: Support vector machine publication-title: Machine learning doi: 10.1007/BF00994018 – volume: 210 start-page: 132 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000750 article-title: Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2012.07.003 – volume: 61 issue: 8 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000830 article-title: Multivariate chaotic time series prediction based on extreme learning machine publication-title: Acta Physica Sinica – volume: 38 start-page: 76 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000100 article-title: Reservoir computing and extreme learning machines for non-linear time-series data analysis publication-title: Neural Networks doi: 10.1016/j.neunet.2012.11.011 – volume: 74 start-page: 2532 issue: 16 year: 2011 ident: 10.1016/j.neunet.2014.10.001_br000265 article-title: A parallel incremental extreme svm classifier publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.11.036 – volume: 96 start-page: 4921 issue: 8 year: 2013 ident: 10.1016/j.neunet.2014.10.001_br000375 article-title: Irradiation dose detection of irradiated milk powder using visible and near-infrared spectroscopy and chemometrics publication-title: Journal of Dairy Science doi: 10.3168/jds.2013-6659 – year: 1962 ident: 10.1016/j.neunet.2014.10.001_br000685 – volume: 9 start-page: 273 issue: 2 year: 1996 ident: 10.1016/j.neunet.2014.10.001_br000620 article-title: Experience with selecting exemplars from clean data publication-title: Neural Networks doi: 10.1016/0893-6080(95)00099-2 – year: 2014 ident: 10.1016/j.neunet.2014.10.001_br000820 article-title: Parsimonious extreme learning machine using recursive orthogonal least squares publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNNLS.2013.2296048 – ident: 10.1016/j.neunet.2014.10.001_br000345 – volume: 22 start-page: 1529 issue: 11 year: 2012 ident: 10.1016/j.neunet.2014.10.001_br000570 article-title: Incremental learning in human action recognition based on snippets publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2011.2177182 |
| SSID | ssj0006843 |
| Score | 2.6697593 |
| SecondaryResourceType | review_article |
| Snippet | Extreme learning machine (ELM) has gained increasing interest from various research fields recently. In this review, we aim to report the current state of the... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 32 |
| SubjectTerms | Algorithms Artificial Intelligence - classification Artificial Intelligence - standards Artificial Intelligence - trends Classification Clustering Extreme learning machine Feature learning Regression |
| Title | Trends in extreme learning machines: A review |
| URI | https://dx.doi.org/10.1016/j.neunet.2014.10.001 https://www.ncbi.nlm.nih.gov/pubmed/25462632 https://www.proquest.com/docview/1662427949 |
| Volume | 61 |
| WOSCitedRecordID | wos000347595400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELag5cCF9yNQKiP1hhzt2za3UJUWDhVSWim3le16YSNwqiZB5d8z3rE3gahqi8RltbGyWa9ndvx58o0_QvbSSgBsVRUrtSpYYeFNl6XVDCbvxjZWJ7ZRndgEPz4Wk4n8EjRb552cAHdOXF7K8_9qamgDY_vS2VuYu_9RaIBzMDocwexwvJnhe5YrxF2f_YvKEF_f_eiYk8iCG4WqlXV06nfqAJM5pIbPVyYPSeVDNdts8yfsQ9s72TiQfMff2mm7FlSwCujXbLmeaEjLvxINfQXMim7UBSmZsypBNaahxSAquGQZF39EWdxyPYTJkNLECRd32twI5ZhVmA6dXcJjexJeMex4eOlq6uoJhWPfD98NWC8CKvHK5tsZLyXEue3Rp4PJ5352rgQyKWO_Yzllx_nbvNdVcOWq5UgHS04ekQdhPUFH6AePyR3rnpCHUauDhtD9lDB0C9o6GtyCRreg0S3e0xFFp3hGTj8enOwfsSCVwQwgkAWrUiGzhje68ZBdZ5kyKufKJolSAEGlzs64zgutjUyNOpPwSZVJbjRXMjeFyJ-TLTdz9iWhWaoaQOmi4RCqE2EBMOpEcqk8MrTSDEgeR6Q2YR95L2fyvY6EwWmN41j7cfStMI4DwvqrznEflWu-z-Ng1wELIsarwT-uufJttE0NodL__6WcnS3ndVr5Yih4KjkgL9BofV-8LISXLnj1z_d9Te6v3podsrW4WNo35J75uWjnF7vkLp-I3eCMvwEBm5bN |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trends+in+extreme+learning+machines%3A+A+review&rft.jtitle=Neural+networks&rft.au=Huang%2C+Gao&rft.au=Huang%2C+Guang-Bin&rft.au=Song%2C+Shiji&rft.au=You%2C+Keyou&rft.date=2015-01-01&rft.pub=Elsevier+Ltd&rft.issn=0893-6080&rft.eissn=1879-2782&rft.volume=61&rft.spage=32&rft.epage=48&rft_id=info:doi/10.1016%2Fj.neunet.2014.10.001&rft.externalDocID=S0893608014002214 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |