The rate of convergence of dykstra's cyclic projections algorithm: The polyhedral case
Suppose K is the intersection of a finite number of closed half-spaces in a Hilbert space X. Starting with any point xεX, it is shown that the sequence of iterates {x n } generated by Dykstra's cyclic projections algorithm satisfies the inequality for all n, where P K (x) is the nearest point i...
Gespeichert in:
| Veröffentlicht in: | Numerical functional analysis and optimization Jg. 15; H. 5-6; S. 537 - 565 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Marcel Dekker, Inc
01.01.1994
|
| Schlagworte: | |
| ISSN: | 0163-0563, 1532-2467 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Suppose K is the intersection of a finite number of closed half-spaces in a Hilbert space X. Starting with any point xεX, it is shown that the sequence of iterates {x
n
} generated by Dykstra's cyclic projections algorithm satisfies the inequality
for all n, where P
K
(x) is the nearest point in K to x;, ρ is a constant, and 0 ≤c<1. In the case when K is the intersection of just two closed half-spaces, a stronger result is established: the sequence of iterates is either finite or satisfies
for all n, where c is the cosine of the angle between the two functionals which define the half-spaces. Moreover, the constant c is the best possible. Applications are made to isotone and convex regression, and linear and quadratic programming. |
|---|---|
| AbstractList | Suppose K is the intersection of a finite number of closed half-spaces in a Hilbert space X. Starting with any point xεX, it is shown that the sequence of iterates {x
n
} generated by Dykstra's cyclic projections algorithm satisfies the inequality
for all n, where P
K
(x) is the nearest point in K to x;, ρ is a constant, and 0 ≤c<1. In the case when K is the intersection of just two closed half-spaces, a stronger result is established: the sequence of iterates is either finite or satisfies
for all n, where c is the cosine of the angle between the two functionals which define the half-spaces. Moreover, the constant c is the best possible. Applications are made to isotone and convex regression, and linear and quadratic programming. |
| Author | Deutsch, Frank Hundal, Hein |
| Author_xml | – sequence: 1 givenname: Frank surname: Deutsch fullname: Deutsch, Frank organization: Department of Mathematics , The Pennsylvania State University – sequence: 2 givenname: Hein surname: Hundal fullname: Hundal, Hein organization: Department of Mathematics , The Pennsylvania State University |
| BookMark | eNp9kEtLAzEUhYNUsK3-AHfZuRrNY5LJiBspvkBwU90O8eamTZ1OSjIo8-9trStFV4fLud_hcCZk1MUOCTnl7Jwzwy4Y15IpXZfMGK6VYQdkzJUUhSh1NSLjnV9sH-QRmeS8YoxJUZsxeZkvkSbbI42eQuzeMS2wg6_TDW-5T_YsUxigDUA3Ka4Q-hC7TG27iCn0y_Ul3UVsYjss0SXbUrAZj8mht23Gk2-dkufbm_nsvnh8unuYXT8WILXoC1UxgbXx6lWCRvCApuQA1ptS8UppFOgYuFo6kNKwqqqV01g7USrlvCjllFT7XEgx54S-gdDbXcNt8dA2nDW7eZpf82xJ_oPcpLC2afiXudozofMxre1HTK1reju0MflkOwi5kX_jn585fEI |
| CitedBy_id | crossref_primary_10_1007_s10589_015_9768_y crossref_primary_10_1016_j_na_2010_07_011 crossref_primary_10_1080_02331930008844513 crossref_primary_10_1109_TSP_2021_3087899 crossref_primary_10_1007_s10589_007_9073_5 crossref_primary_10_1016_j_camwa_2010_01_025 crossref_primary_10_1016_j_aml_2010_02_010 crossref_primary_10_1109_TRO_2011_2158693 crossref_primary_10_1137_S1064827592239822 crossref_primary_10_1109_TAC_2018_2805727 crossref_primary_10_1016_j_laa_2010_02_008 crossref_primary_10_1007_s10851_017_0724_6 