An improved hybrid particle swarm optimization algorithm for fuzzy p-hub center problem
► A new fuzzy hub center problem with credibility criterion is studied. ► The travel times are assumed as normal fuzzy vectors. ► An approximation approach is developed to discretize fuzzy vectors. ► A parametric decomposition method is adopted to decompose the proposed model. ► An improved hybrid P...
Saved in:
| Published in: | Computers & industrial engineering Vol. 64; no. 1; pp. 133 - 142 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Elsevier Ltd
01.01.2013
Pergamon Press Inc |
| Subjects: | |
| ISSN: | 0360-8352, 1879-0550 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | ► A new fuzzy hub center problem with credibility criterion is studied. ► The travel times are assumed as normal fuzzy vectors. ► An approximation approach is developed to discretize fuzzy vectors. ► A parametric decomposition method is adopted to decompose the proposed model. ► An improved hybrid PSO algorithm is designed to solve the decomposed models.
The p-hub center problem is useful for the delivery of perishable and time-sensitive system such as express mail service and emergency service. In this paper, we propose a new fuzzy p-hub center problem, in which the travel times are uncertain and characterized by normal fuzzy vectors. The objective of our model is to maximize the credibility of fuzzy travel times not exceeding a predetermined acceptable efficient time point along all paths on a network. Since the proposed hub location problem is too complex to apply conventional optimization algorithms, we adapt an approximation approach (AA) to discretize fuzzy travel times and reformulate the original problem as a mixed-integer programming problem subject to logic constraints. After that, we take advantage of the structural characteristics to develop a parametric decomposition method to divide the approximate p-hub center problem into two mixed-integer programming subproblems. Finally, we design an improved hybrid particle swarm optimization (PSO) algorithm by combining PSO with genetic operators and local search (LS) to update and improve particles for the subproblems. We also evaluate the improved hybrid PSO algorithm against other two solution methods, genetic algorithm (GA) and PSO without LS components. Using a simulated data set of 10 nodes, the computational results show that the improved hybrid PSO algorithm achieves the better performance than GA and PSO without LS in terms of runtime and solution quality. |
|---|---|
| AbstractList | ► A new fuzzy hub center problem with credibility criterion is studied. ► The travel times are assumed as normal fuzzy vectors. ► An approximation approach is developed to discretize fuzzy vectors. ► A parametric decomposition method is adopted to decompose the proposed model. ► An improved hybrid PSO algorithm is designed to solve the decomposed models.
The p-hub center problem is useful for the delivery of perishable and time-sensitive system such as express mail service and emergency service. In this paper, we propose a new fuzzy p-hub center problem, in which the travel times are uncertain and characterized by normal fuzzy vectors. The objective of our model is to maximize the credibility of fuzzy travel times not exceeding a predetermined acceptable efficient time point along all paths on a network. Since the proposed hub location problem is too complex to apply conventional optimization algorithms, we adapt an approximation approach (AA) to discretize fuzzy travel times and reformulate the original problem as a mixed-integer programming problem subject to logic constraints. After that, we take advantage of the structural characteristics to develop a parametric decomposition method to divide the approximate p-hub center problem into two mixed-integer programming subproblems. Finally, we design an improved hybrid particle swarm optimization (PSO) algorithm by combining PSO with genetic operators and local search (LS) to update and improve particles for the subproblems. We also evaluate the improved hybrid PSO algorithm against other two solution methods, genetic algorithm (GA) and PSO without LS components. Using a simulated data set of 10 nodes, the computational results show that the improved hybrid PSO algorithm achieves the better performance than GA and PSO without LS in terms of runtime and solution quality. The p-hub center problem is useful for the delivery of perishable and time-sensitive system such as express mail service and emergency service. In this paper, we propose a new fuzzy p-hub center problem, in which the travel times are uncertain and characterized by normal fuzzy vectors. The objective of our model is to maximize the credibility of fuzzy travel times not exceeding a predetermined acceptable efficient time point along all paths on a network. Since the proposed hub location problem is too complex to apply conventional optimization algorithms, we adapt an approximation approach (AA) to discretize fuzzy travel times and reformulate the original problem as a mixed-integer programming problem subject to logic constraints. After that, we take advantage of the structural characteristics to develop a parametric decomposition method to divide the approximate p-hub center problem into two mixed-integer programming subproblems. Finally, we design an improved hybrid particle swarm optimization (PSO) algorithm by combining PSO with genetic operators and local search (LS) to update and improve particles for the subproblems. We also evaluate the improved hybrid PSO algorithm against other two solution methods, genetic algorithm (GA) and PSO without LS components. Using a simulated data set of 10 nodes, the computational results show that the improved hybrid PSO algorithm achieves the better performance than GA and PSO without LS in terms of runtime and solution quality. [PUBLICATION ABSTRACT] |
| Author | Yang, Guoqing Liu, Yankui Yang, Kai |
| Author_xml | – sequence: 1 givenname: Kai surname: Yang fullname: Yang, Kai email: yangk09@sina.com – sequence: 2 givenname: Yankui surname: Liu fullname: Liu, Yankui email: yliu@hbu.edu.cn – sequence: 3 givenname: Guoqing surname: Yang fullname: Yang, Guoqing email: ygqfq100@gmail.com |
| BookMark | eNp9kE9r3DAUxEVJoJs_HyA3Qc52n6SVbJFTCElaCPTS0qOQ5OesFttyZG3C7qevku2ph5wePOY3w8wZOZnihIRcMagZMPVtW_uANQfGa9A1gPpCVqxtdAVSwglZgVBQtULyr-RsWbYAsJaarcif24mGcU7xFTu62bsUOjrblIMfkC5vNo00zjmM4WBziBO1w3NMIW9G2sdE-93hsKdztdk56nHKmGixcgOOF-S0t8OCl__uOfn9cP_r7nv19PPxx93tU-WF4rmSsl83HXjte2V77ZxqG-HQtcjYupPMOgaohXZSIOu4416g7hC4FK1U0otzcn30LbkvO1yy2cZdmkqkYVwp3vJ1I4qqOap8isuSsDc-5I9COdkwGAbmfUWzLX807ysa0KasWEj2HzmnMNq0_5S5OTJYir8GTGYpksljFxL6bLoYPqH_Avr2jYQ |
| CODEN | CINDDL |
| CitedBy_id | crossref_primary_10_1007_s00453_022_00941_z crossref_primary_10_1007_s00500_014_1427_1 crossref_primary_10_1016_j_trb_2021_09_009 crossref_primary_10_1016_j_apm_2014_01_009 crossref_primary_10_1016_j_cie_2015_10_003 crossref_primary_10_1016_j_cie_2021_107323 crossref_primary_10_1016_j_apm_2020_09_057 crossref_primary_10_1016_j_engappai_2015_12_009 crossref_primary_10_1080_10556788_2023_2196726 crossref_primary_10_1016_j_ins_2017_03_022 crossref_primary_10_1109_ACCESS_2020_2985377 crossref_primary_10_1177_21582440251324335 crossref_primary_10_1016_j_apm_2015_09_086 crossref_primary_10_1155_2015_827021 crossref_primary_10_1007_s40092_018_0288_0 crossref_primary_10_1016_j_asoc_2015_07_038 crossref_primary_10_3233_IFS_151846 crossref_primary_10_1109_ACCESS_2021_3051373 crossref_primary_10_1007_s10845_014_0990_8 crossref_primary_10_1016_j_cor_2018_07_022 crossref_primary_10_1016_j_trb_2022_01_002 crossref_primary_10_1016_j_ins_2020_03_077 crossref_primary_10_1007_s12351_018_0438_6 crossref_primary_10_3233_JIFS_191010 crossref_primary_10_3390_math9212759 crossref_primary_10_1007_s12065_024_00952_5 crossref_primary_10_1287_trsc_2021_1094 crossref_primary_10_1080_00207543_2024_2358398 crossref_primary_10_1016_j_cie_2013_08_014 crossref_primary_10_1016_j_cie_2017_04_044 crossref_primary_10_1016_j_cie_2020_106955 crossref_primary_10_1007_s00500_016_2326_4 crossref_primary_10_1016_j_cie_2016_03_007 crossref_primary_10_1016_j_cie_2016_09_019 crossref_primary_10_1007_s00291_018_0526_2 crossref_primary_10_1007_s10479_023_05450_y crossref_primary_10_1016_j_cie_2016_09_017 |
| Cites_doi | 10.1080/07408170108936838 10.1016/j.cie.2009.06.015 10.1016/j.cie.2011.09.003 10.1016/j.cie.2011.06.024 10.1016/S0377-2217(99)00274-X 10.1016/j.amc.2008.05.086 10.1016/j.ejor.2011.02.018 10.1142/S0217595906001042 10.1016/0377-2217(94)90318-2 10.1109/TFUZZ.2005.864077 10.1016/j.ejor.2007.06.008 10.1016/j.apm.2009.03.018 10.1016/j.eswa.2008.05.017 10.1016/j.eswa.2011.12.053 10.1016/j.ejor.2005.09.024 10.1016/j.eswa.2009.06.085 10.1016/j.cor.2008.08.021 10.1109/TFUZZ.2002.800692 10.1016/j.cor.2008.11.020 10.1109/ICNN.1995.488968 10.1016/j.cie.2011.12.017 10.1016/S0305-0548(02)00052-7 10.1016/j.cie.2009.01.016 10.1016/j.cor.2003.09.008 10.1016/0966-6923(94)90032-9 10.1007/978-3-642-21090-7_22 |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier Ltd Copyright Pergamon Press Inc. Jan 2013 |
| Copyright_xml | – notice: 2012 Elsevier Ltd – notice: Copyright Pergamon Press Inc. Jan 2013 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.cie.2012.09.006 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1879-0550 |
| EndPage | 142 |
| ExternalDocumentID | 2856334591 10_1016_j_cie_2012_09_006 S0360835212002227 |
| Genre | Feature |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKG AABNK AACTN AAEDT AAEDW AAFWJ AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AATTM AAXKI AAXUO ABAOU ABDPE ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ACRPL ADBBV ADEZE ADGUI ADMUD ADNMO ADRHT ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LX9 LY1 LY7 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSH SST SSW SSZ T5K TAE TN5 WUQ XPP ZMT ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c362t-55f47d0c9cf6af9bb6873beb8e114d51ab10e939b53e1d2b2c3e9de02538565c3 |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000315309300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-8352 |
| IngestDate | Sun Nov 30 04:39:03 EST 2025 Sat Nov 29 01:39:46 EST 2025 Tue Nov 18 22:32:07 EST 2025 Sun Apr 06 06:54:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Local search Particle swarm optimization Fuzzy travel time Hub center problem Approximation approach |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c362t-55f47d0c9cf6af9bb6873beb8e114d51ab10e939b53e1d2b2c3e9de02538565c3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| PQID | 1266282473 |
| PQPubID | 9545 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_1266282473 crossref_citationtrail_10_1016_j_cie_2012_09_006 crossref_primary_10_1016_j_cie_2012_09_006 elsevier_sciencedirect_doi_10_1016_j_cie_2012_09_006 |
| PublicationCentury | 2000 |
| PublicationDate | January 2013 2013-1-00 20130101 |
| PublicationDateYYYYMMDD | 2013-01-01 |
| PublicationDate_xml | – month: 01 year: 2013 text: January 2013 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Computers & industrial engineering |
| PublicationYear | 2013 |
| Publisher | Elsevier Ltd Pergamon Press Inc |
| Publisher_xml | – name: Elsevier Ltd – name: Pergamon Press Inc |
| References | O’Kelly, Miller (b0105) 1994; 2 Sim, Lowe, Thomas (b0125) 2009; 36 Pedrycz, Park, Pizzi (b0115) 2009; 36 Yolmeh, Kianfar (b0145) 2012; 62 Kara, Tansel (b0060) 2000; 125 Campbell (b0015) 1994; 72 Yang (b0135) 2009; 33 Han (b0045) 2010; 59 Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Kratica, Stanimirovic (b0070) 2006; 23 Zhang, Ning, Ouyang (b0150) 2010; 58 Aarts, Lenstra (b0005) 1997 Pamuk, Sepil (b0110) 2001; 33 Topcuoglu, Corut, Ermis, Yilmaz (b0130) 2005; 32 (Vol. 4). pp. 1942–1948. Yang, Liu, Zhang (b0140) 2011; 6676 Campbell, Lowe, Zhang (b0025) 2007; 176 Sahoo, Bhunia, Kapur (b0120) 2012; 62 Contreras, Cordeau, Laporte (b0030) 2011; 212 Gen, Cheng (b0040) 2000 Ernst, Hamacher, Jiang, Krishnamoorthy, Woeginger (b0035) 2000; 36 Holland (b0050) 1975 Alumur, Kara (b0010) 2008; 190 Campbell, Ernst, Krishnamoorthy (b0020) 2002 Liu, Wu, Hao (b0085) 2012; 39 Jia, Zheng, Qu, Khan (b0055) 2011; 61 Niu, Jiao, Gu (b0100) 2008; 205 Liu (b0075) 2006; 14 Liu, Liu (b0080) 2002; 10 Marinakis, Marinaki (b0095) 2010; 37 Marianov, Serra (b0090) 2003; 30 Ernst (10.1016/j.cie.2012.09.006_b0035) 2000; 36 Han (10.1016/j.cie.2012.09.006_b0045) 2010; 59 Holland (10.1016/j.cie.2012.09.006_b0050) 1975 Campbell (10.1016/j.cie.2012.09.006_b0025) 2007; 176 Sim (10.1016/j.cie.2012.09.006_b0125) 2009; 36 Yolmeh (10.1016/j.cie.2012.09.006_b0145) 2012; 62 Alumur (10.1016/j.cie.2012.09.006_b0010) 2008; 190 Gen (10.1016/j.cie.2012.09.006_b0040) 2000 Pamuk (10.1016/j.cie.2012.09.006_b0110) 2001; 33 O’Kelly (10.1016/j.cie.2012.09.006_b0105) 1994; 2 Pedrycz (10.1016/j.cie.2012.09.006_b0115) 2009; 36 10.1016/j.cie.2012.09.006_b0065 Kratica (10.1016/j.cie.2012.09.006_b0070) 2006; 23 Liu (10.1016/j.cie.2012.09.006_b0075) 2006; 14 Marinakis (10.1016/j.cie.2012.09.006_b0095) 2010; 37 Sahoo (10.1016/j.cie.2012.09.006_b0120) 2012; 62 Niu (10.1016/j.cie.2012.09.006_b0100) 2008; 205 Contreras (10.1016/j.cie.2012.09.006_b0030) 2011; 212 Liu (10.1016/j.cie.2012.09.006_b0080) 2002; 10 Topcuoglu (10.1016/j.cie.2012.09.006_b0130) 2005; 32 Campbell (10.1016/j.cie.2012.09.006_b0020) 2002 Liu (10.1016/j.cie.2012.09.006_b0085) 2012; 39 Kara (10.1016/j.cie.2012.09.006_b0060) 2000; 125 Campbell (10.1016/j.cie.2012.09.006_b0015) 1994; 72 Aarts (10.1016/j.cie.2012.09.006_b0005) 1997 Jia (10.1016/j.cie.2012.09.006_b0055) 2011; 61 Zhang (10.1016/j.cie.2012.09.006_b0150) 2010; 58 Yang (10.1016/j.cie.2012.09.006_b0135) 2009; 33 Marianov (10.1016/j.cie.2012.09.006_b0090) 2003; 30 Yang (10.1016/j.cie.2012.09.006_b0140) 2011; 6676 |
| References_xml | – volume: 36 start-page: 3166 year: 2009 end-page: 3177 ident: b0125 article-title: The stochastic publication-title: Computers & Operations Research – volume: 6676 start-page: 182 year: 2011 end-page: 191 ident: b0140 article-title: Stochastic publication-title: Lecture Notes in Computer Science – volume: 176 start-page: 819 year: 2007 end-page: 835 ident: b0025 article-title: The publication-title: European Journal of Operational Research – volume: 10 start-page: 445 year: 2002 end-page: 450 ident: b0080 article-title: Expected value of fuzzy variable and fuzzy expected value models publication-title: IEEE Transactions on Fuzzy Systems – volume: 58 start-page: 1 year: 2010 end-page: 11 ident: b0150 article-title: A hybrid alternate two phases particle swarm optimization algorithm for flow shop scheduling problem publication-title: Computers & Industrial Engineering – volume: 212 start-page: 518 year: 2011 end-page: 528 ident: b0030 article-title: Stochastic uncapacitated hub location publication-title: European Journal of Operational Research – year: 1997 ident: b0005 article-title: Local search in combinatorial optimization – volume: 59 start-page: 1 year: 2010 end-page: 8 ident: b0045 article-title: A traffic grooming problem considering hub location for synchronous optical network-wavelength division multiplexing networks publication-title: Computers & Industrial Engineering – volume: 33 start-page: 4424 year: 2009 end-page: 4430 ident: b0135 article-title: Stochastic air freight hub location and freight routes planning publication-title: Applied Mathematical Modelling – volume: 61 start-page: 521 year: 2011 end-page: 537 ident: b0055 article-title: A hybrid particle swarm optimization algorithm for high-dimensional problems publication-title: Computers & Industrial Engineering – volume: 205 start-page: 148 year: 2008 end-page: 158 ident: b0100 article-title: Particle swarm optimization combined with genetic operators for job shop scheduling problem with fuzzy processing time publication-title: Applied Mathematics and Computation – reference: (Vol. 4). pp. 1942–1948. – volume: 62 start-page: 936 year: 2012 end-page: 945 ident: b0145 article-title: An efficient hybrid genetic algorithm to solve assembly line balancing problem with sequence-dependent setup times publication-title: Computers & Industrial Engineering – year: 2002 ident: b0020 article-title: Facility location: Applications and theory – volume: 30 start-page: 983 year: 2003 end-page: 1003 ident: b0090 article-title: Location models for airline hubs behaving as M/D/c queues publication-title: Computers & Operations Research – volume: 72 start-page: 387 year: 1994 end-page: 405 ident: b0015 article-title: Integer programming formulations of discrete hub location problems publication-title: European Journal of Operational Research – volume: 62 start-page: 152 year: 2012 end-page: 160 ident: b0120 article-title: Genetic algorithm based multi-objective reliability optimization in interval environment publication-title: Computers & Industrial Engineering – volume: 23 start-page: 425 year: 2006 end-page: 437 ident: b0070 article-title: Solving the uncapacitated multiple allocation publication-title: Asia–Pacific Journal of Operational Research – volume: 190 start-page: 1 year: 2008 end-page: 21 ident: b0010 article-title: Network hub location problems: The state of the art publication-title: European Journal of Operational Research – volume: 33 start-page: 399 year: 2001 end-page: 411 ident: b0110 article-title: A solution to the hub center problem via a single-relocation algorithm with tabu search publication-title: IIE Transactions – volume: 125 start-page: 648 year: 2000 end-page: 655 ident: b0060 article-title: On the single-assignment publication-title: European Journal of Operational Research – volume: 14 start-page: 295 year: 2006 end-page: 304 ident: b0075 article-title: Convergent results about the use of fuzzy simulation in fuzzy optimization problems publication-title: IEEE Transactions on Fuzzy Systems – volume: 39 start-page: 6514 year: 2012 end-page: 6526 ident: b0085 article-title: A new chance-variance optimization criterion for portfolio selection in uncertain decision systems publication-title: Expert Systems with Applications – volume: 2 start-page: 31 year: 1994 end-page: 40 ident: b0105 article-title: The hub network design problem: A review and synthesis publication-title: Journal of Transport Geography – volume: 36 start-page: 2230 year: 2000 end-page: 2241 ident: b0035 article-title: Uncapacitated single and multiple allocation publication-title: Computers & Operations Research – reference: Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In – year: 1975 ident: b0050 article-title: Adaptation in natural and artificial systems – volume: 36 start-page: 4610 year: 2009 end-page: 4616 ident: b0115 article-title: Identifying core sets of discriminatory features using particle swarm optimization publication-title: Expert Systems with Applications – volume: 37 start-page: 1446 year: 2010 end-page: 1455 ident: b0095 article-title: A hybrid-genetic particle swarm optimization algorithm for the vehicle routing problem publication-title: Expert Systems with Applications – year: 2000 ident: b0040 article-title: Genetic algorithms and engineering optimization – volume: 32 start-page: 967 year: 2005 end-page: 984 ident: b0130 article-title: Solving the uncapacitated hub location using genetic algorithms publication-title: Computers & Operations Research – volume: 33 start-page: 399 issue: 5 year: 2001 ident: 10.1016/j.cie.2012.09.006_b0110 article-title: A solution to the hub center problem via a single-relocation algorithm with tabu search publication-title: IIE Transactions doi: 10.1080/07408170108936838 – volume: 59 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.cie.2012.09.006_b0045 article-title: A traffic grooming problem considering hub location for synchronous optical network-wavelength division multiplexing networks publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2009.06.015 – year: 2000 ident: 10.1016/j.cie.2012.09.006_b0040 – volume: 62 start-page: 152 issue: 1 year: 2012 ident: 10.1016/j.cie.2012.09.006_b0120 article-title: Genetic algorithm based multi-objective reliability optimization in interval environment publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2011.09.003 – volume: 61 start-page: 521 issue: 4 year: 2011 ident: 10.1016/j.cie.2012.09.006_b0055 article-title: A hybrid particle swarm optimization algorithm for high-dimensional problems publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2011.06.024 – volume: 125 start-page: 648 issue: 3 year: 2000 ident: 10.1016/j.cie.2012.09.006_b0060 article-title: On the single-assignment p-hub center problem publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(99)00274-X – volume: 205 start-page: 148 issue: 13 year: 2008 ident: 10.1016/j.cie.2012.09.006_b0100 article-title: Particle swarm optimization combined with genetic operators for job shop scheduling problem with fuzzy processing time publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2008.05.086 – volume: 212 start-page: 518 issue: 3 year: 2011 ident: 10.1016/j.cie.2012.09.006_b0030 article-title: Stochastic uncapacitated hub location publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2011.02.018 – volume: 23 start-page: 425 issue: 4 year: 2006 ident: 10.1016/j.cie.2012.09.006_b0070 article-title: Solving the uncapacitated multiple allocation p-hub center problem by genetic algorithm publication-title: Asia–Pacific Journal of Operational Research doi: 10.1142/S0217595906001042 – volume: 72 start-page: 387 issue: 2 year: 1994 ident: 10.1016/j.cie.2012.09.006_b0015 article-title: Integer programming formulations of discrete hub location problems publication-title: European Journal of Operational Research doi: 10.1016/0377-2217(94)90318-2 – year: 1975 ident: 10.1016/j.cie.2012.09.006_b0050 – volume: 14 start-page: 295 issue: 2 year: 2006 ident: 10.1016/j.cie.2012.09.006_b0075 article-title: Convergent results about the use of fuzzy simulation in fuzzy optimization problems publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2005.864077 – volume: 190 start-page: 1 issue: 1 year: 2008 ident: 10.1016/j.cie.2012.09.006_b0010 article-title: Network hub location problems: The state of the art publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2007.06.008 – volume: 33 start-page: 4424 issue: 12 year: 2009 ident: 10.1016/j.cie.2012.09.006_b0135 article-title: Stochastic air freight hub location and freight routes planning publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2009.03.018 – volume: 36 start-page: 4610 issue: 3 year: 2009 ident: 10.1016/j.cie.2012.09.006_b0115 article-title: Identifying core sets of discriminatory features using particle swarm optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.05.017 – volume: 39 start-page: 6514 issue: 7 year: 2012 ident: 10.1016/j.cie.2012.09.006_b0085 article-title: A new chance-variance optimization criterion for portfolio selection in uncertain decision systems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.12.053 – volume: 176 start-page: 819 issue: 2 year: 2007 ident: 10.1016/j.cie.2012.09.006_b0025 article-title: The p-hub center allocation problem publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2005.09.024 – volume: 37 start-page: 1446 issue: 2 year: 2010 ident: 10.1016/j.cie.2012.09.006_b0095 article-title: A hybrid-genetic particle swarm optimization algorithm for the vehicle routing problem publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.06.085 – volume: 36 start-page: 2230 issue: 7 year: 2000 ident: 10.1016/j.cie.2012.09.006_b0035 article-title: Uncapacitated single and multiple allocation p-hub center problems publication-title: Computers & Operations Research doi: 10.1016/j.cor.2008.08.021 – volume: 10 start-page: 445 issue: 4 year: 2002 ident: 10.1016/j.cie.2012.09.006_b0080 article-title: Expected value of fuzzy variable and fuzzy expected value models publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2002.800692 – volume: 36 start-page: 3166 issue: 12 year: 2009 ident: 10.1016/j.cie.2012.09.006_b0125 article-title: The stochastic p-hub center problem with service-level constraints publication-title: Computers & Operations Research doi: 10.1016/j.cor.2008.11.020 – ident: 10.1016/j.cie.2012.09.006_b0065 doi: 10.1109/ICNN.1995.488968 – year: 2002 ident: 10.1016/j.cie.2012.09.006_b0020 – volume: 62 start-page: 936 issue: 4 year: 2012 ident: 10.1016/j.cie.2012.09.006_b0145 article-title: An efficient hybrid genetic algorithm to solve assembly line balancing problem with sequence-dependent setup times publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2011.12.017 – volume: 30 start-page: 983 issue: 7 year: 2003 ident: 10.1016/j.cie.2012.09.006_b0090 article-title: Location models for airline hubs behaving as M/D/c queues publication-title: Computers & Operations Research doi: 10.1016/S0305-0548(02)00052-7 – volume: 58 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.cie.2012.09.006_b0150 article-title: A hybrid alternate two phases particle swarm optimization algorithm for flow shop scheduling problem publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2009.01.016 – year: 1997 ident: 10.1016/j.cie.2012.09.006_b0005 – volume: 32 start-page: 967 issue: 4 year: 2005 ident: 10.1016/j.cie.2012.09.006_b0130 article-title: Solving the uncapacitated hub location using genetic algorithms publication-title: Computers & Operations Research doi: 10.1016/j.cor.2003.09.008 – volume: 2 start-page: 31 issue: 1 year: 1994 ident: 10.1016/j.cie.2012.09.006_b0105 article-title: The hub network design problem: A review and synthesis publication-title: Journal of Transport Geography doi: 10.1016/0966-6923(94)90032-9 – volume: 6676 start-page: 182 issue: 2 year: 2011 ident: 10.1016/j.cie.2012.09.006_b0140 article-title: Stochastic p-hub center problem with discrete time distributions publication-title: Lecture Notes in Computer Science doi: 10.1007/978-3-642-21090-7_22 |
| SSID | ssj0004591 |
| Score | 2.2843497 |
| Snippet | ► A new fuzzy hub center problem with credibility criterion is studied. ► The travel times are assumed as normal fuzzy vectors. ► An approximation approach is... The p-hub center problem is useful for the delivery of perishable and time-sensitive system such as express mail service and emergency service. In this paper,... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 133 |
| SubjectTerms | Algorithms Approximation approach Fuzzy logic Fuzzy travel time Genetic algorithms Hub center problem Integer programming Local search Optimization Optimization algorithms Particle swarm optimization Studies Transportation problem (Operations research) Transportation terminals |
| Title | An improved hybrid particle swarm optimization algorithm for fuzzy p-hub center problem |
| URI | https://dx.doi.org/10.1016/j.cie.2012.09.006 https://www.proquest.com/docview/1266282473 |
| Volume | 64 |
| WOSCitedRecordID | wos000315309300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLag5QAHlgKiUJAPnIiCsjmxjyNUdlVIFJhbZCcOk9JJhmRS2v56nrfMdBAVIHGxIsuOI7_Pz5-dtyD0NBWUlDElfsVl6SdVmviCZpGfZBw2h1hQob3eP7_PDg7odMo-WLOiXqcTyJqGnp6yxX8VNdSBsJXr7F-Ie3wpVMAzCB1KEDuUfyT4SaNcH7v2BKjk7Ew5ZHkL28zrf_Bu7rWgJubW_9Ljx1_brl7O5trgsBrOz8-8hT8bhKfsNmXn2ZQz6yzWpYLoNXDqVfYPuYpuOKoTeyH9jtej8U89aM3Pm29Dvdnu1dB-d93tbYTKDHHhNmJ0k1nZJBnXrMBXVG9d7Zrg5RfgZXRoaCJj2O04NMG3ftH05tLh6DloQGWgF-lotcFGVG29T39Uw6vRw8i4_l5F21FGGOjA7cmb_enbtejyJsOi-1z3F1zbA24M9Dses7Gja5pyeBvdtOcLPDECv4OuyGYH3bJnDWw1eb-DbqwForyLvkwa7ECDDWiwAw3WoMHroMEjaDCABmvQYA0abECDLWjuoU8v9w9fvPZtyg2_ACaz9AmpkqwMClZUKa-YECnNYiEFlXBuLknIRRhIFjNBYhmWkYiKWLJSAnGG9Z6SIr6Ptpq2kQ8QTqSACp4KIKVJwCklgSQECKeQYVWyaBcFbgLzwsajV2lRjnNneHgE9TJXc54HLIc530XPxi4LE4zlssaJk0pu2aRhiTlA6LJue06CuV3VfR4CjY1olGTxw3976yN0fbVa9tDWshvkY3StOFnWfffE4vAn71GlBw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+hybrid+particle+swarm+optimization+algorithm+for+fuzzy+p-hub+center+problem&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Yang%2C+Kai&rft.au=Liu%2C+Yankui&rft.au=Yang%2C+Guoqing&rft.date=2013-01-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.volume=64&rft.issue=1&rft.spage=133&rft.epage=142&rft_id=info:doi/10.1016%2Fj.cie.2012.09.006&rft.externalDocID=S0360835212002227 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon |