An improved hybrid particle swarm optimization algorithm for fuzzy p-hub center problem

► A new fuzzy hub center problem with credibility criterion is studied. ► The travel times are assumed as normal fuzzy vectors. ► An approximation approach is developed to discretize fuzzy vectors. ► A parametric decomposition method is adopted to decompose the proposed model. ► An improved hybrid P...

Full description

Saved in:
Bibliographic Details
Published in:Computers & industrial engineering Vol. 64; no. 1; pp. 133 - 142
Main Authors: Yang, Kai, Liu, Yankui, Yang, Guoqing
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 01.01.2013
Pergamon Press Inc
Subjects:
ISSN:0360-8352, 1879-0550
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ► A new fuzzy hub center problem with credibility criterion is studied. ► The travel times are assumed as normal fuzzy vectors. ► An approximation approach is developed to discretize fuzzy vectors. ► A parametric decomposition method is adopted to decompose the proposed model. ► An improved hybrid PSO algorithm is designed to solve the decomposed models. The p-hub center problem is useful for the delivery of perishable and time-sensitive system such as express mail service and emergency service. In this paper, we propose a new fuzzy p-hub center problem, in which the travel times are uncertain and characterized by normal fuzzy vectors. The objective of our model is to maximize the credibility of fuzzy travel times not exceeding a predetermined acceptable efficient time point along all paths on a network. Since the proposed hub location problem is too complex to apply conventional optimization algorithms, we adapt an approximation approach (AA) to discretize fuzzy travel times and reformulate the original problem as a mixed-integer programming problem subject to logic constraints. After that, we take advantage of the structural characteristics to develop a parametric decomposition method to divide the approximate p-hub center problem into two mixed-integer programming subproblems. Finally, we design an improved hybrid particle swarm optimization (PSO) algorithm by combining PSO with genetic operators and local search (LS) to update and improve particles for the subproblems. We also evaluate the improved hybrid PSO algorithm against other two solution methods, genetic algorithm (GA) and PSO without LS components. Using a simulated data set of 10 nodes, the computational results show that the improved hybrid PSO algorithm achieves the better performance than GA and PSO without LS in terms of runtime and solution quality.
AbstractList ► A new fuzzy hub center problem with credibility criterion is studied. ► The travel times are assumed as normal fuzzy vectors. ► An approximation approach is developed to discretize fuzzy vectors. ► A parametric decomposition method is adopted to decompose the proposed model. ► An improved hybrid PSO algorithm is designed to solve the decomposed models. The p-hub center problem is useful for the delivery of perishable and time-sensitive system such as express mail service and emergency service. In this paper, we propose a new fuzzy p-hub center problem, in which the travel times are uncertain and characterized by normal fuzzy vectors. The objective of our model is to maximize the credibility of fuzzy travel times not exceeding a predetermined acceptable efficient time point along all paths on a network. Since the proposed hub location problem is too complex to apply conventional optimization algorithms, we adapt an approximation approach (AA) to discretize fuzzy travel times and reformulate the original problem as a mixed-integer programming problem subject to logic constraints. After that, we take advantage of the structural characteristics to develop a parametric decomposition method to divide the approximate p-hub center problem into two mixed-integer programming subproblems. Finally, we design an improved hybrid particle swarm optimization (PSO) algorithm by combining PSO with genetic operators and local search (LS) to update and improve particles for the subproblems. We also evaluate the improved hybrid PSO algorithm against other two solution methods, genetic algorithm (GA) and PSO without LS components. Using a simulated data set of 10 nodes, the computational results show that the improved hybrid PSO algorithm achieves the better performance than GA and PSO without LS in terms of runtime and solution quality.
