Trends in extreme learning machines: A review

Extreme learning machine (ELM) has gained increasing interest from various research fields recently. In this review, we aim to report the current state of the theoretical research and practical advances on this subject. We first give an overview of ELM from the theoretical perspective, including the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neural networks Ročník 61; s. 32 - 48
Hlavní autori: Huang, Gao, Huang, Guang-Bin, Song, Shiji, You, Keyou
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Ltd 01.01.2015
Predmet:
ISSN:0893-6080, 1879-2782, 1879-2782
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Extreme learning machine (ELM) has gained increasing interest from various research fields recently. In this review, we aim to report the current state of the theoretical research and practical advances on this subject. We first give an overview of ELM from the theoretical perspective, including the interpolation theory, universal approximation capability, and generalization ability. Then we focus on the various improvements made to ELM which further improve its stability, sparsity and accuracy under general or specific conditions. Apart from classification and regression, ELM has recently been extended for clustering, feature selection, representational learning and many other learning tasks. These newly emerging algorithms greatly expand the applications of ELM. From implementation aspect, hardware implementation and parallel computation techniques have substantially sped up the training of ELM, making it feasible for big data processing and real-time reasoning. Due to its remarkable efficiency, simplicity, and impressive generalization performance, ELM have been applied in a variety of domains, such as biomedical engineering, computer vision, system identification, and control and robotics. In this review, we try to provide a comprehensive view of these advances in ELM together with its future perspectives.
AbstractList Extreme learning machine (ELM) has gained increasing interest from various research fields recently. In this review, we aim to report the current state of the theoretical research and practical advances on this subject. We first give an overview of ELM from the theoretical perspective, including the interpolation theory, universal approximation capability, and generalization ability. Then we focus on the various improvements made to ELM which further improve its stability, sparsity and accuracy under general or specific conditions. Apart from classification and regression, ELM has recently been extended for clustering, feature selection, representational learning and many other learning tasks. These newly emerging algorithms greatly expand the applications of ELM. From implementation aspect, hardware implementation and parallel computation techniques have substantially sped up the training of ELM, making it feasible for big data processing and real-time reasoning. Due to its remarkable efficiency, simplicity, and impressive generalization performance, ELM have been applied in a variety of domains, such as biomedical engineering, computer vision, system identification, and control and robotics. In this review, we try to provide a comprehensive view of these advances in ELM together with its future perspectives.
Extreme learning machine (ELM) has gained increasing interest from various research fields recently. In this review, we aim to report the current state of the theoretical research and practical advances on this subject. We first give an overview of ELM from the theoretical perspective, including the interpolation theory, universal approximation capability, and generalization ability. Then we focus on the various improvements made to ELM which further improve its stability, sparsity and accuracy under general or specific conditions. Apart from classification and regression, ELM has recently been extended for clustering, feature selection, representational learning and many other learning tasks. These newly emerging algorithms greatly expand the applications of ELM. From implementation aspect, hardware implementation and parallel computation techniques have substantially sped up the training of ELM, making it feasible for big data processing and real-time reasoning. Due to its remarkable efficiency, simplicity, and impressive generalization performance, ELM have been applied in a variety of domains, such as biomedical engineering, computer vision, system identification, and control and robotics. In this review, we try to provide a comprehensive view of these advances in ELM together with its future perspectives.Extreme learning machine (ELM) has gained increasing interest from various research fields recently. In this review, we aim to report the current state of the theoretical research and practical advances on this subject. We first give an overview of ELM from the theoretical perspective, including the interpolation theory, universal approximation capability, and generalization ability. Then we focus on the various improvements made to ELM which further improve its stability, sparsity and accuracy under general or specific conditions. Apart from classification and regression, ELM has recently been extended for clustering, feature selection, representational learning and many other learning tasks. These newly emerging algorithms greatly expand the applications of ELM. From implementation aspect, hardware implementation and parallel computation techniques have substantially sped up the training of ELM, making it feasible for big data processing and real-time reasoning. Due to its remarkable efficiency, simplicity, and impressive generalization performance, ELM have been applied in a variety of domains, such as biomedical engineering, computer vision, system identification, and control and robotics. In this review, we try to provide a comprehensive view of these advances in ELM together with its future perspectives.
Author Huang, Gao
You, Keyou
Huang, Guang-Bin
Song, Shiji
Author_xml – sequence: 1
  givenname: Gao
  orcidid: 0000-0002-7251-0988
  surname: Huang
  fullname: Huang, Gao
  email: huang-g09@mails.tsinghua.edu.cn
  organization: Department of Automation, Tsinghua University, Beijing 100084, China
– sequence: 2
  givenname: Guang-Bin
  orcidid: 0000-0002-2480-4965
  surname: Huang
  fullname: Huang, Guang-Bin
  email: egbhuang@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore
– sequence: 3
  givenname: Shiji
  surname: Song
  fullname: Song, Shiji
  email: shijis@mail.tsinghua.edu.cn
  organization: Department of Automation, Tsinghua University, Beijing 100084, China
– sequence: 4
  givenname: Keyou
  orcidid: 0000-0003-4355-5340
  surname: You
  fullname: You, Keyou
  email: youky@mail.tsinghua.edu.cn
  organization: Department of Automation, Tsinghua University, Beijing 100084, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25462632$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtOwzAQRS1URB_wBwhlySbBj9SJu0CqKl5SJTZlbTnOBFwlTrETHn-Pq7QbFrAazejcK82ZopFtLSB0SXBCMOE328RCb6FLKCZpOCUYkxM0IXkmYprldIQmOBcs5jjHYzT1fosx5nnKztCYzlNOOaMTFG8c2NJHxkbw1TloIKpBOWvsa9Qo_WYs-EW0jBx8GPg8R6eVqj1cHOYMvdzfbVaP8fr54Wm1XMeacdrFnOSCVllVVJgIWlCqtGKZAoyVYkKIgpZZwdKi0IJoVYqwqTlmusiUYDrN2QxdD70717734DvZGK-hrpWFtveScE5TmolUBPTqgPZFA6XcOdMo9y2PLwZgMQDatd47qKQ2nepMazunTC0JlnufcisHn3Lvc38NPkM4_RU-9v8Tux1iECQFcU56bcBqKI0D3cmyNX8X_AC_5pAJ
CitedBy_id crossref_primary_10_1016_j_eswa_2017_12_015
crossref_primary_10_1016_j_compeleceng_2020_106641
crossref_primary_10_1016_j_jksuci_2018_09_008
crossref_primary_10_1109_ACCESS_2020_2965769
crossref_primary_10_1007_s10115_019_01339_0
crossref_primary_10_1016_j_fuel_2024_133109
crossref_primary_10_1016_j_neucom_2017_01_117
crossref_primary_10_1016_j_catena_2019_02_012
crossref_primary_10_1007_s11269_021_02822_6
crossref_primary_10_1016_j_eswa_2017_04_013
crossref_primary_10_1007_s00521_016_2453_y
crossref_primary_10_1007_s13042_019_00952_3
crossref_primary_10_1016_j_neucom_2017_01_115
crossref_primary_10_1155_2022_1735573
crossref_primary_10_1016_j_jretconser_2023_103299
crossref_primary_10_1007_s00521_016_2342_4
crossref_primary_10_1016_j_neucom_2021_11_026
crossref_primary_10_1038_s41598_024_64217_y
crossref_primary_10_3390_app9132761
crossref_primary_10_3390_analytica6030029
crossref_primary_10_1016_j_knosys_2018_06_029
crossref_primary_10_1016_j_neucom_2016_01_071
crossref_primary_10_1007_s00521_020_05414_4
crossref_primary_10_1016_j_knosys_2016_10_019
crossref_primary_10_1109_TCYB_2017_2648261
crossref_primary_10_3390_su17125249
crossref_primary_10_1016_j_psep_2024_03_014
crossref_primary_10_1103_PhysRevApplied_23_044024
crossref_primary_10_1007_s10661_016_5094_9
crossref_primary_10_1016_j_ijrefrig_2023_09_005
crossref_primary_10_1016_j_bspc_2023_104663
crossref_primary_10_1088_1757_899X_914_1_012033
crossref_primary_10_1016_j_ijfatigue_2025_108899
crossref_primary_10_1007_s11277_017_5119_x
crossref_primary_10_1016_j_dib_2020_105213
crossref_primary_10_1016_j_neunet_2018_01_007
crossref_primary_10_1109_ACCESS_2020_2998437
crossref_primary_10_1002_sec_1582
crossref_primary_10_1007_s41688_017_0004_z
crossref_primary_10_1016_j_enbuild_2016_09_002
crossref_primary_10_3390_agriculture13020357
crossref_primary_10_3390_aerospace6110117
crossref_primary_10_1016_j_jhydrol_2016_09_035
crossref_primary_10_1016_j_engappai_2023_107559
crossref_primary_10_1016_j_eswa_2022_118006
crossref_primary_10_1016_j_ress_2018_04_015
crossref_primary_10_1080_00949655_2024_2439453
crossref_primary_10_1007_s00500_016_2372_y
crossref_primary_10_1155_2015_103796
crossref_primary_10_1007_s12559_018_9598_1
crossref_primary_10_1007_s10586_017_0825_4
crossref_primary_10_3390_s151026877
crossref_primary_10_1016_j_neucom_2018_05_074
crossref_primary_10_1109_ACCESS_2022_3178709
crossref_primary_10_3390_plants9030368
crossref_primary_10_1016_j_compbiolchem_2020_107368
crossref_primary_10_1109_ACCESS_2018_2848966
crossref_primary_10_1007_s13218_015_0372_1
crossref_primary_10_1109_TAES_2023_3288506
crossref_primary_10_3390_s18030742
crossref_primary_10_1007_s10898_018_0701_7
crossref_primary_10_1016_j_neucom_2017_01_120
crossref_primary_10_1007_s12559_022_10093_5
crossref_primary_10_1016_j_neucom_2017_01_126
crossref_primary_10_1007_s13369_018_3508_4
crossref_primary_10_1016_j_neucom_2017_09_047
crossref_primary_10_1007_s11045_016_0393_4
crossref_primary_10_1016_j_neucom_2021_04_049
crossref_primary_10_1016_j_semcancer_2021_04_013
crossref_primary_10_1007_s00477_016_1265_z
crossref_primary_10_1016_j_jksuci_2023_101576
crossref_primary_10_1155_2015_682907
crossref_primary_10_1016_j_nima_2022_166637
crossref_primary_10_1109_TIM_2023_3251416
crossref_primary_10_1016_j_optcom_2024_131471
crossref_primary_10_3389_fmed_2025_1540297
crossref_primary_10_1016_j_neucom_2018_04_012
crossref_primary_10_1109_ACCESS_2021_3080456
crossref_primary_10_1109_TSP_2021_3130964
crossref_primary_10_1038_s41928_022_00719_9
crossref_primary_10_1177_0142331215589610
crossref_primary_10_3390_electronics12173608
crossref_primary_10_3233_IDT_180325
crossref_primary_10_1016_j_neucom_2015_04_018
crossref_primary_10_1016_j_smhl_2024_100502
crossref_primary_10_1155_2023_6418897
crossref_primary_10_4018_IJDCF_2019010106
crossref_primary_10_1007_s13042_022_01636_1
crossref_primary_10_1016_j_neucom_2018_05_057
crossref_primary_10_1016_j_neunet_2018_10_014
crossref_primary_10_3390_math7100947
crossref_primary_10_1016_j_neucom_2018_12_080
crossref_primary_10_1007_s11063_024_11492_5
crossref_primary_10_1016_j_pecs_2022_101010
crossref_primary_10_1016_j_cie_2024_109931
crossref_primary_10_1016_j_neucom_2023_126704
crossref_primary_10_1007_s10489_018_01403_2
crossref_primary_10_1007_s10103_022_03513_3
crossref_primary_10_1016_j_neucom_2015_04_002
crossref_primary_10_1007_s12517_022_09906_6
crossref_primary_10_1080_00207721_2020_1765047
crossref_primary_10_1016_j_neucom_2018_05_066
crossref_primary_10_1016_j_neucom_2021_04_027
crossref_primary_10_1016_j_asoc_2018_01_036
crossref_primary_10_1016_j_engappai_2025_111369
crossref_primary_10_1109_ACCESS_2015_2506601
crossref_primary_10_1016_j_neucom_2018_05_064
crossref_primary_10_3390_s20226491
crossref_primary_10_1017_S0269964816000061
crossref_primary_10_1016_j_neucom_2016_05_113
crossref_primary_10_1016_j_cjche_2020_09_060
crossref_primary_10_1109_ACCESS_2020_2965303
crossref_primary_10_1016_j_envpol_2018_05_072
crossref_primary_10_1016_j_neucom_2017_09_090
crossref_primary_10_1016_j_neucom_2016_05_115
crossref_primary_10_1155_2022_5433474
crossref_primary_10_1016_j_neucom_2016_05_116
crossref_primary_10_1007_s11831_022_09860_2
crossref_primary_10_1007_s13748_017_0136_2
crossref_primary_10_1109_ACCESS_2021_3112552
crossref_primary_10_1016_j_engappai_2023_107757
crossref_primary_10_3390_rs14122737
crossref_primary_10_1007_s10479_020_03690_w
crossref_primary_10_1016_j_neucom_2017_08_040
crossref_primary_10_1007_s11071_021_06987_y
crossref_primary_10_1109_TII_2018_2793905
crossref_primary_10_1016_j_neucom_2024_129298
crossref_primary_10_1049_el_2015_2360
crossref_primary_10_1016_j_asoc_2019_106028
crossref_primary_10_1016_j_patcog_2016_10_019
crossref_primary_10_1007_s10115_024_02279_0
crossref_primary_10_1016_j_seta_2023_103088
crossref_primary_10_1007_s11042_019_7543_2
crossref_primary_10_1155_2019_3476521
crossref_primary_10_1007_s10462_016_9461_2
crossref_primary_10_1109_ACCESS_2020_2985381
crossref_primary_10_1021_jasms_4c00318
crossref_primary_10_1016_j_patrec_2019_01_011
crossref_primary_10_3390_buildings15071200
crossref_primary_10_1007_s11036_021_01737_1
crossref_primary_10_1016_j_cognition_2017_12_015
crossref_primary_10_3390_s23136187
crossref_primary_10_1109_TAFFC_2017_2763943
crossref_primary_10_3390_bios12030144
crossref_primary_10_1016_j_neucom_2020_08_050
crossref_primary_10_1016_j_sigpro_2016_11_008
crossref_primary_10_1109_LGRS_2016_2517178
crossref_primary_10_1016_j_neucom_2018_12_078
crossref_primary_10_1007_s12273_019_0548_y
crossref_primary_10_1155_2017_4194251
crossref_primary_10_1007_s12652_020_02340_0
crossref_primary_10_3390_su9050754
crossref_primary_10_1109_TASE_2021_3074873
crossref_primary_10_1016_j_petrol_2020_106929
crossref_primary_10_1109_TCAD_2018_2878162
crossref_primary_10_1109_ACCESS_2018_2887260
crossref_primary_10_1109_TIE_2016_2597119
crossref_primary_10_1007_s00607_021_01011_y
crossref_primary_10_1109_TITS_2018_2850057
crossref_primary_10_1016_j_jvcir_2018_11_035
crossref_primary_10_1109_JIOT_2021_3071152
crossref_primary_10_1007_s12559_021_09914_w
crossref_primary_10_1007_s10462_022_10283_5
crossref_primary_10_1007_s11063_021_10452_7
crossref_primary_10_1002_sam_11493
crossref_primary_10_1016_j_neucom_2019_01_070
crossref_primary_10_1016_j_watres_2022_118111
crossref_primary_10_1155_2021_5588426
crossref_primary_10_1016_j_knosys_2021_106964
crossref_primary_10_1016_j_bspc_2025_107899
crossref_primary_10_1007_s00521_023_08354_x
crossref_primary_10_3390_en10111784
crossref_primary_10_1016_j_neucom_2015_04_041
crossref_primary_10_1007_s12652_018_0994_x
crossref_primary_10_1016_j_scitotenv_2023_162043
crossref_primary_10_1016_j_microc_2025_114056
crossref_primary_10_1080_1448837X_2019_1578044
crossref_primary_10_1109_TSMC_2017_2720702
crossref_primary_10_1016_j_engappai_2020_104062
crossref_primary_10_1007_s11042_018_6500_9
crossref_primary_10_1109_TITS_2019_2949432
crossref_primary_10_1109_ACCESS_2020_2987930
crossref_primary_10_1109_ACCESS_2022_3196769
crossref_primary_10_3390_su14074020
crossref_primary_10_1145_2816795_2818121
crossref_primary_10_1016_j_jag_2021_102370
crossref_primary_10_1088_1361_6501_ad9108
crossref_primary_10_1016_j_cie_2024_109907
crossref_primary_10_3390_en15249512
crossref_primary_10_1007_s00521_019_04398_0
crossref_primary_10_7717_peerj_cs_411
crossref_primary_10_3390_en13164236
crossref_primary_10_1007_s11063_018_9890_9
crossref_primary_10_1016_j_est_2022_104996
crossref_primary_10_5004_dwt_2021_26903
crossref_primary_10_1109_ACCESS_2018_2868713
crossref_primary_10_1109_ACCESS_2019_2932909
crossref_primary_10_1109_TSMC_2019_2907672
crossref_primary_10_1155_2022_4998200
crossref_primary_10_3390_en14196279
crossref_primary_10_1016_j_apenergy_2016_12_080
crossref_primary_10_1007_s10044_019_00844_w
crossref_primary_10_1016_j_cageo_2017_02_001
crossref_primary_10_35453_NEDJR_ASCN_2018_0006
crossref_primary_10_1007_s11740_019_00923_1
crossref_primary_10_1109_ACCESS_2020_3047933
crossref_primary_10_1016_j_eswa_2022_119164
crossref_primary_10_1109_TSMC_2017_2690673
crossref_primary_10_1109_ACCESS_2021_3063028
crossref_primary_10_1007_s11063_023_11248_7
crossref_primary_10_3390_math12121895
crossref_primary_10_1186_s12938_018_0604_3
crossref_primary_10_3390_ijgi10090617
crossref_primary_10_3390_pr11010277
crossref_primary_10_3389_feart_2021_596860
crossref_primary_10_1016_j_segan_2018_07_001
crossref_primary_10_1016_j_sna_2020_112479
crossref_primary_10_3233_JIFS_179281
crossref_primary_10_1155_2020_8015156
crossref_primary_10_1155_2018_1824317
crossref_primary_10_1007_s10489_018_1273_4
crossref_primary_10_3390_biology11040532
crossref_primary_10_1016_j_asoc_2016_08_013
crossref_primary_10_1109_JLT_2020_3035810
crossref_primary_10_1002_joc_8530
crossref_primary_10_1007_s10915_021_01650_5
crossref_primary_10_1016_j_engappai_2016_10_010
crossref_primary_10_1007_s13042_017_0746_9
crossref_primary_10_1016_j_inffus_2017_01_004
crossref_primary_10_1515_tjj_2016_0050
crossref_primary_10_3233_MGS_200321
crossref_primary_10_1002_qute_202100027
crossref_primary_10_3390_coatings12091320
crossref_primary_10_1016_j_enconman_2021_115189
crossref_primary_10_3390_electronics8090921
crossref_primary_10_3390_sym12081292
crossref_primary_10_1016_j_jece_2022_108552
crossref_primary_10_1016_j_oceaneng_2017_12_002
crossref_primary_10_3390_e27040363
crossref_primary_10_1007_s11053_021_09960_z
crossref_primary_10_1155_2022_2477769
crossref_primary_10_1016_j_neunet_2015_10_011
crossref_primary_10_1002_stc_1997
crossref_primary_10_5194_acp_20_6159_2020
crossref_primary_10_1016_j_ast_2024_109662
crossref_primary_10_1016_j_neunet_2015_05_002
crossref_primary_10_1109_ACCESS_2019_2894500
crossref_primary_10_1186_s12984_016_0183_0
crossref_primary_10_1109_LCOMM_2021_3052683
crossref_primary_10_1016_j_ins_2019_09_049
crossref_primary_10_1007_s00521_023_08702_x
crossref_primary_10_3892_ol_2022_13630
crossref_primary_10_1016_j_commatsci_2021_110619
crossref_primary_10_1007_s00521_015_1909_9
crossref_primary_10_1155_2016_2618265
crossref_primary_10_1016_j_neucom_2016_12_098
crossref_primary_10_1016_j_eswa_2023_121366
crossref_primary_10_1109_ACCESS_2021_3076345
crossref_primary_10_1007_s40820_024_01489_z
crossref_primary_10_1007_s10489_024_05470_6
crossref_primary_10_1016_j_jenvman_2023_119555
crossref_primary_10_3390_su12083075
crossref_primary_10_1016_j_asoc_2020_106756
crossref_primary_10_1016_j_eswa_2016_08_052
crossref_primary_10_1016_j_rser_2019_01_014
crossref_primary_10_1016_j_neunet_2015_04_002
crossref_primary_10_1007_s00500_018_3085_1
crossref_primary_10_1016_j_ipm_2024_103718
crossref_primary_10_1061__ASCE_HE_1943_5584_0001625
crossref_primary_10_1080_15567249_2021_1872119
crossref_primary_10_1016_j_biosystemseng_2018_04_022
crossref_primary_10_1016_j_jhydrol_2021_126670
crossref_primary_10_1007_s13735_017_0128_9
crossref_primary_10_1016_j_fss_2016_11_007
crossref_primary_10_1108_IJCST_07_2018_0091
crossref_primary_10_1016_j_amc_2023_128230
crossref_primary_10_1002_wer_1642
crossref_primary_10_1016_j_compag_2017_05_017
crossref_primary_10_1007_s11063_017_9745_9
crossref_primary_10_1016_j_sigpro_2023_109102
crossref_primary_10_1109_TCYB_2023_3293196
crossref_primary_10_1016_j_rser_2019_01_009
crossref_primary_10_3390_rs11171983
crossref_primary_10_1109_ACCESS_2020_2995586
crossref_primary_10_1063_5_0268110
crossref_primary_10_1016_j_ipm_2018_01_010
crossref_primary_10_3390_info15080507
crossref_primary_10_1002_suco_202400552
crossref_primary_10_1109_TGRS_2016_2578438
crossref_primary_10_1016_j_jfranklin_2020_04_033
crossref_primary_10_1007_s00500_021_06645_w
crossref_primary_10_1007_s40095_022_00488_3
crossref_primary_10_1080_21642583_2021_1992684
crossref_primary_10_1109_TNNLS_2018_2855446
crossref_primary_10_1007_s11069_023_05998_9
crossref_primary_10_1016_j_adhoc_2025_103920
crossref_primary_10_3390_en15093198
crossref_primary_10_1016_j_est_2024_113086
crossref_primary_10_1016_j_uclim_2022_101382
crossref_primary_10_1109_TCPMT_2022_3167638
crossref_primary_10_1186_s13634_020_00695_2
crossref_primary_10_1109_MCI_2015_2405352
crossref_primary_10_1016_j_geoen_2024_213533
crossref_primary_10_1016_j_jhydrol_2018_03_063
crossref_primary_10_1007_s00477_016_1338_z
crossref_primary_10_1007_s42107_025_01385_w
crossref_primary_10_1088_1755_1315_467_1_012081
crossref_primary_10_1016_j_knosys_2019_04_008
crossref_primary_10_56530_spectroscopy_sl7768t8
crossref_primary_10_1111_jfpe_70179
crossref_primary_10_3390_math10162971
crossref_primary_10_1016_j_image_2015_09_004
crossref_primary_10_1016_j_neucom_2016_03_114
crossref_primary_10_1109_TGRS_2021_3076099
crossref_primary_10_3390_electronics11050715
crossref_primary_10_1007_s13202_022_01593_z
crossref_primary_10_1002_for_2663
crossref_primary_10_1007_s00521_021_06402_y
crossref_primary_10_1007_s42417_022_00793_5
crossref_primary_10_1016_j_jhydrol_2020_124974
crossref_primary_10_3390_math7070629
crossref_primary_10_1088_2634_4386_ac7db7
crossref_primary_10_1016_j_envpol_2020_115434
crossref_primary_10_1016_j_knosys_2019_04_002
crossref_primary_10_1016_j_snb_2020_129162
crossref_primary_10_1109_MITS_2022_3210226
crossref_primary_10_1109_TII_2019_2921032
crossref_primary_10_1371_journal_pone_0220870
crossref_primary_10_1016_j_cor_2023_106480
crossref_primary_10_1016_j_asoc_2020_106433
crossref_primary_10_1109_TMM_2018_2865834
crossref_primary_10_3390_app12189021
crossref_primary_10_1016_j_atech_2022_100115
crossref_primary_10_1016_j_neucom_2016_04_070
crossref_primary_10_1016_j_engappai_2016_04_003
crossref_primary_10_1016_j_mineng_2018_12_004
crossref_primary_10_3390_informatics8020033
crossref_primary_10_1016_j_foodchem_2022_132666
crossref_primary_10_1007_s12594_021_1821_0
crossref_primary_10_3390_s18082640
crossref_primary_10_1007_s12652_022_04355_1
crossref_primary_10_1016_j_ymssp_2017_09_013
crossref_primary_10_1007_s10489_020_02140_1
crossref_primary_10_1109_TIM_2025_3557124
crossref_primary_10_1109_TCYB_2021_3061094
crossref_primary_10_1007_s42979_020_00232_w
crossref_primary_10_1109_ACCESS_2018_2864871
crossref_primary_10_1016_j_molliq_2017_11_166
crossref_primary_10_1007_s00521_023_09090_y
crossref_primary_10_1109_TIP_2016_2598679
crossref_primary_10_1007_s11356_023_30180_w
crossref_primary_10_1109_JSYST_2017_2688359
crossref_primary_10_1016_j_ijbiomac_2024_131485
crossref_primary_10_1016_j_neucom_2016_12_078
crossref_primary_10_1007_s10915_023_02162_0
crossref_primary_10_1007_s13369_020_05115_z
crossref_primary_10_1007_s10845_023_02303_0
crossref_primary_10_3390_app12073388
crossref_primary_10_1109_ACCESS_2020_3012983
crossref_primary_10_1109_TNNLS_2020_3015869
crossref_primary_10_1007_s11063_020_10263_2
crossref_primary_10_1016_j_scitotenv_2022_154226
crossref_primary_10_1007_s11517_021_02333_x
crossref_primary_10_1016_j_geoderma_2024_116953
crossref_primary_10_1080_00387010_2015_1089446
crossref_primary_10_1038_s41598_023_49363_z
crossref_primary_10_1007_s11042_021_11007_7
crossref_primary_10_1016_j_measurement_2020_108135
crossref_primary_10_1186_s13174_021_00145_8
crossref_primary_10_1016_j_chaos_2020_110423
crossref_primary_10_1016_j_jfranklin_2020_05_031
crossref_primary_10_3390_s19061453
crossref_primary_10_1108_IJCST_07_2015_0076
crossref_primary_10_7595_management_fon_2017_0023
crossref_primary_10_1016_j_iswa_2022_200098
crossref_primary_10_1016_j_aci_2018_10_001
crossref_primary_10_1016_j_patcog_2017_02_036
crossref_primary_10_1016_j_saa_2019_03_113
crossref_primary_10_1109_COMST_2019_2915923
crossref_primary_10_2166_nh_2022_144
crossref_primary_10_1007_s13369_016_2338_5
crossref_primary_10_1016_j_isatra_2023_02_026
crossref_primary_10_3390_biomimetics6020032
crossref_primary_10_1016_j_compmedimag_2016_07_011
crossref_primary_10_1007_s10489_020_01890_2
crossref_primary_10_3390_app13148558
crossref_primary_10_1016_j_isatra_2024_10_028
crossref_primary_10_3390_s21113877
crossref_primary_10_1016_j_neunet_2016_09_004
crossref_primary_10_1109_JPHOT_2018_2817843
crossref_primary_10_3390_s23052453
crossref_primary_10_1007_s12555_019_0989_1
crossref_primary_10_1016_j_amc_2020_125159
crossref_primary_10_1016_j_ymssp_2018_12_009
crossref_primary_10_3390_s18010173
crossref_primary_10_1016_j_jcp_2021_110585
crossref_primary_10_1109_ACCESS_2025_3570502
crossref_primary_10_1109_TNNLS_2018_2845857
crossref_primary_10_1007_s11571_020_09585_7
crossref_primary_10_1080_07373937_2018_1494185
crossref_primary_10_1049_iet_sen_2020_0119
crossref_primary_10_1007_s00521_019_04479_0
crossref_primary_10_1016_j_engappai_2016_06_015
crossref_primary_10_1007_s11356_022_22904_1
crossref_primary_10_1108_AA_12_2016_161
crossref_primary_10_1007_s10044_020_00880_x
crossref_primary_10_1016_j_eswa_2024_123559
crossref_primary_10_1016_j_apenergy_2022_120333
crossref_primary_10_1109_TSMC_2017_2757029
crossref_primary_10_1007_s10489_022_03251_7
crossref_primary_10_1109_TGRS_2019_2952236
crossref_primary_10_3390_math12010103
crossref_primary_10_1155_2022_1433835
crossref_primary_10_3390_app10124125
crossref_primary_10_1016_j_compag_2024_108942
crossref_primary_10_3390_s18061705
crossref_primary_10_1155_2020_2837916
crossref_primary_10_1038_s41467_025_56079_3
crossref_primary_10_1007_s13042_019_01028_y
crossref_primary_10_3390_w9110880
crossref_primary_10_1007_s12559_020_09761_1
crossref_primary_10_1007_s13042_020_01235_y
crossref_primary_10_1016_j_engappai_2020_103980
crossref_primary_10_1155_2017_7273061
crossref_primary_10_1007_s00521_018_3353_0
crossref_primary_10_1016_j_asoc_2018_04_007
crossref_primary_10_1016_j_jlp_2025_105754
crossref_primary_10_3390_agronomy11112290
crossref_primary_10_3389_fenrg_2022_914026
crossref_primary_10_1155_2020_8206245
crossref_primary_10_3390_axioms12020204
crossref_primary_10_1155_2016_8091267
crossref_primary_10_3390_e23040440
crossref_primary_10_1016_j_engappai_2019_02_012
crossref_primary_10_1080_03019233_2020_1771892
crossref_primary_10_1007_s10619_021_07361_y
crossref_primary_10_1007_s13042_017_0776_3
crossref_primary_10_1049_sfw2_12029
crossref_primary_10_1109_ACCESS_2020_2994773
crossref_primary_10_1080_02331934_2025_2523918
crossref_primary_10_3390_pr11051346
crossref_primary_10_1051_matecconf_20165803010
crossref_primary_10_1680_jemmr_24_00046
crossref_primary_10_1049_ise2_8381148
crossref_primary_10_2166_hydro_2021_067
crossref_primary_10_1016_j_ress_2021_108278
crossref_primary_10_1063_5_0281169
crossref_primary_10_1155_2019_7620948
crossref_primary_10_3389_fncom_2021_738885
crossref_primary_10_1016_j_neucom_2015_08_061
crossref_primary_10_1155_2022_1994046
crossref_primary_10_1016_j_commatsci_2022_111699
crossref_primary_10_1016_j_scs_2019_101601
crossref_primary_10_1155_2020_3490536
crossref_primary_10_3390_fi11110245
crossref_primary_10_1007_s00521_024_09617_x
crossref_primary_10_1007_s00704_025_05798_0
crossref_primary_10_1080_01431161_2024_2318771
crossref_primary_10_1177_1369433218788635
crossref_primary_10_3390_app13064018
crossref_primary_10_3390_drones7010002
crossref_primary_10_1007_s12559_018_9606_5
crossref_primary_10_3390_s18041046
crossref_primary_10_1016_j_asoc_2016_02_039
crossref_primary_10_1016_j_petlm_2021_12_002
crossref_primary_10_29026_oea_2025_240315
crossref_primary_10_3390_mi14112023
crossref_primary_10_3390_su13073744
crossref_primary_10_1016_j_asr_2022_08_002
crossref_primary_10_1016_j_heliyon_2024_e25432
crossref_primary_10_1007_s11042_018_6491_6
crossref_primary_10_3390_rs11070740
crossref_primary_10_1016_j_neucom_2018_01_005
crossref_primary_10_1007_s12293_017_0238_1
crossref_primary_10_1007_s11042_024_18295_9
crossref_primary_10_1007_s11063_018_9952_z
crossref_primary_10_1016_j_neucom_2020_07_151
crossref_primary_10_1515_jwld_2016_0004
crossref_primary_10_1016_j_apm_2020_10_028
crossref_primary_10_3390_app12094724
crossref_primary_10_3390_sym11070944
crossref_primary_10_1016_j_asoc_2018_05_015
crossref_primary_10_1016_j_foodres_2025_116561
crossref_primary_10_1007_s00170_019_04203_1
crossref_primary_10_1016_j_compag_2018_10_014
crossref_primary_10_3390_app10093210
crossref_primary_10_1016_j_heliyon_2024_e37650
crossref_primary_10_1007_s11063_018_9865_x
crossref_primary_10_1177_0958305X18787258
crossref_primary_10_1007_s00521_021_06370_3
crossref_primary_10_1515_cppm_2019_0107
crossref_primary_10_1007_s10341_025_01292_z
crossref_primary_10_3389_fneur_2024_1413071
crossref_primary_10_1016_j_neuri_2022_100075
crossref_primary_10_1016_j_ymssp_2021_108673
crossref_primary_10_1177_09544070251366345
crossref_primary_10_1007_s10489_024_05651_3
crossref_primary_10_1016_j_apenergy_2019_04_126
crossref_primary_10_1007_s12665_015_5135_7
crossref_primary_10_1007_s10666_022_09843_4
crossref_primary_10_1016_j_compeleceng_2018_11_012
crossref_primary_10_3390_jmse10111683
crossref_primary_10_1007_s11069_022_05361_4
crossref_primary_10_1007_s40314_016_0377_x
crossref_primary_10_1016_j_ecolind_2023_110560
crossref_primary_10_1155_2021_6794213
crossref_primary_10_3390_a11050056
crossref_primary_10_1109_ACCESS_2020_2966690
crossref_primary_10_1109_TBDATA_2020_2988778
crossref_primary_10_1007_s00521_016_2372_y
crossref_primary_10_1016_j_jprocont_2021_07_013
crossref_primary_10_1016_j_seta_2018_11_008
crossref_primary_10_1007_s00521_016_2394_5
crossref_primary_10_3390_sym14061186
crossref_primary_10_1007_s12040_019_1194_6
crossref_primary_10_1016_j_neunet_2020_07_018
crossref_primary_10_1016_j_jconhyd_2023_104151
crossref_primary_10_1016_j_cma_2023_116578
crossref_primary_10_7717_peerj_6926
crossref_primary_10_1109_TNNLS_2017_2654357
crossref_primary_10_1108_K_12_2021_1252
crossref_primary_10_1007_s11356_024_33405_8
crossref_primary_10_1016_j_ijpe_2016_10_021
crossref_primary_10_1109_TIFS_2017_2766583
crossref_primary_10_1177_1687814017751446
crossref_primary_10_3390_app9235042
crossref_primary_10_1016_j_knosys_2017_05_013
crossref_primary_10_1080_07373937_2019_1675077
crossref_primary_10_3390_app9153140
crossref_primary_10_1016_j_jestch_2018_04_013
crossref_primary_10_1109_MCI_2015_2405316
crossref_primary_10_3233_JIFS_212068
crossref_primary_10_1016_j_neucom_2015_07_069
crossref_primary_10_1007_s00500_020_04678_1
crossref_primary_10_1007_s11356_021_14079_y
crossref_primary_10_1177_09596518231196901
crossref_primary_10_1016_j_enconman_2019_05_020
crossref_primary_10_1016_j_advengsoft_2017_09_004
crossref_primary_10_3390_pr11030693
crossref_primary_10_3390_app12010009
crossref_primary_10_1007_s13042_024_02164_w
crossref_primary_10_1109_OAJPE_2025_3585994
crossref_primary_10_1080_08839514_2018_1560545
crossref_primary_10_3390_atmos12101345
crossref_primary_10_1016_j_jhydrol_2016_03_017
crossref_primary_10_1155_2022_4509612
crossref_primary_10_1016_j_neucom_2015_12_113
crossref_primary_10_1080_1573062X_2019_1637002
crossref_primary_10_1111_coin_12242
crossref_primary_10_1080_00387010_2018_1475398
crossref_primary_10_1155_2017_1239164
crossref_primary_10_1016_j_neunet_2018_11_006
crossref_primary_10_3390_app11093867
crossref_primary_10_1007_s40314_024_03010_z
crossref_primary_10_3390_min12060750
crossref_primary_10_1016_j_foodchem_2024_141373
crossref_primary_10_1016_j_measurement_2021_109923
crossref_primary_10_1016_j_ipm_2022_102945
crossref_primary_10_2136_sssaj2016_11_0376
crossref_primary_10_1016_j_jfca_2022_104843
crossref_primary_10_1007_s10922_020_09557_6
crossref_primary_10_1109_ACCESS_2020_3028959
crossref_primary_10_3390_su15010380
crossref_primary_10_1016_j_bspc_2025_107909
crossref_primary_10_1016_j_psep_2025_106772
crossref_primary_10_1109_TCST_2020_3015514
crossref_primary_10_1109_ACCESS_2022_3227327
crossref_primary_10_1007_s42107_025_01278_y
crossref_primary_10_1016_j_ins_2024_120559
crossref_primary_10_1109_ACCESS_2021_3054483
crossref_primary_10_1016_j_samod_2021_100002
crossref_primary_10_1007_s00107_023_02027_1
crossref_primary_10_1109_TNNLS_2016_2614998
crossref_primary_10_1109_ACCESS_2019_2894014
crossref_primary_10_1007_s42243_023_01067_4
crossref_primary_10_1029_2018SW002061
crossref_primary_10_1049_iet_gtd_2019_0531
crossref_primary_10_1007_s00170_017_0549_x
crossref_primary_10_1016_j_smhl_2023_100386
crossref_primary_10_1016_j_egyr_2022_05_262
crossref_primary_10_1016_j_jobe_2024_111471
crossref_primary_10_3390_s19020263
crossref_primary_10_3390_a11100158
crossref_primary_10_1038_srep14945
crossref_primary_10_1109_ACCESS_2019_2943515
crossref_primary_10_1016_j_enconman_2018_04_082
crossref_primary_10_1088_1757_899X_569_5_052108
crossref_primary_10_1109_ACCESS_2018_2869306
crossref_primary_10_3390_pr9091578
crossref_primary_10_1007_s12065_019_00295_6
crossref_primary_10_1016_j_asoc_2018_08_046
crossref_primary_10_1016_j_knosys_2017_04_007
crossref_primary_10_1063_5_0273379
crossref_primary_10_1089_3dp_2023_0182
crossref_primary_10_3390_catal7100306
crossref_primary_10_1016_j_neucom_2017_10_034
crossref_primary_10_1515_bmt_2016_0097
crossref_primary_10_1109_TCYB_2018_2816981
crossref_primary_10_1177_0144598720911724
crossref_primary_10_1016_j_neucom_2016_08_050
crossref_primary_10_1016_j_neucom_2017_03_092
crossref_primary_10_1177_1045389X19844007
crossref_primary_10_1016_j_eja_2025_127760
crossref_primary_10_1007_s12065_018_0193_x
crossref_primary_10_1109_ACCESS_2020_3010938
crossref_primary_10_3390_app9030614
crossref_primary_10_1016_j_biosystemseng_2021_09_010
crossref_primary_10_1016_j_rsma_2022_102332
crossref_primary_10_1016_j_patcog_2019_07_005
crossref_primary_10_3390_su141912784
crossref_primary_10_1007_s40430_021_03121_2
crossref_primary_10_1016_j_compbiomed_2019_05_006
crossref_primary_10_1680_jgeen_19_00297
crossref_primary_10_1109_TASE_2019_2936821
crossref_primary_10_1016_j_neucom_2019_06_040
crossref_primary_10_1111_exsy_13432
crossref_primary_10_1109_TCDS_2019_2960766
crossref_primary_10_1109_ACCESS_2020_3048078
crossref_primary_10_1016_j_jclepro_2022_130414
crossref_primary_10_1007_s00521_019_04480_7
crossref_primary_10_1007_s10661_023_11566_2
crossref_primary_10_1007_s13042_020_01184_6
crossref_primary_10_1109_TSMC_2019_2931003
crossref_primary_10_1155_2019_9765468
crossref_primary_10_1007_s11063_020_10358_w
crossref_primary_10_1007_s42979_021_00607_7
crossref_primary_10_1016_j_cma_2021_114188
crossref_primary_10_1016_j_enconman_2018_02_006
crossref_primary_10_1016_j_neucom_2015_04_103
crossref_primary_10_3233_AIC_190620
crossref_primary_10_1007_s12293_018_0270_9
crossref_primary_10_1007_s00202_020_01075_7
crossref_primary_10_1007_s40710_016_0172_0
crossref_primary_10_1016_j_enbuild_2018_06_056
crossref_primary_10_1007_s12145_020_00508_y
crossref_primary_10_1016_j_ascom_2020_100383
crossref_primary_10_1016_j_jss_2021_111026
crossref_primary_10_1016_j_mechmachtheory_2019_03_036
crossref_primary_10_1007_s00521_021_05806_0
crossref_primary_10_1109_TNNLS_2020_3029198
crossref_primary_10_1016_j_scitotenv_2020_140338
crossref_primary_10_1109_ACCESS_2018_2890111
crossref_primary_10_1093_bib_bby095
crossref_primary_10_1002_fuce_201900085
crossref_primary_10_3892_ol_2018_9761
crossref_primary_10_1016_j_agwat_2024_109253
crossref_primary_10_1016_j_neucom_2024_128061
crossref_primary_10_3390_ijgi11010071
crossref_primary_10_1007_s11227_022_04936_z
crossref_primary_10_1109_LPT_2020_2993141
crossref_primary_10_1016_j_ecoinf_2016_01_008
crossref_primary_10_1002_ese3_2036
crossref_primary_10_3390_a14010018
crossref_primary_10_1016_j_compag_2018_09_032
crossref_primary_10_1016_j_eswa_2019_112877
crossref_primary_10_1186_s13040_020_00223_w
crossref_primary_10_1007_s11356_021_12418_7
crossref_primary_10_1016_j_saa_2022_121348
crossref_primary_10_1016_j_compag_2016_05_017
crossref_primary_10_1109_ACCESS_2021_3067363
crossref_primary_10_1016_j_fss_2018_02_014
crossref_primary_10_1016_j_neunet_2019_10_004
crossref_primary_10_1111_jtxs_12740
crossref_primary_10_1007_s00500_022_07318_y
crossref_primary_10_1016_j_measurement_2019_107411
crossref_primary_10_1016_j_neunet_2019_11_007
crossref_primary_10_1016_j_rineng_2024_102724
crossref_primary_10_1109_TIM_2023_3306510
crossref_primary_10_1016_j_jcp_2022_111290
crossref_primary_10_1016_j_conengprac_2019_07_016
crossref_primary_10_1016_j_neucom_2020_03_046
crossref_primary_10_1016_j_engstruct_2019_05_048
crossref_primary_10_1016_j_inffus_2017_07_003
crossref_primary_10_1016_j_tre_2020_102189
crossref_primary_10_1109_JPHOT_2021_3086005
crossref_primary_10_1016_j_neucom_2023_126618
crossref_primary_10_1016_j_neunet_2016_04_009
crossref_primary_10_1016_j_neunet_2016_04_008
crossref_primary_10_1007_s42484_025_00239_7
crossref_primary_10_1007_s00477_019_01680_4
crossref_primary_10_1016_j_neucom_2015_01_095
crossref_primary_10_1016_j_optlastec_2020_106909
crossref_primary_10_1109_ACCESS_2019_2951153
crossref_primary_10_7717_peerj_cs_1732
crossref_primary_10_1016_j_eswa_2016_11_025
crossref_primary_10_3233_JIFS_189141
crossref_primary_10_5004_dwt_2020_26160
crossref_primary_10_1007_s00521_017_3242_y
crossref_primary_10_1038_s41598_021_82977_9
crossref_primary_10_1088_1757_899X_490_4_042053
crossref_primary_10_1049_iet_cvi_2018_5590
crossref_primary_10_1088_1755_1315_304_4_042006
crossref_primary_10_1155_2022_6446080
crossref_primary_10_1016_j_physa_2025_130515
crossref_primary_10_1109_ACCESS_2021_3114619
crossref_primary_10_1016_j_fuel_2020_118358
crossref_primary_10_1016_j_engappai_2023_106314
crossref_primary_10_1016_j_jprocont_2019_11_002
crossref_primary_10_1016_j_knosys_2015_10_012
crossref_primary_10_3390_s20154191
crossref_primary_10_4108_eetpht_10_5542
crossref_primary_10_1016_j_neucom_2016_05_006
crossref_primary_10_1016_j_patcog_2017_05_008
crossref_primary_10_1088_1361_6501_ad3295
crossref_primary_10_1007_s00500_018_3031_2
crossref_primary_10_1016_j_bspc_2022_104023
crossref_primary_10_2166_ws_2023_050
crossref_primary_10_1088_1741_2552_ab7264
crossref_primary_10_1016_j_oceaneng_2020_107777
crossref_primary_10_1016_j_compag_2015_08_008
crossref_primary_10_1007_s13369_024_09148_6
crossref_primary_10_1016_j_energy_2023_128776
crossref_primary_10_1109_ACCESS_2017_2672722
crossref_primary_10_1007_s11356_020_08996_7
crossref_primary_10_3390_sym12060876
crossref_primary_10_1016_j_jobe_2022_105444
crossref_primary_10_1109_ACCESS_2018_2815503
crossref_primary_10_1007_s13042_016_0615_y
crossref_primary_10_1007_s12559_016_9409_5
crossref_primary_10_1016_j_neucom_2018_05_135
crossref_primary_10_3390_ani14202951
crossref_primary_10_1016_j_measurement_2020_108186
crossref_primary_10_1515_jisys_2018_0058
crossref_primary_10_1007_s00521_017_3300_5
crossref_primary_10_1016_j_neucom_2016_06_069
crossref_primary_10_3390_mca29030040
crossref_primary_10_3390_app13158796
crossref_primary_10_1007_s00371_018_1493_y
crossref_primary_10_1007_s40722_025_00394_w
crossref_primary_10_1016_j_neucom_2017_05_096
crossref_primary_10_1016_j_solener_2019_08_032
crossref_primary_10_1007_s00521_022_08034_2
crossref_primary_10_1155_2017_8395252
crossref_primary_10_1016_j_jksuci_2023_03_001
crossref_primary_10_1007_s11947_025_04005_2
crossref_primary_10_3389_fpubh_2022_925901
crossref_primary_10_1007_s12555_022_0518_5
crossref_primary_10_3233_JIFS_16724
crossref_primary_10_1016_j_cja_2024_03_037
crossref_primary_10_1016_j_neucom_2017_03_018
crossref_primary_10_1108_EC_06_2024_0507
crossref_primary_10_3390_a18020087
crossref_primary_10_1016_j_pec_2023_108076
crossref_primary_10_1177_18758967251356822
crossref_primary_10_17221_109_2024_CJFS
crossref_primary_10_1016_j_knosys_2021_106841
crossref_primary_10_1016_j_jhydrol_2024_131787
crossref_primary_10_1016_j_ifacol_2017_08_2209
crossref_primary_10_1007_s12559_016_9440_6
crossref_primary_10_3389_fmolb_2022_962743
crossref_primary_10_1016_j_saa_2019_02_089
crossref_primary_10_1016_j_compag_2016_03_025
crossref_primary_10_1016_j_aquaeng_2024_102408
crossref_primary_10_1080_07373937_2019_1607873
crossref_primary_10_1108_IMDS_06_2019_0351
crossref_primary_10_3390_en12040673
crossref_primary_10_1108_INTR_01_2022_0042
crossref_primary_10_1007_s12665_019_8202_7
crossref_primary_10_1016_j_knosys_2017_02_016
crossref_primary_10_3233_IDA_184377
crossref_primary_10_1016_j_ygeno_2019_11_004
crossref_primary_10_1016_j_resourpol_2019_101414
crossref_primary_10_1007_s10586_019_02957_7
crossref_primary_10_1007_s13042_018_0833_6
crossref_primary_10_1016_j_neunet_2016_11_004
crossref_primary_10_1007_s13042_015_0478_7
crossref_primary_10_1007_s12559_018_9557_x
crossref_primary_10_5306_wjco_v13_i2_125
crossref_primary_10_1007_s00500_024_09918_2
crossref_primary_10_3390_ma10050543
crossref_primary_10_1016_j_asoc_2015_08_036
crossref_primary_10_1016_j_advengsoft_2018_07_002
crossref_primary_10_3390_app12115712
crossref_primary_10_1016_j_neucom_2017_04_036
crossref_primary_10_1016_j_neucom_2020_04_098
crossref_primary_10_1007_s00521_018_3458_5
crossref_primary_10_2166_ws_2021_419
crossref_primary_10_3390_ijgi8090417
crossref_primary_10_1016_j_neucom_2018_09_062
crossref_primary_10_1016_j_jhydrol_2023_130138
crossref_primary_10_1093_jrsssa_qnad033
crossref_primary_10_1109_TIM_2021_3084312
crossref_primary_10_1088_1757_899X_794_1_012017
crossref_primary_10_1080_15567036_2023_2205353
crossref_primary_10_1016_j_knosys_2020_105479
crossref_primary_10_1007_s10044_023_01174_8
crossref_primary_10_1016_j_ymssp_2017_01_048
crossref_primary_10_1016_j_measurement_2021_109322
crossref_primary_10_1016_j_jfoodeng_2015_06_007
crossref_primary_10_1007_s11053_020_09676_6
crossref_primary_10_1088_1748_0221_20_06_P06008
crossref_primary_10_1016_j_geothermics_2023_102727
crossref_primary_10_1080_15567036_2020_1755390
crossref_primary_10_3390_en12081449
crossref_primary_10_3390_rs15194713
crossref_primary_10_1007_s00477_021_02129_3
crossref_primary_10_3390_app10103656
crossref_primary_10_1016_j_microc_2021_106635
crossref_primary_10_1016_j_neucom_2017_05_058
crossref_primary_10_1007_s00500_018_3109_x
crossref_primary_10_1007_s12665_022_10542_2
crossref_primary_10_1007_s11694_024_02402_3
crossref_primary_10_3390_su15086876
crossref_primary_10_3390_app122211700
crossref_primary_10_3389_fphy_2021_653875
crossref_primary_10_1007_s10489_017_1062_5
crossref_primary_10_1007_s42452_020_03611_3
crossref_primary_10_1016_j_sigpro_2020_107855
crossref_primary_10_1016_j_procs_2016_05_507
crossref_primary_10_1016_j_jpowsour_2021_230892
crossref_primary_10_1016_j_neunet_2016_07_004
crossref_primary_10_1016_j_advengsoft_2016_02_011
crossref_primary_10_1016_j_eswa_2017_09_037
crossref_primary_10_1016_j_apenergy_2019_113686
crossref_primary_10_1016_j_engappai_2025_110789
crossref_primary_10_1016_j_envsoft_2024_106190
crossref_primary_10_1002_adfm_202302929
crossref_primary_10_3390_app15073530
crossref_primary_10_3390_s19153424
crossref_primary_10_1016_j_jhazmat_2020_122761
crossref_primary_10_3390_jmse7090312
crossref_primary_10_3390_electronics8111308
crossref_primary_10_1007_s11709_021_0697_9
crossref_primary_10_1109_TETCI_2021_3107496
crossref_primary_10_1016_j_seta_2021_101048
crossref_primary_10_1016_j_compbiomed_2023_106847
crossref_primary_10_1038_s41598_024_63908_w
crossref_primary_10_1007_s12046_022_01805_6
crossref_primary_10_1016_j_jpowsour_2025_236928
crossref_primary_10_1016_j_jclepro_2019_118773
crossref_primary_10_3390_s22249764
crossref_primary_10_1016_j_bspc_2015_03_010
crossref_primary_10_1016_j_jmmm_2021_168865
crossref_primary_10_1007_s10489_020_01773_6
crossref_primary_10_1016_j_fss_2017_12_006
crossref_primary_10_1016_j_geoderma_2018_05_030
crossref_primary_10_1016_j_neucom_2018_09_092
crossref_primary_10_2196_57883
crossref_primary_10_1007_s12555_015_0151_7
crossref_primary_10_1145_3427476
crossref_primary_10_1177_1729881418792992
crossref_primary_10_1007_s11063_020_10343_3
crossref_primary_10_1108_IMDS_07_2019_0361
crossref_primary_10_1016_j_asoc_2019_04_019
crossref_primary_10_1016_j_coastaleng_2017_12_012
crossref_primary_10_3390_ani12141744
crossref_primary_10_1016_j_fss_2024_109256
crossref_primary_10_3390_s21134606
crossref_primary_10_1371_journal_pone_0138493
crossref_primary_10_1016_j_jfranklin_2020_06_027
crossref_primary_10_1177_0962280218767985
crossref_primary_10_1007_s13042_016_0535_x
crossref_primary_10_1016_j_etran_2025_100406
crossref_primary_10_3390_s17040879
crossref_primary_10_1016_j_compeleceng_2024_109499
crossref_primary_10_3390_agronomy14010145
crossref_primary_10_3390_sym12040632
crossref_primary_10_1007_s10843_025_00385_w
crossref_primary_10_1007_s13042_022_01550_6
crossref_primary_10_1109_ACCESS_2020_3006495
crossref_primary_10_1007_s12559_018_9548_y
crossref_primary_10_1016_j_scitotenv_2018_01_202
crossref_primary_10_1016_j_jclepro_2020_124023
crossref_primary_10_1016_j_ifacol_2018_05_017
crossref_primary_10_3390_info11050281
crossref_primary_10_1155_2022_7693393
crossref_primary_10_1007_s10729_024_09682_7
crossref_primary_10_1016_j_neunet_2016_06_001
crossref_primary_10_3390_ijerph192215414
crossref_primary_10_3390_app14156532
crossref_primary_10_1016_j_physa_2019_124034
crossref_primary_10_1089_big_2021_0311
crossref_primary_10_1016_j_geoderma_2018_05_035
crossref_primary_10_1016_j_jhydrol_2022_127434
crossref_primary_10_1007_s00773_016_0396_8
crossref_primary_10_1016_j_cie_2019_02_024
crossref_primary_10_1109_ACCESS_2018_2839340
crossref_primary_10_1016_j_neucom_2019_03_086
crossref_primary_10_1016_j_neucom_2018_08_062
crossref_primary_10_1016_j_neucom_2015_10_033
crossref_primary_10_1016_j_ecoenv_2022_113400
crossref_primary_10_3390_ma18081887
crossref_primary_10_1007_s00521_021_05951_6
crossref_primary_10_1109_ACCESS_2017_2678990
crossref_primary_10_1007_s10489_017_1098_6
crossref_primary_10_1007_s11063_019_10186_7
crossref_primary_10_1007_s13042_020_01158_8
crossref_primary_10_1007_s13042_020_01234_z
crossref_primary_10_3233_IFS_151792
crossref_primary_10_1155_2023_3854295
crossref_primary_10_1016_j_apr_2022_101352
crossref_primary_10_1007_s12517_020_5273_4
crossref_primary_10_1016_j_neunet_2015_06_002
crossref_primary_10_1007_s40710_019_00353_2
crossref_primary_10_1016_j_asoc_2019_105924
crossref_primary_10_1016_j_saa_2024_125626
crossref_primary_10_1016_j_jhydrol_2022_127452
crossref_primary_10_1038_s41593_019_0477_1
crossref_primary_10_1007_s00521_017_3099_0
crossref_primary_10_1016_j_knosys_2019_104977
crossref_primary_10_1109_JIOT_2022_3230971
crossref_primary_10_3390_app11115103
crossref_primary_10_1016_j_buildenv_2025_112749
crossref_primary_10_1177_09544062221136490
crossref_primary_10_3390_ma13225227
crossref_primary_10_1080_10298436_2020_1776281
crossref_primary_10_1016_j_ifacol_2016_03_131
crossref_primary_10_1007_s11042_023_14634_4
crossref_primary_10_1016_j_eswa_2019_05_039
crossref_primary_10_1016_j_neunet_2020_03_022
crossref_primary_10_1016_j_psep_2021_10_047
crossref_primary_10_3390_sym11020190
crossref_primary_10_1016_j_ecolind_2022_109155
crossref_primary_10_1029_2018WR024620
crossref_primary_10_1016_j_neucom_2015_11_095
crossref_primary_10_1016_j_jhydrol_2024_131009
crossref_primary_10_1080_19648189_2016_1169225
crossref_primary_10_1007_s13042_020_01232_1
crossref_primary_10_1016_j_atmosres_2018_05_012
crossref_primary_10_1016_j_chaos_2015_11_033
crossref_primary_10_1016_j_neucom_2023_02_012
crossref_primary_10_1109_ACCESS_2019_2925893
crossref_primary_10_1016_j_measurement_2024_115094
crossref_primary_10_1109_ACCESS_2019_2922385
crossref_primary_10_1016_j_jprocont_2020_03_012
crossref_primary_10_1016_j_knosys_2020_106230
crossref_primary_10_1109_TITS_2020_3015530
crossref_primary_10_1007_s42835_020_00561_z
crossref_primary_10_3390_s20051262
crossref_primary_10_1007_s12293_016_0184_3
crossref_primary_10_1109_LRA_2023_3339090
crossref_primary_10_1016_j_engfailanal_2022_106115
crossref_primary_10_1016_j_neucom_2018_08_028
crossref_primary_10_1007_s42417_022_00498_9
crossref_primary_10_1016_j_neucom_2019_04_092
crossref_primary_10_1007_s11063_019_10022_y
crossref_primary_10_3390_math12193110
crossref_primary_10_1109_TR_2020_2996261
crossref_primary_10_1016_j_cageo_2021_104837
crossref_primary_10_1002_etep_2560
crossref_primary_10_3390_s18010285
crossref_primary_10_1007_s00521_018_3415_3
crossref_primary_10_1007_s11063_020_10286_9
crossref_primary_10_1007_s11063_024_11443_0
crossref_primary_10_1016_j_knosys_2023_111033
crossref_primary_10_1109_TSMC_2017_2693209
crossref_primary_10_3390_e20010073
crossref_primary_10_1109_TNNLS_2016_2607757
crossref_primary_10_1007_s10489_021_02654_2
crossref_primary_10_1016_j_compeleceng_2024_110040
crossref_primary_10_1088_1361_6641_ac8c66
crossref_primary_10_1016_j_knosys_2020_106468
crossref_primary_10_1080_00207160_2019_1607842
crossref_primary_10_3390_w14192972
crossref_primary_10_1155_2018_1214301
crossref_primary_10_3390_s18010298
crossref_primary_10_3390_math10162888
crossref_primary_10_1007_s13042_020_01114_6
crossref_primary_10_1016_j_foodchem_2025_144431
crossref_primary_10_3390_en14185619
crossref_primary_10_1016_j_jhydrol_2023_129925
crossref_primary_10_1016_j_patrec_2016_01_024
crossref_primary_10_1007_s13042_017_0666_8
crossref_primary_10_1016_j_saa_2021_120791
crossref_primary_10_1007_s13198_019_00935_1
crossref_primary_10_3390_app11136238
crossref_primary_10_3233_IDT_170296
crossref_primary_10_1016_j_apenergy_2019_114232
crossref_primary_10_1007_s00366_021_01381_z
crossref_primary_10_1109_TITS_2019_2897990
crossref_primary_10_1155_2020_3287589
crossref_primary_10_1007_s11042_024_19508_x
crossref_primary_10_3390_pr11071928
crossref_primary_10_1016_j_eswa_2023_120095
crossref_primary_10_3390_app11104412
crossref_primary_10_1109_LGRS_2019_2933906
crossref_primary_10_1007_s10489_015_0699_1
crossref_primary_10_1109_MCI_2016_2572540
crossref_primary_10_1007_s11356_017_9283_z
crossref_primary_10_1016_j_compeleceng_2021_107008
crossref_primary_10_1109_TIE_2021_3101001
crossref_primary_10_1007_s40203_021_00090_1
crossref_primary_10_1016_j_est_2025_116997
crossref_primary_10_1016_j_jhydrol_2018_11_069
crossref_primary_10_1016_j_neucom_2015_10_028
crossref_primary_10_1016_j_eneco_2019_104648
crossref_primary_10_1016_j_neucom_2019_03_079
crossref_primary_10_1051_shsconf_202316601077
crossref_primary_10_1016_j_resourpol_2021_102148
crossref_primary_10_1016_j_agwat_2021_107423
crossref_primary_10_1016_j_neunet_2024_106202
crossref_primary_10_1007_s11069_023_06238_w
crossref_primary_10_3390_app11135808
crossref_primary_10_1016_j_scitotenv_2018_08_221
crossref_primary_10_1007_s11063_014_9405_2
crossref_primary_10_1016_j_rser_2015_07_173
crossref_primary_10_1109_TCYB_2018_2886580
crossref_primary_10_1371_journal_pone_0134350
crossref_primary_10_1007_s10462_023_10478_4
crossref_primary_10_1016_j_patrec_2015_07_031
crossref_primary_10_1016_j_asoc_2025_113789
crossref_primary_10_1016_j_commatsci_2016_08_035
crossref_primary_10_1016_j_energy_2024_132086
crossref_primary_10_1155_2021_8324272
crossref_primary_10_1016_j_neucom_2019_05_098
crossref_primary_10_3390_healthcare10101892
crossref_primary_10_1016_j_physa_2019_01_113
crossref_primary_10_1016_j_physa_2019_122830
crossref_primary_10_1007_s11063_022_10772_2
crossref_primary_10_1109_JPHOT_2025_3542831
crossref_primary_10_1007_s13246_024_01454_5
crossref_primary_10_1016_j_compbiomed_2021_104505
crossref_primary_10_1109_ACCESS_2019_2934742
crossref_primary_10_3390_en15155385
crossref_primary_10_1007_s00521_020_04994_5
crossref_primary_10_1007_s10586_021_03232_4
crossref_primary_10_1016_j_oceaneng_2024_118993
crossref_primary_10_1007_s11269_020_02631_3
crossref_primary_10_1016_j_microc_2025_113765
crossref_primary_10_1016_j_bdr_2017_05_002
crossref_primary_10_1016_j_neucom_2018_11_098
crossref_primary_10_1590_1807_1929_agriambi_v29n6e287460
crossref_primary_10_1007_s10845_020_01663_1
crossref_primary_10_3390_en11010145
crossref_primary_10_1016_j_mechatronics_2016_09_001
crossref_primary_10_1177_1063293X19832946
crossref_primary_10_1016_j_ymssp_2019_106272
crossref_primary_10_1109_ACCESS_2019_2943453
crossref_primary_10_26866_jees_2025_4_r_301
crossref_primary_10_1016_j_renene_2020_05_158
crossref_primary_10_1186_s12859_020_03790_1
crossref_primary_10_1016_j_infsof_2018_10_004
crossref_primary_10_1016_j_chemolab_2017_06_006
crossref_primary_10_1016_j_neucom_2019_10_108
crossref_primary_10_1016_j_fcr_2024_109427
crossref_primary_10_3390_ma13051023
crossref_primary_10_1016_j_foodchem_2025_143516
crossref_primary_10_1016_j_jhydrol_2018_12_060
crossref_primary_10_1109_TITS_2019_2933410
crossref_primary_10_1007_s11063_017_9752_x
crossref_primary_10_1007_s12559_016_9414_8
crossref_primary_10_1007_s11063_020_10282_z
crossref_primary_10_1364_AO_388463
crossref_primary_10_1016_j_est_2023_108995
crossref_primary_10_1016_j_jmapro_2021_12_063
crossref_primary_10_1109_TIE_2023_3342324
crossref_primary_10_1016_j_engappai_2015_05_010
crossref_primary_10_1080_22797254_2019_1581582
crossref_primary_10_1109_ACCESS_2020_3035398
crossref_primary_10_1109_JBHI_2024_3491593
crossref_primary_10_1016_j_compag_2018_03_010
crossref_primary_10_1002_ese3_849
crossref_primary_10_1016_j_saa_2021_120186
crossref_primary_10_1016_j_jhydrol_2020_124670
crossref_primary_10_1080_01431161_2018_1452070
crossref_primary_10_1016_j_patcog_2020_107194
crossref_primary_10_1007_s11416_020_00354_y
crossref_primary_10_1007_s10489_022_03404_8
crossref_primary_10_1109_TSMC_2020_2982226
crossref_primary_10_1016_j_neucom_2015_12_050
crossref_primary_10_1108_GKMC_01_2023_0014
crossref_primary_10_2166_hydro_2021_178
crossref_primary_10_1109_TGRS_2022_3151339
crossref_primary_10_3390_met10070904
crossref_primary_10_1109_TNNLS_2019_2900956
crossref_primary_10_1109_ACCESS_2020_2965284
crossref_primary_10_1002_advs_202106043
crossref_primary_10_1016_j_jairtraman_2023_102488
crossref_primary_10_1007_s11063_021_10435_8
crossref_primary_10_1007_s10462_020_09836_3
crossref_primary_10_1016_j_compag_2020_105653
crossref_primary_10_1155_2020_8852705
crossref_primary_10_1111_coin_12136
crossref_primary_10_1016_j_ast_2017_10_024
crossref_primary_10_1002_srin_202400602
crossref_primary_10_3390_rs12244015
crossref_primary_10_31083_j_jin_2019_03_164
crossref_primary_10_4018_IJIIT_2017100103
crossref_primary_10_1109_JPHOT_2023_3243219
crossref_primary_10_1016_j_jhydrol_2020_124657
crossref_primary_10_1007_s40815_016_0196_7
crossref_primary_10_1016_j_jocs_2016_12_008
crossref_primary_10_1016_j_neucom_2020_07_074
crossref_primary_10_1016_j_asoc_2021_107120
crossref_primary_10_1016_j_oceaneng_2019_05_045
crossref_primary_10_1016_j_enconman_2022_116096
crossref_primary_10_1088_1742_6596_2319_1_012014
crossref_primary_10_1016_j_ifacol_2021_04_200
crossref_primary_10_1016_j_neunet_2018_05_011
crossref_primary_10_1016_j_neucom_2018_10_063
crossref_primary_10_1007_s11356_023_25596_3
crossref_primary_10_1109_TIM_2018_2890329
crossref_primary_10_1016_j_infrared_2019_103013
crossref_primary_10_1007_s11831_024_10100_y
crossref_primary_10_1016_j_saa_2024_124396
crossref_primary_10_1109_TSMC_2017_2735997
crossref_primary_10_1080_00207233_2024_2313349
crossref_primary_10_1016_j_compeleceng_2022_108000
crossref_primary_10_1007_s40435_025_01730_6
crossref_primary_10_1016_j_bdr_2017_07_002
crossref_primary_10_1109_MGRS_2016_2616418
crossref_primary_10_1007_s13369_023_07851_4
crossref_primary_10_1007_s11082_018_1519_8
crossref_primary_10_3390_w11020353
crossref_primary_10_32604_cmc_2020_013458
crossref_primary_10_1016_j_applthermaleng_2019_114569
crossref_primary_10_1109_TNSRE_2020_3028203
crossref_primary_10_1016_j_eswa_2017_05_050
crossref_primary_10_1371_journal_pone_0332439
crossref_primary_10_1080_10298436_2021_1892109
crossref_primary_10_1016_j_jhydrol_2022_128592
crossref_primary_10_1007_s12161_018_01429_9
crossref_primary_10_1016_j_neunet_2015_09_003
crossref_primary_10_1016_j_envres_2017_01_035
crossref_primary_10_2166_ws_2020_277
crossref_primary_10_1007_s43236_021_00302_z
crossref_primary_10_1007_s10586_018_1808_9
Cites_doi 10.1016/j.engappai.2011.03.003
10.1016/j.neucom.2010.12.037
10.1016/j.asoc.2008.07.005
10.1016/j.neucom.2012.11.035
10.1109/TNNLS.2013.2275948
10.1080/01431160902788636
10.1016/j.neucom.2011.12.050
10.1109/TCBB.2010.13
10.1109/TNN.2010.2103956
10.1109/72.572102
10.1016/j.neucom.2010.01.020
10.1016/j.neucom.2011.12.047
10.1016/j.ins.2011.09.015
10.1016/j.eswa.2010.12.089
10.1016/j.patcog.2012.02.002
10.1007/s10916-012-9825-3
10.1109/TII.2012.2206396
10.1016/j.neucom.2013.04.028
10.15837/ijccc.2012.3.1387
10.12785/amis/070349
10.1016/j.neucom.2011.12.053
10.1007/s00500-012-0824-6
10.1016/j.eswa.2012.04.012
10.1007/s00521-011-0806-0
10.1109/TCSI.2012.2189060
10.1016/j.foodchem.2012.05.011
10.1177/1550059411435861
10.1016/j.neucom.2012.01.042
10.1016/j.neucom.2010.02.019
10.1016/j.neucom.2012.12.040
10.1007/s00521-011-0572-z
10.1109/TNN.2006.880583
10.1016/j.neucom.2010.12.039
10.1016/j.eplepsyres.2011.04.013
10.1016/j.compag.2011.04.001
10.1109/TCYB.2014.2307349
10.1016/j.neucom.2012.02.040
10.1088/0957-0233/23/8/085101
10.1515/1556-3758.2737
10.1109/TRO.2011.2130030
10.1049/iet-gtd.2012.0541
10.1016/j.jweia.2013.03.005
10.1016/j.patrec.2011.12.002
10.1016/j.neucom.2010.11.029
10.1016/j.neucom.2011.12.052
10.1002/int.4550080406
10.1016/j.neucom.2005.12.126
10.1109/CISP.2009.5303973
10.1007/s00521-012-0892-7
10.1016/j.neunet.2012.04.002
10.1109/JSTSP.2012.2199463
10.1109/TSMCB.2008.2010506
10.1016/j.neucom.2010.02.001
10.1162/089976603321780317
10.1016/j.neucom.2010.11.030
10.1016/j.neucom.2012.02.042
10.1007/s00500-012-0830-8
10.1016/j.neucom.2011.12.064
10.1109/TNNLS.2013.2281839
10.1016/j.knosys.2012.07.002
10.1162/neco.1991.3.2.213
10.1016/j.asoc.2012.06.016
10.1080/2150704X.2013.805279
10.1186/1471-2105-14-S8-S10
10.1016/j.neunet.2014.01.015
10.1109/72.329697
10.1007/s12559-014-9255-2
10.1016/j.neucom.2010.11.033
10.1016/j.neucom.2012.02.043
10.1109/TNN.2009.2024147
10.1109/TPWRS.2012.2190627
10.1016/j.neucom.2009.11.033
10.1007/s00521-011-0808-y
10.1016/j.patcog.2011.03.013
10.1016/j.energy.2012.06.022
10.1016/j.neunet.2013.11.002
10.1016/j.neucom.2010.11.034
10.1109/TNNLS.2013.2296048
10.1109/TCSII.2012.2204112
10.1016/j.neucom.2011.06.013
10.1016/j.eswa.2013.04.025
10.1007/s00500-012-0817-5
10.1007/s00500-012-0823-7
10.1023/A:1018628609742
10.1016/j.neucom.2010.11.035
10.1007/s00500-012-0831-7
10.1016/j.neucom.2012.01.040
10.1016/j.neucom.2012.02.041
10.1109/TNN.2009.2014061
10.1109/TCYB.2014.2298235
10.1037/h0042519
10.1016/j.compbiomed.2012.07.001
10.1016/j.knosys.2012.11.003
10.1016/j.neucom.2010.11.037
10.1002/jcc.23168
10.1007/s11063-012-9246-9
10.1109/TASE.2011.2173800
10.1016/j.neucom.2012.02.003
10.1155/2012/790526
10.1016/j.neucom.2011.12.045
10.1561/2200000006
10.1007/s00500-012-0820-x
10.1007/s00521-012-0866-9
10.1007/s11517-012-1010-9
10.1016/j.neucom.2012.06.045
10.1109/TAC.2005.852557
10.1016/j.neucom.2010.12.041
10.1016/j.patcog.2012.06.007
10.1142/S0219720012500151
10.1109/TNN.2010.2073482
10.1016/j.neucom.2012.08.010
10.1049/el.2012.3642
10.1016/j.neucom.2007.07.025
10.1093/bioinformatics/btr549
10.1016/j.eswa.2011.07.013
10.1117/12.863827
10.1186/1475-925X-8-31
10.1038/323533a0
10.1007/s00521-011-0796-y
10.1371/journal.pone.0064704
10.1007/s11063-011-9186-9
10.1016/j.eswa.2013.01.011
10.1016/j.ces.2011.06.030
10.1007/s00894-012-1410-7
10.1016/j.jneumeth.2010.04.018
10.1109/TNN.2009.2036259
10.1007/s10115-009-0220-4
10.1016/j.asoc.2013.03.008
10.1016/j.neucom.2009.11.049
10.1007/s00521-012-0891-8
10.1007/s11063-012-9236-y
10.1007/s10916-011-9806-y
10.1103/RevModPhys.34.135
10.1016/S1574-0706(05)01009-8
10.1016/j.neucom.2010.12.035
10.1016/j.ins.2011.11.003
10.1016/j.neunet.2012.09.020
10.1109/TNNLS.2011.2178124
10.1016/j.eswa.2010.07.014
10.1109/TPWRS.2012.2183899
10.1109/TNNLS.2012.2202289
10.1007/s00521-012-0860-2
10.1109/LGRS.2013.2286078
10.1016/j.eswa.2011.08.123
10.1109/TSMCB.2011.2168604
10.1109/5.58326
10.1007/s11063-013-9295-8
10.1109/IJCNN.1989.118281
10.1016/j.neucom.2010.12.043
10.2478/v10006-012-0051-4
10.1016/j.neucom.2008.01.005
10.1109/72.80341
10.1109/TASE.2008.2005640
10.1007/s00521-011-0803-3
10.1109/TNN.2006.875977
10.1109/TNNLS.2012.2218616
10.1016/j.neucom.2009.02.013
10.1016/j.neucom.2009.12.007
10.1007/s00500-012-0822-8
10.1016/j.energy.2013.03.057
10.1016/j.neucom.2007.02.009
10.1109/LSP.2010.2053356
10.1016/j.neucom.2007.10.008
10.1002/jcc.21969
10.1007/s13042-011-0019-y
10.1016/j.neucom.2010.12.038
10.1016/j.neucom.2011.12.055
10.1103/RevModPhys.34.123
10.1166/jmihi.2012.1100
10.1007/s00521-012-0853-1
10.1016/j.ijpe.2010.07.008
10.1007/BF00994018
10.1016/j.jneumeth.2012.07.003
10.1016/j.neunet.2012.11.011
10.1016/j.neucom.2010.11.036
10.3168/jds.2013-6659
10.1016/0893-6080(95)00099-2
10.1109/TCSVT.2011.2177182
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neunet.2014.10.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 48
ExternalDocumentID 25462632
10_1016_j_neunet_2014_10_001
S0893608014002214
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
ID FETCH-LOGICAL-c362t-61892f7fbf0192b22aca37ae00aa3999b2d7b34bbc91cad9d7ba503cb7a93c483
ISICitedReferencesCount 1402
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000347595400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0893-6080
1879-2782
IngestDate Mon Sep 29 06:35:01 EDT 2025
Thu Apr 03 07:01:00 EDT 2025
Sat Nov 29 02:39:45 EST 2025
Tue Nov 18 21:49:46 EST 2025
Fri Feb 23 02:28:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Feature learning
Regression
Extreme learning machine
Clustering
Classification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-61892f7fbf0192b22aca37ae00aa3999b2d7b34bbc91cad9d7ba503cb7a93c483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4355-5340
0000-0002-2480-4965
0000-0002-7251-0988
PMID 25462632
PQID 1662427949
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_1662427949
pubmed_primary_25462632
crossref_citationtrail_10_1016_j_neunet_2014_10_001
crossref_primary_10_1016_j_neunet_2014_10_001
elsevier_sciencedirect_doi_10_1016_j_neunet_2014_10_001
PublicationCentury 2000
PublicationDate January 2015
2015-01-00
2015-Jan
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Frenay, Verleysen (br000245) 2011; 74
Man, Lee, Wang, Cao, Miao (br000540) 2011; 74
Benoit, van Heeswijk, Miche, Verleysen, Lendasse (br000075) 2013; 102
Luo, Vong, Wong (br000510) 2014; 25
Cheng, Tay, Huang (br000160) 2012
Miche, Sorjamaa, Bas, Simula, Jutten, Lendasse (br000555) 2010; 21
Rao, Mitra (br000655) 1971
Rosenblatt (br000685) 1962
Xu, Dong, Zhao, Zhang, Wong (br000920) 2012; 27
Poria, S., Cambria, E., Winterstein, G., & Huang, G.-B. (2014). Sentic patterns: Dependency-based rules for concept-level sentiment analysis.
Kan, Lim, Ong, Tan, Yeo (br000350) 2013; 22
Basu, Shuo, Zhou, Lim, Huang (br000050) 2013; 102
Balbay, Avci, Sahin, Coteli (br000030) 2012; 8
Liu, Lin, Fang, Xu (br000485) 2014
Cao, Liu, Park (br000125) 2013; 102
Chang, Han, Yao, Chen, Xu (br000130) 2010; 4
Wang, Jin, Geng, Sun, Xu, Lu (br000840) 2013; 34
Decherchi, Gastaldo, Zunino, Cambria, Redi (br000205) 2013; 102
Huang, Chen (br000295) 2008; 71
Bai, Huang, Wang, Wang, Westover (br000025) 2014
Balbay, Kaya, Sahin (br000035) 2012; 44
Martínez-Rego, Fontenla-Romero, Pérez-Sánchez, Alonso-Betanzos (br000585) 2010
Yu, Choi, Hui (br000995) 2011; 38
Yuan, Zhou, Li, Cai (br000975) 2011; 96
Yu, Chen, Liu, Huang (br000990) 2013; 28
.
Li, Li, Rong (br000425) 2013; 22
Wang, Han (br000830) 2012; 61
Tian, Mao (br000795) 2010; 7
Kosmatopoulos, Kouvelas (br000380) 2009; 20
Nian, He, Lendasse (br000590) 2013; 22
Wang, Xu, Sun, Gao, Li, Li (br000860) 2012; 33
Deng, Li, Irwin (br000210) 2011; 74
Sanchez-Monedero, Hervas-Martinez, Gutierrez, Ruz, Moreno, Cruz-Ramirez (br000705) 2010; 20
Soria-Olivas, Gomez-Sanchis, Jarman, Vila-Frances, Martinez, Magdalena (br000760) 2011; 22
Shi, Cai, Zhu, Zhong, Wang (br000740) 2013; 51
Huang, G.-B. (2014). An insight to extreme learning machines: Random neurons, random features and kernels. Cognitive Computation (Online).
Rong, Suresh, Zhao (br000675) 2011; 74
Block, Knight, Rosenblatt (br000085) 1962; 34
Cao, Lin, Huang (br000110) 2010; 73
Zong, Huang (br001085) 2014; 39
Zhang, Slaughter (br001035) 2011; 77
Zhang, Zhang (br001050) 2011; 66
Zhang, Ji (br001025) 2013; 49
Rahimi, A., & Recht, B. (2008b). Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning. In
Huang, Zhou, Ding, Zhang (br000335) 2012; 42
Barea, Boquete, Ortega, Lopez, Rodriguez-Ascariz (br000045) 2012; 39
Yang, Xu, Zhao, Wang, Dong (br000945) 2011; 74
Zhang, Wang (br001045) 2011; 60
Belkin, Niyogi, Sindhwani (br000065) 2006; 7
Liu, Wang (br000490) 2010; 17
Feng, Wang, Yang (br000235) 2012; 7
Zhai, Xu, Wang (br001015) 2012; 16
White (br000875) 2006
Malar, Kandaswamy, Chakravarthy, Dharan (br000520) 2012; 42
Knowledge-Based Systems.
He, Shang, Zhuang, Shi (br000270) 2013; 102
Huang, Li, Chen, Siew (br000310) 2008; 71
Creech, Jiang (br000185) 2012; Vol. 1479
Rahimi, A., & Recht, B. (2007). Random features for large-scale kernel machines. In
Song, Crowcroft, Zhang (br000750) 2012; 210
Decherchi, Gastaldo, Leoncini, Zunino (br000200) 2012; 59
Wang, Qian, Feng (br000850) 2013; 22
Huang, Song, Wu (br000320) 2012; 59
Kaya, Uyar (br000365) 2013; 13
Cao, Lin, Huang (br000115) 2012; 36
Song, Zhang (br000755) 2013; 40
Kim, Shin, Shin, Lee (br000370) 2009; 8
Li, Zhang, Xu, Luo, Li (br000505) 2013; 9
Muhammad, Tepe, Abdel-Raheem (br000580) 2013; 22
White (br000880) 1992
Xu, Dai, Dong, Zhang, Meng (br000910) 2013; 22
Ye, Squartini, Piazza (br000960) 2013; 116
Savojardo, Fariselli, Casadio (br000725) 2011; 27
Tan, Dong, Chen, He (br000780) 2012; 22
Cao, Lin, Huang, Liu (br000120) 2012; 185
Hagan, Menhaj (br000260) 1994; 5
Suresh, Babu, Kim (br000770) 2009; 9
Huang, Zhu, Siew (br000340) 2006; 70
Huang, Ding, Zhou (br000305) 2010; 74
Xu, Dong, Xu, Meng, Wong (br000915) 2012; 8
Huang, Song, Gupta, Wu (br000315) 2014
Bazi, Alajlan, Melgani, AlHichri, Malek, Yager (br000055) 2014; 11
Choi, Toh, Byun (br000175) 2012; 45
Li, Peng, Irwin (br000465) 2005; 50
Saraswathi, Fernandez-Martinez, Kolinski, Jernigan, Kloczkowski (br000710) 2012; 18
Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2004). Extreme learning machine: a new learning scheme of feedforward neural networks. In
Feng, Qian, Zhang (br000230) 2012; 16
Osman, Mashor, Jaafar (br000595) 2012; 2
Huang, Tan, Lin, Huang, Zhou, Chui (br000325) 2012
Lan, Soh, Huang (br000400) 2009; 72
Kosmatopoulos, Kouvelas (br000385) 2009; 20
Zhang, Dong, Xu, Meng, Wong (br001020) 2013; 7
Karpagachelvi, Arthanari, Sivakumar (br000355) 2012; 21
Zhao, Wang, Bi, Gong, Zhao (br001065) 2011; 74
Zhao, Wang, Park (br001070) 2012; 87
Branke, J. (1995). Evolutionary algorithms for neural network design and training. In
Chen, Zhao, Wang, Chen (br000165) 2012; 16
Cambria, Gastaldo, Bisio, Zunino (br000105) 2014
Wilamowski, Yu (br000890) 2010; 21
Zong, Huang (br001090) 2011; 74
Chen, Peng, Zhou, Li, Pan (br000155) 2014; 53
Malathi, Marimuthu, Baskar, Ramar (br000530) 2011; 24
Decherchi, Gastaldo, Dahiya, Valle, Zunino (br000195) 2011; 27
Deng, Zheng, Wang (br000215) 2013; 120
Minhas, Baradarani, Seifzadeh, Wu (br000560) 2010; 73
Wang, Do (br000815) 2012; 16
pp. 1313–1320.
Zheng, Qian, Lu (br001075) 2013; 22
Yu, Deng (br001005) 2012; 33
Rahimi, Recht (br000645) 2008
Lu, Wang, Yuan, Han (br000515) 2013; 102
vol. 2, pp. 985–990.
Rong, Ong, Tan, Zhu (br000670) 2008; 72
Poggio, Girosi (br000625) 1990; 78
(pp. 451–455).
Rasheed, Rangwala (br000660) 2012; 10
Li, Wang, Chai (br000500) 2013; 102
Wang, Shao, Miao, Zhai (br000855) 2013; 102
Horata, Chiewchanwattana, Sunat (br000280) 2013; 102
Vols. 1–9.
Marques, Grana (br000545) 2013; 114
Gastaldo, Zunino, Cambria, Decherchi (br000255) 2013; 28
Wong, Guo (br000895) 2010; 128
Boquete, Miguel-Jimenez, Ortega, Rodriguez-Ascariz, Perez-Rico, Blanco (br000090) 2012; 39
Liang, Huang, Saratchandran, Sundararajan (br000420) 2006; 17
Yang, Wang, Yuan (br000935) 2012; 23
Zhang, Wang (br001040) 2011; 60
Minhas, Mohammed, Wu (br000570) 2012; 22
Yu, Choi, Hui (br001000) 2012; 9
Kong, Zhang, Liu, Gong, He (br000375) 2013; 96
Man, Lee, Wang, Cao, Khoo (br000535) 2012; 23
Yao (br000955) 1993; 8
Malathi, Marimuthu, Baskar (br000525) 2010; 73
Baradarani, Wu, Ahmadi (br000040) 2013; 46
Wang, Er, Han (br000825) 2014
Lahoz, Lacruz, Mateo (br000395) 2013; 111
Zhao, Li, Xu (br001055) 2013; 7
Zhao, Qi, Wang, Yao (br001060) 2012; 23
He, Xu, Nian, van Heeswijk, Yu, Miche (br000275) 2014; 6
Huang, Chen, Siew (br000300) 2006; 17
Chen, Zhu, Wang (br000170) 2013; 22
Daliri (br000190) 2012; 36
Fernández-Delgado, Cernadas, Barro, Ribeiro, Neves (br000240) 2014; 50
Feng, Huang, Lin, Gay (br000225) 2009; 20
Block (br000080) 1962; 34
Rong, Huang, Sundararajan, Saratchandran (br000665) 2009; 39
Rosenblatt (br000680) 1958; 65
Wong, Wong, Cheung, Vong (br000900) 2013; 55
Lin, Chang, Hsu (br000440) 2013; 39
Zong, Huang, Chen (br001095) 2013; 101
Avci, Coteli (br000020) 2012; 39
Platt (br000615) 1991; 3
Pan, Park, Lu, Wu (br000610) 2012; 16
Li, Ouyang, Chen, Liu (br000460) 2012; 36
Suykens, Vandewalle (br000775) 1999; 9
Lemme, Freire, Barreto, Steil (br000410) 2013; 112
Li, Liu, Ouyang (br000430) 2012; 9
Yu, Miche, Eirola, van Heeswijk, Severin, Lendasse (br001010) 2013; 102
Wang, Li, Cao (br000845) 2012; 16
Yuan, Zhou, Zhang, Li, Cai, Zeng (br000985) 2012; 43
You, Lei, Zhu, Xia, Wang (br000965) 2013; 14
Yang, Wang, Yuan (br000930) 2013; 37
Zhang, Lan, Huang, Xu (br001030) 2012; 23
Cortes, Vapnik (br000180) 1995; 20
Chen, Ding, Cai, Zhao (br000140) 2012; 135
Savitha, Suresh, Sundararajan (br000720) 2012; 187
Wang, Cao, Yuan (br000810) 2011; 74
An, Bhanu (br000010) 2012
Saxe, A., Koh, P. W., Chen, Z., Bhand, M., Suresh, B., & Ng, A. Y. (2011). On random weights and unsupervised feature learning. In
Du, Li, Irwin, Deng (br000220) 2013; 102
Martinez-Martinez, Escandell-Montero, Soria-Olivas, Martin-Guerrero, Magdalena-Benedito, Gomez-Sanchis (br000550) 2011; 74
Qu, Shang, Wu, Shen (br000635) 2011; 13
Saavedra-Moreno, Salcedo-Sanz, Carro-Calvo, Gascon-Moreno, Jimenez-Fernandez, Prieto (br000695) 2013; 116
Lin, Liu, Fang, Xu (br000450) 2014
He, Du, Wang, Zhuang, Shi (br000265) 2011; 74
Yuan, Zhou, Li, Cai (br000980) 2011; 96
Yang, Xie, Yoon, Park, Fang, Yang (br000940) 2013; 22
White, H. (1989). An additional hidden unit test for neglected nonlinearity in multilayer feedforward networks. In
Zhou, Zhao, Cao (br001080) 2013; 23
Yan, Wang (br000950) 2014; 25
Plutowski, Cottrell, White (br000620) 1996; 9
Vol. 3, p. 5.
Liu, Y., Xu, X.J., & Wang, C.Y. (2009). Simple ensemble of extreme learning machine. In
Sovilj, Sorjamaa, Yu, Miche, Severin (br000765) 2010; 73
Pal (br000600) 2009; 30
Chen, Cowan, Grant (br000135) 1991; 2
Widrow, Greenblatt, Kim, Park (br000885) 2013; 37
Liu, Jiang, Xiao, Zhang, Mei, Ding (br000480) 2012; 32
Chen, Ou (br000150) 2011; 38
Kwok, Yeung (br000390) 1997; 8
Shi, Lu (br000745) 2013; 102
Belkin, Niyogi (br000060) 2003; 15
Wang, Huang, Luo, Wang, Luo (br000835) 2011; 74
Tang, Deng, Huang, Zhao (br000785) 2014
Yuan, Wang, Cao (br000970) 2011; 74
Liu, Chen, Liu, Zhao (br000470) 2011; 74
Mohammed, Minhas, Wu, Sid-Ahmed (br000575) 2011; 44
Vapnik (br000805) 2000
Chen, Dong, Meng, Ku, Wong, Ngan (br000145) 2012; 27
Kasun, Zhou, Huang (br000360) 2013; 28
Gao, Wang, Yang, Zhang, Tao, Guan (br000250) 2013; 8
Landa-Torres, Ortiz-Garcia, Salcedo-Sanz, Segovia-Vargas, Gil-Lopez, Miranda (br000405) 2012; 6
Le, Q., Sarlos, T., & Smola, A. (2013). Fastfood-approximating kernel expansions in loglinear time. In
Liu, Gao, Li (br000475) 2012; 33
Wang, Er, Han (br000820) 2014
Xia, Zhang, Weng, Ye (br000905) 2012; 36
Huang, Wang, Lan (br000330) 2011; 2
Huang, Chen (br000290) 2007; 70
Adamos, Laskaris, Kosmidis, Theophilidis (br000005) 2010; 190
Li, Niu, Liu, Zhang (br000445) 2012; 12
Yang, Mao (br000925) 2013; 28
Avci (br000015) 2013; 40
van Heeswijk, Miche, Oja, Lendasse (br000800) 2011; 74
(pp. 1089–1096).
Butcher, Verstraeten, Schrauwen, Day, Haycock (br000100) 2013; 38
Minhas, Mohammed, Wu (br000565) 2010; 73
Pal, Maxwell, Warner (br000605) 2013; 4
Schmidt, Kraaijveld, Duin (br000735) 1992
Li, Li, Zhai, Shiu (br000435) 2012; 16
Sanchez-Monedero, Gutierrez, Fernandez-Navarro, Hervas-Martinez (br000700) 2011; 34
Tang, Han (br000790) 2010; 23
Wefky, Espinosa, de~Santiago, Revenga, Lazaro, Martinez (br000865) 2012
Bengio (br000070) 2009;
Minhas (10.1016/j.neunet.2014.10.001_br000560) 2010; 73
Yang (10.1016/j.neunet.2014.10.001_br000925) 2013; 28
Choi (10.1016/j.neunet.2014.10.001_br000175) 2012; 45
Malathi (10.1016/j.neunet.2014.10.001_br000525) 2010; 73
Wilamowski (10.1016/j.neunet.2014.10.001_br000890) 2010; 21
Frenay (10.1016/j.neunet.2014.10.001_br000245) 2011; 74
Yang (10.1016/j.neunet.2014.10.001_br000940) 2013; 22
Rosenblatt (10.1016/j.neunet.2014.10.001_br000685) 1962
Chen (10.1016/j.neunet.2014.10.001_br000150) 2011; 38
Decherchi (10.1016/j.neunet.2014.10.001_br000195) 2011; 27
Rong (10.1016/j.neunet.2014.10.001_br000665) 2009; 39
Yao (10.1016/j.neunet.2014.10.001_br000955) 1993; 8
Marques (10.1016/j.neunet.2014.10.001_br000545) 2013; 114
van Heeswijk (10.1016/j.neunet.2014.10.001_br000800) 2011; 74
Yu (10.1016/j.neunet.2014.10.001_br001000) 2012; 9
Zhao (10.1016/j.neunet.2014.10.001_br001055) 2013; 7
Li (10.1016/j.neunet.2014.10.001_br000500) 2013; 102
Nian (10.1016/j.neunet.2014.10.001_br000590) 2013; 22
He (10.1016/j.neunet.2014.10.001_br000270) 2013; 102
Huang (10.1016/j.neunet.2014.10.001_br000315) 2014
Savojardo (10.1016/j.neunet.2014.10.001_br000725) 2011; 27
Saraswathi (10.1016/j.neunet.2014.10.001_br000715) 2011; 8
Benoit (10.1016/j.neunet.2014.10.001_br000075) 2013; 102
Minhas (10.1016/j.neunet.2014.10.001_br000570) 2012; 22
10.1016/j.neunet.2014.10.001_br000730
10.1016/j.neunet.2014.10.001_br000285
Shi (10.1016/j.neunet.2014.10.001_br000740) 2013; 51
Block (10.1016/j.neunet.2014.10.001_br000080) 1962; 34
Kan (10.1016/j.neunet.2014.10.001_br000350) 2013; 22
Wang (10.1016/j.neunet.2014.10.001_br000815) 2012; 16
Yuan (10.1016/j.neunet.2014.10.001_br000970) 2011; 74
Zong (10.1016/j.neunet.2014.10.001_br001095) 2013; 101
Li (10.1016/j.neunet.2014.10.001_br000445) 2012; 12
He (10.1016/j.neunet.2014.10.001_br000265) 2011; 74
Yang (10.1016/j.neunet.2014.10.001_br000935) 2012; 23
Wang (10.1016/j.neunet.2014.10.001_br000810) 2011; 74
Chen (10.1016/j.neunet.2014.10.001_br000135) 1991; 2
Luo (10.1016/j.neunet.2014.10.001_br000510) 2014; 25
Belkin (10.1016/j.neunet.2014.10.001_br000065) 2006; 7
Man (10.1016/j.neunet.2014.10.001_br000535) 2012; 23
Huang (10.1016/j.neunet.2014.10.001_br000320) 2012; 59
Cortes (10.1016/j.neunet.2014.10.001_br000180) 1995; 20
Huang (10.1016/j.neunet.2014.10.001_br000305) 2010; 74
Horata (10.1016/j.neunet.2014.10.001_br000280) 2013; 102
Gastaldo (10.1016/j.neunet.2014.10.001_br000255) 2013; 28
Cao (10.1016/j.neunet.2014.10.001_br000125) 2013; 102
Baradarani (10.1016/j.neunet.2014.10.001_br000040) 2013; 46
Wang (10.1016/j.neunet.2014.10.001_br000840) 2013; 34
Chen (10.1016/j.neunet.2014.10.001_br000165) 2012; 16
Wong (10.1016/j.neunet.2014.10.001_br000895) 2010; 128
Belkin (10.1016/j.neunet.2014.10.001_br000060) 2003; 15
Landa-Torres (10.1016/j.neunet.2014.10.001_br000405) 2012; 6
Suykens (10.1016/j.neunet.2014.10.001_br000775) 1999; 9
Rumelhart (10.1016/j.neunet.2014.10.001_br000690) 1986; 323
Sanchez-Monedero (10.1016/j.neunet.2014.10.001_br000700) 2011; 34
Bazi (10.1016/j.neunet.2014.10.001_br000055) 2014; 11
Hagan (10.1016/j.neunet.2014.10.001_br000260) 1994; 5
Rong (10.1016/j.neunet.2014.10.001_br000675) 2011; 74
Liang (10.1016/j.neunet.2014.10.001_br000420) 2006; 17
Cheng (10.1016/j.neunet.2014.10.001_br000160) 2012
Rong (10.1016/j.neunet.2014.10.001_br000670) 2008; 72
Block (10.1016/j.neunet.2014.10.001_br000085) 1962; 34
Adamos (10.1016/j.neunet.2014.10.001_br000005) 2010; 190
Rosenblatt (10.1016/j.neunet.2014.10.001_br000680) 1958; 65
Decherchi (10.1016/j.neunet.2014.10.001_br000200) 2012; 59
10.1016/j.neunet.2014.10.001_br000095
Liu (10.1016/j.neunet.2014.10.001_br000485) 2014
Liu (10.1016/j.neunet.2014.10.001_br000480) 2012; 32
Li (10.1016/j.neunet.2014.10.001_br000505) 2013; 9
Qu (10.1016/j.neunet.2014.10.001_br000635) 2011; 13
Avci (10.1016/j.neunet.2014.10.001_br000015) 2013; 40
Rao (10.1016/j.neunet.2014.10.001_br000655) 1971
Yu (10.1016/j.neunet.2014.10.001_br000995) 2011; 38
Xu (10.1016/j.neunet.2014.10.001_br000920) 2012; 27
10.1016/j.neunet.2014.10.001_br000415
Yuan (10.1016/j.neunet.2014.10.001_br000980) 2011; 96
10.1016/j.neunet.2014.10.001_br000650
Yu (10.1016/j.neunet.2014.10.001_br001005) 2012; 33
Lan (10.1016/j.neunet.2014.10.001_br000400) 2009; 72
Lin (10.1016/j.neunet.2014.10.001_br000455) 2013; 28
Zhang (10.1016/j.neunet.2014.10.001_br001040) 2011; 60
Liu (10.1016/j.neunet.2014.10.001_br000470) 2011; 74
Sanchez-Monedero (10.1016/j.neunet.2014.10.001_br000705) 2010; 20
Kasun (10.1016/j.neunet.2014.10.001_br000360) 2013; 28
Kosmatopoulos (10.1016/j.neunet.2014.10.001_br000380) 2009; 20
Chen (10.1016/j.neunet.2014.10.001_br000140) 2012; 135
Bengio (10.1016/j.neunet.2014.10.001_br000070) 2009; 2
Du (10.1016/j.neunet.2014.10.001_br000220) 2013; 102
10.1016/j.neunet.2014.10.001_br000640
Li (10.1016/j.neunet.2014.10.001_br000430) 2012; 9
Wang (10.1016/j.neunet.2014.10.001_br000845) 2012; 16
Kim (10.1016/j.neunet.2014.10.001_br000370) 2009; 8
Martinez-Martinez (10.1016/j.neunet.2014.10.001_br000550) 2011; 74
Li (10.1016/j.neunet.2014.10.001_br000425) 2013; 22
Mohammed (10.1016/j.neunet.2014.10.001_br000575) 2011; 44
Liu (10.1016/j.neunet.2014.10.001_br000490) 2010; 17
Zhang (10.1016/j.neunet.2014.10.001_br001030) 2012; 23
Xia (10.1016/j.neunet.2014.10.001_br000905) 2012; 36
Fernández-Delgado (10.1016/j.neunet.2014.10.001_br000240) 2014; 50
Cao (10.1016/j.neunet.2014.10.001_br000110) 2010; 73
Wang (10.1016/j.neunet.2014.10.001_br000820) 2014
Wang (10.1016/j.neunet.2014.10.001_br000835) 2011; 74
Shi (10.1016/j.neunet.2014.10.001_br000745) 2013; 102
Martínez-Rego (10.1016/j.neunet.2014.10.001_br000585) 2010
10.1016/j.neunet.2014.10.001_br000870
10.1016/j.neunet.2014.10.001_br000630
Tan (10.1016/j.neunet.2014.10.001_br000780) 2012; 22
Wang (10.1016/j.neunet.2014.10.001_br000860) 2012; 33
Karpagachelvi (10.1016/j.neunet.2014.10.001_br000355) 2012; 21
Yan (10.1016/j.neunet.2014.10.001_br000950) 2014; 25
Saavedra-Moreno (10.1016/j.neunet.2014.10.001_br000695) 2013; 116
Kosmatopoulos (10.1016/j.neunet.2014.10.001_br000385) 2009; 20
Balbay (10.1016/j.neunet.2014.10.001_br000030) 2012; 8
Daliri (10.1016/j.neunet.2014.10.001_br000190) 2012; 36
Lemme (10.1016/j.neunet.2014.10.001_br000410) 2013; 112
Song (10.1016/j.neunet.2014.10.001_br000755) 2013; 40
Zhang (10.1016/j.neunet.2014.10.001_br001020) 2013; 7
Pal (10.1016/j.neunet.2014.10.001_br000605) 2013; 4
Zhao (10.1016/j.neunet.2014.10.001_br001070) 2012; 87
Zong (10.1016/j.neunet.2014.10.001_br001085) 2014; 39
Lu (10.1016/j.neunet.2014.10.001_br000515) 2013; 102
10.1016/j.neunet.2014.10.001_br000345
Liu (10.1016/j.neunet.2014.10.001_br000475) 2012; 33
Zhao (10.1016/j.neunet.2014.10.001_br001065) 2011; 74
Soria-Olivas (10.1016/j.neunet.2014.10.001_br000760) 2011; 22
Yu (10.1016/j.neunet.2014.10.001_br001010) 2013; 102
Zhang (10.1016/j.neunet.2014.10.001_br001045) 2011; 60
Chang (10.1016/j.neunet.2014.10.001_br000130) 2010; 4
White (10.1016/j.neunet.2014.10.001_br000875) 2006
Huang (10.1016/j.neunet.2014.10.001_br000330) 2011; 2
Kwok (10.1016/j.neunet.2014.10.001_br000390) 1997; 8
Kong (10.1016/j.neunet.2014.10.001_br000375) 2013; 96
White (10.1016/j.neunet.2014.10.001_br000880) 1992
Widrow (10.1016/j.neunet.2014.10.001_br000885) 2013; 37
Osman (10.1016/j.neunet.2014.10.001_br000595) 2012; 2
Butcher (10.1016/j.neunet.2014.10.001_br000100) 2013; 38
Huang (10.1016/j.neunet.2014.10.001_br000340) 2006; 70
Wang (10.1016/j.neunet.2014.10.001_br000850) 2013; 22
Malar (10.1016/j.neunet.2014.10.001_br000520) 2012; 42
Zhao (10.1016/j.neunet.2014.10.001_br001060) 2012; 23
An (10.1016/j.neunet.2014.10.001_br000010) 2012
Gao (10.1016/j.neunet.2014.10.001_br000250) 2013; 8
Creech (10.1016/j.neunet.2014.10.001_br000185) 2012; Vol. 1479
Huang (10.1016/j.neunet.2014.10.001_br000290) 2007; 70
Bai (10.1016/j.neunet.2014.10.001_br000025) 2014
Chen (10.1016/j.neunet.2014.10.001_br000145) 2012; 27
Basu (10.1016/j.neunet.2014.10.001_br000050) 2013; 102
Deng (10.1016/j.neunet.2014.10.001_br000210) 2011; 74
Huang (10.1016/j.neunet.2014.10.001_br000310) 2008; 71
Yu (10.1016/j.neunet.2014.10.001_br000990) 2013; 28
Pan (10.1016/j.neunet.2014.10.001_br000610) 2012; 16
Vapnik (10.1016/j.neunet.2014.10.001_br000805) 2000
Ye (10.1016/j.neunet.2014.10.001_br000960) 2013; 116
Huang (10.1016/j.neunet.2014.10.001_br000335) 2012; 42
Zhai (10.1016/j.neunet.2014.10.001_br001015) 2012; 16
Yang (10.1016/j.neunet.2014.10.001_br000945) 2011; 74
Li (10.1016/j.neunet.2014.10.001_br000460) 2012; 36
Yang (10.1016/j.neunet.2014.10.001_br000930) 2013; 37
Wong (10.1016/j.neunet.2014.10.001_br000900) 2013; 55
You (10.1016/j.neunet.2014.10.001_br000965) 2013; 14
Li (10.1016/j.neunet.2014.10.001_br000465) 2005; 50
Plutowski (10.1016/j.neunet.2014.10.001_br000620) 1996; 9
Li (10.1016/j.neunet.2014.10.001_br000435) 2012; 16
Avci (10.1016/j.neunet.2014.10.001_br000020) 2012; 39
Wang (10.1016/j.neunet.2014.10.001_br000855) 2013; 102
Zhang (10.1016/j.neunet.2014.10.001_br001050) 2011; 66
Schmidt (10.1016/j.neunet.2014.10.001_br000735) 1992
Tian (10.1016/j.neunet.2014.10.001_br000795) 2010; 7
Zhang (10.1016/j.neunet.2014.10.001_br001035) 2011; 77
Huang (10.1016/j.neunet.2014.10.001_br000295) 2008; 71
10.1016/j.neunet.2014.10.001_br000495
Decherchi (10.1016/j.neunet.2014.10.001_br000205) 2013; 102
Huang (10.1016/j.neunet.2014.10.001_br000300) 2006; 17
Lahoz (10.1016/j.neunet.2014.10.001_br000395) 2013; 111
Tang (10.1016/j.neunet.2014.10.001_br000785) 2014
Cambria (10.1016/j.neunet.2014.10.001_br000105) 2014
Xu (10.1016/j.neunet.2014.10.001_br000910) 2013; 22
Deng (10.1016/j.neunet.2014.10.001_br000215) 2013; 120
Feng (10.1016/j.neunet.2014.10.001_br000225) 2009; 20
Wang (10.1016/j.neunet.2014.10.001_br000825) 2014
Pal (10.1016/j.neunet.2014.10.001_br000600) 2009; 30
Rasheed (10.1016/j.neunet.2014.10.001_br000660) 2012; 10
Zong (10.1016/j.neunet.2014.10.001_br001090) 2011; 74
Boquete (10.1016/j.neunet.2014.10.001_br000090) 2012; 39
Barea (10.1016/j.neunet.2014.10.001_br000045) 2012; 39
Tang (10.1016/j.neunet.2014.10.001_br000790) 2010; 23
Kaya (10.1016/j.neunet.2014.10.001_br000365) 2013; 13
Man (10.1016/j.neunet.2014.10.001_br000540) 2011; 74
Miche (10.1016/j.neunet.2014.10.001_br000555) 2010;
References_xml – volume: 2
  start-page: 307
  year: 2012
  end-page: 312
  ident: br000595
  article-title: Performance comparison of extreme learning machine algorithms for mycobacterium tuberculosis detection in tissue sections
  publication-title: Journal of Medical Imaging and Health Informatics
– volume: 6
  start-page: 388
  year: 2012
  end-page: 398
  ident: br000405
  article-title: Evaluating the internationalization success of companies through a hybrid grouping harmony search-extreme learning machine approach
  publication-title: IEEE Journal of Selected Topics in Signal Processing
– volume: 37
  start-page: 182
  year: 2013
  end-page: 188
  ident: br000885
  article-title: The No-Prop algorithm: A new learning algorithm for multilayer neural networks
  publication-title: Neural Networks
– year: 2014
  ident: br000820
  article-title: Parsimonious extreme learning machine using recursive orthogonal least squares
  publication-title: IEEE Transactions on Neural Networks
– volume: 102
  start-page: 176
  year: 2013
  end-page: 183
  ident: br000515
  article-title: Semantic concept detection for video based on extreme learning machine
  publication-title: Neurocomputing
– volume: 4
  year: 2010
  ident: br000130
  article-title: Change detection of land use and land cover in an urban region with spot-5 images and partial lanczos extreme learning machine
  publication-title: Journal of Applied Remote Sensing
– volume: 16
  start-page: 1493
  year: 2012
  end-page: 1502
  ident: br001015
  article-title: Dynamic ensemble extreme learning machine based on sample entropy
  publication-title: Soft Computing
– volume: 9
  start-page: 276
  year: 2012
  end-page: 287
  ident: br001000
  article-title: An intelligent quick prediction algorithm with applications in industrial control and loading problems
  publication-title: IEEE Transactions on Automation Science and Engineering
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: br000340
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– volume: 96
  start-page: 29
  year: 2011
  end-page: 38
  ident: br000975
  article-title: Epileptic EEG classification based on extreme learning machine and nonlinear features
  publication-title: Epilepsy Research
– volume: 74
  start-page: 2475
  year: 2011
  end-page: 2482
  ident: br000970
  article-title: Optimization approximation solution for regression problem based on extreme learning machine
  publication-title: Neurocomputing
– volume: 22
  start-page: 491
  year: 2013
  end-page: 500
  ident: br000580
  article-title: QAM equalization and symbol detection in OFDM systems using extreme learning machine
  publication-title: Neural Computing & Applications
– volume: 8
  start-page: 539
  year: 1993
  end-page: 567
  ident: br000955
  article-title: A review of evolutionary artificial neural networks
  publication-title: International Journal of Intelligent Systems
– volume: 44
  start-page: 2588
  year: 2011
  end-page: 2597
  ident: br000575
  article-title: Human face recognition based on multidimensional pca and extreme learning machine
  publication-title: Pattern Recognition
– volume: 9
  start-page: 3351
  year: 2012
  end-page: 3363
  ident: br000430
  article-title: A new regularization classification method based on extreme learning machine in network data
  publication-title: Journal of Information & Computational Science
– year: 2000
  ident: br000805
  article-title: The nature of statistical learning theory
– volume: 9
  start-page: 293
  year: 1999
  end-page: 300
  ident: br000775
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Processing letters
– volume: 7
  start-page: 73
  year: 2010
  end-page: 80
  ident: br000795
  article-title: An ensemble ELM based on modified AdaBoost.RT algorithm for predicting the temperature of molten steel in ladle furnace
  publication-title: IEEE Transactions on Automation Science and Engineering
– year: 2014
  ident: br000785
  article-title: Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 28
  start-page: 18
  year: 2013
  end-page: 20
  ident: br000255
  article-title: Combining ELM with random projections
  publication-title: IEEE Intelligent Systems
– volume: 23
  start-page: 345
  year: 2010
  end-page: 372
  ident: br000790
  article-title: Ternary reversible extreme learning machines: the incremental tri-training method for semi-supervised classification
  publication-title: Knowledge and Information Systems
– volume: 112
  start-page: 179
  year: 2013
  end-page: 188
  ident: br000410
  article-title: Kinesthetic teaching of visuomotor coordination for pointing by the humanoid robot icub
  publication-title: Neurocomputing
– volume: 22
  start-page: 531
  year: 2013
  end-page: 539
  ident: br000425
  article-title: The extreme learning machine learning algorithm with tunable activation function
  publication-title: Neural Computing & Applications
– volume: 114
  start-page: 80
  year: 2013
  end-page: 85
  ident: br000545
  article-title: Fusion of lattice independent and linear features improving face identification
  publication-title: Neurocomputing
– volume: 13
  start-page: 282
  year: 2011
  end-page: 291
  ident: br000635
  article-title: Evolutionary fuzzy extreme learning machine for mammographic risk analysis
  publication-title: International Journal of Fuzzy Systems
– volume: 74
  start-page: 2582
  year: 2011
  end-page: 2590
  ident: br000675
  article-title: Stable indirect adaptive neural controller for a class of nonlinear system
  publication-title: Neurocomputing
– volume: 42
  start-page: 513
  year: 2012
  end-page: 529
  ident: br000335
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
– volume: 23
  start-page: 1974
  year: 2012
  end-page: 1986
  ident: br000535
  article-title: Robust single-hidden layer feedforward network-based pattern classifier
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 39
  start-page: 12340
  year: 2012
  end-page: 12348
  ident: br000020
  article-title: A new automatic target recognition system based on wavelet extreme learning machine
  publication-title: Expert Systems with Applications
– volume: 44
  start-page: 352
  year: 2012
  end-page: 357
  ident: br000035
  article-title: Drying of black cumin (
  publication-title: Energy
– volume: 111
  start-page: 90
  year: 2013
  end-page: 103
  ident: br000395
  article-title: A multi-objective micro genetic ELM algorithm
  publication-title: Neurocomputing
– volume: 102
  start-page: 3
  year: 2013
  end-page: 9
  ident: br000855
  article-title: Architecture selection for networks trained with extreme learning machine using localized generalization error model
  publication-title: Neurocomputing
– reference: , pp. 1313–1320.
– volume: 72
  start-page: 359
  year: 2008
  end-page: 366
  ident: br000670
  article-title: A fast pruned-extreme learning machine for classification problem
  publication-title: Neurocomputing
– reference: Huang, G.-B. (2014). An insight to extreme learning machines: Random neurons, random features and kernels. Cognitive Computation (Online).
– volume: 6
  start-page: 264
  year: 2014
  end-page: 277
  ident: br000275
  article-title: Fast face recognition via sparse coding and extreme learning machine
  publication-title: Cognitive Computation
– volume: 8
  start-page: 630
  year: 1997
  end-page: 645
  ident: br000390
  article-title: Constructive algorithms for structure learning in feedforward neural networks for regression problems
  publication-title: IEEE Transactions on Neural Networks
– volume: 30
  start-page: 3835
  year: 2009
  end-page: 3841
  ident: br000600
  article-title: Extreme-learning-machine-based land cover classification
  publication-title: International Journal of Remote Sensing
– volume: 22
  start-page: 427
  year: 2013
  end-page: 433
  ident: br000590
  article-title: 3d object recognition based on a geometrical topology model and extreme learning machine
  publication-title: Neural Computing & Applications
– reference: , Vol. 3, p. 5.
– volume: 51
  start-page: 417
  year: 2013
  end-page: 427
  ident: br000740
  article-title: Semg-based hand motion recognition using cumulative residual entropy and extreme learning machine
  publication-title: Medical & Biological Engineering & Computing
– volume: 102
  start-page: 31
  year: 2013
  end-page: 44
  ident: br000280
  article-title: Robust extreme learning machine
  publication-title: Neurocomputing
– volume: 73
  start-page: 1906
  year: 2010
  end-page: 1917
  ident: br000560
  article-title: Human action recognition using extreme learning machine based on visual vocabularies
  publication-title: Neurocomputing
– year: 1971
  ident: br000655
  article-title: Generalized inverse of matrices and its applications, Vol.~7
– volume: 60
  year: 2011
  ident: br001045
  article-title: Selective forgetting extreme learning machine and its application to time series prediction
  publication-title: Acta Physica Sinica
– volume: 2
  start-page: 302
  year: 1991
  end-page: 309
  ident: br000135
  article-title: Orthogonal least squares learning algorithm for radial basis function networks
  publication-title: IEEE Transactions on Neural Networks
– volume: 74
  start-page: 2526
  year: 2011
  end-page: 2531
  ident: br000245
  article-title: Parameter-insensitive kernel in extreme learning for non-linear support vector regression
  publication-title: Neurocomputing
– volume: 22
  start-page: 541
  year: 2013
  end-page: 550
  ident: br000170
  article-title: A modified extreme learning machine with sigmoidal activation functions
  publication-title: Neural Computing & Applications
– start-page: 60
  year: 2010
  end-page: 66
  ident: br000585
  article-title: Fault prognosis of mechanical components using on-line learning neural networks
  publication-title: Artificial Neural Networks–ICANN 2010
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: br000180
  article-title: Support vector machine
  publication-title: Machine learning
– year: 2014
  ident: br000315
  article-title: Semi-supervised and unsupervised extreme learning machines
  publication-title: IEEE Transactions on Cybernetics
– volume: 16
  start-page: 1477
  year: 2012
  end-page: 1484
  ident: br000845
  article-title: Variable activation function extreme learning machine based on residual prediction compensation
  publication-title: Soft Computing
– reference: ) Knowledge-Based Systems.
– volume: 102
  start-page: 45
  year: 2013
  end-page: 51
  ident: br001010
  article-title: Regularized extreme learning machine for regression with missing data
  publication-title: Neurocomputing
– volume: 74
  start-page: 3716
  year: 2011
  end-page: 3721
  ident: br000550
  article-title: Regularized extreme learning machine for regression problems
  publication-title: Neurocomputing
– volume: 8
  year: 2013
  ident: br000250
  article-title: A novel approach for lie detection based on f-score and extreme learning machine
  publication-title: Plos One
– volume: 7
  start-page: 2399
  year: 2006
  end-page: 2434
  ident: br000065
  article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
  publication-title: The Journal of Machine Learning Research
– year: 2014
  ident: br000025
  article-title: Sparse extreme learning machine for classification
  publication-title: IEEE Transactions on Cybernetics
– start-page: 1
  year: 1992
  end-page: 4
  ident: br000735
  article-title: Feed forward neural networks with random weights
  publication-title: Proceedings of 11th IAPR international conference on pattern recognition methodology and systems
– reference: , Vols. 1–9.
– volume: 135
  start-page: 590
  year: 2012
  end-page: 595
  ident: br000140
  article-title: Rapid measurement of total acid content (TAC) in vinegar using near infrared spectroscopy based on efficient variables selection algorithm and nonlinear regression tools
  publication-title: Food Chemistry
– volume: 102
  start-page: 10
  year: 2013
  end-page: 22
  ident: br000220
  article-title: A novel automatic two-stage locally regularized classifier construction method using the extreme learning machine
  publication-title: Neurocomputing
– volume: 38
  start-page: 7373
  year: 2011
  end-page: 7379
  ident: br000995
  article-title: An intelligent fast sales forecasting model for fashion products
  publication-title: Expert Systems with Applications
– volume: 187
  start-page: 277
  year: 2012
  end-page: 290
  ident: br000720
  article-title: Fast learning circular complex-valued extreme learning machine (CC-ELM) for real-valued classification problems
  publication-title: Information Sciences
– volume: 39
  start-page: 234
  year: 2012
  end-page: 238
  ident: br000090
  article-title: Multifocal electroretinogram diagnosis of glaucoma applying neural networks and structural pattern analysis
  publication-title: Expert Systems with Applications
– volume: 12
  start-page: 3132
  year: 2012
  end-page: 3140
  ident: br000445
  article-title: Enhanced combination modeling method for combustion efficiency in coal-fired boilers
  publication-title: Applied Soft Computing
– volume: 8
  start-page: 995
  year: 2012
  end-page: 1003
  ident: br000915
  article-title: An intelligent dynamic security assessment framework for power systems with wind power
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 39
  start-page: 2677
  year: 2012
  end-page: 2683
  ident: br000045
  article-title: Eog-based eye movements codification for human computer interaction
  publication-title: Expert Systems with Applications
– volume: 22
  start-page: 505
  year: 2011
  end-page: 509
  ident: br000760
  article-title: Belm: Bayesian extreme learning machine
  publication-title: IEEE Transactions on Neural Networks
– volume: 116
  start-page: 49
  year: 2013
  end-page: 60
  ident: br000695
  article-title: Very fast training neural-computation techniques for real measure-correlate-predict wind operations in wind farms
  publication-title: Journal of Wind Engineering and Industrial Aerodynamics
– year: 2014
  ident: br000450
  article-title: Is extreme learning machine feasible? a theoretical assessment (part II)
  publication-title: IEEE Transactions on Neural Networks nd Learning Systems
– volume: 128
  start-page: 614
  year: 2010
  end-page: 624
  ident: br000895
  article-title: A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm
  publication-title: International Journal of Production Economics
– volume: 13
  start-page: 3429
  year: 2013
  end-page: 3438
  ident: br000365
  article-title: A hybrid decision support system based on rough set and extreme learning machine for diagnosis of hepatitis disease
  publication-title: Applied Soft Computing
– volume: 23
  start-page: 1498
  year: 2012
  end-page: 1505
  ident: br000935
  article-title: Bidirectional extreme learning machine for regression problem and its learning effectiveness
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 45
  start-page: 2868
  year: 2012
  end-page: 2883
  ident: br000175
  article-title: Incremental face recognition for large-scale social network services
  publication-title: Pattern Recognition
– volume: 17
  start-page: 1411
  year: 2006
  end-page: 1423
  ident: br000420
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE Transactions on Neural Networks
– reference: Saxe, A., Koh, P. W., Chen, Z., Bhand, M., Suresh, B., & Ng, A. Y. (2011). On random weights and unsupervised feature learning. In:
– volume: 74
  start-page: 155
  year: 2010
  end-page: 163
  ident: br000305
  article-title: Optimization method based extreme learning machine for classification
  publication-title: Neurocomputing
– volume: 22
  start-page: 1529
  year: 2012
  end-page: 1541
  ident: br000570
  article-title: Incremental learning in human action recognition based on snippets
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
– volume: 71
  start-page: 3460
  year: 2008
  end-page: 3468
  ident: br000295
  article-title: Enhanced random search based incremental extreme learning machine
  publication-title: Neurocomputing
– reference: Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2004). Extreme learning machine: a new learning scheme of feedforward neural networks. In:
– volume: 28
  start-page: 55
  year: 2013
  end-page: 59
  ident: br000990
  article-title: An adaptive and iterative online sequential ELM based multi-degree-of-freedom gesture recognition system
  publication-title: IEEE Intelligent Systems
– volume: 20
  start-page: 1009
  year: 2009
  end-page: 1023
  ident: br000385
  article-title: Large scale nonlinear control system fine-tuning through learning
  publication-title: IEEE Transactions on Neural Networks
– volume: 34
  start-page: 101
  year: 2011
  end-page: 116
  ident: br000700
  article-title: Weighting efficient accuracy and minimum sensitivity for evolving multi-class classifiers
  publication-title: Neural Processing Letters
– volume: 28
  start-page: 48
  year: 2013
  end-page: 52
  ident: br000925
  article-title: Reduced ELMs for causal relation extraction from unstructured text
  publication-title: IEEE Intelligent Systems
– volume: 25
  start-page: 457
  year: 2014
  end-page: 469
  ident: br000950
  article-title: Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks
  publication-title: IEEE Transactions on Neural Networks nd Learning Systems
– volume: 16
  start-page: 1617
  year: 2012
  end-page: 1625
  ident: br000165
  article-title: Extreme learning machine-based device displacement free activity recognition model
  publication-title: Soft Computing
– volume: 61
  year: 2012
  ident: br000830
  article-title: Multivariate chaotic time series prediction based on extreme learning machine
  publication-title: Acta Physica Sinica
– volume: 22
  start-page: 469
  year: 2013
  end-page: 477
  ident: br000350
  article-title: Extreme learning machine terrain-based navigation for unmanned aerial vehicles
  publication-title: Neural Computing & Applications
– volume: Vol. 1479
  start-page: 1506
  year: 2012
  end-page: 1511
  ident: br000185
  article-title: The application of extreme learning machines to the network intrusion detection problem
  publication-title: International conference of numerical analysis and applied mathematics
– reference: (pp. 451–455).
– volume: 9
  start-page: 273
  year: 1996
  end-page: 294
  ident: br000620
  article-title: Experience with selecting exemplars from clean data
  publication-title: Neural Networks
– volume: 78
  start-page: 1481
  year: 1990
  end-page: 1497
  ident: br000625
  article-title: Networks for approximation and learning
  publication-title: Proceedings of the IEEE
– volume: 8
  year: 2012
  ident: br000030
  article-title: Modeling of drying process of bittim nuts (
  publication-title: International Journal of Food Engineering
– volume: 23
  start-page: 365
  year: 2012
  end-page: 371
  ident: br001030
  article-title: Universal approximation of extreme learning machine with adaptive growth of hidden nodes
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 74
  start-page: 2491
  year: 2011
  end-page: 2501
  ident: br000540
  article-title: A new robust training algorithm for a class of single-hidden layer feedforward neural networks
  publication-title: Neurocomputing
– volume: 60
  year: 2011
  ident: br001040
  article-title: Incremental regularized extreme learning machine based on cholesky factorization and its application to time series prediction
  publication-title: Acta Physica Sinica
– volume: 27
  start-page: 2055
  year: 2012
  end-page: 2062
  ident: br000145
  article-title: Electricity price forecasting with extreme learning machine and bootstrapping
  publication-title: IEEE Transactions on Power Systems
– volume: 9
  start-page: 207
  year: 2013
  end-page: 214
  ident: br000505
  article-title: A semi-supervised extreme learning machine method based on co-training
  publication-title: Journal of Computational Information Systems
– volume: 20
  start-page: 1352
  year: 2009
  end-page: 1357
  ident: br000225
  article-title: Error minimized extreme learning machine with growth of hidden nodes and incremental learning
  publication-title: IEEE Transactions on Neural Networks
– volume: 33
  start-page: 554
  year: 2012
  end-page: 558
  ident: br001005
  article-title: Efficient and effective algorithms for training single-hidden-layer neural networks
  publication-title: Pattern Recognition Letters
– volume: 3
  start-page: 213
  year: 1991
  end-page: 225
  ident: br000615
  article-title: A resource-allocating network for function interpolation
  publication-title: Neural Computation
– reference: .
– volume: 71
  start-page: 576
  year: 2008
  end-page: 583
  ident: br000310
  article-title: Incremental extreme learning machine with fully complex hidden nodes
  publication-title: Neurocomputing
– volume: 55
  start-page: 519
  year: 2013
  end-page: 528
  ident: br000900
  article-title: Modeling and optimization of biodiesel engine performance using advanced machine learning methods
  publication-title: Energy
– year: 1992
  ident: br000880
  article-title: Artificial neural networks: approximation and learning theory
– volume: 96
  start-page: 4921
  year: 2013
  end-page: 4927
  ident: br000375
  article-title: Irradiation dose detection of irradiated milk powder using visible and near-infrared spectroscopy and chemometrics
  publication-title: Journal of Dairy Science
– volume: 74
  start-page: 2464
  year: 2011
  end-page: 2474
  ident: br000835
  article-title: Image deblurring with filters learned by extreme learning machine
  publication-title: Neurocomputing
– volume: 21
  start-page: 1331
  year: 2012
  end-page: 1339
  ident: br000355
  article-title: Classification of electrocardiogram signals with support vector machines and extreme learning machine
  publication-title: Neural Computing & Applications
– volume: 22
  start-page: 501
  year: 2013
  end-page: 508
  ident: br000910
  article-title: Extreme learning machine-based predictor for real-time frequency stability assessment of electric power systems
  publication-title: Neural Computing & Applications
– volume: 22
  start-page: 685
  year: 2012
  end-page: 694
  ident: br000780
  article-title: Neural network based identification of hysteresis in human meridian systems
  publication-title: International Journal of Applied Mathematics and Computer Science
– volume: 7
  start-page: 459
  year: 2012
  end-page: 472
  ident: br000235
  article-title: Inverse kinematics solution for robot manipulator based on neural network under joint subspace
  publication-title: International Journal of Computers Communications & Control
– year: 1962
  ident: br000685
  article-title: Principles of neurodynamics: perceptrons and the theory of brain mechanisms
– volume: 7
  start-page: 1243
  year: 2013
  end-page: 1250
  ident: br001055
  article-title: Forecasting model of coal mine water inrush based on extreme learning machine
  publication-title: Applied Mathematics & Information Sciences
– volume: 36
  start-page: 3327
  year: 2012
  end-page: 3337
  ident: br000460
  article-title: A computer aided diagnosis system for thyroid disease using extreme learning machine
  publication-title: Journal of Medical Systems
– volume: 102
  start-page: 78
  year: 2013
  end-page: 89
  ident: br000205
  article-title: Circular-ELM for the reduced-reference assessment of perceived image quality
  publication-title: Neurocomputing
– year: 2014
  ident: br000825
  article-title: Parsimonious extreme learning machine using recursive orthogonal least squares
  publication-title: IEEE Transactions on Neural Networks nd Learning Systems
– volume: 101
  start-page: 229
  year: 2013
  end-page: 242
  ident: br001095
  article-title: Weighted extreme learning machine for imbalance learning
  publication-title: Neurocomputing
– volume: 102
  start-page: 52
  year: 2013
  end-page: 58
  ident: br000270
  article-title: Parallel extreme learning machine for regression based on mapreduce
  publication-title: Neurocomputing
– start-page: 2209
  year: 2012
  end-page: 2212
  ident: br000010
  article-title: Image super-resolution by extreme learning machine
  publication-title: 2012 19th IEEE international conference on image processing
– volume: 74
  start-page: 2422
  year: 2011
  end-page: 2429
  ident: br000210
  article-title: Fast automatic two-stage nonlinear model identification based on the extreme learning machine
  publication-title: Neurocomputing
– volume: 39
  start-page: 214
  year: 2013
  end-page: 223
  ident: br000440
  article-title: Multiple extreme learning machines for a two-class imbalance corporate life cycle prediction
  publication-title: Knowledge-Based Systems
– volume: 102
  start-page: 111
  year: 2013
  end-page: 124
  ident: br000075
  article-title: Feature selection for nonlinear models with extreme learning machines
  publication-title: Neurocomputing
– volume: 66
  start-page: 4702
  year: 2011
  end-page: 4710
  ident: br001050
  article-title: Optimization of nonlinear process based on sequential extreme learning machine
  publication-title: Chemical Engineering Science
– year: 2014
  ident: br000105
  article-title: An ELM-based model for affective analogical reasoning
  publication-title: Neurocomputing
– volume: 5
  start-page: 989
  year: 1994
  end-page: 993
  ident: br000260
  article-title: Training feedforward networks with the marquardt algorithm
  publication-title: IEEE Transactions on Neural Networks
– volume: 190
  start-page: 129
  year: 2010
  end-page: 142
  ident: br000005
  article-title: Nass: An empirical approach to spike sorting with overlap resolution based on a hybrid noise-assisted methodology
  publication-title: Journal of Neuroscience Methods
– volume: 33
  start-page: 58
  year: 2012
  end-page: 66
  ident: br000475
  article-title: A comparative analysis of support vector machines and extreme learning machines
  publication-title: Neural Networks
– volume: 50
  start-page: 60
  year: 2014
  end-page: 71
  ident: br000240
  article-title: Direct kernel perceptron (DKP): Ultra-fast kernel ELM-based classification with non-iterative closed-form weight calculation
  publication-title: Neural Networks
– volume: 74
  start-page: 2430
  year: 2011
  end-page: 2437
  ident: br000800
  article-title: GPU-accelerated and parallelized ELM ensembles for large-scale regression
  publication-title: Neurocomputing
– start-page: 555
  year: 2008
  end-page: 561
  ident: br000645
  article-title: Uniform approximation of functions with random bases
  publication-title: Communication, control, and computing, 2008 46th annual allerton conference on
– volume: 16
  start-page: 1595
  year: 2012
  end-page: 1606
  ident: br000815
  article-title: Computational localization of transcription factor binding sites using extreme learning machines
  publication-title: Soft Computing
– volume: 65
  start-page: 386
  year: 1958
  end-page: 408
  ident: br000680
  article-title: The perceptron: A probabilistic model for information storage and organization in the brain
  publication-title: Psychological Review
– volume: 37
  start-page: 277
  year: 2013
  end-page: 301
  ident: br000930
  article-title: Parallel chaos search based incremental extreme learning machine
  publication-title: Neural Processing Letters
– volume: 70
  start-page: 3056
  year: 2007
  end-page: 3062
  ident: br000290
  article-title: Convex incremental extreme learning machine
  publication-title: Neurocomputing
– volume: 20
  start-page: 899
  year: 2010
  end-page: 912
  ident: br000705
  article-title: Evaluating the performance of evolutionary extreme learning machines by a combination of sensitivity and accuracy measures
  publication-title: Neural Network World
– volume: 11
  start-page: 1066
  year: 2014
  end-page: 1070
  ident: br000055
  article-title: Differential evolution extreme learning machine for the classification of hyperspectral images
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 39
  start-page: 1067
  year: 2009
  end-page: 1072
  ident: br000665
  article-title: Online sequential fuzzy extreme learning machine for function approximation and classification problems
  publication-title: IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics
– volume: 39
  start-page: 155
  year: 2014
  end-page: 166
  ident: br001085
  article-title: Learning to rank with extreme learning machine
  publication-title: Neural processing letters
– volume: 72
  start-page: 3391
  year: 2009
  end-page: 3395
  ident: br000400
  article-title: Ensemble of online sequential extreme learning machine
  publication-title: Neurocomputing
– volume: 10
  year: 2012
  ident: br000660
  article-title: Metagenomic taxonomic classification using extreme learning machines
  publication-title: Journal of Bioinformatics and Computational Biology
– reference: Poria, S., Cambria, E., Winterstein, G., & Huang, G.-B. (2014). Sentic patterns: Dependency-based rules for concept-level sentiment analysis. (
– reference: Rahimi, A., & Recht, B. (2008b). Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning. In:
– volume: 22
  start-page: 447
  year: 2013
  end-page: 456
  ident: br001075
  article-title: Text categorization based on regularization extreme learning machine
  publication-title: Neural Computing & Applications
– volume: 102
  start-page: 135
  year: 2013
  end-page: 143
  ident: br000745
  article-title: Eeg-based vigilance estimation using extreme learning machines
  publication-title: Neurocomputing
– volume: 40
  start-page: 5477
  year: 2013
  end-page: 5489
  ident: br000755
  article-title: Automatic recognition of epileptic EEG patterns via extreme learning machine and multiresolution feature extraction
  publication-title: Expert Systems with Applications
– volume: 49
  start-page: 448
  year: 2013
  end-page: 449
  ident: br001025
  article-title: Fuzzy extreme learning machine for classification
  publication-title: Electronics Letters
– year: 2014
  ident: br000485
  article-title: Is extreme learning machine feasible? a theoretical assessment (part I)
  publication-title: IEEE Transactions on Neural Networks nd Learning Systems
– volume: 7
  start-page: 391
  year: 2013
  end-page: 397
  ident: br001020
  article-title: Short-term load forecasting of australian national electricity market by an ensemble model of extreme learning machine
  publication-title: IET Generation Transmission & Distribution
– volume: 34
  start-page: 123
  year: 1962
  end-page: 135
  ident: br000080
  article-title: The perceptron: A model for brain function. I
  publication-title: Reviewers of Modern Physics
– volume: 59
  start-page: 496
  year: 2012
  end-page: 500
  ident: br000200
  article-title: Efficient digital implementation of extreme learning machines for classification
  publication-title: IEEE Transactions on Circuits and Systems II-Express Briefs
– volume: 74
  start-page: 2541
  year: 2011
  end-page: 2551
  ident: br001090
  article-title: Face recognition based on extreme learning machine
  publication-title: Neurocomputing
– volume: 8
  year: 2009
  ident: br000370
  article-title: Robust algorithm for arrhythmia classification in ecg using extreme learning machine
  publication-title: Biomedical Engineering Online
– volume: 36
  start-page: 253
  year: 2012
  end-page: 259
  ident: br000905
  article-title: Fashion retailing forecasting based on extreme learning machine with adaptive metrics of inputs
  publication-title: Knowledge-Based Systems
– volume: 53
  start-page: 119
  year: 2014
  end-page: 126
  ident: br000155
  article-title: Extreme learning machine for ranking: Generalization analysis and applications
  publication-title: Neural Networks
– volume: 73
  start-page: 1831
  year: 2010
  end-page: 1839
  ident: br000565
  article-title: A fast recognition framework based on extreme learning machine using hybrid object information
  publication-title: Neurocomputing
– reference: (pp. 1089–1096).
– volume: 17
  start-page: 879
  year: 2006
  end-page: 892
  ident: br000300
  article-title: Universal approximation using incremental constructive feedforward networks with random hidden nodes
  publication-title: IEEE Transactions on Neural Networks
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: br000070
  article-title: Learning deep architectures for AI
  publication-title: Foundations and Trends in Machine Learning
– volume: 210
  start-page: 132
  year: 2012
  end-page: 146
  ident: br000750
  article-title: Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine
  publication-title: Journal of Neuroscience Methods
– volume: 73
  start-page: 1976
  year: 2010
  end-page: 1986
  ident: br000765
  article-title: OPELM and OPKNN in long-term prediction of time series using projected input data
  publication-title: Neurocomputing
– reference: Rahimi, A., & Recht, B. (2007). Random features for large-scale kernel machines. In
– volume: 33
  start-page: 231
  year: 2012
  end-page: 236
  ident: br000860
  article-title: An effective method for accurate prediction of the first hyperpolarizability of alkalides
  publication-title: Journal of Computational Chemistry
– volume: 40
  start-page: 3984
  year: 2013
  end-page: 3993
  ident: br000015
  article-title: A new method for expert target recognition system: Genetic wavelet extreme learning machine (GAWELM)
  publication-title: Expert Systems with Applications
– volume: 74
  start-page: 2532
  year: 2011
  end-page: 2540
  ident: br000265
  article-title: A parallel incremental extreme svm classifier
  publication-title: Neurocomputing
– volume: 22
  start-page: 435
  year: 2013
  end-page: 445
  ident: br000940
  article-title: Fingerprint matching based on extreme learning machine
  publication-title: Neural Computing & Applications
– volume: 14
  year: 2013
  ident: br000965
  article-title: Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis
  publication-title: BMC Bioinformatics
– volume: 27
  start-page: 3123
  year: 2011
  end-page: 3128
  ident: br000725
  article-title: Improving the detection of transmembrane beta-barrel chains with n-to-1 extreme learning machines
  publication-title: Bioinformatics
– reference: White, H. (1989). An additional hidden unit test for neglected nonlinearity in multilayer feedforward networks. In:
– volume: 43
  start-page: 127
  year: 2012
  end-page: 132
  ident: br000985
  article-title: EEG classification approach based on the extreme learning machine and wavelet transform
  publication-title: Clinical EEG and Neuroscience
– volume: 102
  start-page: 125
  year: 2013
  end-page: 134
  ident: br000050
  article-title: Silicon spiking neurons for hardware implementation of extreme learning machines
  publication-title: Neurocomputing
– volume: 42
  start-page: 898
  year: 2012
  end-page: 905
  ident: br000520
  article-title: A novel approach for detection and classification of mammographic microcalcifications using wavelet analysis and extreme learning machine
  publication-title: Computers in Biology and Medicine
– volume: 74
  start-page: 2444
  year: 2011
  end-page: 2451
  ident: br001065
  article-title: XML document classification based on ELM
  publication-title: Neurocomputing
– volume: 22
  start-page: 479
  year: 2013
  end-page: 489
  ident: br000850
  article-title: Predicting consumer sentiments using online sequential extreme learning machine and intuitionistic fuzzy sets
  publication-title: Neural Computing & Applications
– volume: 185
  start-page: 66
  year: 2012
  end-page: 77
  ident: br000120
  article-title: Voting based extreme learning machine
  publication-title: Information Sciences
– volume: 73
  start-page: 1405
  year: 2010
  end-page: 1416
  ident: br000110
  article-title: Composite function wavelet neural networks with extreme learning machine
  publication-title: Neurocomputing
– volume: 16
  start-page: 1627
  year: 2012
  end-page: 1637
  ident: br000435
  article-title: Rts game strategy evaluation using extreme learning machine
  publication-title: Soft Computing
– volume: 16
  start-page: 1485
  year: 2012
  end-page: 1491
  ident: br000230
  article-title: Evolutionary selection extreme learning machine optimization for regression
  publication-title: Soft Computing
– volume: 96
  start-page: 29
  year: 2011
  end-page: 38
  ident: br000980
  article-title: Epileptic eeg classification based on extreme learning machine and nonlinear features
  publication-title: Epilepsy Research
– volume: 28
  start-page: 35
  year: 2013
  end-page: 38
  ident: br000455
  article-title: A secure and practical mechanism of outsourcing extreme learning machine in cloud computing
  publication-title: IEEE Intelligent Systems
– volume: 46
  start-page: 57
  year: 2013
  end-page: 72
  ident: br000040
  article-title: An efficient illumination invariant face recognition framework via illumination enhancement and dd-dtcwt filtering
  publication-title: Pattern Recognition
– volume: 16
  start-page: 1569
  year: 2012
  end-page: 1584
  ident: br000610
  article-title: Color image segmentation by fixation-based active learning with ELM
  publication-title: Soft Computing
– volume: 34
  start-page: 566
  year: 2013
  end-page: 575
  ident: br000840
  article-title: An accurate and efficient method to predict the electronic excitation energies of bodipy fluorescent dyes
  publication-title: Journal of Computational Chemistry
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: br000690
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– volume: 74
  start-page: 2483
  year: 2011
  end-page: 2490
  ident: br000810
  article-title: A study on effectiveness of extreme learning machine
  publication-title: Neurocomputing
– year: 2012
  ident: br000325
  article-title: A semi-automatic approach to the segmentation of liver parenchyma from 3D CT images with extreme learning machine
– volume: 8
  start-page: 452
  year: 2011
  end-page: 463
  ident: br000715
  article-title: ICGA-PSO-ELM approach for accurate multiclass cancer classification resulting in reduced gene sets in which genes encoding secreted proteins are highly represented
  publication-title: IEEE-ACM Transactions on Computational Biology and Bioinformatics
– volume: 38
  start-page: 1336
  year: 2011
  end-page: 1345
  ident: br000150
  article-title: Sales forecasting system based on gray extreme learning machine with taguchi method in retail industry
  publication-title: Expert Systems with Applications
– volume: 27
  start-page: 1253
  year: 2012
  end-page: 1263
  ident: br000920
  article-title: A reliable intelligent system for real-time dynamic security assessment of power systems
  publication-title: IEEE Transactions on Power Systems
– volume: 17
  start-page: 754
  year: 2010
  end-page: 757
  ident: br000490
  article-title: Ensemble based extreme learning machine
  publication-title: IEEE Signal Processing Letters
– volume: 21
  start-page: 1793
  year: 2010
  end-page: 1803
  ident: br000890
  article-title: Neural network learning without backpropagation
  publication-title: IEEE Transactions on Neural Networks
– volume: 120
  start-page: 490
  year: 2013
  end-page: 498
  ident: br000215
  article-title: Projection vector machine
  publication-title: Neurocomputing
– volume: 28
  start-page: 31
  year: 2013
  end-page: 34
  ident: br000360
  article-title: Representational learning with ELMs for big data
  publication-title: IEEE Intelligent Systems
– volume: 74
  start-page: 2573
  year: 2011
  end-page: 2581
  ident: br000945
  article-title: Predicting the probability of ice storm damages to electricity transmission facilities based on ELM and copula function
  publication-title: Neurocomputing
– volume: 20
  start-page: 1009
  year: 2009
  end-page: 1023
  ident: br000380
  article-title: Large scale nonlinear control system fine-tuning through learning
  publication-title: IEEE Transactions on Neural Networks
– volume: 73
  start-page: 2160
  year: 2010
  end-page: 2167
  ident: br000525
  article-title: Intelligent approaches using support vector machine and extreme learning machine for transmission line protection
  publication-title: Neurocomputing
– volume: 18
  start-page: 4275
  year: 2012
  end-page: 4289
  ident: br000710
  article-title: Fast learning optimized prediction methodology (flopred) for protein secondary structure prediction
  publication-title: Journal of Molecular Modeling
– volume: 38
  start-page: 76
  year: 2013
  end-page: 89
  ident: br000100
  article-title: Reservoir computing and extreme learning machines for non-linear time-series data analysis
  publication-title: Neural Networks
– volume: 50
  start-page: 1211
  year: 2005
  end-page: 1216
  ident: br000465
  article-title: A fast nonlinear model identification method
  publication-title: IEEE Transactions on Automatic Control
– volume: 32
  start-page: 970
  year: 2012
  end-page: 973
  ident: br000480
  article-title: Determination of process variable ph in solid-state fermentation by ft-nir spectroscopy and extreme learning machine (ELM)
  publication-title: Spectroscopy and Spectral Analysis
– volume: 102
  start-page: 144
  year: 2013
  end-page: 153
  ident: br000500
  article-title: Burning state recognition of rotary kiln using ELMs with heterogeneous features
  publication-title: Neurocomputing
– volume: 9
  start-page: 541
  year: 2009
  end-page: 552
  ident: br000770
  article-title: No-reference image quality assessment using modified extreme learning machine classifier
  publication-title: Applied Soft Computing
– volume: 23
  year: 2012
  ident: br001060
  article-title: The study of using an extreme learning machine for rapid concentration estimation in multi-component gas mixtures
  publication-title: Measurement Science & Technology
– volume: 36
  start-page: 285
  year: 2012
  end-page: 305
  ident: br000115
  article-title: Self-adaptive evolutionary extreme learning machine
  publication-title: Neural Processing Letters
– volume: 102
  start-page: 90
  year: 2013
  end-page: 97
  ident: br000125
  article-title: Image classification based on effective extreme learning machine
  publication-title: Neurocomputing
– volume: 27
  start-page: 635
  year: 2011
  end-page: 639
  ident: br000195
  article-title: Tactile-data classification of contact materials using computational intelligence
  publication-title: IEEE Transactions on Robotics
– volume: 59
  start-page: 2629
  year: 2012
  end-page: 2637
  ident: br000320
  article-title: Orthogonal least squares algorithm for training cascade neural networks
  publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers
– volume: 77
  start-page: 95
  year: 2011
  end-page: 104
  ident: br001035
  article-title: Hyperspectral species mapping for automatic weed control in tomato under thermal environmental stress
  publication-title: Computers and Electronics in Agriculture
– volume: 15
  start-page: 1373
  year: 2003
  end-page: 1396
  ident: br000060
  article-title: Laplacian eigenmaps for dimensionality reduction and data representation
  publication-title: Neural Computation
– volume: 25
  start-page: 836
  year: 2014
  end-page: 843
  ident: br000510
  article-title: Sparse bayesian extreme learning machine for multi-classification
  publication-title: IEEE Transactions on Neural Networks nd Learning Systems
– volume: 23
  start-page: 283
  year: 2013
  end-page: 292
  ident: br001080
  article-title: Surface reconstruction based on extreme learning machine
  publication-title: Neural Computing & Applications
– volume: 24
  start-page: 880
  year: 2011
  end-page: 887
  ident: br000530
  article-title: Application of extreme learning machine for series compensated transmission line protection
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 21
  start-page: 158
  year: 2010
  end-page: 162
  ident: br000555
  article-title: OP-ELM: Optimally pruned extreme learning machine
  publication-title: IEEE Transactions on Neural Networks
– volume: 34
  start-page: 135
  year: 1962
  end-page: 142
  ident: br000085
  article-title: Analysis of a four-layer series-coupled perceptron. II
  publication-title: Reviewers of Modern Physics
– start-page: 1
  year: 2012
  end-page: 8
  ident: br000160
  article-title: Extreme learning machines for intrusion detection
  publication-title: The 2012 International Joint Conference on Neural Networks (IJCNN)
– volume: 2
  start-page: 107
  year: 2011
  end-page: 122
  ident: br000330
  article-title: Extreme learning machines: a survey
  publication-title: International Journal of Machine Learning and Cybernetics
– reference: Branke, J. (1995). Evolutionary algorithms for neural network design and training. In
– volume: 4
  start-page: 853
  year: 2013
  end-page: 862
  ident: br000605
  article-title: Kernel-based extreme learning machine for remote-sensing image classification
  publication-title: Remote Sensing Letters
– volume: 87
  start-page: 79
  year: 2012
  end-page: 89
  ident: br001070
  article-title: Online sequential extreme learning machine with forgetting mechanism
  publication-title: Neurocomputing
– reference: Le, Q., Sarlos, T., & Smola, A. (2013). Fastfood-approximating kernel expansions in loglinear time. In
– reference: , vol. 2, pp. 985–990.
– reference: Liu, Y., Xu, X.J., & Wang, C.Y. (2009). Simple ensemble of extreme learning machine. In
– volume: 36
  start-page: 1001
  year: 2012
  end-page: 1005
  ident: br000190
  article-title: A hybrid automatic system for the diagnosis of lung cancer based on genetic algorithm and fuzzy extreme learning machines
  publication-title: Journal of Medical Systems
– volume: 116
  start-page: 94
  year: 2013
  end-page: 101
  ident: br000960
  article-title: Online sequential extreme learning machine in nonstationary environments
  publication-title: Neurocomputing
– volume: 74
  start-page: 2566
  year: 2011
  end-page: 2572
  ident: br000470
  article-title: SELM: Semi-supervised ELM with application in sparse calibrated location estimation
  publication-title: Neurocomputing
– year: 2012
  ident: br000865
  article-title: Electrical drive radiated emissions estimation in terms of input control using extreme learning machines
  publication-title: Mathematical Problems in Engineering
– start-page: 460
  year: 2006
  end-page: 512
  ident: br000875
  article-title: Approxiate nonlinear forecasting methods
  publication-title: Handbook of economics forecasting
– volume: 24
  start-page: 880
  issue: 5
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br000530
  article-title: Application of extreme learning machine for series compensated transmission line protection
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2011.03.003
– volume: 60
  issue: 8
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br001045
  article-title: Selective forgetting extreme learning machine and its application to time series prediction
  publication-title: Acta Physica Sinica
– volume: 74
  start-page: 2475
  issue: 16
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br000970
  article-title: Optimization approximation solution for regression problem based on extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.12.037
– volume: 9
  start-page: 541
  issue: 2
  year: 2009
  ident: 10.1016/j.neunet.2014.10.001_br000770
  article-title: No-reference image quality assessment using modified extreme learning machine classifier
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2008.07.005
– year: 2000
  ident: 10.1016/j.neunet.2014.10.001_br000805
– volume: 111
  start-page: 90
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000395
  article-title: A multi-objective micro genetic ELM algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.11.035
– volume: 25
  start-page: 457
  issue: 3
  year: 2014
  ident: 10.1016/j.neunet.2014.10.001_br000950
  article-title: Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks
  publication-title: IEEE Transactions on Neural Networks nd Learning Systems
  doi: 10.1109/TNNLS.2013.2275948
– volume: 30
  start-page: 3835
  issue: 14
  year: 2009
  ident: 10.1016/j.neunet.2014.10.001_br000600
  article-title: Extreme-learning-machine-based land cover classification
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160902788636
– volume: 102
  start-page: 78
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000205
  article-title: Circular-ELM for the reduced-reference assessment of perceived image quality
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.12.050
– volume: 8
  start-page: 452
  issue: 2
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br000715
  article-title: ICGA-PSO-ELM approach for accurate multiclass cancer classification resulting in reduced gene sets in which genes encoding secreted proteins are highly represented
  publication-title: IEEE-ACM Transactions on Computational Biology and Bioinformatics
  doi: 10.1109/TCBB.2010.13
– year: 2014
  ident: 10.1016/j.neunet.2014.10.001_br000785
  article-title: Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 22
  start-page: 505
  issue: 3
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br000760
  article-title: Belm: Bayesian extreme learning machine
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2010.2103956
– volume: 8
  start-page: 630
  issue: 3
  year: 1997
  ident: 10.1016/j.neunet.2014.10.001_br000390
  article-title: Constructive algorithms for structure learning in feedforward neural networks for regression problems
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.572102
– volume: 73
  start-page: 1906
  issue: 10–12
  year: 2010
  ident: 10.1016/j.neunet.2014.10.001_br000560
  article-title: Human action recognition using extreme learning machine based on visual vocabularies
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.01.020
– volume: 28
  start-page: 31
  issue: 5
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000360
  article-title: Representational learning with ELMs for big data
  publication-title: IEEE Intelligent Systems
– volume: 102
  start-page: 144
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000500
  article-title: Burning state recognition of rotary kiln using ELMs with heterogeneous features
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.12.047
– volume: 185
  start-page: 66
  issue: 1
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000120
  article-title: Voting based extreme learning machine
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2011.09.015
– volume: 38
  start-page: 7373
  issue: 6
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br000995
  article-title: An intelligent fast sales forecasting model for fashion products
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.12.089
– volume: 9
  start-page: 3351
  issue: 12
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000430
  article-title: A new regularization classification method based on extreme learning machine in network data
  publication-title: Journal of Information & Computational Science
– volume: 45
  start-page: 2868
  issue: 8
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000175
  article-title: Incremental face recognition for large-scale social network services
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2012.02.002
– volume: 36
  start-page: 3327
  issue: 5
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000460
  article-title: A computer aided diagnosis system for thyroid disease using extreme learning machine
  publication-title: Journal of Medical Systems
  doi: 10.1007/s10916-012-9825-3
– volume: 8
  start-page: 995
  issue: 4
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000915
  article-title: An intelligent dynamic security assessment framework for power systems with wind power
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2012.2206396
– ident: 10.1016/j.neunet.2014.10.001_br000630
– volume: 120
  start-page: 490
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000215
  article-title: Projection vector machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.04.028
– volume: 7
  start-page: 459
  issue: 3
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000235
  article-title: Inverse kinematics solution for robot manipulator based on neural network under joint subspace
  publication-title: International Journal of Computers Communications & Control
  doi: 10.15837/ijccc.2012.3.1387
– volume: 7
  start-page: 1243
  issue: 3
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br001055
  article-title: Forecasting model of coal mine water inrush based on extreme learning machine
  publication-title: Applied Mathematics & Information Sciences
  doi: 10.12785/amis/070349
– year: 1971
  ident: 10.1016/j.neunet.2014.10.001_br000655
– volume: 102
  start-page: 3
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000855
  article-title: Architecture selection for networks trained with extreme learning machine using localized generalization error model
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.12.053
– volume: 16
  start-page: 1493
  issue: 9
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br001015
  article-title: Dynamic ensemble extreme learning machine based on sample entropy
  publication-title: Soft Computing
  doi: 10.1007/s00500-012-0824-6
– volume: 39
  start-page: 12340
  issue: 16
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000020
  article-title: A new automatic target recognition system based on wavelet extreme learning machine
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.04.012
– volume: 22
  start-page: 435
  issue: 3-4
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000940
  article-title: Fingerprint matching based on extreme learning machine
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-011-0806-0
– volume: 59
  start-page: 2629
  issue: 11
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000320
  article-title: Orthogonal least squares algorithm for training cascade neural networks
  publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers
  doi: 10.1109/TCSI.2012.2189060
– volume: 135
  start-page: 590
  issue: 2
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000140
  article-title: Rapid measurement of total acid content (TAC) in vinegar using near infrared spectroscopy based on efficient variables selection algorithm and nonlinear regression tools
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2012.05.011
– volume: 43
  start-page: 127
  issue: 2
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000985
  article-title: EEG classification approach based on the extreme learning machine and wavelet transform
  publication-title: Clinical EEG and Neuroscience
  doi: 10.1177/1550059411435861
– volume: 102
  start-page: 125
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000050
  article-title: Silicon spiking neurons for hardware implementation of extreme learning machines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.01.042
– volume: 74
  start-page: 155
  issue: 1-3
  year: 2010
  ident: 10.1016/j.neunet.2014.10.001_br000305
  article-title: Optimization method based extreme learning machine for classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.02.019
– volume: 112
  start-page: 179
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000410
  article-title: Kinesthetic teaching of visuomotor coordination for pointing by the humanoid robot icub
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.12.040
– volume: 21
  start-page: 1331
  issue: 6
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000355
  article-title: Classification of electrocardiogram signals with support vector machines and extreme learning machine
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-011-0572-z
– volume: 17
  start-page: 1411
  issue: 6
  year: 2006
  ident: 10.1016/j.neunet.2014.10.001_br000420
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2006.880583
– volume: 74
  start-page: 2573
  issue: 16
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br000945
  article-title: Predicting the probability of ice storm damages to electricity transmission facilities based on ELM and copula function
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.12.039
– volume: 96
  start-page: 29
  issue: 1–2
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br000980
  article-title: Epileptic eeg classification based on extreme learning machine and nonlinear features
  publication-title: Epilepsy Research
  doi: 10.1016/j.eplepsyres.2011.04.013
– volume: 77
  start-page: 95
  issue: 1
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br001035
  article-title: Hyperspectral species mapping for automatic weed control in tomato under thermal environmental stress
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2011.04.001
– year: 2014
  ident: 10.1016/j.neunet.2014.10.001_br000315
  article-title: Semi-supervised and unsupervised extreme learning machines
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2307349
– volume: 102
  start-page: 45
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br001010
  article-title: Regularized extreme learning machine for regression with missing data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.02.040
– volume: 23
  issue: 8
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br001060
  article-title: The study of using an extreme learning machine for rapid concentration estimation in multi-component gas mixtures
  publication-title: Measurement Science & Technology
  doi: 10.1088/0957-0233/23/8/085101
– volume: 8
  issue: 4
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000030
  article-title: Modeling of drying process of bittim nuts (Pistacia terebinthus) in a fixed bed dryer system by using extreme learning machine
  publication-title: International Journal of Food Engineering
  doi: 10.1515/1556-3758.2737
– volume: 27
  start-page: 635
  issue: 3
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br000195
  article-title: Tactile-data classification of contact materials using computational intelligence
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2011.2130030
– volume: 7
  start-page: 391
  issue: 4
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br001020
  article-title: Short-term load forecasting of australian national electricity market by an ensemble model of extreme learning machine
  publication-title: IET Generation Transmission & Distribution
  doi: 10.1049/iet-gtd.2012.0541
– volume: 116
  start-page: 49
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000695
  article-title: Very fast training neural-computation techniques for real measure-correlate-predict wind operations in wind farms
  publication-title: Journal of Wind Engineering and Industrial Aerodynamics
  doi: 10.1016/j.jweia.2013.03.005
– volume: 33
  start-page: 554
  issue: 5
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br001005
  article-title: Efficient and effective algorithms for training single-hidden-layer neural networks
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2011.12.002
– volume: 74
  start-page: 2582
  issue: 16
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br000675
  article-title: Stable indirect adaptive neural controller for a class of nonlinear system
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.11.029
– volume: 102
  start-page: 10
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000220
  article-title: A novel automatic two-stage locally regularized classifier construction method using the extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.12.052
– start-page: 555
  year: 2008
  ident: 10.1016/j.neunet.2014.10.001_br000645
  article-title: Uniform approximation of functions with random bases
– volume: 8
  start-page: 539
  issue: 4
  year: 1993
  ident: 10.1016/j.neunet.2014.10.001_br000955
  article-title: A review of evolutionary artificial neural networks
  publication-title: International Journal of Intelligent Systems
  doi: 10.1002/int.4550080406
– volume: 70
  start-page: 489
  issue: 1
  year: 2006
  ident: 10.1016/j.neunet.2014.10.001_br000340
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– ident: 10.1016/j.neunet.2014.10.001_br000495
  doi: 10.1109/CISP.2009.5303973
– volume: 22
  start-page: 427
  issue: 3–4
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000590
  article-title: 3d object recognition based on a geometrical topology model and extreme learning machine
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-012-0892-7
– volume: 33
  start-page: 58
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000475
  article-title: A comparative analysis of support vector machines and extreme learning machines
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2012.04.002
– volume: 6
  start-page: 388
  issue: 4
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000405
  article-title: Evaluating the internationalization success of companies through a hybrid grouping harmony search-extreme learning machine approach
  publication-title: IEEE Journal of Selected Topics in Signal Processing
  doi: 10.1109/JSTSP.2012.2199463
– volume: 39
  start-page: 1067
  issue: 4
  year: 2009
  ident: 10.1016/j.neunet.2014.10.001_br000665
  article-title: Online sequential fuzzy extreme learning machine for function approximation and classification problems
  publication-title: IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics
  doi: 10.1109/TSMCB.2008.2010506
– volume: 73
  start-page: 2160
  issue: 10–12
  year: 2010
  ident: 10.1016/j.neunet.2014.10.001_br000525
  article-title: Intelligent approaches using support vector machine and extreme learning machine for transmission line protection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.02.001
– year: 2014
  ident: 10.1016/j.neunet.2014.10.001_br000485
  article-title: Is extreme learning machine feasible? a theoretical assessment (part I)
  publication-title: IEEE Transactions on Neural Networks nd Learning Systems
– volume: 15
  start-page: 1373
  issue: 6
  year: 2003
  ident: 10.1016/j.neunet.2014.10.001_br000060
  article-title: Laplacian eigenmaps for dimensionality reduction and data representation
  publication-title: Neural Computation
  doi: 10.1162/089976603321780317
– volume: 74
  start-page: 2483
  issue: 16
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br000810
  article-title: A study on effectiveness of extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.11.030
– volume: 60
  issue: 11
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br001040
  article-title: Incremental regularized extreme learning machine based on cholesky factorization and its application to time series prediction
  publication-title: Acta Physica Sinica
– volume: 102
  start-page: 90
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000125
  article-title: Image classification based on effective extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.02.042
– volume: 16
  start-page: 1569
  issue: 9
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000610
  article-title: Color image segmentation by fixation-based active learning with ELM
  publication-title: Soft Computing
  doi: 10.1007/s00500-012-0830-8
– volume: 116
  start-page: 94
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000960
  article-title: Online sequential extreme learning machine in nonstationary environments
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.12.064
– volume: 25
  start-page: 836
  issue: 4
  year: 2014
  ident: 10.1016/j.neunet.2014.10.001_br000510
  article-title: Sparse bayesian extreme learning machine for multi-classification
  publication-title: IEEE Transactions on Neural Networks nd Learning Systems
  doi: 10.1109/TNNLS.2013.2281839
– volume: 36
  start-page: 253
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000905
  article-title: Fashion retailing forecasting based on extreme learning machine with adaptive metrics of inputs
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2012.07.002
– volume: 3
  start-page: 213
  issue: 2
  year: 1991
  ident: 10.1016/j.neunet.2014.10.001_br000615
  article-title: A resource-allocating network for function interpolation
  publication-title: Neural Computation
  doi: 10.1162/neco.1991.3.2.213
– volume: 12
  start-page: 3132
  issue: 10
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000445
  article-title: Enhanced combination modeling method for combustion efficiency in coal-fired boilers
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2012.06.016
– volume: 4
  start-page: 853
  issue: 9
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000605
  article-title: Kernel-based extreme learning machine for remote-sensing image classification
  publication-title: Remote Sensing Letters
  doi: 10.1080/2150704X.2013.805279
– volume: 14
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000965
  article-title: Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-S8-S10
– volume: 53
  start-page: 119
  year: 2014
  ident: 10.1016/j.neunet.2014.10.001_br000155
  article-title: Extreme learning machine for ranking: Generalization analysis and applications
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.01.015
– volume: 5
  start-page: 989
  issue: 6
  year: 1994
  ident: 10.1016/j.neunet.2014.10.001_br000260
  article-title: Training feedforward networks with the marquardt algorithm
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.329697
– ident: 10.1016/j.neunet.2014.10.001_br000285
  doi: 10.1007/s12559-014-9255-2
– volume: 74
  start-page: 2491
  issue: 16
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br000540
  article-title: A new robust training algorithm for a class of single-hidden layer feedforward neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.11.033
– volume: 102
  start-page: 176
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000515
  article-title: Semantic concept detection for video based on extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.02.043
– volume: 20
  start-page: 1352
  issue: 8
  year: 2009
  ident: 10.1016/j.neunet.2014.10.001_br000225
  article-title: Error minimized extreme learning machine with growth of hidden nodes and incremental learning
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2009.2024147
– volume: 27
  start-page: 2055
  issue: 4
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000145
  article-title: Electricity price forecasting with extreme learning machine and bootstrapping
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2012.2190627
– ident: 10.1016/j.neunet.2014.10.001_br000640
– volume: 73
  start-page: 1976
  issue: 10–12
  year: 2010
  ident: 10.1016/j.neunet.2014.10.001_br000765
  article-title: OPELM and OPKNN in long-term prediction of time series using projected input data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.11.033
– volume: 22
  start-page: 447
  issue: 3–4
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br001075
  article-title: Text categorization based on regularization extreme learning machine
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-011-0808-y
– volume: 9
  start-page: 207
  issue: 1
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000505
  article-title: A semi-supervised extreme learning machine method based on co-training
  publication-title: Journal of Computational Information Systems
– volume: 44
  start-page: 2588
  issue: 10–11
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br000575
  article-title: Human face recognition based on multidimensional pca and extreme learning machine
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2011.03.013
– volume: 44
  start-page: 352
  issue: 1
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000035
  article-title: Drying of black cumin (Nigella sativa) in a microwave assisted drying system and modeling using extreme learning machine
  publication-title: Energy
  doi: 10.1016/j.energy.2012.06.022
– volume: 50
  start-page: 60
  year: 2014
  ident: 10.1016/j.neunet.2014.10.001_br000240
  article-title: Direct kernel perceptron (DKP): Ultra-fast kernel ELM-based classification with non-iterative closed-form weight calculation
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2013.11.002
– year: 2014
  ident: 10.1016/j.neunet.2014.10.001_br000450
  article-title: Is extreme learning machine feasible? a theoretical assessment (part II)
  publication-title: IEEE Transactions on Neural Networks nd Learning Systems
– volume: 74
  start-page: 2430
  issue: 16
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br000800
  article-title: GPU-accelerated and parallelized ELM ensembles for large-scale regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.11.034
– year: 2014
  ident: 10.1016/j.neunet.2014.10.001_br000825
  article-title: Parsimonious extreme learning machine using recursive orthogonal least squares
  publication-title: IEEE Transactions on Neural Networks nd Learning Systems
  doi: 10.1109/TNNLS.2013.2296048
– volume: 59
  start-page: 496
  issue: 8
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000200
  article-title: Efficient digital implementation of extreme learning machines for classification
  publication-title: IEEE Transactions on Circuits and Systems II-Express Briefs
  doi: 10.1109/TCSII.2012.2204112
– volume: 74
  start-page: 3716
  issue: 17
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br000550
  article-title: Regularized extreme learning machine for regression problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.06.013
– volume: 40
  start-page: 5477
  issue: 14
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000755
  article-title: Automatic recognition of epileptic EEG patterns via extreme learning machine and multiresolution feature extraction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.04.025
– volume: 32
  start-page: 970
  issue: 4
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000480
  article-title: Determination of process variable ph in solid-state fermentation by ft-nir spectroscopy and extreme learning machine (ELM)
  publication-title: Spectroscopy and Spectral Analysis
– volume: 96
  start-page: 29
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br000975
  article-title: Epileptic EEG classification based on extreme learning machine and nonlinear features
  publication-title: Epilepsy Research
  doi: 10.1016/j.eplepsyres.2011.04.013
– volume: 16
  start-page: 1477
  issue: 9
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000845
  article-title: Variable activation function extreme learning machine based on residual prediction compensation
  publication-title: Soft Computing
  doi: 10.1007/s00500-012-0817-5
– volume: 16
  start-page: 1485
  issue: 9
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000230
  article-title: Evolutionary selection extreme learning machine optimization for regression
  publication-title: Soft Computing
  doi: 10.1007/s00500-012-0823-7
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: 10.1016/j.neunet.2014.10.001_br000775
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Processing letters
  doi: 10.1023/A:1018628609742
– volume: 7
  start-page: 2399
  year: 2006
  ident: 10.1016/j.neunet.2014.10.001_br000065
  article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
  publication-title: The Journal of Machine Learning Research
– volume: 74
  start-page: 2422
  issue: 16
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br000210
  article-title: Fast automatic two-stage nonlinear model identification based on the extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.11.035
– year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000325
– volume: 16
  start-page: 1627
  issue: 9
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000435
  article-title: Rts game strategy evaluation using extreme learning machine
  publication-title: Soft Computing
  doi: 10.1007/s00500-012-0831-7
– volume: 102
  start-page: 52
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000270
  article-title: Parallel extreme learning machine for regression based on mapreduce
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.01.040
– volume: 102
  start-page: 135
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000745
  article-title: Eeg-based vigilance estimation using extreme learning machines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.02.041
– volume: 20
  start-page: 1009
  issue: 6
  year: 2009
  ident: 10.1016/j.neunet.2014.10.001_br000380
  article-title: Large scale nonlinear control system fine-tuning through learning
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2009.2014061
– year: 2014
  ident: 10.1016/j.neunet.2014.10.001_br000025
  article-title: Sparse extreme learning machine for classification
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2298235
– volume: 65
  start-page: 386
  issue: 6
  year: 1958
  ident: 10.1016/j.neunet.2014.10.001_br000680
  article-title: The perceptron: A probabilistic model for information storage and organization in the brain
  publication-title: Psychological Review
  doi: 10.1037/h0042519
– volume: 28
  start-page: 35
  issue: 5
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000455
  article-title: A secure and practical mechanism of outsourcing extreme learning machine in cloud computing
  publication-title: IEEE Intelligent Systems
– volume: 42
  start-page: 898
  issue: 9
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000520
  article-title: A novel approach for detection and classification of mammographic microcalcifications using wavelet analysis and extreme learning machine
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2012.07.001
– volume: 39
  start-page: 214
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000440
  article-title: Multiple extreme learning machines for a two-class imbalance corporate life cycle prediction
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2012.11.003
– volume: 74
  start-page: 2526
  issue: 16
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br000245
  article-title: Parameter-insensitive kernel in extreme learning for non-linear support vector regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.11.037
– volume: 34
  start-page: 566
  issue: 7
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000840
  article-title: An accurate and efficient method to predict the electronic excitation energies of bodipy fluorescent dyes
  publication-title: Journal of Computational Chemistry
  doi: 10.1002/jcc.23168
– volume: 37
  start-page: 277
  issue: 3
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000930
  article-title: Parallel chaos search based incremental extreme learning machine
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-012-9246-9
– volume: 28
  start-page: 55
  issue: 6
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000990
  article-title: An adaptive and iterative online sequential ELM based multi-degree-of-freedom gesture recognition system
  publication-title: IEEE Intelligent Systems
– volume: 9
  start-page: 276
  issue: 2
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br001000
  article-title: An intelligent quick prediction algorithm with applications in industrial control and loading problems
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2011.2173800
– volume: 87
  start-page: 79
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br001070
  article-title: Online sequential extreme learning machine with forgetting mechanism
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.02.003
– year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000865
  article-title: Electrical drive radiated emissions estimation in terms of input control using extreme learning machines
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2012/790526
– volume: 102
  start-page: 31
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000280
  article-title: Robust extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.12.045
– volume: Vol. 1479
  start-page: 1506
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000185
  article-title: The application of extreme learning machines to the network intrusion detection problem
– ident: 10.1016/j.neunet.2014.10.001_br000095
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.neunet.2014.10.001_br000070
  article-title: Learning deep architectures for AI
  publication-title: Foundations and Trends in Machine Learning
  doi: 10.1561/2200000006
– volume: 16
  start-page: 1595
  issue: 9
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000815
  article-title: Computational localization of transcription factor binding sites using extreme learning machines
  publication-title: Soft Computing
  doi: 10.1007/s00500-012-0820-x
– volume: 22
  start-page: 469
  issue: 3–4
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000350
  article-title: Extreme learning machine terrain-based navigation for unmanned aerial vehicles
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-012-0866-9
– year: 2014
  ident: 10.1016/j.neunet.2014.10.001_br000105
  article-title: An ELM-based model for affective analogical reasoning
  publication-title: Neurocomputing
– volume: 51
  start-page: 417
  issue: 4
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000740
  article-title: Semg-based hand motion recognition using cumulative residual entropy and extreme learning machine
  publication-title: Medical & Biological Engineering & Computing
  doi: 10.1007/s11517-012-1010-9
– volume: 114
  start-page: 80
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000545
  article-title: Fusion of lattice independent and linear features improving face identification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.06.045
– year: 1992
  ident: 10.1016/j.neunet.2014.10.001_br000880
– volume: 50
  start-page: 1211
  issue: 8
  year: 2005
  ident: 10.1016/j.neunet.2014.10.001_br000465
  article-title: A fast nonlinear model identification method
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2005.852557
– volume: 74
  start-page: 2541
  issue: 16
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br001090
  article-title: Face recognition based on extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.12.041
– volume: 46
  start-page: 57
  issue: 1
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000040
  article-title: An efficient illumination invariant face recognition framework via illumination enhancement and dd-dtcwt filtering
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2012.06.007
– volume: 10
  issue: 5
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000660
  article-title: Metagenomic taxonomic classification using extreme learning machines
  publication-title: Journal of Bioinformatics and Computational Biology
  doi: 10.1142/S0219720012500151
– ident: 10.1016/j.neunet.2014.10.001_br000650
– volume: 21
  start-page: 1793
  issue: 11
  year: 2010
  ident: 10.1016/j.neunet.2014.10.001_br000890
  article-title: Neural network learning without backpropagation
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2010.2073482
– volume: 101
  start-page: 229
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br001095
  article-title: Weighted extreme learning machine for imbalance learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.08.010
– ident: 10.1016/j.neunet.2014.10.001_br000415
– volume: 49
  start-page: 448
  issue: 7
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br001025
  article-title: Fuzzy extreme learning machine for classification
  publication-title: Electronics Letters
  doi: 10.1049/el.2012.3642
– volume: 71
  start-page: 576
  issue: 4
  year: 2008
  ident: 10.1016/j.neunet.2014.10.001_br000310
  article-title: Incremental extreme learning machine with fully complex hidden nodes
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.07.025
– volume: 27
  start-page: 3123
  issue: 22
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br000725
  article-title: Improving the detection of transmembrane beta-barrel chains with n-to-1 extreme learning machines
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr549
– volume: 39
  start-page: 234
  issue: 1
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000090
  article-title: Multifocal electroretinogram diagnosis of glaucoma applying neural networks and structural pattern analysis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.07.013
– volume: 4
  year: 2010
  ident: 10.1016/j.neunet.2014.10.001_br000130
  article-title: Change detection of land use and land cover in an urban region with spot-5 images and partial lanczos extreme learning machine
  publication-title: Journal of Applied Remote Sensing
  doi: 10.1117/12.863827
– volume: 8
  year: 2009
  ident: 10.1016/j.neunet.2014.10.001_br000370
  article-title: Robust algorithm for arrhythmia classification in ecg using extreme learning machine
  publication-title: Biomedical Engineering Online
  doi: 10.1186/1475-925X-8-31
– volume: 323
  start-page: 533
  issue: 9
  year: 1986
  ident: 10.1016/j.neunet.2014.10.001_br000690
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– start-page: 1
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000160
  article-title: Extreme learning machines for intrusion detection
– volume: 22
  start-page: 491
  issue: 3–4
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000580
  article-title: QAM equalization and symbol detection in OFDM systems using extreme learning machine
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-011-0796-y
– volume: 8
  issue: 6
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000250
  article-title: A novel approach for lie detection based on f-score and extreme learning machine
  publication-title: Plos One
  doi: 10.1371/journal.pone.0064704
– volume: 22
  start-page: 531
  issue: 3–4
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000425
  article-title: The extreme learning machine learning algorithm with tunable activation function
  publication-title: Neural Computing & Applications
– volume: 34
  start-page: 101
  issue: 2
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br000700
  article-title: Weighting efficient accuracy and minimum sensitivity for evolving multi-class classifiers
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-011-9186-9
– volume: 40
  start-page: 3984
  issue: 10
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000015
  article-title: A new method for expert target recognition system: Genetic wavelet extreme learning machine (GAWELM)
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.01.011
– volume: 66
  start-page: 4702
  issue: 20
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br001050
  article-title: Optimization of nonlinear process based on sequential extreme learning machine
  publication-title: Chemical Engineering Science
  doi: 10.1016/j.ces.2011.06.030
– volume: 18
  start-page: 4275
  issue: 9
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000710
  article-title: Fast learning optimized prediction methodology (flopred) for protein secondary structure prediction
  publication-title: Journal of Molecular Modeling
  doi: 10.1007/s00894-012-1410-7
– volume: 190
  start-page: 129
  issue: 1
  year: 2010
  ident: 10.1016/j.neunet.2014.10.001_br000005
  article-title: Nass: An empirical approach to spike sorting with overlap resolution based on a hybrid noise-assisted methodology
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2010.04.018
– volume: 21
  start-page: 158
  issue: 1
  year: 2010
  ident: 10.1016/j.neunet.2014.10.001_br000555
  article-title: OP-ELM: Optimally pruned extreme learning machine
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2009.2036259
– volume: 23
  start-page: 345
  issue: 3
  year: 2010
  ident: 10.1016/j.neunet.2014.10.001_br000790
  article-title: Ternary reversible extreme learning machines: the incremental tri-training method for semi-supervised classification
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-009-0220-4
– volume: 13
  start-page: 3429
  issue: 8
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000365
  article-title: A hybrid decision support system based on rough set and extreme learning machine for diagnosis of hepatitis disease
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2013.03.008
– volume: 73
  start-page: 1831
  issue: 10–12
  year: 2010
  ident: 10.1016/j.neunet.2014.10.001_br000565
  article-title: A fast recognition framework based on extreme learning machine using hybrid object information
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.11.049
– start-page: 1
  year: 1992
  ident: 10.1016/j.neunet.2014.10.001_br000735
  article-title: Feed forward neural networks with random weights
– volume: 23
  start-page: 283
  issue: 2
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br001080
  article-title: Surface reconstruction based on extreme learning machine
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-012-0891-8
– volume: 36
  start-page: 285
  issue: 3
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000115
  article-title: Self-adaptive evolutionary extreme learning machine
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-012-9236-y
– volume: 36
  start-page: 1001
  issue: 2
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000190
  article-title: A hybrid automatic system for the diagnosis of lung cancer based on genetic algorithm and fuzzy extreme learning machines
  publication-title: Journal of Medical Systems
  doi: 10.1007/s10916-011-9806-y
– volume: 34
  start-page: 135
  issue: 1
  year: 1962
  ident: 10.1016/j.neunet.2014.10.001_br000085
  article-title: Analysis of a four-layer series-coupled perceptron. II
  publication-title: Reviewers of Modern Physics
  doi: 10.1103/RevModPhys.34.135
– start-page: 460
  year: 2006
  ident: 10.1016/j.neunet.2014.10.001_br000875
  article-title: Approxiate nonlinear forecasting methods
  doi: 10.1016/S1574-0706(05)01009-8
– volume: 74
  start-page: 2464
  issue: 16
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br000835
  article-title: Image deblurring with filters learned by extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.12.035
– volume: 187
  start-page: 277
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000720
  article-title: Fast learning circular complex-valued extreme learning machine (CC-ELM) for real-valued classification problems
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2011.11.003
– volume: 37
  start-page: 182
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000885
  article-title: The No-Prop algorithm: A new learning algorithm for multilayer neural networks
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2012.09.020
– volume: 23
  start-page: 365
  issue: 2
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br001030
  article-title: Universal approximation of extreme learning machine with adaptive growth of hidden nodes
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2011.2178124
– volume: 38
  start-page: 1336
  issue: 3
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br000150
  article-title: Sales forecasting system based on gray extreme learning machine with taguchi method in retail industry
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.07.014
– volume: 27
  start-page: 1253
  issue: 3
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000920
  article-title: A reliable intelligent system for real-time dynamic security assessment of power systems
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2012.2183899
– volume: 23
  start-page: 1498
  issue: 9
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000935
  article-title: Bidirectional extreme learning machine for regression problem and its learning effectiveness
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2012.2202289
– volume: 22
  start-page: 541
  issue: 3–4
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000170
  article-title: A modified extreme learning machine with sigmoidal activation functions
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-012-0860-2
– volume: 11
  start-page: 1066
  issue: 6
  year: 2014
  ident: 10.1016/j.neunet.2014.10.001_br000055
  article-title: Differential evolution extreme learning machine for the classification of hyperspectral images
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2013.2286078
– volume: 20
  start-page: 899
  issue: 7
  year: 2010
  ident: 10.1016/j.neunet.2014.10.001_br000705
  article-title: Evaluating the performance of evolutionary extreme learning machines by a combination of sensitivity and accuracy measures
  publication-title: Neural Network World
– volume: 39
  start-page: 2677
  issue: 3
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000045
  article-title: Eog-based eye movements codification for human computer interaction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.08.123
– volume: 42
  start-page: 513
  issue: 2
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000335
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
  doi: 10.1109/TSMCB.2011.2168604
– volume: 78
  start-page: 1481
  issue: 9
  year: 1990
  ident: 10.1016/j.neunet.2014.10.001_br000625
  article-title: Networks for approximation and learning
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.58326
– volume: 39
  start-page: 155
  issue: 2
  year: 2014
  ident: 10.1016/j.neunet.2014.10.001_br001085
  article-title: Learning to rank with extreme learning machine
  publication-title: Neural processing letters
  doi: 10.1007/s11063-013-9295-8
– ident: 10.1016/j.neunet.2014.10.001_br000870
  doi: 10.1109/IJCNN.1989.118281
– start-page: 60
  year: 2010
  ident: 10.1016/j.neunet.2014.10.001_br000585
  article-title: Fault prognosis of mechanical components using on-line learning neural networks
– volume: 13
  start-page: 282
  issue: 4
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br000635
  article-title: Evolutionary fuzzy extreme learning machine for mammographic risk analysis
  publication-title: International Journal of Fuzzy Systems
– volume: 74
  start-page: 2566
  issue: 16
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br000470
  article-title: SELM: Semi-supervised ELM with application in sparse calibrated location estimation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.12.043
– volume: 28
  start-page: 18
  issue: 5
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000255
  article-title: Combining ELM with random projections
  publication-title: IEEE Intelligent Systems
– volume: 22
  start-page: 685
  issue: 3
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000780
  article-title: Neural network based identification of hysteresis in human meridian systems
  publication-title: International Journal of Applied Mathematics and Computer Science
  doi: 10.2478/v10006-012-0051-4
– volume: 72
  start-page: 359
  issue: 1
  year: 2008
  ident: 10.1016/j.neunet.2014.10.001_br000670
  article-title: A fast pruned-extreme learning machine for classification problem
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.01.005
– volume: 2
  start-page: 302
  issue: 2
  year: 1991
  ident: 10.1016/j.neunet.2014.10.001_br000135
  article-title: Orthogonal least squares learning algorithm for radial basis function networks
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.80341
– volume: 7
  start-page: 73
  issue: 1
  year: 2010
  ident: 10.1016/j.neunet.2014.10.001_br000795
  article-title: An ensemble ELM based on modified AdaBoost.RT algorithm for predicting the temperature of molten steel in ladle furnace
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2008.2005640
– start-page: 2209
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000010
  article-title: Image super-resolution by extreme learning machine
– volume: 22
  start-page: 501
  issue: 3–4
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000910
  article-title: Extreme learning machine-based predictor for real-time frequency stability assessment of electric power systems
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-011-0803-3
– volume: 17
  start-page: 879
  issue: 4
  year: 2006
  ident: 10.1016/j.neunet.2014.10.001_br000300
  article-title: Universal approximation using incremental constructive feedforward networks with random hidden nodes
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2006.875977
– volume: 23
  start-page: 1974
  issue: 12
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000535
  article-title: Robust single-hidden layer feedforward network-based pattern classifier
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2012.2218616
– ident: 10.1016/j.neunet.2014.10.001_br000730
– volume: 72
  start-page: 3391
  issue: 13–15
  year: 2009
  ident: 10.1016/j.neunet.2014.10.001_br000400
  article-title: Ensemble of online sequential extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.02.013
– volume: 73
  start-page: 1405
  issue: 7-9
  year: 2010
  ident: 10.1016/j.neunet.2014.10.001_br000110
  article-title: Composite function wavelet neural networks with extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.12.007
– volume: 16
  start-page: 1617
  issue: 9
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000165
  article-title: Extreme learning machine-based device displacement free activity recognition model
  publication-title: Soft Computing
  doi: 10.1007/s00500-012-0822-8
– volume: 55
  start-page: 519
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000900
  article-title: Modeling and optimization of biodiesel engine performance using advanced machine learning methods
  publication-title: Energy
  doi: 10.1016/j.energy.2013.03.057
– volume: 70
  start-page: 3056
  issue: 16
  year: 2007
  ident: 10.1016/j.neunet.2014.10.001_br000290
  article-title: Convex incremental extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.02.009
– volume: 17
  start-page: 754
  issue: 8
  year: 2010
  ident: 10.1016/j.neunet.2014.10.001_br000490
  article-title: Ensemble based extreme learning machine
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2010.2053356
– volume: 28
  start-page: 48
  issue: 5
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000925
  article-title: Reduced ELMs for causal relation extraction from unstructured text
  publication-title: IEEE Intelligent Systems
– volume: 20
  start-page: 1009
  issue: 6
  year: 2009
  ident: 10.1016/j.neunet.2014.10.001_br000385
  article-title: Large scale nonlinear control system fine-tuning through learning
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2009.2014061
– volume: 71
  start-page: 3460
  issue: 16
  year: 2008
  ident: 10.1016/j.neunet.2014.10.001_br000295
  article-title: Enhanced random search based incremental extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.10.008
– volume: 33
  start-page: 231
  issue: 2
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000860
  article-title: An effective method for accurate prediction of the first hyperpolarizability of alkalides
  publication-title: Journal of Computational Chemistry
  doi: 10.1002/jcc.21969
– volume: 2
  start-page: 107
  issue: 2
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br000330
  article-title: Extreme learning machines: a survey
  publication-title: International Journal of Machine Learning and Cybernetics
  doi: 10.1007/s13042-011-0019-y
– volume: 74
  start-page: 2444
  issue: 16
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br001065
  article-title: XML document classification based on ELM
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.12.038
– volume: 102
  start-page: 111
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000075
  article-title: Feature selection for nonlinear models with extreme learning machines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.12.055
– volume: 34
  start-page: 123
  issue: 1
  year: 1962
  ident: 10.1016/j.neunet.2014.10.001_br000080
  article-title: The perceptron: A model for brain function. I
  publication-title: Reviewers of Modern Physics
  doi: 10.1103/RevModPhys.34.123
– volume: 2
  start-page: 307
  issue: 3
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000595
  article-title: Performance comparison of extreme learning machine algorithms for mycobacterium tuberculosis detection in tissue sections
  publication-title: Journal of Medical Imaging and Health Informatics
  doi: 10.1166/jmihi.2012.1100
– volume: 6
  start-page: 264
  year: 2014
  ident: 10.1016/j.neunet.2014.10.001_br000275
  article-title: Fast face recognition via sparse coding and extreme learning machine
  publication-title: Cognitive Computation
– volume: 22
  start-page: 479
  issue: 3–4
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000850
  article-title: Predicting consumer sentiments using online sequential extreme learning machine and intuitionistic fuzzy sets
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-012-0853-1
– volume: 128
  start-page: 614
  issue: 2
  year: 2010
  ident: 10.1016/j.neunet.2014.10.001_br000895
  article-title: A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2010.07.008
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.neunet.2014.10.001_br000180
  article-title: Support vector machine
  publication-title: Machine learning
  doi: 10.1007/BF00994018
– volume: 210
  start-page: 132
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000750
  article-title: Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2012.07.003
– volume: 61
  issue: 8
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000830
  article-title: Multivariate chaotic time series prediction based on extreme learning machine
  publication-title: Acta Physica Sinica
– volume: 38
  start-page: 76
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000100
  article-title: Reservoir computing and extreme learning machines for non-linear time-series data analysis
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2012.11.011
– volume: 74
  start-page: 2532
  issue: 16
  year: 2011
  ident: 10.1016/j.neunet.2014.10.001_br000265
  article-title: A parallel incremental extreme svm classifier
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.11.036
– volume: 96
  start-page: 4921
  issue: 8
  year: 2013
  ident: 10.1016/j.neunet.2014.10.001_br000375
  article-title: Irradiation dose detection of irradiated milk powder using visible and near-infrared spectroscopy and chemometrics
  publication-title: Journal of Dairy Science
  doi: 10.3168/jds.2013-6659
– year: 1962
  ident: 10.1016/j.neunet.2014.10.001_br000685
– volume: 9
  start-page: 273
  issue: 2
  year: 1996
  ident: 10.1016/j.neunet.2014.10.001_br000620
  article-title: Experience with selecting exemplars from clean data
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(95)00099-2
– year: 2014
  ident: 10.1016/j.neunet.2014.10.001_br000820
  article-title: Parsimonious extreme learning machine using recursive orthogonal least squares
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNNLS.2013.2296048
– ident: 10.1016/j.neunet.2014.10.001_br000345
– volume: 22
  start-page: 1529
  issue: 11
  year: 2012
  ident: 10.1016/j.neunet.2014.10.001_br000570
  article-title: Incremental learning in human action recognition based on snippets
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2011.2177182
SSID ssj0006843
Score 2.6697593
SecondaryResourceType review_article
Snippet Extreme learning machine (ELM) has gained increasing interest from various research fields recently. In this review, we aim to report the current state of the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 32
SubjectTerms Algorithms
Artificial Intelligence - classification
Artificial Intelligence - standards
Artificial Intelligence - trends
Classification
Clustering
Extreme learning machine
Feature learning
Regression
Title Trends in extreme learning machines: A review
URI https://dx.doi.org/10.1016/j.neunet.2014.10.001
https://www.ncbi.nlm.nih.gov/pubmed/25462632
https://www.proquest.com/docview/1662427949
Volume 61
WOSCitedRecordID wos000347595400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELag5cCF9yNQKiP1hhzt2za3UJUWDhVSWim3le16YSNwqiZB5d8z3rE3gahqi8RltbGyWa9ndvx58o0_QvbSSgBsVRUrtSpYYeFNl6XVDCbvxjZWJ7ZRndgEPz4Wk4n8EjRb552cAHdOXF7K8_9qamgDY_vS2VuYu_9RaIBzMDocwexwvJnhe5YrxF2f_YvKEF_f_eiYk8iCG4WqlXV06nfqAJM5pIbPVyYPSeVDNdts8yfsQ9s72TiQfMff2mm7FlSwCujXbLmeaEjLvxINfQXMim7UBSmZsypBNaahxSAquGQZF39EWdxyPYTJkNLECRd32twI5ZhVmA6dXcJjexJeMex4eOlq6uoJhWPfD98NWC8CKvHK5tsZLyXEue3Rp4PJ5352rgQyKWO_Yzllx_nbvNdVcOWq5UgHS04ekQdhPUFH6AePyR3rnpCHUauDhtD9lDB0C9o6GtyCRreg0S3e0xFFp3hGTj8enOwfsSCVwQwgkAWrUiGzhje68ZBdZ5kyKufKJolSAEGlzs64zgutjUyNOpPwSZVJbjRXMjeFyJ-TLTdz9iWhWaoaQOmi4RCqE2EBMOpEcqk8MrTSDEgeR6Q2YR95L2fyvY6EwWmN41j7cfStMI4DwvqrznEflWu-z-Ng1wELIsarwT-uufJttE0NodL__6WcnS3ndVr5Yih4KjkgL9BofV-8LISXLnj1z_d9Te6v3podsrW4WNo35J75uWjnF7vkLp-I3eCMvwEBm5bN
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trends+in+extreme+learning+machines%3A+A+review&rft.jtitle=Neural+networks&rft.au=Huang%2C+Gao&rft.au=Huang%2C+Guang-Bin&rft.au=Song%2C+Shiji&rft.au=You%2C+Keyou&rft.date=2015-01-01&rft.pub=Elsevier+Ltd&rft.issn=0893-6080&rft.eissn=1879-2782&rft.volume=61&rft.spage=32&rft.epage=48&rft_id=info:doi/10.1016%2Fj.neunet.2014.10.001&rft.externalDocID=S0893608014002214
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon