Trust-region filtered sequential convex programming for multi-UAV trajectory planning and collision avoidance

This paper presents an trust-region filtered sequential convex programming (TRF-SCP) to reduce computational burdens of multi-UAV trajectory planning. In TRF-SCP, the trust-region based filter is proposed to remove the inactive collision-avoidance constraints of the convex programming subproblems fo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:ISA transactions Ročník 128; číslo Pt B; s. 664 - 676
Hlavní autoři: Xu, Guangtong, Long, Teng, Wang, Zhu, Sun, Jingliang
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Ltd 01.09.2022
Témata:
ISSN:0019-0578, 1879-2022, 1879-2022
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper presents an trust-region filtered sequential convex programming (TRF-SCP) to reduce computational burdens of multi-UAV trajectory planning. In TRF-SCP, the trust-region based filter is proposed to remove the inactive collision-avoidance constraints of the convex programming subproblems for decreasing the complexity. The inactive constraints are detected based on the intersection relations between trust regions and collision-avoidance constraints. The trust-region based filter for different types of obstacles are tailored to address complex scenarios. An adaptive trust-region updating mechanism is also developed to mitigate infeasible iteration in TRF-SCP. The sizes of the trust regions are automatically adjusted according to the constraint violation of the optimized trajectory during the SCP iterations. TRF-SCP is then tested on several numerical multi-UAV formation scenarios involving cylindrical, spherical, conical, and polygon obstacles, respectively. Comparative studies demonstrate that TRF-SCP eliminates a large number of collision-avoidance constraints in the entire iterative process and outperforms SCP and Guaranteed Sequential Trajectory Optimization in terms of computational efficiency. The indoor flight experiments are presented to further evaluate the practicability of TRF-SCP. •The trust-region filter is developed for SCP to construct low-complexity subproblems, which can enhance the computational efficiency.•The adaptive trust-region updating mechanism is designed to avoid infeasible iteration of TRF-SCP.•The effectiveness of TRF-SCP is verified on contrastive simulations and flight experiments.
AbstractList This paper presents an trust-region filtered sequential convex programming (TRF-SCP) to reduce computational burdens of multi-UAV trajectory planning. In TRF-SCP, the trust-region based filter is proposed to remove the inactive collision-avoidance constraints of the convex programming subproblems for decreasing the complexity. The inactive constraints are detected based on the intersection relations between trust regions and collision-avoidance constraints. The trust-region based filter for different types of obstacles are tailored to address complex scenarios. An adaptive trust-region updating mechanism is also developed to mitigate infeasible iteration in TRF-SCP. The sizes of the trust regions are automatically adjusted according to the constraint violation of the optimized trajectory during the SCP iterations. TRF-SCP is then tested on several numerical multi-UAV formation scenarios involving cylindrical, spherical, conical, and polygon obstacles, respectively. Comparative studies demonstrate that TRF-SCP eliminates a large number of collision-avoidance constraints in the entire iterative process and outperforms SCP and Guaranteed Sequential Trajectory Optimization in terms of computational efficiency. The indoor flight experiments are presented to further evaluate the practicability of TRF-SCP.
This paper presents an trust-region filtered sequential convex programming (TRF-SCP) to reduce computational burdens of multi-UAV trajectory planning. In TRF-SCP, the trust-region based filter is proposed to remove the inactive collision-avoidance constraints of the convex programming subproblems for decreasing the complexity. The inactive constraints are detected based on the intersection relations between trust regions and collision-avoidance constraints. The trust-region based filter for different types of obstacles are tailored to address complex scenarios. An adaptive trust-region updating mechanism is also developed to mitigate infeasible iteration in TRF-SCP. The sizes of the trust regions are automatically adjusted according to the constraint violation of the optimized trajectory during the SCP iterations. TRF-SCP is then tested on several numerical multi-UAV formation scenarios involving cylindrical, spherical, conical, and polygon obstacles, respectively. Comparative studies demonstrate that TRF-SCP eliminates a large number of collision-avoidance constraints in the entire iterative process and outperforms SCP and Guaranteed Sequential Trajectory Optimization in terms of computational efficiency. The indoor flight experiments are presented to further evaluate the practicability of TRF-SCP. •The trust-region filter is developed for SCP to construct low-complexity subproblems, which can enhance the computational efficiency.•The adaptive trust-region updating mechanism is designed to avoid infeasible iteration of TRF-SCP.•The effectiveness of TRF-SCP is verified on contrastive simulations and flight experiments.
This paper presents an trust-region filtered sequential convex programming (TRF-SCP) to reduce computational burdens of multi-UAV trajectory planning. In TRF-SCP, the trust-region based filter is proposed to remove the inactive collision-avoidance constraints of the convex programming subproblems for decreasing the complexity. The inactive constraints are detected based on the intersection relations between trust regions and collision-avoidance constraints. The trust-region based filter for different types of obstacles are tailored to address complex scenarios. An adaptive trust-region updating mechanism is also developed to mitigate infeasible iteration in TRF-SCP. The sizes of the trust regions are automatically adjusted according to the constraint violation of the optimized trajectory during the SCP iterations. TRF-SCP is then tested on several numerical multi-UAV formation scenarios involving cylindrical, spherical, conical, and polygon obstacles, respectively. Comparative studies demonstrate that TRF-SCP eliminates a large number of collision-avoidance constraints in the entire iterative process and outperforms SCP and Guaranteed Sequential Trajectory Optimization in terms of computational efficiency. The indoor flight experiments are presented to further evaluate the practicability of TRF-SCP.This paper presents an trust-region filtered sequential convex programming (TRF-SCP) to reduce computational burdens of multi-UAV trajectory planning. In TRF-SCP, the trust-region based filter is proposed to remove the inactive collision-avoidance constraints of the convex programming subproblems for decreasing the complexity. The inactive constraints are detected based on the intersection relations between trust regions and collision-avoidance constraints. The trust-region based filter for different types of obstacles are tailored to address complex scenarios. An adaptive trust-region updating mechanism is also developed to mitigate infeasible iteration in TRF-SCP. The sizes of the trust regions are automatically adjusted according to the constraint violation of the optimized trajectory during the SCP iterations. TRF-SCP is then tested on several numerical multi-UAV formation scenarios involving cylindrical, spherical, conical, and polygon obstacles, respectively. Comparative studies demonstrate that TRF-SCP eliminates a large number of collision-avoidance constraints in the entire iterative process and outperforms SCP and Guaranteed Sequential Trajectory Optimization in terms of computational efficiency. The indoor flight experiments are presented to further evaluate the practicability of TRF-SCP.
Author Xu, Guangtong
Wang, Zhu
Long, Teng
Sun, Jingliang
Author_xml – sequence: 1
  givenname: Guangtong
  orcidid: 0000-0003-0683-5992
  surname: Xu
  fullname: Xu, Guangtong
  email: guangtong_xu@163.com
  organization: Department of Precision Instrument, Tsinghua University, Beijing 100084, PR China
– sequence: 2
  givenname: Teng
  surname: Long
  fullname: Long, Teng
  email: tenglong@bit.edu.cn
  organization: School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
– sequence: 3
  givenname: Zhu
  orcidid: 0000-0003-3691-1407
  surname: Wang
  fullname: Wang, Zhu
  email: wangzhubit@163.com
  organization: Department of Automation, North China Electric Power University, Baoding 071003, HeBei, PR China
– sequence: 4
  givenname: Jingliang
  surname: Sun
  fullname: Sun, Jingliang
  email: sunjingliangac@163.com
  organization: School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34961607$$D View this record in MEDLINE/PubMed
BookMark eNqFUctq3DAUFSGlmaT9g1C87Mau3ra7KISQtIVAN0m3QiNdDxpkaSrJQ_P3lZlk00W7unA553Ael-g8xAAIXRPcEUzkp33nsi5JdxRT0hHSYc7O0IYM_djWFz1HG4zJ2GLRDxfoMuc9xpiKcXiLLhgfJZG436D5MS25tAl2LoZmcr5AAttk-LVAKE77xsRwhN_NIcVd0vPswq6ZYmrmxRfXPt38bKqHPZgS03Nz8DqEFaGDrUTvXV5l9TE6q4OBd-jNpH2G9y_3Cj3d3z3efmsffnz9fnvz0BomaWkF1yCYtANwLjhmq11L9Ci2dLBGa0allVrowdBxEj1mXPSMYGuk3MpeU3aFPp50q-saJBc1u2zAV3sQl6yoJIIQPApeoR9eoMt2BqsOyc06PavXiirg8wlgUsw5waSMK7rUXDW484pgte6h9uq0h1r3UISoukcl87_Ir_r_oX050aCWdHSQVDYOaoHWpVq1stH9W-APqYCnyw
CitedBy_id crossref_primary_10_1016_j_actaastro_2025_01_041
crossref_primary_10_1016_j_ijhydene_2023_11_030
crossref_primary_10_1007_s42405_022_00491_2
crossref_primary_10_1016_j_ast_2024_108938
crossref_primary_10_1016_j_ast_2023_108216
crossref_primary_10_1016_j_apenergy_2024_123166
crossref_primary_10_1016_j_ast_2023_108704
crossref_primary_10_1109_TAES_2025_3562836
crossref_primary_10_1002_rnc_7086
crossref_primary_10_1109_JIOT_2025_3582721
crossref_primary_10_1109_TII_2024_3507955
crossref_primary_10_23919_JSEE_2024_000120
crossref_primary_10_1016_j_cja_2024_08_005
crossref_primary_10_1109_TSMC_2025_3559591
Cites_doi 10.1109/IROS.2012.6385823
10.2514/1.39327
10.1007/s10514-012-9275-2
10.1109/LRA.2020.2964159
10.1109/ICRA.2015.7140034
10.1109/TCST.2010.2045501
10.3182/20140824-6-ZA-1003.02736
10.1109/TRO.2018.2857475
10.1109/CDC.2016.7798816
10.23919/ECC.2013.6669375
10.2514/1.G000218
10.1007/s11081-011-9176-9
10.2514/6.2018-3035
10.1109/ICRA.2019.8794205
10.2514/1.G002349
10.1007/s10957-015-0831-8
10.1016/j.isatra.2017.09.014
10.1016/j.automatica.2014.10.022
10.1109/LRA.2020.3047728
10.1177/0278364916632065
10.23919/ECC.2013.6669541
10.2514/1.62110
10.1109/LRA.2018.2890572
10.1016/j.automatica.2010.10.037
10.1007/s42064-017-0003-8
10.1109/TAES.2018.2890375
ContentType Journal Article
Copyright 2021 ISA
Copyright © 2021 ISA. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 ISA
– notice: Copyright © 2021 ISA. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.isatra.2021.11.043
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1879-2022
EndPage 676
ExternalDocumentID 34961607
10_1016_j_isatra_2021_11_043
S0019057821006078
Genre Journal Article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2019TQ0037
  funderid: http://dx.doi.org/10.13039/501100002858
– fundername: National Natural Science Foundation of China
  grantid: 61903033; 62003036
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
6P2
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFDAS
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
T9H
TAE
TN5
UHS
UNMZH
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
NPM
7X8
ID FETCH-LOGICAL-c362t-54ae536d8e4454033496d1a95b28dcaa326d6a5a8c29f5703457310dc66b67a23
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000875886100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0019-0578
1879-2022
IngestDate Sat Sep 27 16:34:28 EDT 2025
Wed Feb 19 02:27:42 EST 2025
Sat Nov 29 07:28:05 EST 2025
Tue Nov 18 22:35:16 EST 2025
Fri Feb 23 02:44:29 EST 2024
IsPeerReviewed true
IsScholarly true
Issue Pt B
Keywords Adaptive trust-region updating
Multi-UAV trajectory planning
Sequential convex programming
Trust-region based filter
Inactive constraints
Language English
License Copyright © 2021 ISA. Published by Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-54ae536d8e4454033496d1a95b28dcaa326d6a5a8c29f5703457310dc66b67a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3691-1407
0000-0003-0683-5992
PMID 34961607
PQID 2615110954
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2615110954
pubmed_primary_34961607
crossref_citationtrail_10_1016_j_isatra_2021_11_043
crossref_primary_10_1016_j_isatra_2021_11_043
elsevier_sciencedirect_doi_10_1016_j_isatra_2021_11_043
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ISA transactions
PublicationTitleAlternate ISA Trans
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Liu, Long (b15) 2017; 40
Dai, Cochran (b26) 2009; 46
Bonalli R, Cauligi A, Bylard A. GuSTO: Guaranteed sequential trajectory optimization via sequential convex programming. In: IEEE conf robot autom. 2019. p. 1–10.
Morgan, Subramanian, Chung, Hadaegh (b7) 2016; 35
Augugliaro F, Schoellig AP, D’Andrea R. Generation of collision-free trajectories for a quadrocopter fleet: A sequential convex programming approach. In: IEEE/RSJ int conf robot intell syst. 2012. p. 1917–22.
Wang Z, Xu G, Liu L, Long T. Obstacle-avoidance trajectory planning for attitude-constrained quadrotors using second-order cone programming. In: AIAA aviation tech, integration, operations conf. 2018. p. 1–9.
Luis, Schoellig (b6) 2019; 4
Oh, Park, Ahn (b1) 2015; 53
Chen Y, Cutler M, How JP. Decoupled multiagent path planning via incremental sequential convex programming. In: IEEE int conf robot autom. 2015. p. 5954–61.
Liu, Lu, Pan (b9) 2017; 1
Zhou, Wang, Ye, Xu, Gao (b24) 2021; 6
Grant, Boyd (b29) 2014
Desaraju, How (b4) 2012; 32
Morgan D, Chung SJ, Hadaegh FY. Model predictive control of swarms of spacecraft using sequential convex programming. J Guid Control Dyn 37(6):1725–40.
Boyd, Vandenberghe (b11) 2004
Liu, Shen (b12) 2016; 168
Turnbull O, Richards A. Collocation methods for multi-vehicle trajectory optimization. In: Eur control conf. 2013. p. 1230–5.
Domahidi A, Chu E, Boyd S. ECOS: An SOCP solver for embedded systems. In: European control conf. 2013. p. 3071–6.
Liu, Lu (b20) 2014; 37
Sturm (b30) 2008; 11
Açıkmeşe, Blackmore (b13) 2011; 47
Mattingley, Boyd (b17) 2011; 13
Dueri, Zhang, Açıkmeşe (b19) 2014; 47
Kuwata, How (b3) 2011; 19
Zhang, Jin, Li (b8) 2018; 72
Luis, Vukosavljev, Schoellig (b23) 2020; 5
Chung, Paranjape, Dames, Shen, Kumar (b2) 2018; 34
Hong, Maity, Holzapfel, Tang (b16) 2019; 55
Mao Y, Szmuk M, Açıkmeşe B. Successive convexification of non-convex optimal control problems and its convergence properties. In: IEEE conf decis control. 2016. p. 3636–41.
Betts (b27) 2010
Luis (10.1016/j.isatra.2021.11.043_b23) 2020; 5
Hong (10.1016/j.isatra.2021.11.043_b16) 2019; 55
Grant (10.1016/j.isatra.2021.11.043_b29) 2014
Açıkmeşe (10.1016/j.isatra.2021.11.043_b13) 2011; 47
Zhang (10.1016/j.isatra.2021.11.043_b8) 2018; 72
Liu (10.1016/j.isatra.2021.11.043_b9) 2017; 1
Boyd (10.1016/j.isatra.2021.11.043_b11) 2004
10.1016/j.isatra.2021.11.043_b5
Morgan (10.1016/j.isatra.2021.11.043_b7) 2016; 35
10.1016/j.isatra.2021.11.043_b18
Oh (10.1016/j.isatra.2021.11.043_b1) 2015; 53
10.1016/j.isatra.2021.11.043_b14
Desaraju (10.1016/j.isatra.2021.11.043_b4) 2012; 32
Liu (10.1016/j.isatra.2021.11.043_b12) 2016; 168
10.1016/j.isatra.2021.11.043_b10
Mattingley (10.1016/j.isatra.2021.11.043_b17) 2011; 13
Zhou (10.1016/j.isatra.2021.11.043_b24) 2021; 6
Dai (10.1016/j.isatra.2021.11.043_b26) 2009; 46
Chung (10.1016/j.isatra.2021.11.043_b2) 2018; 34
Liu (10.1016/j.isatra.2021.11.043_b20) 2014; 37
Luis (10.1016/j.isatra.2021.11.043_b6) 2019; 4
Wang (10.1016/j.isatra.2021.11.043_b15) 2017; 40
10.1016/j.isatra.2021.11.043_b28
10.1016/j.isatra.2021.11.043_b25
Kuwata (10.1016/j.isatra.2021.11.043_b3) 2011; 19
Betts (10.1016/j.isatra.2021.11.043_b27) 2010
10.1016/j.isatra.2021.11.043_b21
10.1016/j.isatra.2021.11.043_b22
Dueri (10.1016/j.isatra.2021.11.043_b19) 2014; 47
Sturm (10.1016/j.isatra.2021.11.043_b30) 2008; 11
References_xml – volume: 1
  start-page: 23
  year: 2017
  end-page: 40
  ident: b9
  article-title: Survey of convex optimization for aerospace applications
  publication-title: Astrodynamics
– volume: 47
  start-page: 1605
  year: 2014
  end-page: 1612
  ident: b19
  article-title: Automated custom code generation for embedded, real-time second order cone programming
  publication-title: IFAC Proc Vol
– volume: 55
  start-page: 2487
  year: 2019
  end-page: 2500
  ident: b16
  article-title: Model predictive convex programming for constrained vehicle guidance
  publication-title: IEEE Trans Aerosp Electron Syst
– year: 2014
  ident: b29
  article-title: CVX: Matlab software for disciplined convex programming, version 2.0 beta
– volume: 35
  start-page: 1261
  year: 2016
  end-page: 1285
  ident: b7
  article-title: Swarm assignment and trajectory optimization using variable-swarm, distributed auction assignment and sequential convex programming
  publication-title: Int J Robot Res
– volume: 53
  start-page: 424
  year: 2015
  end-page: 440
  ident: b1
  article-title: A survey of multi-agent formation control
  publication-title: Automatica
– start-page: 455
  year: 2004
  end-page: 630
  ident: b11
  article-title: Convex optimization
– volume: 46
  start-page: 627
  year: 2009
  end-page: 634
  ident: b26
  article-title: Three-dimensional trajectory optimization in constrained airspace
  publication-title: J Aircr
– volume: 72
  start-page: 229
  year: 2018
  end-page: 244
  ident: b8
  article-title: Penalty boundary sequential convex programming algorithm for non-convex optimal control problems
  publication-title: ISA Trans
– reference: Morgan D, Chung SJ, Hadaegh FY. Model predictive control of swarms of spacecraft using sequential convex programming. J Guid Control Dyn 37(6):1725–40.
– volume: 13
  start-page: 1
  year: 2011
  end-page: 27
  ident: b17
  article-title: CVXGEN: A code generator for embedded convex optimization
  publication-title: Optim Eng
– reference: Chen Y, Cutler M, How JP. Decoupled multiagent path planning via incremental sequential convex programming. In: IEEE int conf robot autom. 2015. p. 5954–61.
– reference: Mao Y, Szmuk M, Açıkmeşe B. Successive convexification of non-convex optimal control problems and its convergence properties. In: IEEE conf decis control. 2016. p. 3636–41.
– start-page: 132
  year: 2010
  end-page: 134
  ident: b27
  article-title: Practical methods for optimal control and estimation using nonlinear programming
  publication-title: Ind Appl Math
– volume: 47
  start-page: 341
  year: 2011
  end-page: 347
  ident: b13
  article-title: Lossless convexification for a class of optimal problems with nonconvex control constraints
  publication-title: Automatica
– reference: Augugliaro F, Schoellig AP, D’Andrea R. Generation of collision-free trajectories for a quadrocopter fleet: A sequential convex programming approach. In: IEEE/RSJ int conf robot intell syst. 2012. p. 1917–22.
– reference: Domahidi A, Chu E, Boyd S. ECOS: An SOCP solver for embedded systems. In: European control conf. 2013. p. 3071–6.
– volume: 11
  start-page: 625
  year: 2008
  end-page: 653
  ident: b30
  article-title: Using SeDuMi 1.02, A MATLAB toolbox for optimization over symmetric cones
  publication-title: Optim Methods Softw
– reference: Bonalli R, Cauligi A, Bylard A. GuSTO: Guaranteed sequential trajectory optimization via sequential convex programming. In: IEEE conf robot autom. 2019. p. 1–10.
– volume: 5
  start-page: 604
  year: 2020
  end-page: 611
  ident: b23
  article-title: Online trajectory generation with distributed model predictive control for multi-robot motion planning
  publication-title: IEEE Robot Autom Lett
– volume: 34
  start-page: 837
  year: 2018
  end-page: 855
  ident: b2
  article-title: A survey on aerial swarm robotics
  publication-title: IEEE Trans Robot
– volume: 40
  start-page: 2976
  year: 2017
  end-page: 2982
  ident: b15
  article-title: Minimum-time trajectory planning for multi-unmanned-aerial-vehicle cooperation using sequential convex programming
  publication-title: J Guid Control Dyn
– reference: Turnbull O, Richards A. Collocation methods for multi-vehicle trajectory optimization. In: Eur control conf. 2013. p. 1230–5.
– volume: 37
  start-page: 750
  year: 2014
  end-page: 765
  ident: b20
  article-title: Solving nonconvex optimal control problems by convex optimization
  publication-title: J Guid Control Dyn
– volume: 168
  start-page: 917
  year: 2016
  end-page: 943
  ident: b12
  article-title: Rapid smooth entry trajectory planning for high lift/drag hypersonic glide vehicles
  publication-title: J Optim Theory Appl
– volume: 19
  start-page: 423
  year: 2011
  end-page: 431
  ident: b3
  article-title: Cooperative distributed robust trajectory optimization using receding horizon MILP
  publication-title: IEEE Trans Control Syst Technol
– reference: Wang Z, Xu G, Liu L, Long T. Obstacle-avoidance trajectory planning for attitude-constrained quadrotors using second-order cone programming. In: AIAA aviation tech, integration, operations conf. 2018. p. 1–9.
– volume: 4
  start-page: 375
  year: 2019
  end-page: 382
  ident: b6
  article-title: Trajectory generation for multiagent point-to-point transitions via distributed model predictive control
  publication-title: IEEE Robot Autom Lett
– volume: 32
  start-page: 385
  year: 2012
  end-page: 403
  ident: b4
  article-title: Decentralized path planning for multi-agent teams with complex constraints
  publication-title: Autom Robots
– volume: 6
  start-page: 478
  year: 2021
  end-page: 485
  ident: b24
  article-title: EGO-planner: An ESDF-free gradient-based local planner for quadrotors
  publication-title: IEEE Robot Autom Lett
– ident: 10.1016/j.isatra.2021.11.043_b14
  doi: 10.1109/IROS.2012.6385823
– volume: 46
  start-page: 627
  issue: 2
  year: 2009
  ident: 10.1016/j.isatra.2021.11.043_b26
  article-title: Three-dimensional trajectory optimization in constrained airspace
  publication-title: J Aircr
  doi: 10.2514/1.39327
– volume: 32
  start-page: 385
  issue: 4
  year: 2012
  ident: 10.1016/j.isatra.2021.11.043_b4
  article-title: Decentralized path planning for multi-agent teams with complex constraints
  publication-title: Autom Robots
  doi: 10.1007/s10514-012-9275-2
– volume: 5
  start-page: 604
  issue: 2
  year: 2020
  ident: 10.1016/j.isatra.2021.11.043_b23
  article-title: Online trajectory generation with distributed model predictive control for multi-robot motion planning
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2020.2964159
– ident: 10.1016/j.isatra.2021.11.043_b25
  doi: 10.1109/ICRA.2015.7140034
– volume: 19
  start-page: 423
  issue: 2
  year: 2011
  ident: 10.1016/j.isatra.2021.11.043_b3
  article-title: Cooperative distributed robust trajectory optimization using receding horizon MILP
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2010.2045501
– volume: 47
  start-page: 1605
  issue: 3
  year: 2014
  ident: 10.1016/j.isatra.2021.11.043_b19
  article-title: Automated custom code generation for embedded, real-time second order cone programming
  publication-title: IFAC Proc Vol
  doi: 10.3182/20140824-6-ZA-1003.02736
– volume: 34
  start-page: 837
  issue: 4
  year: 2018
  ident: 10.1016/j.isatra.2021.11.043_b2
  article-title: A survey on aerial swarm robotics
  publication-title: IEEE Trans Robot
  doi: 10.1109/TRO.2018.2857475
– ident: 10.1016/j.isatra.2021.11.043_b21
  doi: 10.1109/CDC.2016.7798816
– ident: 10.1016/j.isatra.2021.11.043_b5
  doi: 10.23919/ECC.2013.6669375
– ident: 10.1016/j.isatra.2021.11.043_b10
  doi: 10.2514/1.G000218
– volume: 13
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.isatra.2021.11.043_b17
  article-title: CVXGEN: A code generator for embedded convex optimization
  publication-title: Optim Eng
  doi: 10.1007/s11081-011-9176-9
– ident: 10.1016/j.isatra.2021.11.043_b28
  doi: 10.2514/6.2018-3035
– ident: 10.1016/j.isatra.2021.11.043_b22
  doi: 10.1109/ICRA.2019.8794205
– volume: 40
  start-page: 2976
  issue: 11
  year: 2017
  ident: 10.1016/j.isatra.2021.11.043_b15
  article-title: Minimum-time trajectory planning for multi-unmanned-aerial-vehicle cooperation using sequential convex programming
  publication-title: J Guid Control Dyn
  doi: 10.2514/1.G002349
– volume: 168
  start-page: 917
  issue: 3
  year: 2016
  ident: 10.1016/j.isatra.2021.11.043_b12
  article-title: Rapid smooth entry trajectory planning for high lift/drag hypersonic glide vehicles
  publication-title: J Optim Theory Appl
  doi: 10.1007/s10957-015-0831-8
– volume: 72
  start-page: 229
  year: 2018
  ident: 10.1016/j.isatra.2021.11.043_b8
  article-title: Penalty boundary sequential convex programming algorithm for non-convex optimal control problems
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2017.09.014
– start-page: 132
  year: 2010
  ident: 10.1016/j.isatra.2021.11.043_b27
  article-title: Practical methods for optimal control and estimation using nonlinear programming
  publication-title: Ind Appl Math
– volume: 53
  start-page: 424
  year: 2015
  ident: 10.1016/j.isatra.2021.11.043_b1
  article-title: A survey of multi-agent formation control
  publication-title: Automatica
  doi: 10.1016/j.automatica.2014.10.022
– volume: 6
  start-page: 478
  issue: 2
  year: 2021
  ident: 10.1016/j.isatra.2021.11.043_b24
  article-title: EGO-planner: An ESDF-free gradient-based local planner for quadrotors
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2020.3047728
– start-page: 455
  year: 2004
  ident: 10.1016/j.isatra.2021.11.043_b11
– volume: 35
  start-page: 1261
  issue: 10
  year: 2016
  ident: 10.1016/j.isatra.2021.11.043_b7
  article-title: Swarm assignment and trajectory optimization using variable-swarm, distributed auction assignment and sequential convex programming
  publication-title: Int J Robot Res
  doi: 10.1177/0278364916632065
– ident: 10.1016/j.isatra.2021.11.043_b18
  doi: 10.23919/ECC.2013.6669541
– volume: 37
  start-page: 750
  issue: 3
  year: 2014
  ident: 10.1016/j.isatra.2021.11.043_b20
  article-title: Solving nonconvex optimal control problems by convex optimization
  publication-title: J Guid Control Dyn
  doi: 10.2514/1.62110
– volume: 4
  start-page: 375
  issue: 2
  year: 2019
  ident: 10.1016/j.isatra.2021.11.043_b6
  article-title: Trajectory generation for multiagent point-to-point transitions via distributed model predictive control
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2018.2890572
– year: 2014
  ident: 10.1016/j.isatra.2021.11.043_b29
– volume: 47
  start-page: 341
  issue: 2
  year: 2011
  ident: 10.1016/j.isatra.2021.11.043_b13
  article-title: Lossless convexification for a class of optimal problems with nonconvex control constraints
  publication-title: Automatica
  doi: 10.1016/j.automatica.2010.10.037
– volume: 1
  start-page: 23
  issue: 1
  year: 2017
  ident: 10.1016/j.isatra.2021.11.043_b9
  article-title: Survey of convex optimization for aerospace applications
  publication-title: Astrodynamics
  doi: 10.1007/s42064-017-0003-8
– volume: 11
  start-page: 625
  issue: 1–4
  year: 2008
  ident: 10.1016/j.isatra.2021.11.043_b30
  article-title: Using SeDuMi 1.02, A MATLAB toolbox for optimization over symmetric cones
  publication-title: Optim Methods Softw
– volume: 55
  start-page: 2487
  issue: 5
  year: 2019
  ident: 10.1016/j.isatra.2021.11.043_b16
  article-title: Model predictive convex programming for constrained vehicle guidance
  publication-title: IEEE Trans Aerosp Electron Syst
  doi: 10.1109/TAES.2018.2890375
SSID ssj0002598
Score 2.419973
Snippet This paper presents an trust-region filtered sequential convex programming (TRF-SCP) to reduce computational burdens of multi-UAV trajectory planning. In...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 664
SubjectTerms Adaptive trust-region updating
Inactive constraints
Multi-UAV trajectory planning
Sequential convex programming
Trust-region based filter
Title Trust-region filtered sequential convex programming for multi-UAV trajectory planning and collision avoidance
URI https://dx.doi.org/10.1016/j.isatra.2021.11.043
https://www.ncbi.nlm.nih.gov/pubmed/34961607
https://www.proquest.com/docview/2615110954
Volume 128
WOSCitedRecordID wos000875886100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2022
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002598
  issn: 0019-0578
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lKQc4IFpe4VEtEkIgtCjxa9fHCKWiKCqVSIrFZbWxN5AodUJeCn-BX83MPpygUrUcuFjRxhNbni_rmd2Z7yPkpR5GItb5kBUD3WQRLzhTURKyFMnqCsV10-innHf56anIsvSsVvvle2HWE16WYrNJZ__V1TAGzsbW2X9wd_WjMACfwelwBLfD8WaOxy4KhoILWEQ4wt1wCCptyfRyZOhAyrXe-MqsC19KaUoLWb99jrIRY7OY_xNFpo2mkWt_m0xMK_pbtZ6OigovLrY9-dxGUy8_XgXr2cosvq-UqdX_VpUAuWLgnt6OfXGr11-_r7a7VbZ7ZIT9xsqd6pYpIMP1dVh-ZhU8ZfiFffH8ZcxPx4HYwd3Z0qlP2_k1sZTnl-Z9uwQxNiVQc6STClrvkJzVUkD9SbN9-kke97td2etkvVezHwwVyHCn3smx7JH9gMepqJP99kkn-1i91yFRNI2V_qZ9I6apFrx84asCnasSGRPQ9O6Ruy4ToW2LoANS0-UhubPDT3lIDtzMv6CvHT35m_vkYhdg1AOMbgFGLcDoDsAoAIxWAKNbgFEPMAoAoxXAaAWwB6R_3Om9_8CcaAfLIRZasjhSOg6TQugIyR1DFCQoWiqNB4EocqUgXSgSFSuRB-kQ6d-imEOKUeRJMki4CsKHpF5OS_2Y0GYygHxFB1zrNBJgm3MxHIKR4mGYB60GCf0TlrljtEdhlYn0pYtjaf0i0S-Q7ErwS4OwympmGV2uOZ9750kXldpoUwL4rrF84X0tYdLGnThV6ulqIQPMI1qQ3UQN8siCoLoXfGDI-vjkBtZPye3tf-0ZqS_nK_2c3MrXy9FifkT2eCaOHIx_AxW0xtA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trust-region+filtered+sequential+convex+programming+for+multi-UAV+trajectory+planning+and+collision+avoidance&rft.jtitle=ISA+transactions&rft.au=Xu%2C+Guangtong&rft.au=Long%2C+Teng&rft.au=Wang%2C+Zhu&rft.au=Sun%2C+Jingliang&rft.date=2022-09-01&rft.issn=1879-2022&rft.eissn=1879-2022&rft.volume=128&rft.issue=Pt+B&rft.spage=664&rft_id=info:doi/10.1016%2Fj.isatra.2021.11.043&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-0578&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-0578&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-0578&client=summon