crossref_primary_10_1016_j_cam_2009_11_008 crossref_primary_10_1007_s00245_019_09581_2 crossref_primary_10_1007_s11590_014_0775_1 crossref_primary_10_1137_03060062X crossref_primary_10_1016_j_jat_2003_08_004 crossref_primary_10_1002__SICI_1099_1506_199811_12_5_6_461__AID_NLA141_3_0_CO_2_V crossref_primary_10_1016_j_nahs_2009_05_004 crossref_primary_10_1002_nla_277 crossref_primary_10_1080_10920277_2017_1317273 crossref_primary_10_1016_j_laa_2015_03_040 crossref_primary_10_1016_j_na_2007_07_013 crossref_primary_10_1137_16M106090X crossref_primary_10_1002__SICI_1099_1506_199611_12_3_6_459__AID_NLA82_3_0_CO_2_S crossref_primary_10_1137_S0036142900367557 crossref_primary_10_1214_aos_1024691361 crossref_primary_10_1016_j_na_2009_01_115 crossref_primary_10_1080_00036810802308841 crossref_primary_10_1137_S1064827599361771 crossref_primary_10_1007_s10440_008_9313_4 crossref_primary_10_1016_j_na_2009_03_003 crossref_primary_10_1155_2012_893635 crossref_primary_10_1137_23M1545781 crossref_primary_10_1155_2008_454181 crossref_primary_10_1016_j_na_2006_03_047 crossref_primary_10_1080_02331934_2020_1839068 crossref_primary_10_1007_BF02677683 crossref_primary_10_1016_j_cam_2016_01_040 crossref_primary_10_1016_j_amc_2007_11_004 crossref_primary_10_1016_j_jmaa_2008_02_041 crossref_primary_10_1016_j_mcm_2007_12_008 crossref_primary_10_1080_02331934_2010_538057 crossref_primary_10_1007_BF02614621 crossref_primary_10_1080_01630569608816731 crossref_primary_10_1006_jath_1998_3174 crossref_primary_10_1016_j_laa_2005_10_006 crossref_primary_10_1016_j_amc_2004_06_136 crossref_primary_10_1109_TAC_2018_2808442 crossref_primary_10_1287_moor_2021_1222 crossref_primary_10_3390_a13110296 crossref_primary_10_1016_j_cam_2008_10_058 crossref_primary_10_1016_j_cam_2010_01_015 |
| Cites_doi | 10.1007/BF01580851 10.1137/1009072 10.1002/nav.3800040113 10.1007/BF01891408 10.1090/S0002-9904-1977-14406-6 10.2307/2288193 10.1007/BFb0121017 10.1016/0022-247X(86)90085-5 10.1007/BF01027691 10.1090/S0002-9947-1950-0051437-7 10.1007/BF02614077 10.1090/S0002-9947-1937-1501907-0 10.1007/BF02551235 10.1007/BF01582891 10.1007/BF01580719 10.1007/978-3-0348-6253-0_7 |
| ContentType | Journal Article |
| Copyright | Copyright Taylor & Francis Group, LLC 1994 |
| Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 1994 |
| DBID | AAYXX CITATION |
| DOI | 10.1080/01630569408816580 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1532-2467 |
| EndPage | 565 |
| ExternalDocumentID | 10_1080_01630569408816580 8816580 |
| GroupedDBID | -~X 07G 0R~ 123 1TA 4.4 5VS AAIKQ AAKBW ABEFU ABJNI ACGEE ACGEJ ACGFS ACIWK ADCVX ADXPE AENEX AEPSL AEUMN AEYOC AGLEN AKOOK ALMA_UNASSIGNED_HOLDINGS AMVHM AMXXU AQTUD AWYRJ BCCOT BPLKW C06 CS3 DU5 DWIFK EBS EJD H13 HZ~ IVXBP NA5 NHB NUSFT NY~ O9- P2P PQQKQ TAQ TDBHL TFL TFMCV TFW TN5 TOXWX UB9 UU8 V3K V4Q YNT YQT .4S .7F .DC .QJ 0BK 29N 30N AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR AAYXX ABCCY ABDBF ABFIM ABHAV ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACAGQ ACTCW ACTIO ACUHS ADGTB AEISY AEOZL AFKVX AFRVT AGCQS AGDLA AGMYJ AGROQ AHDZW AHMOU AIJEM AIYEW AJWEG AKBVH ALCKM ALQZU AMEWO AQRUH ARCSS AVBZW BLEHA CAG CCCUG CE4 CITATION COF CRFIH DGEBU DKSSO DMQIW EAP EDO EMK EPL EST ESX E~A E~B GTTXZ HF~ H~P I-F IPNFZ J.P KYCEM LJTGL M4Z QCRFL RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TEJ TFT TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ~S~ |
| ID | FETCH-LOGICAL-c362t-5702e98f5b3c6ecfce841ccaf8451756e2ed0cd93dc33807795d6e9d2455df243 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 74 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10_1080_01630569408816580&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0163-0563 |
| IngestDate | Sat Nov 29 01:37:26 EST 2025 Tue Nov 18 21:46:27 EST 2025 Mon Oct 20 23:43:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5-6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c362t-5702e98f5b3c6ecfce841ccaf8451756e2ed0cd93dc33807795d6e9d2455df243 |
| PageCount | 29 |
| ParticipantIDs | crossref_citationtrail_10_1080_01630569408816580 crossref_primary_10_1080_01630569408816580 informaworld_taylorfrancis_310_1080_01630569408816580 |
| PublicationCentury | 1900 |
| PublicationDate | 1/1/1994 1994-01-00 |
| PublicationDateYYYYMMDD | 1994-01-01 |
| PublicationDate_xml | – month: 01 year: 1994 text: 1/1/1994 day: 01 |
| PublicationDecade | 1990 |
| PublicationTitle | Numerical functional analysis and optimization |
| PublicationYear | 1994 |
| Publisher | Marcel Dekker, Inc |
| Publisher_xml | – name: Marcel Dekker, Inc |
| References | Boyle J. P (CIT0004) 1985 Chui C. K (CIT0010) 1984; 72 CIT0012 Deutsch F. (CIT0008) 1965 Fan Ky (CIT0014) 1956; 38 von Neumann J. (CIT0025) 1950 CIT0013 Bauschke H. H (CIT0002) 1950; 68 CIT0016 CIT0015 CIT0017 CIT0019 Halperin I. (CIT0018) 1962; 23 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 Chui C. K (CIT0007) 1992; 71 Mangasarian O. L (CIT0024) 1984; 22 Chui C. K (CIT0009) 1983; 4 Chui C. K (CIT0011) 1992 CIT0003 Bregman L. M (CIT0005) 1965; 162 CIT0026 CIT0006 |
| References_xml | – ident: CIT0021 doi: 10.1007/BF01580851 – volume-title: The Geometry of Orthogonal Spaces year: 1950 ident: CIT0025 – ident: CIT0012 doi: 10.1137/1009072 – volume: 4 start-page: 427 volume-title: Approximation Theory year: 1983 ident: CIT0009 – ident: CIT0020 doi: 10.1002/nav.3800040113 – ident: CIT0006 doi: 10.1007/BF01891408 – ident: CIT0026 doi: 10.1090/S0002-9904-1977-14406-6 – ident: CIT0013 doi: 10.2307/2288193 – volume: 162 start-page: 688 year: 1965 ident: CIT0005 publication-title: Doklady – start-page: 105 volume-title: Approximation Theory, Spline Functions and Applications year: 1992 ident: CIT0011 – volume: 38 start-page: 99 volume-title: Linear Inequalities and Related Systems year: 1956 ident: CIT0014 – volume: 22 start-page: 206 year: 1984 ident: CIT0024 publication-title: Math. Programming Study doi: 10.1007/BFb0121017 – ident: CIT0015 doi: 10.1016/0022-247X(86)90085-5 – volume: 68 year: 1950 ident: CIT0002 publication-title: J . Approx. Theory – volume: 23 start-page: 96 year: 1962 ident: CIT0018 publication-title: Acta Sci. Math. (Szeged) – start-page: 28 volume-title: Advances in Order Restricted Statistical Inference year: 1985 ident: CIT0004 – volume-title: Some Applications of Functional Analysis to Approximation Theory year: 1965 ident: CIT0008 – ident: CIT0003 doi: 10.1007/BF01027691 – ident: CIT0001 doi: 10.1090/S0002-9947-1950-0051437-7 – volume: 71 start-page: 21 year: 1992 ident: CIT0007 publication-title: J. Approx. Theory – ident: CIT0017 doi: 10.1007/BF02614077 – ident: CIT0016 doi: 10.1090/S0002-9947-1937-1501907-0 – ident: CIT0023 doi: 10.1007/BF02551235 – ident: CIT0022 doi: 10.1007/BF01582891 – ident: CIT0019 doi: 10.1007/BF01580719 – volume: 72 start-page: 96 volume-title: Parametric Optimization and Approximation year: 1984 ident: CIT0010 doi: 10.1007/978-3-0348-6253-0_7 |
| SSID | ssj0003298 |
| Score | 1.5858285 |
| Snippet | Suppose K is the intersection of a finite number of closed half-spaces in a Hilbert space X. Starting with any point xεX, it is shown that the sequence of... |
| SourceID | crossref informaworld |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 537 |
| SubjectTerms | alternating projections best approximations from polyhedra convex regression cyclic projections Hildreth's algorithm isotone regression iterative projections linear inequalities linear programming Primary 41A65 quadratic programming rate of convergence of Dykstra's algorithm Secondary 47N10 Secondary 49M30 subject classification |
| Title | The rate of convergence of dykstra's cyclic projections algorithm: The polyhedral case |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01630569408816580 |
| Volume | 15 |
| WOSCitedRecordID | wos10_1080_01630569408816580&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis customDbUrl: eissn: 1532-2467 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003298 issn: 0163-0563 databaseCode: TFW dateStart: 19790101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EPOjBt1hf7EEQhGCzjzTxJmLxoMVD1d5CMrtri7EpSRT6753No7SiHvQYmNmEndl57eQbQk5dpiOONsCJGIpBaMxZY4i1wzC09bT2DEAJmX_X6fX8wSB4qHtz8rqt0ubQpgKKKG21PdxRnDcdcRcYpdjANxB4Qlz0oDZjx6je6ne_-zyzw5yVk3AttYPkvLnT_G6FBa-0gFk65226G__8zk2yXoeZ9KrSiy2ypMfbZO1-htGa75An1BBqgSJoamjZfF7-h1k-qumrLYGc5RSmkIyA1gUbq6M0Sl7SbFQM3y6pXWKSJtOhVhm-DtAl7pLH7k3_-tappyw4gM6rcGSnzXTgGxlz8DQY0L5wUa7GFxJjC08zrdqgAq6AW3T6TiCVpwPFhJTKMMH3yPI4Het9Qrn0lfG48UBwAUpFMcoA7acbo9eLGG-RdrPLIdQQ5HYSRhK6DVLp1y1rkfMZy6TC3_iNWM6LLizKooepJpSE_Ee-gz_yHZLVClrZVmSOyHKRvetjsgIfxSjPTkpt_AQeB9xW |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-igvrgtzg_8yAIQnFNmq71TcQxcRs-TN1baS-JG9ZtdFXYf--lH2MT9UEfC5e05C73u1yuvyPkzGYq5OgDrJChGhyFZ9YIImUxDG1dpVwNkFHmN2vtttft-g9Fwm1clFWaM7TOiSIyX202t0lGlyVxlximmMjXd3CL2AiheGRfEoizpqSvU3-eemLOsl64RtxCeV7ean43xRwuzbGWzuBNfeO_X7pJ1otIk17nprFFFtRgm6y1pjSt4x3yhEZCDVcEHWqa1Z9nv2Jmj3LyarIg52MKE4j7QIucjTFTGsYvw6Sf9t6uqJliNIwnPSUTfB0gKu6Sx_pt56ZhFY0WLED8Si1RqzLle1pEHFwFGpTn2Kha7TkCwwtXMSWrIH0ugRuC-povpKt8yRwhpGYO3yOLg-FA7RPKhSe1y7ULDndAyjBCJaALtSMEvpDxCqmWyxxAwUJummHEgV2SlX5dsgq5mA4Z5RQcvwmLWd0FaZb30HmTkoD_OO7gj-NOyUqj02oGzbv2_SFZzZmWTYLmiCymybs6JsvwkfbHyUlmmp8Jt-B3 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-iIvrgtzg_8yAIQnFN2q71TdShOMcepu6ttJfEDes21irsv_eStmMT9UEfC3dpyV3uK9ffEXJiMxlxtAFWxFAMjsScNYZYWgxDW09KTwEYyPxGrdn0O52gVfTmpEVbpc6hVQ4UYWy1PtxDocqOuHOMUnTgGzh4Qmz0oJixLxhgLFTndv15Yog5M6NwNbmF9Ly81PxuiRm3NANaOuVu6mv__NB1slrEmfQyV4wNMif7m2TlYQLSmm6RJ1QRqpEi6EBR031ufsQ0j2L8qmsgpymFMSQ9oEXFRispjZKXwaiXdd8uqF5iOEjGXSlG-DpAn7hNHus37atbqxizYAF6r8xya1UmA1-5MQdPggLpOzYKVvmOi8GFJ5kUVRABF8A1PH0tcIUnA8Ec1xWKOXyHzPcHfblLKHd9oTyuPHC4A0JEMcoADagdo9uLGK-QarnLIRQY5HoURhLaJVTp1y2rkLMJyzAH4PiN2J0WXZiZqofKR5SE_Ee-vT_yHZOl1nU9bNw17_fJcg6zrKszB2Q-G73LQ7IIH1kvHR0ZxfwEViDfGw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+rate+of+convergence+of+dykstra%27s+cyclic+projections+algorithm%3A+The+polyhedral+case&rft.jtitle=Numerical+functional+analysis+and+optimization&rft.au=Deutsch%2C+Frank&rft.au=Hundal%2C+Hein&rft.date=1994-01-01&rft.issn=0163-0563&rft.eissn=1532-2467&rft.volume=15&rft.issue=5-6&rft.spage=537&rft.epage=565&rft_id=info:doi/10.1080%2F01630569408816580&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01630569408816580 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0163-0563&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0163-0563&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0163-0563&client=summon |