The p-hub center problem is useful for the delivery of perishable and time-sensitive system such as express mail service and emergency service. In this paper, we propose a new fuzzy p-hub center problem, in which the travel times are uncertain and characterized by normal fuzzy vectors. The objective of our model is to maximize the credibility of fuzzy travel times not exceeding a predetermined acceptable efficient time point along all paths on a network. Since the proposed hub location problem is too complex to apply conventional optimization algorithms, we adapt an approximation approach (AA) to discretize fuzzy travel times and reformulate the original problem as a mixed-integer programming problem subject to logic constraints. After that, we take advantage of the structural characteristics to develop a parametric decomposition method to divide the approximate p-hub center problem into two mixed-integer programming subproblems. Finally, we design an improved hybrid particle swarm optimization (PSO) algorithm by combining PSO with genetic operators and local search (LS) to update and improve particles for the subproblems. We also evaluate the improved hybrid PSO algorithm against other two solution methods, genetic algorithm (GA) and PSO without LS components. Using a simulated data set of 10 nodes, the computational results show that the improved hybrid PSO algorithm achieves the better performance than GA and PSO without LS in terms of runtime and solution quality. [PUBLICATION ABSTRACT]
Author Yang, Guoqing
Liu, Yankui
Yang, Kai
Author_xml – sequence: 1
  givenname: Kai
  surname: Yang
  fullname: Yang, Kai
  email: yangk09@sina.com
– sequence: 2
  givenname: Yankui
  surname: Liu
  fullname: Liu, Yankui
  email: yliu@hbu.edu.cn
– sequence: 3
  givenname: Guoqing
  surname: Yang
  fullname: Yang, Guoqing
  email: ygqfq100@gmail.com
BookMark eNp9kE9r3DAUxEVJoJs_HyA3Qc52n6SVbJFTCElaCPTS0qOQ5OesFttyZG3C7qevku2ph5wePOY3w8wZOZnihIRcMagZMPVtW_uANQfGa9A1gPpCVqxtdAVSwglZgVBQtULyr-RsWbYAsJaarcif24mGcU7xFTu62bsUOjrblIMfkC5vNo00zjmM4WBziBO1w3NMIW9G2sdE-93hsKdztdk56nHKmGixcgOOF-S0t8OCl__uOfn9cP_r7nv19PPxx93tU-WF4rmSsl83HXjte2V77ZxqG-HQtcjYupPMOgaohXZSIOu4416g7hC4FK1U0otzcn30LbkvO1yy2cZdmkqkYVwp3vJ1I4qqOap8isuSsDc-5I9COdkwGAbmfUWzLX807ysa0KasWEj2HzmnMNq0_5S5OTJYir8GTGYpksljFxL6bLoYPqH_Avr2jYQ
CODEN CINDDL
CitedBy_id crossref_primary_10_1007_s00453_022_00941_z
crossref_primary_10_1007_s00500_014_1427_1
crossref_primary_10_1016_j_trb_2021_09_009
crossref_primary_10_1016_j_apm_2014_01_009
crossref_primary_10_1016_j_cie_2015_10_003
crossref_primary_10_1016_j_cie_2021_107323
crossref_primary_10_1016_j_apm_2020_09_057
crossref_primary_10_1016_j_engappai_2015_12_009
crossref_primary_10_1080_10556788_2023_2196726
crossref_primary_10_1016_j_ins_2017_03_022
crossref_primary_10_1109_ACCESS_2020_2985377
crossref_primary_10_1177_21582440251324335
crossref_primary_10_1016_j_apm_2015_09_086
crossref_primary_10_1155_2015_827021
crossref_primary_10_1007_s40092_018_0288_0
crossref_primary_10_1016_j_asoc_2015_07_038
crossref_primary_10_3233_IFS_151846
crossref_primary_10_1109_ACCESS_2021_3051373
crossref_primary_10_1007_s10845_014_0990_8
crossref_primary_10_1016_j_cor_2018_07_022
crossref_primary_10_1016_j_trb_2022_01_002
crossref_primary_10_1016_j_ins_2020_03_077
crossref_primary_10_1007_s12351_018_0438_6
crossref_primary_10_3233_JIFS_191010
crossref_primary_10_3390_math9212759
crossref_primary_10_1007_s12065_024_00952_5
crossref_primary_10_1287_trsc_2021_1094
crossref_primary_10_1080_00207543_2024_2358398
crossref_primary_10_1016_j_cie_2013_08_014
crossref_primary_10_1016_j_cie_2017_04_044
crossref_primary_10_1016_j_cie_2020_106955
crossref_primary_10_1007_s00500_016_2326_4
crossref_primary_10_1016_j_cie_2016_03_007
crossref_primary_10_1016_j_cie_2016_09_019
crossref_primary_10_1007_s00291_018_0526_2
crossref_primary_10_1007_s10479_023_05450_y
crossref_primary_10_1016_j_cie_2016_09_017
Cites_doi 10.1080/07408170108936838
10.1016/j.cie.2009.06.015
10.1016/j.cie.2011.09.003
10.1016/j.cie.2011.06.024
10.1016/S0377-2217(99)00274-X
10.1016/j.amc.2008.05.086
10.1016/j.ejor.2011.02.018
10.1142/S0217595906001042
10.1016/0377-2217(94)90318-2
10.1109/TFUZZ.2005.864077
10.1016/j.ejor.2007.06.008
10.1016/j.apm.2009.03.018
10.1016/j.eswa.2008.05.017
10.1016/j.eswa.2011.12.053
10.1016/j.ejor.2005.09.024
10.1016/j.eswa.2009.06.085
10.1016/j.cor.2008.08.021
10.1109/TFUZZ.2002.800692
10.1016/j.cor.2008.11.020
10.1109/ICNN.1995.488968
10.1016/j.cie.2011.12.017
10.1016/S0305-0548(02)00052-7
10.1016/j.cie.2009.01.016
10.1016/j.cor.2003.09.008
10.1016/0966-6923(94)90032-9
10.1007/978-3-642-21090-7_22
ContentType Journal Article
Copyright 2012 Elsevier Ltd
Copyright Pergamon Press Inc. Jan 2013
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: Copyright Pergamon Press Inc. Jan 2013
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cie.2012.09.006
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-0550
EndPage 142
ExternalDocumentID 2856334591
10_1016_j_cie_2012_09_006
S0360835212002227
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
ABAOU
ABDPE
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADGUI
ADMUD
ADNMO
ADRHT
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSH
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c362t-55f47d0c9cf6af9bb6873beb8e114d51ab10e939b53e1d2b2c3e9de02538565c3
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000315309300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-8352
IngestDate Sun Nov 30 04:39:03 EST 2025
Sat Nov 29 01:39:46 EST 2025
Tue Nov 18 22:32:07 EST 2025
Sun Apr 06 06:54:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Local search
Particle swarm optimization
Fuzzy travel time
Hub center problem
Approximation approach
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-55f47d0c9cf6af9bb6873beb8e114d51ab10e939b53e1d2b2c3e9de02538565c3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1266282473
PQPubID 9545
PageCount 10
ParticipantIDs proquest_journals_1266282473
crossref_citationtrail_10_1016_j_cie_2012_09_006
crossref_primary_10_1016_j_cie_2012_09_006
elsevier_sciencedirect_doi_10_1016_j_cie_2012_09_006
PublicationCentury 2000
PublicationDate January 2013
2013-1-00
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: January 2013
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computers & industrial engineering
PublicationYear 2013
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References O’Kelly, Miller (b0105) 1994; 2
Sim, Lowe, Thomas (b0125) 2009; 36
Pedrycz, Park, Pizzi (b0115) 2009; 36
Yolmeh, Kianfar (b0145) 2012; 62
Kara, Tansel (b0060) 2000; 125
Campbell (b0015) 1994; 72
Yang (b0135) 2009; 33
Han (b0045) 2010; 59
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In
Kratica, Stanimirovic (b0070) 2006; 23
Zhang, Ning, Ouyang (b0150) 2010; 58
Aarts, Lenstra (b0005) 1997
Pamuk, Sepil (b0110) 2001; 33
Topcuoglu, Corut, Ermis, Yilmaz (b0130) 2005; 32
(Vol. 4). pp. 1942–1948.
Yang, Liu, Zhang (b0140) 2011; 6676
Campbell, Lowe, Zhang (b0025) 2007; 176
Sahoo, Bhunia, Kapur (b0120) 2012; 62
Contreras, Cordeau, Laporte (b0030) 2011; 212
Gen, Cheng (b0040) 2000
Ernst, Hamacher, Jiang, Krishnamoorthy, Woeginger (b0035) 2000; 36
Holland (b0050) 1975
Alumur, Kara (b0010) 2008; 190
Campbell, Ernst, Krishnamoorthy (b0020) 2002
Liu, Wu, Hao (b0085) 2012; 39
Jia, Zheng, Qu, Khan (b0055) 2011; 61
Niu, Jiao, Gu (b0100) 2008; 205
Liu (b0075) 2006; 14
Liu, Liu (b0080) 2002; 10
Marinakis, Marinaki (b0095) 2010; 37
Marianov, Serra (b0090) 2003; 30
Ernst (10.1016/j.cie.2012.09.006_b0035) 2000; 36
Han (10.1016/j.cie.2012.09.006_b0045) 2010; 59
Holland (10.1016/j.cie.2012.09.006_b0050) 1975
Campbell (10.1016/j.cie.2012.09.006_b0025) 2007; 176
Sim (10.1016/j.cie.2012.09.006_b0125) 2009; 36
Yolmeh (10.1016/j.cie.2012.09.006_b0145) 2012; 62
Alumur (10.1016/j.cie.2012.09.006_b0010) 2008; 190
Gen (10.1016/j.cie.2012.09.006_b0040) 2000
Pamuk (10.1016/j.cie.2012.09.006_b0110) 2001; 33
O’Kelly (10.1016/j.cie.2012.09.006_b0105) 1994; 2
Pedrycz (10.1016/j.cie.2012.09.006_b0115) 2009; 36
10.1016/j.cie.2012.09.006_b0065
Kratica (10.1016/j.cie.2012.09.006_b0070) 2006; 23
Liu (10.1016/j.cie.2012.09.006_b0075) 2006; 14
Marinakis (10.1016/j.cie.2012.09.006_b0095) 2010; 37
Sahoo (10.1016/j.cie.2012.09.006_b0120) 2012; 62
Niu (10.1016/j.cie.2012.09.006_b0100) 2008; 205
Contreras (10.1016/j.cie.2012.09.006_b0030) 2011; 212
Liu (10.1016/j.cie.2012.09.006_b0080) 2002; 10
Topcuoglu (10.1016/j.cie.2012.09.006_b0130) 2005; 32
Campbell (10.1016/j.cie.2012.09.006_b0020) 2002
Liu (10.1016/j.cie.2012.09.006_b0085) 2012; 39
Kara (10.1016/j.cie.2012.09.006_b0060) 2000; 125
Campbell (10.1016/j.cie.2012.09.006_b0015) 1994; 72
Aarts (10.1016/j.cie.2012.09.006_b0005) 1997
Jia (10.1016/j.cie.2012.09.006_b0055) 2011; 61
Zhang (10.1016/j.cie.2012.09.006_b0150) 2010; 58
Yang (10.1016/j.cie.2012.09.006_b0135) 2009; 33
Marianov (10.1016/j.cie.2012.09.006_b0090) 2003; 30
Yang (10.1016/j.cie.2012.09.006_b0140) 2011; 6676
References_xml – volume: 36
  start-page: 3166
  year: 2009
  end-page: 3177
  ident: b0125
  article-title: The stochastic
  publication-title: Computers & Operations Research
– volume: 6676
  start-page: 182
  year: 2011
  end-page: 191
  ident: b0140
  article-title: Stochastic
  publication-title: Lecture Notes in Computer Science
– volume: 176
  start-page: 819
  year: 2007
  end-page: 835
  ident: b0025
  article-title: The
  publication-title: European Journal of Operational Research
– volume: 10
  start-page: 445
  year: 2002
  end-page: 450
  ident: b0080
  article-title: Expected value of fuzzy variable and fuzzy expected value models
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 58
  start-page: 1
  year: 2010
  end-page: 11
  ident: b0150
  article-title: A hybrid alternate two phases particle swarm optimization algorithm for flow shop scheduling problem
  publication-title: Computers & Industrial Engineering
– volume: 212
  start-page: 518
  year: 2011
  end-page: 528
  ident: b0030
  article-title: Stochastic uncapacitated hub location
  publication-title: European Journal of Operational Research
– year: 1997
  ident: b0005
  article-title: Local search in combinatorial optimization
– volume: 59
  start-page: 1
  year: 2010
  end-page: 8
  ident: b0045
  article-title: A traffic grooming problem considering hub location for synchronous optical network-wavelength division multiplexing networks
  publication-title: Computers & Industrial Engineering
– volume: 33
  start-page: 4424
  year: 2009
  end-page: 4430
  ident: b0135
  article-title: Stochastic air freight hub location and freight routes planning
  publication-title: Applied Mathematical Modelling
– volume: 61
  start-page: 521
  year: 2011
  end-page: 537
  ident: b0055
  article-title: A hybrid particle swarm optimization algorithm for high-dimensional problems
  publication-title: Computers & Industrial Engineering
– volume: 205
  start-page: 148
  year: 2008
  end-page: 158
  ident: b0100
  article-title: Particle swarm optimization combined with genetic operators for job shop scheduling problem with fuzzy processing time
  publication-title: Applied Mathematics and Computation
– reference: (Vol. 4). pp. 1942–1948.
– volume: 62
  start-page: 936
  year: 2012
  end-page: 945
  ident: b0145
  article-title: An efficient hybrid genetic algorithm to solve assembly line balancing problem with sequence-dependent setup times
  publication-title: Computers & Industrial Engineering
– year: 2002
  ident: b0020
  article-title: Facility location: Applications and theory
– volume: 30
  start-page: 983
  year: 2003
  end-page: 1003
  ident: b0090
  article-title: Location models for airline hubs behaving as M/D/c queues
  publication-title: Computers & Operations Research
– volume: 72
  start-page: 387
  year: 1994
  end-page: 405
  ident: b0015
  article-title: Integer programming formulations of discrete hub location problems
  publication-title: European Journal of Operational Research
– volume: 62
  start-page: 152
  year: 2012
  end-page: 160
  ident: b0120
  article-title: Genetic algorithm based multi-objective reliability optimization in interval environment
  publication-title: Computers & Industrial Engineering
– volume: 23
  start-page: 425
  year: 2006
  end-page: 437
  ident: b0070
  article-title: Solving the uncapacitated multiple allocation
  publication-title: Asia–Pacific Journal of Operational Research
– volume: 190
  start-page: 1
  year: 2008
  end-page: 21
  ident: b0010
  article-title: Network hub location problems: The state of the art
  publication-title: European Journal of Operational Research
– volume: 33
  start-page: 399
  year: 2001
  end-page: 411
  ident: b0110
  article-title: A solution to the hub center problem via a single-relocation algorithm with tabu search
  publication-title: IIE Transactions
– volume: 125
  start-page: 648
  year: 2000
  end-page: 655
  ident: b0060
  article-title: On the single-assignment
  publication-title: European Journal of Operational Research
– volume: 14
  start-page: 295
  year: 2006
  end-page: 304
  ident: b0075
  article-title: Convergent results about the use of fuzzy simulation in fuzzy optimization problems
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 39
  start-page: 6514
  year: 2012
  end-page: 6526
  ident: b0085
  article-title: A new chance-variance optimization criterion for portfolio selection in uncertain decision systems
  publication-title: Expert Systems with Applications
– volume: 2
  start-page: 31
  year: 1994
  end-page: 40
  ident: b0105
  article-title: The hub network design problem: A review and synthesis
  publication-title: Journal of Transport Geography
– volume: 36
  start-page: 2230
  year: 2000
  end-page: 2241
  ident: b0035
  article-title: Uncapacitated single and multiple allocation
  publication-title: Computers & Operations Research
– reference: Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In
– year: 1975
  ident: b0050
  article-title: Adaptation in natural and artificial systems
– volume: 36
  start-page: 4610
  year: 2009
  end-page: 4616
  ident: b0115
  article-title: Identifying core sets of discriminatory features using particle swarm optimization
  publication-title: Expert Systems with Applications
– volume: 37
  start-page: 1446
  year: 2010
  end-page: 1455
  ident: b0095
  article-title: A hybrid-genetic particle swarm optimization algorithm for the vehicle routing problem
  publication-title: Expert Systems with Applications
– year: 2000
  ident: b0040
  article-title: Genetic algorithms and engineering optimization
– volume: 32
  start-page: 967
  year: 2005
  end-page: 984
  ident: b0130
  article-title: Solving the uncapacitated hub location using genetic algorithms
  publication-title: Computers & Operations Research
– volume: 33
  start-page: 399
  issue: 5
  year: 2001
  ident: 10.1016/j.cie.2012.09.006_b0110
  article-title: A solution to the hub center problem via a single-relocation algorithm with tabu search
  publication-title: IIE Transactions
  doi: 10.1080/07408170108936838
– volume: 59
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.cie.2012.09.006_b0045
  article-title: A traffic grooming problem considering hub location for synchronous optical network-wavelength division multiplexing networks
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2009.06.015
– year: 2000
  ident: 10.1016/j.cie.2012.09.006_b0040
– volume: 62
  start-page: 152
  issue: 1
  year: 2012
  ident: 10.1016/j.cie.2012.09.006_b0120
  article-title: Genetic algorithm based multi-objective reliability optimization in interval environment
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2011.09.003
– volume: 61
  start-page: 521
  issue: 4
  year: 2011
  ident: 10.1016/j.cie.2012.09.006_b0055
  article-title: A hybrid particle swarm optimization algorithm for high-dimensional problems
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2011.06.024
– volume: 125
  start-page: 648
  issue: 3
  year: 2000
  ident: 10.1016/j.cie.2012.09.006_b0060
  article-title: On the single-assignment p-hub center problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(99)00274-X
– volume: 205
  start-page: 148
  issue: 13
  year: 2008
  ident: 10.1016/j.cie.2012.09.006_b0100
  article-title: Particle swarm optimization combined with genetic operators for job shop scheduling problem with fuzzy processing time
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2008.05.086
– volume: 212
  start-page: 518
  issue: 3
  year: 2011
  ident: 10.1016/j.cie.2012.09.006_b0030
  article-title: Stochastic uncapacitated hub location
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2011.02.018
– volume: 23
  start-page: 425
  issue: 4
  year: 2006
  ident: 10.1016/j.cie.2012.09.006_b0070
  article-title: Solving the uncapacitated multiple allocation p-hub center problem by genetic algorithm
  publication-title: Asia–Pacific Journal of Operational Research
  doi: 10.1142/S0217595906001042
– volume: 72
  start-page: 387
  issue: 2
  year: 1994
  ident: 10.1016/j.cie.2012.09.006_b0015
  article-title: Integer programming formulations of discrete hub location problems
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(94)90318-2
– year: 1975
  ident: 10.1016/j.cie.2012.09.006_b0050
– volume: 14
  start-page: 295
  issue: 2
  year: 2006
  ident: 10.1016/j.cie.2012.09.006_b0075
  article-title: Convergent results about the use of fuzzy simulation in fuzzy optimization problems
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2005.864077
– volume: 190
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.cie.2012.09.006_b0010
  article-title: Network hub location problems: The state of the art
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2007.06.008
– volume: 33
  start-page: 4424
  issue: 12
  year: 2009
  ident: 10.1016/j.cie.2012.09.006_b0135
  article-title: Stochastic air freight hub location and freight routes planning
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2009.03.018
– volume: 36
  start-page: 4610
  issue: 3
  year: 2009
  ident: 10.1016/j.cie.2012.09.006_b0115
  article-title: Identifying core sets of discriminatory features using particle swarm optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.05.017
– volume: 39
  start-page: 6514
  issue: 7
  year: 2012
  ident: 10.1016/j.cie.2012.09.006_b0085
  article-title: A new chance-variance optimization criterion for portfolio selection in uncertain decision systems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.12.053
– volume: 176
  start-page: 819
  issue: 2
  year: 2007
  ident: 10.1016/j.cie.2012.09.006_b0025
  article-title: The p-hub center allocation problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2005.09.024
– volume: 37
  start-page: 1446
  issue: 2
  year: 2010
  ident: 10.1016/j.cie.2012.09.006_b0095
  article-title: A hybrid-genetic particle swarm optimization algorithm for the vehicle routing problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.06.085
– volume: 36
  start-page: 2230
  issue: 7
  year: 2000
  ident: 10.1016/j.cie.2012.09.006_b0035
  article-title: Uncapacitated single and multiple allocation p-hub center problems
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2008.08.021
– volume: 10
  start-page: 445
  issue: 4
  year: 2002
  ident: 10.1016/j.cie.2012.09.006_b0080
  article-title: Expected value of fuzzy variable and fuzzy expected value models
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2002.800692
– volume: 36
  start-page: 3166
  issue: 12
  year: 2009
  ident: 10.1016/j.cie.2012.09.006_b0125
  article-title: The stochastic p-hub center problem with service-level constraints
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2008.11.020
– ident: 10.1016/j.cie.2012.09.006_b0065
  doi: 10.1109/ICNN.1995.488968
– year: 2002
  ident: 10.1016/j.cie.2012.09.006_b0020
– volume: 62
  start-page: 936
  issue: 4
  year: 2012
  ident: 10.1016/j.cie.2012.09.006_b0145
  article-title: An efficient hybrid genetic algorithm to solve assembly line balancing problem with sequence-dependent setup times
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2011.12.017
– volume: 30
  start-page: 983
  issue: 7
  year: 2003
  ident: 10.1016/j.cie.2012.09.006_b0090
  article-title: Location models for airline hubs behaving as M/D/c queues
  publication-title: Computers & Operations Research
  doi: 10.1016/S0305-0548(02)00052-7
– volume: 58
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.cie.2012.09.006_b0150
  article-title: A hybrid alternate two phases particle swarm optimization algorithm for flow shop scheduling problem
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2009.01.016
– year: 1997
  ident: 10.1016/j.cie.2012.09.006_b0005
– volume: 32
  start-page: 967
  issue: 4
  year: 2005
  ident: 10.1016/j.cie.2012.09.006_b0130
  article-title: Solving the uncapacitated hub location using genetic algorithms
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2003.09.008
– volume: 2
  start-page: 31
  issue: 1
  year: 1994
  ident: 10.1016/j.cie.2012.09.006_b0105
  article-title: The hub network design problem: A review and synthesis
  publication-title: Journal of Transport Geography
  doi: 10.1016/0966-6923(94)90032-9
– volume: 6676
  start-page: 182
  issue: 2
  year: 2011
  ident: 10.1016/j.cie.2012.09.006_b0140
  article-title: Stochastic p-hub center problem with discrete time distributions
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/978-3-642-21090-7_22
SSID ssj0004591
Score 2.2843497
Snippet ► A new fuzzy hub center problem with credibility criterion is studied. ► The travel times are assumed as normal fuzzy vectors. ► An approximation approach is...
The p-hub center problem is useful for the delivery of perishable and time-sensitive system such as express mail service and emergency service. In this paper,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 133
SubjectTerms Algorithms
Approximation approach
Fuzzy logic
Fuzzy travel time
Genetic algorithms
Hub center problem
Integer programming
Local search
Optimization
Optimization algorithms
Particle swarm optimization
Studies
Transportation problem (Operations research)
Transportation terminals
Title An improved hybrid particle swarm optimization algorithm for fuzzy p-hub center problem
URI https://dx.doi.org/10.1016/j.cie.2012.09.006
https://www.proquest.com/docview/1266282473
Volume 64
WOSCitedRecordID wos000315309300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLag5QAHlgKiUJAPnIiCsjmxjyNUdlVIFJhbZCcOk9JJhmRS2v56nrfMdBAVIHGxIsuOI7_Pz5-dtyD0NBWUlDElfsVl6SdVmviCZpGfZBw2h1hQob3eP7_PDg7odMo-WLOiXqcTyJqGnp6yxX8VNdSBsJXr7F-Ie3wpVMAzCB1KEDuUfyT4SaNcH7v2BKjk7Ew5ZHkL28zrf_Bu7rWgJubW_9Ljx1_brl7O5trgsBrOz8-8hT8bhKfsNmXn2ZQz6yzWpYLoNXDqVfYPuYpuOKoTeyH9jtej8U89aM3Pm29Dvdnu1dB-d93tbYTKDHHhNmJ0k1nZJBnXrMBXVG9d7Zrg5RfgZXRoaCJj2O04NMG3ftH05tLh6DloQGWgF-lotcFGVG29T39Uw6vRw8i4_l5F21FGGOjA7cmb_enbtejyJsOi-1z3F1zbA24M9Dses7Gja5pyeBvdtOcLPDECv4OuyGYH3bJnDWw1eb-DbqwForyLvkwa7ECDDWiwAw3WoMHroMEjaDCABmvQYA0abECDLWjuoU8v9w9fvPZtyg2_ACaz9AmpkqwMClZUKa-YECnNYiEFlXBuLknIRRhIFjNBYhmWkYiKWLJSAnGG9Z6SIr6Ptpq2kQ8QTqSACp4KIKVJwCklgSQECKeQYVWyaBcFbgLzwsajV2lRjnNneHgE9TJXc54HLIc530XPxi4LE4zlssaJk0pu2aRhiTlA6LJue06CuV3VfR4CjY1olGTxw3976yN0fbVa9tDWshvkY3StOFnWfffE4vAn71GlBw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+hybrid+particle+swarm+optimization+algorithm+for+fuzzy+p-hub+center+problem&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Yang%2C+Kai&rft.au=Liu%2C+Yankui&rft.au=Yang%2C+Guoqing&rft.date=2013-01-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.volume=64&rft.issue=1&rft.spage=133&rft.epage=142&rft_id=info:doi/10.1016%2Fj.cie.2012.09.006&rft.externalDocID=S0360835212002227
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon