The rate of convergence of dykstra's cyclic projections algorithm: The polyhedral case

Suppose K is the intersection of a finite number of closed half-spaces in a Hilbert space X. Starting with any point xεX, it is shown that the sequence of iterates {x n } generated by Dykstra's cyclic projections algorithm satisfies the inequality for all n, where P K (x) is the nearest point i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical functional analysis and optimization Jg. 15; H. 5-6; S. 537 - 565
Hauptverfasser: Deutsch, Frank, Hundal, Hein
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Marcel Dekker, Inc 01.01.1994
Schlagworte:
ISSN:0163-0563, 1532-2467
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Suppose K is the intersection of a finite number of closed half-spaces in a Hilbert space X. Starting with any point xεX, it is shown that the sequence of iterates {x n } generated by Dykstra's cyclic projections algorithm satisfies the inequality for all n, where P K (x) is the nearest point in K to x;, ρ is a constant, and 0 ≤c<1. In the case when K is the intersection of just two closed half-spaces, a stronger result is established: the sequence of iterates is either finite or satisfies for all n, where c is the cosine of the angle between the two functionals which define the half-spaces. Moreover, the constant c is the best possible. Applications are made to isotone and convex regression, and linear and quadratic programming.
AbstractList Suppose K is the intersection of a finite number of closed half-spaces in a Hilbert space X. Starting with any point xεX, it is shown that the sequence of iterates {x n } generated by Dykstra's cyclic projections algorithm satisfies the inequality for all n, where P K (x) is the nearest point in K to x;, ρ is a constant, and 0 ≤c<1. In the case when K is the intersection of just two closed half-spaces, a stronger result is established: the sequence of iterates is either finite or satisfies for all n, where c is the cosine of the angle between the two functionals which define the half-spaces. Moreover, the constant c is the best possible. Applications are made to isotone and convex regression, and linear and quadratic programming.
Author Deutsch, Frank
Hundal, Hein
Author_xml – sequence: 1
  givenname: Frank
  surname: Deutsch
  fullname: Deutsch, Frank
  organization: Department of Mathematics , The Pennsylvania State University
– sequence: 2
  givenname: Hein
  surname: Hundal
  fullname: Hundal, Hein
  organization: Department of Mathematics , The Pennsylvania State University
BookMark eNp9kEtLAzEUhYNUsK3-AHfZuRrNY5LJiBspvkBwU90O8eamTZ1OSjIo8-9trStFV4fLud_hcCZk1MUOCTnl7Jwzwy4Y15IpXZfMGK6VYQdkzJUUhSh1NSLjnV9sH-QRmeS8YoxJUZsxeZkvkSbbI42eQuzeMS2wg6_TDW-5T_YsUxigDUA3Ka4Q-hC7TG27iCn0y_Ul3UVsYjss0SXbUrAZj8mht23Gk2-dkufbm_nsvnh8unuYXT8WILXoC1UxgbXx6lWCRvCApuQA1ptS8UppFOgYuFo6kNKwqqqV01g7USrlvCjllFT7XEgx54S-gdDbXcNt8dA2nDW7eZpf82xJ_oPcpLC2afiXudozofMxre1HTK1reju0MflkOwi5kX_jn585fEI
CitedBy_id crossref_primary_10_1007_s10589_015_9768_y
crossref_primary_10_1016_j_na_2010_07_011
crossref_primary_10_1080_02331930008844513
crossref_primary_10_1109_TSP_2021_3087899
crossref_primary_10_1007_s10589_007_9073_5
crossref_primary_10_1016_j_camwa_2010_01_025
crossref_primary_10_1016_j_aml_2010_02_010
crossref_primary_10_1109_TRO_2011_2158693
crossref_primary_10_1137_S1064827592239822
crossref_primary_10_1109_TAC_2018_2805727
crossref_primary_10_1016_j_laa_2010_02_008
crossref_primary_10_1007_s10851_017_0724_6
crossref_primary_10_1016_j_cam_2009_11_008
crossref_primary_10_1007_s00245_019_09581_2
crossref_primary_10_1007_s11590_014_0775_1
crossref_primary_10_1137_03060062X
crossref_primary_10_1016_j_jat_2003_08_004
crossref_primary_10_1002__SICI_1099_1506_199811_12_5_6_461__AID_NLA141_3_0_CO_2_V
crossref_primary_10_1016_j_nahs_2009_05_004
crossref_primary_10_1002_nla_277
crossref_primary_10_1080_10920277_2017_1317273
crossref_primary_10_1016_j_laa_2015_03_040
crossref_primary_10_1016_j_na_2007_07_013
crossref_primary_10_1137_16M106090X
crossref_primary_10_1002__SICI_1099_1506_199611_12_3_6_459__AID_NLA82_3_0_CO_2_S
crossref_primary_10_1137_S0036142900367557
crossref_primary_10_1214_aos_1024691361
crossref_primary_10_1016_j_na_2009_01_115
crossref_primary_10_1080_00036810802308841
crossref_primary_10_1137_S1064827599361771
crossref_primary_10_1007_s10440_008_9313_4
crossref_primary_10_1016_j_na_2009_03_003
crossref_primary_10_1155_2012_893635
crossref_primary_10_1137_23M1545781
crossref_primary_10_1155_2008_454181
crossref_primary_10_1016_j_na_2006_03_047
crossref_primary_10_1080_02331934_2020_1839068
crossref_primary_10_1007_BF02677683
crossref_primary_10_1016_j_cam_2016_01_040
crossref_primary_10_1016_j_amc_2007_11_004
crossref_primary_10_1016_j_jmaa_2008_02_041
crossref_primary_10_1016_j_mcm_2007_12_008
crossref_primary_10_1080_02331934_2010_538057
crossref_primary_10_1007_BF02614621
crossref_primary_10_1080_01630569608816731
crossref_primary_10_1006_jath_1998_3174
crossref_primary_10_1016_j_laa_2005_10_006
crossref_primary_10_1016_j_amc_2004_06_136
crossref_primary_10_1109_TAC_2018_2808442
crossref_primary_10_1287_moor_2021_1222
crossref_primary_10_3390_a13110296
crossref_primary_10_1016_j_cam_2008_10_058
crossref_primary_10_1016_j_cam_2010_01_015
Cites_doi 10.1007/BF01580851
10.1137/1009072
10.1002/nav.3800040113
10.1007/BF01891408
10.1090/S0002-9904-1977-14406-6
10.2307/2288193
10.1007/BFb0121017
10.1016/0022-247X(86)90085-5
10.1007/BF01027691
10.1090/S0002-9947-1950-0051437-7
10.1007/BF02614077
10.1090/S0002-9947-1937-1501907-0
10.1007/BF02551235
10.1007/BF01582891
10.1007/BF01580719
10.1007/978-3-0348-6253-0_7
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 1994
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 1994
DBID AAYXX
CITATION
DOI 10.1080/01630569408816580
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-2467
EndPage 565
ExternalDocumentID 10_1080_01630569408816580
8816580
GroupedDBID -~X
07G
0R~
123
1TA
4.4
5VS
AAIKQ
AAKBW
ABEFU
ABJNI
ACGEE
ACGEJ
ACGFS
ACIWK
ADCVX
ADXPE
AENEX
AEPSL
AEUMN
AEYOC
AGLEN
AKOOK
ALMA_UNASSIGNED_HOLDINGS
AMVHM
AMXXU
AQTUD
AWYRJ
BCCOT
BPLKW
C06
CS3
DU5
DWIFK
EBS
EJD
H13
HZ~
IVXBP
NA5
NHB
NUSFT
NY~
O9-
P2P
PQQKQ
TAQ
TDBHL
TFL
TFMCV
TFW
TN5
TOXWX
UB9
UU8
V3K
V4Q
YNT
YQT
.4S
.7F
.DC
.QJ
0BK
29N
30N
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAYXX
ABCCY
ABDBF
ABFIM
ABHAV
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACAGQ
ACTCW
ACTIO
ACUHS
ADGTB
AEISY
AEOZL
AFKVX
AFRVT
AGCQS
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AIJEM
AIYEW
AJWEG
AKBVH
ALCKM
ALQZU
AMEWO
AQRUH
ARCSS
AVBZW
BLEHA
CAG
CCCUG
CE4
CITATION
COF
CRFIH
DGEBU
DKSSO
DMQIW
EAP
EDO
EMK
EPL
EST
ESX
E~A
E~B
GTTXZ
HF~
H~P
I-F
IPNFZ
J.P
KYCEM
LJTGL
M4Z
QCRFL
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TEJ
TFT
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
~S~
ID FETCH-LOGICAL-c362t-5702e98f5b3c6ecfce841ccaf8451756e2ed0cd93dc33807795d6e9d2455df243
IEDL.DBID TFW
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10_1080_01630569408816580&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0163-0563
IngestDate Sat Nov 29 01:37:26 EST 2025
Tue Nov 18 21:46:27 EST 2025
Mon Oct 20 23:43:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5-6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-5702e98f5b3c6ecfce841ccaf8451756e2ed0cd93dc33807795d6e9d2455df243
PageCount 29
ParticipantIDs crossref_citationtrail_10_1080_01630569408816580
crossref_primary_10_1080_01630569408816580
informaworld_taylorfrancis_310_1080_01630569408816580
PublicationCentury 1900
PublicationDate 1/1/1994
1994-01-00
PublicationDateYYYYMMDD 1994-01-01
PublicationDate_xml – month: 01
  year: 1994
  text: 1/1/1994
  day: 01
PublicationDecade 1990
PublicationTitle Numerical functional analysis and optimization
PublicationYear 1994
Publisher Marcel Dekker, Inc
Publisher_xml – name: Marcel Dekker, Inc
References Boyle J. P (CIT0004) 1985
Chui C. K (CIT0010) 1984; 72
CIT0012
Deutsch F. (CIT0008) 1965
Fan Ky (CIT0014) 1956; 38
von Neumann J. (CIT0025) 1950
CIT0013
Bauschke H. H (CIT0002) 1950; 68
CIT0016
CIT0015
CIT0017
CIT0019
Halperin I. (CIT0018) 1962; 23
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
Chui C. K (CIT0007) 1992; 71
Mangasarian O. L (CIT0024) 1984; 22
Chui C. K (CIT0009) 1983; 4
Chui C. K (CIT0011) 1992
CIT0003
Bregman L. M (CIT0005) 1965; 162
CIT0026
CIT0006
References_xml – ident: CIT0021
  doi: 10.1007/BF01580851
– volume-title: The Geometry of Orthogonal Spaces
  year: 1950
  ident: CIT0025
– ident: CIT0012
  doi: 10.1137/1009072
– volume: 4
  start-page: 427
  volume-title: Approximation Theory
  year: 1983
  ident: CIT0009
– ident: CIT0020
  doi: 10.1002/nav.3800040113
– ident: CIT0006
  doi: 10.1007/BF01891408
– ident: CIT0026
  doi: 10.1090/S0002-9904-1977-14406-6
– ident: CIT0013
  doi: 10.2307/2288193
– volume: 162
  start-page: 688
  year: 1965
  ident: CIT0005
  publication-title: Doklady
– start-page: 105
  volume-title: Approximation Theory, Spline Functions and Applications
  year: 1992
  ident: CIT0011
– volume: 38
  start-page: 99
  volume-title: Linear Inequalities and Related Systems
  year: 1956
  ident: CIT0014
– volume: 22
  start-page: 206
  year: 1984
  ident: CIT0024
  publication-title: Math. Programming Study
  doi: 10.1007/BFb0121017
– ident: CIT0015
  doi: 10.1016/0022-247X(86)90085-5
– volume: 68
  year: 1950
  ident: CIT0002
  publication-title: J . Approx. Theory
– volume: 23
  start-page: 96
  year: 1962
  ident: CIT0018
  publication-title: Acta Sci. Math. (Szeged)
– start-page: 28
  volume-title: Advances in Order Restricted Statistical Inference
  year: 1985
  ident: CIT0004
– volume-title: Some Applications of Functional Analysis to Approximation Theory
  year: 1965
  ident: CIT0008
– ident: CIT0003
  doi: 10.1007/BF01027691
– ident: CIT0001
  doi: 10.1090/S0002-9947-1950-0051437-7
– volume: 71
  start-page: 21
  year: 1992
  ident: CIT0007
  publication-title: J. Approx. Theory
– ident: CIT0017
  doi: 10.1007/BF02614077
– ident: CIT0016
  doi: 10.1090/S0002-9947-1937-1501907-0
– ident: CIT0023
  doi: 10.1007/BF02551235
– ident: CIT0022
  doi: 10.1007/BF01582891
– ident: CIT0019
  doi: 10.1007/BF01580719
– volume: 72
  start-page: 96
  volume-title: Parametric Optimization and Approximation
  year: 1984
  ident: CIT0010
  doi: 10.1007/978-3-0348-6253-0_7
SSID ssj0003298
Score 1.5858285
Snippet Suppose K is the intersection of a finite number of closed half-spaces in a Hilbert space X. Starting with any point xεX, it is shown that the sequence of...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 537
SubjectTerms alternating projections
best approximations from polyhedra
convex regression
cyclic projections
Hildreth's algorithm
isotone regression
iterative projections
linear inequalities
linear programming
Primary 41A65
quadratic programming
rate of convergence of Dykstra's algorithm
Secondary 47N10
Secondary 49M30
subject classification
Title The rate of convergence of dykstra's cyclic projections algorithm: The polyhedral case
URI https://www.tandfonline.com/doi/abs/10.1080/01630569408816580
Volume 15
WOSCitedRecordID wos10_1080_01630569408816580&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis
  customDbUrl:
  eissn: 1532-2467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003298
  issn: 0163-0563
  databaseCode: TFW
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EPOjBt1hf7EEQhGCzjzTxJmLxoMVD1d5CMrtri7EpSRT6753No7SiHvQYmNmEndl57eQbQk5dpiOONsCJGIpBaMxZY4i1wzC09bT2DEAJmX_X6fX8wSB4qHtz8rqt0ubQpgKKKG21PdxRnDcdcRcYpdjANxB4Qlz0oDZjx6je6ne_-zyzw5yVk3AttYPkvLnT_G6FBa-0gFk65226G__8zk2yXoeZ9KrSiy2ypMfbZO1-htGa75An1BBqgSJoamjZfF7-h1k-qumrLYGc5RSmkIyA1gUbq6M0Sl7SbFQM3y6pXWKSJtOhVhm-DtAl7pLH7k3_-tappyw4gM6rcGSnzXTgGxlz8DQY0L5wUa7GFxJjC08zrdqgAq6AW3T6TiCVpwPFhJTKMMH3yPI4Het9Qrn0lfG48UBwAUpFMcoA7acbo9eLGG-RdrPLIdQQ5HYSRhK6DVLp1y1rkfMZy6TC3_iNWM6LLizKooepJpSE_Ee-gz_yHZLVClrZVmSOyHKRvetjsgIfxSjPTkpt_AQeB9xW
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-igvrgtzg_8yAIQnFNmq71TcQxcRs-TN1baS-JG9ZtdFXYf--lH2MT9UEfC5e05C73u1yuvyPkzGYq5OgDrJChGhyFZ9YIImUxDG1dpVwNkFHmN2vtttft-g9Fwm1clFWaM7TOiSIyX202t0lGlyVxlximmMjXd3CL2AiheGRfEoizpqSvU3-eemLOsl64RtxCeV7ean43xRwuzbGWzuBNfeO_X7pJ1otIk17nprFFFtRgm6y1pjSt4x3yhEZCDVcEHWqa1Z9nv2Jmj3LyarIg52MKE4j7QIucjTFTGsYvw6Sf9t6uqJliNIwnPSUTfB0gKu6Sx_pt56ZhFY0WLED8Si1RqzLle1pEHFwFGpTn2Kha7TkCwwtXMSWrIH0ugRuC-povpKt8yRwhpGYO3yOLg-FA7RPKhSe1y7ULDndAyjBCJaALtSMEvpDxCqmWyxxAwUJummHEgV2SlX5dsgq5mA4Z5RQcvwmLWd0FaZb30HmTkoD_OO7gj-NOyUqj02oGzbv2_SFZzZmWTYLmiCymybs6JsvwkfbHyUlmmp8Jt-B3
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-iIvrgtzg_8yAIQnFN2q71TdShOMcepu6ttJfEDes21irsv_eStmMT9UEfC3dpyV3uK9ffEXJiMxlxtAFWxFAMjsScNYZYWgxDW09KTwEYyPxGrdn0O52gVfTmpEVbpc6hVQ4UYWy1PtxDocqOuHOMUnTgGzh4Qmz0oJixLxhgLFTndv15Yog5M6NwNbmF9Ly81PxuiRm3NANaOuVu6mv__NB1slrEmfQyV4wNMif7m2TlYQLSmm6RJ1QRqpEi6EBR031ufsQ0j2L8qmsgpymFMSQ9oEXFRispjZKXwaiXdd8uqF5iOEjGXSlG-DpAn7hNHus37atbqxizYAF6r8xya1UmA1-5MQdPggLpOzYKVvmOi8GFJ5kUVRABF8A1PH0tcIUnA8Ec1xWKOXyHzPcHfblLKHd9oTyuPHC4A0JEMcoADagdo9uLGK-QarnLIRQY5HoURhLaJVTp1y2rkLMJyzAH4PiN2J0WXZiZqofKR5SE_Ee-vT_yHZOl1nU9bNw17_fJcg6zrKszB2Q-G73LQ7IIH1kvHR0ZxfwEViDfGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+rate+of+convergence+of+dykstra%27s+cyclic+projections+algorithm%3A+The+polyhedral+case&rft.jtitle=Numerical+functional+analysis+and+optimization&rft.au=Deutsch%2C+Frank&rft.au=Hundal%2C+Hein&rft.date=1994-01-01&rft.issn=0163-0563&rft.eissn=1532-2467&rft.volume=15&rft.issue=5-6&rft.spage=537&rft.epage=565&rft_id=info:doi/10.1080%2F01630569408816580&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01630569408816580
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0163-0563&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0163-0563&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0163-0563&client=summon