3D Scene interpretation by combining probability theory and logic: The tower of knowledge

► Linguistically inspired reasoning architecture. ► Generic framework for combining logic and conventional statistical pattern recognition. ► Generic framework for incorporating dynamic and static input. ► Application to 3D scene interpretation. We explore a newly proposed system architecture, calle...

Full description

Saved in:
Bibliographic Details
Published in:Computer vision and image understanding Vol. 115; no. 11; pp. 1581 - 1596
Main Authors: Xu, Mai, Petrou, Maria
Format: Journal Article
Language:English
Published: Amsterdam Elsevier Inc 01.11.2011
Elsevier
Subjects:
ISSN:1077-3142, 1090-235X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ► Linguistically inspired reasoning architecture. ► Generic framework for combining logic and conventional statistical pattern recognition. ► Generic framework for incorporating dynamic and static input. ► Application to 3D scene interpretation. We explore a newly proposed system architecture, called tower of knowledge (ToK), in the context of labelling components of building scenes. The ToK architecture allows the incorporation of statistical feature distributions and logic rules concerning the definition of a component, within a probabilistic framework. The maximum likelihood method of label assignment is modified by being multiplied with a function, called utility function, that expresses the information coming from the logic rules programmed to the system. The logic rules are designed to define an object/component by answering the questions “why” and “how”, referring to the actions in which a particular object may be observed to participate and the characteristics it should have in order to be able to participate in these actions. Two sets of measurements are assumed to be available: those made initially for all components routinely, and which supply the initial statistically based inference of possible labels of each component, and those that are made in order to confirm or deny a particular characteristic of the component that would allow it to participate in a specific action. A recursive version of the architecture is also proposed, in which the distributions of the former types of measurement may be learnt in the process, having no training data at all. Multi-view images are used as input to the system, which uses standard techniques to build the 3D models of the buildings. The system is tested on labelling the components of 10 3D models of buildings. The components are identified either manually, or fully automatically. The results are compared with those obtained by expandable Bayesian networks. The recursive version of ToK proves to be able to cope very well even without any training data, where it learns the characteristics of the various components by simply applying the pre-programmed logic rules that connect labels, actions and attributes.
AbstractList ► Linguistically inspired reasoning architecture. ► Generic framework for combining logic and conventional statistical pattern recognition. ► Generic framework for incorporating dynamic and static input. ► Application to 3D scene interpretation. We explore a newly proposed system architecture, called tower of knowledge (ToK), in the context of labelling components of building scenes. The ToK architecture allows the incorporation of statistical feature distributions and logic rules concerning the definition of a component, within a probabilistic framework. The maximum likelihood method of label assignment is modified by being multiplied with a function, called utility function, that expresses the information coming from the logic rules programmed to the system. The logic rules are designed to define an object/component by answering the questions “why” and “how”, referring to the actions in which a particular object may be observed to participate and the characteristics it should have in order to be able to participate in these actions. Two sets of measurements are assumed to be available: those made initially for all components routinely, and which supply the initial statistically based inference of possible labels of each component, and those that are made in order to confirm or deny a particular characteristic of the component that would allow it to participate in a specific action. A recursive version of the architecture is also proposed, in which the distributions of the former types of measurement may be learnt in the process, having no training data at all. Multi-view images are used as input to the system, which uses standard techniques to build the 3D models of the buildings. The system is tested on labelling the components of 10 3D models of buildings. The components are identified either manually, or fully automatically. The results are compared with those obtained by expandable Bayesian networks. The recursive version of ToK proves to be able to cope very well even without any training data, where it learns the characteristics of the various components by simply applying the pre-programmed logic rules that connect labels, actions and attributes.
We explore a newly proposed system architecture, called tower of knowledge (ToK), in the context of labelling components of building scenes. The ToK architecture allows the incorporation of statistical feature distributions and logic rules concerning the definition of a component, within a probabilistic framework. The maximum likelihood method of label assignment is modified by being multiplied with a function, called utility function, that expresses the information coming from the logic rules programmed to the system. The logic rules are designed to define an object/component by answering the questions 'why' and 'how', referring to the actions in which a particular object may be observed to participate and the characteristics it should have in order to be able to participate in these actions. Two sets of measurements are assumed to be available: those made initially for all components routinely, and which supply the initial statistically based inference of possible labels of each component, and those that are made in order to confirm or deny a particular characteristic of the component that would allow it to participate in a specific action. A recursive version of the architecture is also proposed, in which the distributions of the former types of measurement may be learnt in the process, having no training data at all. Multi-view images are used as input to the system, which uses standard techniques to build the 3D models of the buildings. The system is tested on labelling the components of 10 3D models of buildings. The components are identified either manually, or fully automatically. The results are compared with those obtained by expandable Bayesian networks. The recursive version of ToK proves to be able to cope very well even without any training data, where it learns the characteristics of the various components by simply applying the pre-programmed logic rules that connect labels, actions and attributes.
Author Petrou, Maria
Xu, Mai
Author_xml – sequence: 1
  givenname: Mai
  surname: Xu
  fullname: Xu, Mai
– sequence: 2
  givenname: Maria
  surname: Petrou
  fullname: Petrou, Maria
  email: maria.petrou@imperial.ac.uk
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24603131$$DView record in Pascal Francis
BookMark eNp9kD1PHDEQQC0EEnDwB6jcoFS7-Ot2vVEaRBISCYkCIoXK8s6OD1_27MP2ge7fZ0-HUqRALsbFe6PROyWHIQYk5IKzmjPeXC1rePWbWjDOa6ZrxvgBOeGsY5WQ89-Hu3_bVpIrcUxOc15OAFcdPyFP8it9AAxIfSiY1gmLLT4G2m8pxFXvgw8Luk6xt70ffdnS8owxbakNAx3jwsNn-viMtMQ3TDQ6-ifEtxGHBZ6RI2fHjOfvc0Z-ff_2ePOjuru__XlzfVeBbESpFDbKolOtlnPJwHItlJ73TApoULpuDqgbbJVzWlrHcbC9tkwp6DXTrUU5I5_2e6cjXzaYi1n5DDiONmDcZNOJRvJO63YiL99Jm8GOLtkAPpt18iubtkaohkk-vRkRew5SzDmh-4dwZna5zdLscptdbsO0mWpOkv5PAr9PWZL148fql72KU6ZXj8lk8BgAB58Qihmi_0j_CwCinf0
CODEN CVIUF4
CitedBy_id crossref_primary_10_1016_j_eswa_2015_09_049
crossref_primary_10_1016_j_patrec_2014_02_009
crossref_primary_10_1016_j_eswa_2014_07_051
crossref_primary_10_1016_j_aei_2015_01_001
crossref_primary_10_3390_rs10091412
crossref_primary_10_1016_j_ins_2013_05_030
crossref_primary_10_1109_JIOT_2018_2872435
crossref_primary_10_1016_j_cviu_2013_01_010
Cites_doi 10.1109/TPAMI.2006.92
10.1016/S0262-8856(99)00040-2
10.1109/CVPR.2007.383095
10.1007/s11263-007-0120-6
10.1007/s10994-006-5833-1
10.1109/TPAMI.2003.1206514
10.1023/B:VISI.0000029665.07652.61
10.1109/TSMCB.2005.846649
10.1007/3-540-45054-8_2
10.1016/0031-3203(90)90094-2
10.21236/AD0708563
10.1109/HLK.2003.1240859
10.1109/ICIP.2009.5414036
10.1016/j.imavis.2007.08.013
10.1109/ICCV.2001.937528
10.1109/ICCV.2005.77
10.1109/MC.2007.154
10.1109/34.400565
10.1016/0262-8856(88)90001-7
10.1109/CVPR.2007.383154
10.1109/TPAMI.2007.40
10.1109/ICIP.1996.561026
10.1109/ICPR.2002.1047411
10.1145/4078.4081
10.1109/TPAMI.2003.1201825
10.1142/S0218001493000479
10.1109/ICCV.2007.4408987
10.1007/978-3-540-70932-9_9
10.1007/978-3-540-24670-1_27
10.1109/ICCV.2005.258
10.1109/ICMLA.2007.26
10.1080/01621459.1926.10502161
10.1109/ROBOT.2005.1570108
10.1109/CVPR.2005.16
10.1016/j.cviu.2004.05.004
10.1109/ICAR.2005.1507432
ContentType Journal Article
Copyright 2011 Elsevier Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Inc.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cviu.2011.08.001
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
Architecture
EISSN 1090-235X
EndPage 1596
ExternalDocumentID 24603131
10_1016_j_cviu_2011_08_001
S1077314211001834
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HF~
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TN5
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
SST
~HD
BNPGV
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c362t-4e64aef4783530ca182485b032c6e3f95ce86e74ff83af1edab8a044cb8087ae3
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000295424200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1077-3142
IngestDate Thu Oct 02 06:57:25 EDT 2025
Wed Apr 02 08:12:30 EDT 2025
Sat Nov 29 07:08:27 EST 2025
Tue Nov 18 22:37:02 EST 2025
Fri Feb 23 02:26:56 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Logic and probabilities
System architecture
Scene labelling systems
Machine learning
Statistical analysis
Probabilistic approach
Utility function
Labelling
Inference
Logical programming
Modeling
Multiple image
Multiple view
Utility theory
Scene analysis
Bayes network
Probability learning
Tridimensional image
Maximum likelihood
Artificial intelligence
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-4e64aef4783530ca182485b032c6e3f95ce86e74ff83af1edab8a044cb8087ae3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 926319887
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_926319887
pascalfrancis_primary_24603131
crossref_primary_10_1016_j_cviu_2011_08_001
crossref_citationtrail_10_1016_j_cviu_2011_08_001
elsevier_sciencedirect_doi_10_1016_j_cviu_2011_08_001
PublicationCentury 2000
PublicationDate 2011-11-01
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer vision and image understanding
PublicationYear 2011
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Russell, Norvig (b0225) 2003
Marengoni, Hanson, Zilberstein, Riseman (b0165) 2003; 25
B. Neumann, R. Moller, A.G. Cohn, D.C. Hogg, Logic and probability for scene interpretation, in: Dagstuhl Workshop, 2008.
Sandini, Metta, Vernon (b0230) 2004; 8
Kohli, Rihan, Bray, Torr (b0145) 2008; 79
P. Carbonetto, N. Freitas, K. Barnard, A statistical model for general contextual object recognition, in: Proceedings of ECCV, 2004, pp. 350–362.
Zhambok, Klein (b0290) 1997
Ripley, Hjort (b0220) 1995
A.R. Dick, P.H.S. Torr, S.J. Ruffle, R. Cipolla, Combining single view recognition and multiple view stereo for architectural, in: Proceeding of ICCV, 2001, pp. 268–274.
Nagel (b0175) 1988; 6
I. Levner, V. Bulitko, Machine learning for adaptive image interpretation, in: Proceedings of the 16th Innovative Applications of Artificial Intelligence’04 Conference, San Jose, CA, USA, 2004.
Sturges (b0255) 1926; 21
Pearl (b0200) 1988
S. Ekvall, D. Kragic, Integrating object and grasp recognition for dynamic scene interpretation, in: Proceeding of 12th ICAR, 2005, pp. 331–336.
M. Petrou, Learning in computer vision: some thoughts, in: Proceeding of CIARP, Santiago, Cile, 2007.
M. Weber, M. Welling, P. Perona, Unsupervised learning of models for recognition, in: Proceedings of ECCV, 2000, pp. 18–32.
J. Hartz, B. Neumann, Learning a knowledge base of ontological concepts for high-level scene interpretation, in: International Conference on Machine Learning and Applications, 2007, pp. 350–362.
J. Sivic, B.C. Russell, A.A. Efros, A. Zisserman, W.T. Freeman, Discovering objects and their location in images, in: Proceedings of ICCV, 2005, pp. 370–377.
G. Fritz, C. Seifert, L.Paletta, Urban object recognition from informative local features, in: Proceedings of the 2005 ICAR, 2005, pp. 131–137.
Kim, Nevatia (b0135) 2004; 96
M. Jahangiri, Blob detector tool, 2009.
Batllea, Casalsb, Freixeneta, Marti (b0015) 2000; 18
Christmas, Kittler, Petrou (b0035) 1995; 17
B. Ommer, J.M. Buhmann, Learning the compositional nature of visual objects, in: Proceedings of CVPR, 2007, pp. 1–8.
.
M. Xu, Scene interpretation with the Tower of Knowledge, PhD thesis, Imperial College London, 2010.
Schneider, Wersing, Sendhoff, Korner (b0240) 2005; 35
Heesch, Petrou (b0100) 2009; 10
Hancock, Kittler (b0080) 1990; 23
Haykin (b0090) 1986
Wisniewsk, Medin (b0280) 1995
A. Ogale, A. Karapurkar, Y. Aloimonos, View-invariant modeling and recognition of human actions using grammars, in: Workshop on Dynamical Vision at ICCV, 2005, pp. 115–126.
>
Cheng, Caelli, Sanchez-Azofeifa (b0025) 2006; 28
C. Hudelot, N. Maillot, M. Thonnat, Symbol grounding for semantic image interpretation: from image data to semantics, in: Workshop on Semantic Knowledge in Computer Vision, in Association with ICCV05, 16 October 2005, Beijing, China, pp. 1875–1883.
Neumann, Möller (b0185) 2008; 26
S. Savarese, L. Fei-fei, 3D Generic object categorisation, localisation and pose estimation, in: Proceedings of ICCV, 2007, pp. 1–8.
Arens, Nagel (b0005) 2003
M. Jahangiri, M. Petrou, Fully bottom-up blob extraction in building facades, in: Proceedings of the 9th International Conference on Pattern Recognition and Image Analysis: New Information Technologies, PRIA-9-2008, September 14–20, Nizhni Novgorod, Russian Federation, vol. 1, pp 238–241, 2008.
von Neumann, Morgenstern (b0260) 1947
Guerra-Filho, Aloimonos (b0075) 2007; 40
H. Zimmermann, Fuzzy set theory and its applications, Kluwer Academic Publishers, Boston, ISBN 0-7923-7435-5.
V.-T. Vu, F. Bremond, M. Thonnat, Temporal constraints for video interpretation, in: The 15th European Conference on Artificial Intelligence (ECAI’2002), Lyon, France, 21–26 July 2002.
IST06, E-training for interpreting images of man-made scenes.
Dick, Torr, Cipolla (b0045) 2004; 60
Besl, Jain (b0010) 1985; 17
Siagian, Itti (b0245) 2007; 29
Kim, Nevatia (b0130) 2003; 25
D. Damen, Constraint-based scene interpretation, in: Dagstuhl Logic and Probability for Scene Interpretation Workshop, 2008.
Richardson, Domingos (b0215) 2006; 62
M. Jahangiri, M. Petrou, An attention model for extracting components that merit identification, in: Proceedings of ICIP, 2009.
S. Lee, S. Jung, R. Nevatia, Integrating ground and aerial views for urban site modelling, in: Proceeding of ICPR, 2002, pp. 107–112 vol.4.
G. Metta, D. Vernon, G. Sandini, The RobotCub Approach to the Development of Cognition, in: L. Berthouze, F. Kaplan, H. Kozima, H. Yano, J. Konczak, G. Metta, J. Nadel, G. Sandini, G. Stojanov, C. Balkenius (Eds.), Proceedings of the 5th International Workshop on Epigenic Robotics: Modelling Cognitive Development in Robotic Systems, Lund University Cognitive Studies, vol. 123, 2004, ISBN 91-974741-4-2.
S. Lee, R. Nevatia, Interactive 3D building modelling using a hierarchical representation, in: Proceedings of the First IEEE International Workshop on Higher-Level Knowledge in 3D Modelling and Motion Analysis, Los Alamitos, CA, USA, 2003, pp. 58–65.
N. Chleq, M. Thonnat, Real time image sequence interpretaion for video survellance applications, in: International Conference on Image Processing, IEEE ICIP’96, vol. 2, Lausanne, Switzerland, September 1996, pp 801–804.
N. Komodakis, G. Tziritas, N. Paragios, Fast approximately optimal solutions for single and dynamic MRFs, in: Proceedings of CVPR, 2007, pp. 1–8.
Wiskott, Malsburg (b0275) 1993; 7
L. Fei-fei, P. Perona, A Bayesian hierarchical model for learning natural scene categories, in: Proceedings of CVPR, 2005, pp. 524–531.
de Raedt (b0210) 2008
P.C. Fishburn, Utility Theory for Decision Making, Robert E. Krieger Publishing Company, Huntington, NY, 1970, ISBN 978-0471260608.
D. Heesch, M. Petrou, Non-Gibbsian Markov random fields for object recognition, in: Proceedings of BMVC, 2007.
Hotz, Neumann (b0105) 2005; 3
10.1016/j.cviu.2011.08.001_b0305
10.1016/j.cviu.2011.08.001_b0300
Russell (10.1016/j.cviu.2011.08.001_b0225) 2003
Hotz (10.1016/j.cviu.2011.08.001_b0105) 2005; 3
10.1016/j.cviu.2011.08.001_b0265
10.1016/j.cviu.2011.08.001_b0065
10.1016/j.cviu.2011.08.001_b0020
10.1016/j.cviu.2011.08.001_b0140
10.1016/j.cviu.2011.08.001_b0060
10.1016/j.cviu.2011.08.001_b0180
de Raedt (10.1016/j.cviu.2011.08.001_b0210) 2008
Dick (10.1016/j.cviu.2011.08.001_b0045) 2004; 60
von Neumann (10.1016/j.cviu.2011.08.001_b0260) 1947
10.1016/j.cviu.2011.08.001_b0115
10.1016/j.cviu.2011.08.001_b0235
Arens (10.1016/j.cviu.2011.08.001_b0005) 2003
10.1016/j.cviu.2011.08.001_b0155
10.1016/j.cviu.2011.08.001_b0110
10.1016/j.cviu.2011.08.001_b0030
Neumann (10.1016/j.cviu.2011.08.001_b0185) 2008; 26
10.1016/j.cviu.2011.08.001_b0195
10.1016/j.cviu.2011.08.001_b0150
10.1016/j.cviu.2011.08.001_b0270
10.1016/j.cviu.2011.08.001_b0070
10.1016/j.cviu.2011.08.001_b0190
Guerra-Filho (10.1016/j.cviu.2011.08.001_b0075) 2007; 40
Zhambok (10.1016/j.cviu.2011.08.001_b0290) 1997
Besl (10.1016/j.cviu.2011.08.001_b0010) 1985; 17
Hancock (10.1016/j.cviu.2011.08.001_b0080) 1990; 23
Sandini (10.1016/j.cviu.2011.08.001_b0230) 2004; 8
10.1016/j.cviu.2011.08.001_b0205
10.1016/j.cviu.2011.08.001_b0125
Richardson (10.1016/j.cviu.2011.08.001_b0215) 2006; 62
Wisniewsk (10.1016/j.cviu.2011.08.001_b0280) 1995
10.1016/j.cviu.2011.08.001_b0120
10.1016/j.cviu.2011.08.001_b0285
Kim (10.1016/j.cviu.2011.08.001_b0130) 2003; 25
Kohli (10.1016/j.cviu.2011.08.001_b0145) 2008; 79
10.1016/j.cviu.2011.08.001_b0085
10.1016/j.cviu.2011.08.001_b0040
10.1016/j.cviu.2011.08.001_b0160
Pearl (10.1016/j.cviu.2011.08.001_b0200) 1988
Batllea (10.1016/j.cviu.2011.08.001_b0015) 2000; 18
Christmas (10.1016/j.cviu.2011.08.001_b0035) 1995; 17
Nagel (10.1016/j.cviu.2011.08.001_b0175) 1988; 6
Ripley (10.1016/j.cviu.2011.08.001_b0220) 1995
Marengoni (10.1016/j.cviu.2011.08.001_b0165) 2003; 25
Heesch (10.1016/j.cviu.2011.08.001_b0100) 2009; 10
Cheng (10.1016/j.cviu.2011.08.001_b0025) 2006; 28
Sturges (10.1016/j.cviu.2011.08.001_b0255) 1926; 21
Wiskott (10.1016/j.cviu.2011.08.001_b0275) 1993; 7
10.1016/j.cviu.2011.08.001_b0055
Haykin (10.1016/j.cviu.2011.08.001_b0090) 1986
10.1016/j.cviu.2011.08.001_b0295
10.1016/j.cviu.2011.08.001_b0250
10.1016/j.cviu.2011.08.001_b0095
10.1016/j.cviu.2011.08.001_b0050
10.1016/j.cviu.2011.08.001_b0170
Siagian (10.1016/j.cviu.2011.08.001_b0245) 2007; 29
Kim (10.1016/j.cviu.2011.08.001_b0135) 2004; 96
Schneider (10.1016/j.cviu.2011.08.001_b0240) 2005; 35
References_xml – reference: S. Lee, R. Nevatia, Interactive 3D building modelling using a hierarchical representation, in: Proceedings of the First IEEE International Workshop on Higher-Level Knowledge in 3D Modelling and Motion Analysis, Los Alamitos, CA, USA, 2003, pp. 58–65.
– reference: M. Jahangiri, Blob detector tool, 2009. <
– volume: 6
  start-page: 59
  year: 1988
  end-page: 74
  ident: b0175
  article-title: From image sequences towards conceptual descriptions
  publication-title: Image Vision Comput.
– volume: 28
  start-page: 684
  year: 2006
  end-page: 693
  ident: b0025
  article-title: Component optimisation for image understanding: a Bayesian approach
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: M. Weber, M. Welling, P. Perona, Unsupervised learning of models for recognition, in: Proceedings of ECCV, 2000, pp. 18–32.
– volume: 79
  start-page: 59
  year: 2008
  end-page: 80
  ident: b0145
  article-title: Simultaneous segmentation and pose estimation of humans using dynamic graph cuts
  publication-title: Int. J. Comput. Vision
– volume: 62
  start-page: 107
  year: 2006
  end-page: 136
  ident: b0215
  article-title: Markov logic networks
  publication-title: Mach. Learn.
– year: 1995
  ident: b0280
  article-title: The Interaction of Theory and Similarity in Rule Induction
– reference: M. Petrou, Learning in computer vision: some thoughts, in: Proceeding of CIARP, Santiago, Cile, 2007.
– reference: A. Ogale, A. Karapurkar, Y. Aloimonos, View-invariant modeling and recognition of human actions using grammars, in: Workshop on Dynamical Vision at ICCV, 2005, pp. 115–126.
– reference: M. Jahangiri, M. Petrou, An attention model for extracting components that merit identification, in: Proceedings of ICIP, 2009.
– volume: 17
  start-page: 75
  year: 1985
  end-page: 145
  ident: b0010
  article-title: Three-dimensional object recognition
  publication-title: Comput. Surv.
– reference: M. Jahangiri, M. Petrou, Fully bottom-up blob extraction in building facades, in: Proceedings of the 9th International Conference on Pattern Recognition and Image Analysis: New Information Technologies, PRIA-9-2008, September 14–20, Nizhni Novgorod, Russian Federation, vol. 1, pp 238–241, 2008.
– year: 1997
  ident: b0290
  article-title: Naturalistic Decision Making
– reference: P.C. Fishburn, Utility Theory for Decision Making, Robert E. Krieger Publishing Company, Huntington, NY, 1970, ISBN 978-0471260608.
– year: 1995
  ident: b0220
  article-title: Pattern Recognition and Neural Networks
– reference: G. Metta, D. Vernon, G. Sandini, The RobotCub Approach to the Development of Cognition, in: L. Berthouze, F. Kaplan, H. Kozima, H. Yano, J. Konczak, G. Metta, J. Nadel, G. Sandini, G. Stojanov, C. Balkenius (Eds.), Proceedings of the 5th International Workshop on Epigenic Robotics: Modelling Cognitive Development in Robotic Systems, Lund University Cognitive Studies, vol. 123, 2004, ISBN 91-974741-4-2.
– reference: D. Heesch, M. Petrou, Non-Gibbsian Markov random fields for object recognition, in: Proceedings of BMVC, 2007.
– reference: G. Fritz, C. Seifert, L.Paletta, Urban object recognition from informative local features, in: Proceedings of the 2005 ICAR, 2005, pp. 131–137.
– reference: J. Hartz, B. Neumann, Learning a knowledge base of ontological concepts for high-level scene interpretation, in: International Conference on Machine Learning and Applications, 2007, pp. 350–362.
– reference: M. Xu, Scene interpretation with the Tower of Knowledge, PhD thesis, Imperial College London, 2010.
– reference: D. Damen, Constraint-based scene interpretation, in: Dagstuhl Logic and Probability for Scene Interpretation Workshop, 2008. <
– reference: S. Lee, S. Jung, R. Nevatia, Integrating ground and aerial views for urban site modelling, in: Proceeding of ICPR, 2002, pp. 107–112 vol.4.
– volume: 23
  start-page: 711
  year: 1990
  end-page: 733
  ident: b0080
  article-title: Discrete relaxation
  publication-title: Pattern Recogn.
– year: 1986
  ident: b0090
  article-title: Adaptive Filter Theory
– reference: .
– reference: C. Hudelot, N. Maillot, M. Thonnat, Symbol grounding for semantic image interpretation: from image data to semantics, in: Workshop on Semantic Knowledge in Computer Vision, in Association with ICCV05, 16 October 2005, Beijing, China, pp. 1875–1883.
– year: 1947
  ident: b0260
  article-title: Theory of Games and Economic Behavior
– reference: N. Komodakis, G. Tziritas, N. Paragios, Fast approximately optimal solutions for single and dynamic MRFs, in: Proceedings of CVPR, 2007, pp. 1–8.
– volume: 35
  start-page: 426
  year: 2005
  end-page: 437
  ident: b0240
  article-title: Evolutionary optimisation of a hierarchical object recognition model
  publication-title: IEEE Trans. Syst., Man, Cybern. – Part B: Cybern.
– volume: 96
  start-page: 60
  year: 2004
  end-page: 95
  ident: b0135
  article-title: Automatic description of complex buildings from multiple fimages
  publication-title: Comput. Vision Image Und.
– volume: 25
  start-page: 769
  year: 2003
  end-page: 774
  ident: b0130
  article-title: Expandable Bayesian networks for 3D object description from multiple views and multiple mode inputs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: B. Ommer, J.M. Buhmann, Learning the compositional nature of visual objects, in: Proceedings of CVPR, 2007, pp. 1–8.
– start-page: 149
  year: 2003
  end-page: 163
  ident: b0005
  article-title: Behavioural knowledge representation for the understanding and creation of video sequences
  publication-title: Proceedings of the 26th German Conference on Artificial Intelligence (KI-2003), LNAI
– volume: 21
  start-page: 65
  year: 1926
  end-page: 66
  ident: b0255
  article-title: The choice of a class interval
  publication-title: J. Am. Stat. Assoc.
– volume: 7
  start-page: 735
  year: 1993
  end-page: 748
  ident: b0275
  article-title: A neural system for the recognition of partially occluded objects in cluttered scenes
  publication-title: Int. J. Pattern Recogn. Artif. Intell.
– volume: 25
  start-page: 852
  year: 2003
  end-page: 858
  ident: b0165
  article-title: Decision making and uncertainty management in a 3D reconstruction system
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 8
  year: 2004
  ident: b0230
  article-title: RobotCub: an open framework for research in embodied cognition
  publication-title: Int. J. Humanoid Robotics
– reference: H. Zimmermann, Fuzzy set theory and its applications, Kluwer Academic Publishers, Boston, ISBN 0-7923-7435-5.
– reference: B. Neumann, R. Moller, A.G. Cohn, D.C. Hogg, Logic and probability for scene interpretation, in: Dagstuhl Workshop, 2008. <
– volume: 60
  start-page: 111
  year: 2004
  end-page: 134
  ident: b0045
  article-title: Modelling and interpretation of architecture from several images
  publication-title: Int. J. Comput. Vision
– year: 1988
  ident: b0200
  article-title: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
– reference: IST06, E-training for interpreting images of man-made scenes. <
– volume: 40
  start-page: 42
  year: 2007
  end-page: 51
  ident: b0075
  article-title: A language for human action
  publication-title: IEEE Comput.
– reference: S. Savarese, L. Fei-fei, 3D Generic object categorisation, localisation and pose estimation, in: Proceedings of ICCV, 2007, pp. 1–8.
– volume: 17
  start-page: 749
  year: 1995
  end-page: 764
  ident: b0035
  article-title: Structural matching in computer vision
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2003
  ident: b0225
  article-title: Artificial Intelligence: A Modern Approach
– reference: L. Fei-fei, P. Perona, A Bayesian hierarchical model for learning natural scene categories, in: Proceedings of CVPR, 2005, pp. 524–531.
– reference: V.-T. Vu, F. Bremond, M. Thonnat, Temporal constraints for video interpretation, in: The 15th European Conference on Artificial Intelligence (ECAI’2002), Lyon, France, 21–26 July 2002.
– reference: N. Chleq, M. Thonnat, Real time image sequence interpretaion for video survellance applications, in: International Conference on Image Processing, IEEE ICIP’96, vol. 2, Lausanne, Switzerland, September 1996, pp 801–804.
– volume: 26
  start-page: 82
  year: 2008
  end-page: 101
  ident: b0185
  article-title: On scene interpretation with description logics
  publication-title: Image Vision Comput.
– reference: >.
– volume: 10
  year: 2009
  ident: b0100
  article-title: Markov random fields with asymmetric interactions for modelling spatial context in structured scene labelling
  publication-title: J. Sig. Proc. Syst.
– reference: P. Carbonetto, N. Freitas, K. Barnard, A statistical model for general contextual object recognition, in: Proceedings of ECCV, 2004, pp. 350–362.
– reference: I. Levner, V. Bulitko, Machine learning for adaptive image interpretation, in: Proceedings of the 16th Innovative Applications of Artificial Intelligence’04 Conference, San Jose, CA, USA, 2004.
– reference: A.R. Dick, P.H.S. Torr, S.J. Ruffle, R. Cipolla, Combining single view recognition and multiple view stereo for architectural, in: Proceeding of ICCV, 2001, pp. 268–274.
– reference: J. Sivic, B.C. Russell, A.A. Efros, A. Zisserman, W.T. Freeman, Discovering objects and their location in images, in: Proceedings of ICCV, 2005, pp. 370–377.
– volume: 3
  start-page: 59
  year: 2005
  end-page: 65
  ident: b0105
  article-title: Scene interpretation as a configuration task
  publication-title: Kunstliche Intelligenz
– reference: >
– volume: 29
  start-page: 300
  year: 2007
  end-page: 312
  ident: b0245
  article-title: Rapid biologically-inspired scene classification using features shared with visual attention
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 18
  start-page: 515
  year: 2000
  end-page: 530
  ident: b0015
  article-title: A review on strategies for recognising natural objects in colour images of outdoor scenes
  publication-title: Image Vision Comput.
– year: 2008
  ident: b0210
  article-title: Logical and Relational Learning
– reference: S. Ekvall, D. Kragic, Integrating object and grasp recognition for dynamic scene interpretation, in: Proceeding of 12th ICAR, 2005, pp. 331–336.
– volume: 28
  start-page: 684
  issue: 5
  year: 2006
  ident: 10.1016/j.cviu.2011.08.001_b0025
  article-title: Component optimisation for image understanding: a Bayesian approach
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.92
– volume: 18
  start-page: 515
  issue: 6
  year: 2000
  ident: 10.1016/j.cviu.2011.08.001_b0015
  article-title: A review on strategies for recognising natural objects in colour images of outdoor scenes
  publication-title: Image Vision Comput.
  doi: 10.1016/S0262-8856(99)00040-2
– ident: 10.1016/j.cviu.2011.08.001_b0095
– ident: 10.1016/j.cviu.2011.08.001_b0140
  doi: 10.1109/CVPR.2007.383095
– volume: 79
  start-page: 59
  issue: 3
  year: 2008
  ident: 10.1016/j.cviu.2011.08.001_b0145
  article-title: Simultaneous segmentation and pose estimation of humans using dynamic graph cuts
  publication-title: Int. J. Comput. Vision
  doi: 10.1007/s11263-007-0120-6
– volume: 62
  start-page: 107
  issue: 1-2
  year: 2006
  ident: 10.1016/j.cviu.2011.08.001_b0215
  article-title: Markov logic networks
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-006-5833-1
– volume: 25
  start-page: 852
  issue: 7
  year: 2003
  ident: 10.1016/j.cviu.2011.08.001_b0165
  article-title: Decision making and uncertainty management in a 3D reconstruction system
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2003.1206514
– year: 1988
  ident: 10.1016/j.cviu.2011.08.001_b0200
– volume: 60
  start-page: 111
  issue: 2
  year: 2004
  ident: 10.1016/j.cviu.2011.08.001_b0045
  article-title: Modelling and interpretation of architecture from several images
  publication-title: Int. J. Comput. Vision
  doi: 10.1023/B:VISI.0000029665.07652.61
– volume: 35
  start-page: 426
  issue: 3
  year: 2005
  ident: 10.1016/j.cviu.2011.08.001_b0240
  article-title: Evolutionary optimisation of a hierarchical object recognition model
  publication-title: IEEE Trans. Syst., Man, Cybern. – Part B: Cybern.
  doi: 10.1109/TSMCB.2005.846649
– ident: 10.1016/j.cviu.2011.08.001_b0040
– year: 1947
  ident: 10.1016/j.cviu.2011.08.001_b0260
– ident: 10.1016/j.cviu.2011.08.001_b0270
  doi: 10.1007/3-540-45054-8_2
– volume: 23
  start-page: 711
  issue: 7
  year: 1990
  ident: 10.1016/j.cviu.2011.08.001_b0080
  article-title: Discrete relaxation
  publication-title: Pattern Recogn.
  doi: 10.1016/0031-3203(90)90094-2
– ident: 10.1016/j.cviu.2011.08.001_b0065
  doi: 10.21236/AD0708563
– ident: 10.1016/j.cviu.2011.08.001_b0150
  doi: 10.1109/HLK.2003.1240859
– ident: 10.1016/j.cviu.2011.08.001_b0120
  doi: 10.1109/ICIP.2009.5414036
– volume: 26
  start-page: 82
  issue: 1
  year: 2008
  ident: 10.1016/j.cviu.2011.08.001_b0185
  article-title: On scene interpretation with description logics
  publication-title: Image Vision Comput.
  doi: 10.1016/j.imavis.2007.08.013
– ident: 10.1016/j.cviu.2011.08.001_b0050
  doi: 10.1109/ICCV.2001.937528
– ident: 10.1016/j.cviu.2011.08.001_b0250
  doi: 10.1109/ICCV.2005.77
– ident: 10.1016/j.cviu.2011.08.001_b0180
– volume: 40
  start-page: 42
  issue: 5
  year: 2007
  ident: 10.1016/j.cviu.2011.08.001_b0075
  article-title: A language for human action
  publication-title: IEEE Comput.
  doi: 10.1109/MC.2007.154
– volume: 3
  start-page: 59
  year: 2005
  ident: 10.1016/j.cviu.2011.08.001_b0105
  article-title: Scene interpretation as a configuration task
  publication-title: Kunstliche Intelligenz
– volume: 17
  start-page: 749
  issue: 8
  year: 1995
  ident: 10.1016/j.cviu.2011.08.001_b0035
  article-title: Structural matching in computer vision
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.400565
– ident: 10.1016/j.cviu.2011.08.001_b0305
– volume: 6
  start-page: 59
  issue: 2
  year: 1988
  ident: 10.1016/j.cviu.2011.08.001_b0175
  article-title: From image sequences towards conceptual descriptions
  publication-title: Image Vision Comput.
  doi: 10.1016/0262-8856(88)90001-7
– ident: 10.1016/j.cviu.2011.08.001_b0195
  doi: 10.1109/CVPR.2007.383154
– volume: 29
  start-page: 300
  issue: 2
  year: 2007
  ident: 10.1016/j.cviu.2011.08.001_b0245
  article-title: Rapid biologically-inspired scene classification using features shared with visual attention
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.40
– ident: 10.1016/j.cviu.2011.08.001_b0265
– ident: 10.1016/j.cviu.2011.08.001_b0030
  doi: 10.1109/ICIP.1996.561026
– ident: 10.1016/j.cviu.2011.08.001_b0155
  doi: 10.1109/ICPR.2002.1047411
– ident: 10.1016/j.cviu.2011.08.001_b0125
– year: 2003
  ident: 10.1016/j.cviu.2011.08.001_b0225
– ident: 10.1016/j.cviu.2011.08.001_b0205
– volume: 17
  start-page: 75
  year: 1985
  ident: 10.1016/j.cviu.2011.08.001_b0010
  article-title: Three-dimensional object recognition
  publication-title: Comput. Surv.
  doi: 10.1145/4078.4081
– volume: 25
  start-page: 769
  issue: 6
  year: 2003
  ident: 10.1016/j.cviu.2011.08.001_b0130
  article-title: Expandable Bayesian networks for 3D object description from multiple views and multiple mode inputs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2003.1201825
– volume: 7
  start-page: 735
  issue: 4
  year: 1993
  ident: 10.1016/j.cviu.2011.08.001_b0275
  article-title: A neural system for the recognition of partially occluded objects in cluttered scenes
  publication-title: Int. J. Pattern Recogn. Artif. Intell.
  doi: 10.1142/S0218001493000479
– ident: 10.1016/j.cviu.2011.08.001_b0115
– ident: 10.1016/j.cviu.2011.08.001_b0160
– ident: 10.1016/j.cviu.2011.08.001_b0235
  doi: 10.1109/ICCV.2007.4408987
– ident: 10.1016/j.cviu.2011.08.001_b0190
  doi: 10.1007/978-3-540-70932-9_9
– ident: 10.1016/j.cviu.2011.08.001_b0170
– year: 1995
  ident: 10.1016/j.cviu.2011.08.001_b0280
– ident: 10.1016/j.cviu.2011.08.001_b0020
  doi: 10.1007/978-3-540-24670-1_27
– ident: 10.1016/j.cviu.2011.08.001_b0285
– ident: 10.1016/j.cviu.2011.08.001_b0300
– year: 1986
  ident: 10.1016/j.cviu.2011.08.001_b0090
– year: 2008
  ident: 10.1016/j.cviu.2011.08.001_b0210
– year: 1997
  ident: 10.1016/j.cviu.2011.08.001_b0290
– ident: 10.1016/j.cviu.2011.08.001_b0110
  doi: 10.1109/ICCV.2005.258
– volume: 10
  issue: 07
  year: 2009
  ident: 10.1016/j.cviu.2011.08.001_b0100
  article-title: Markov random fields with asymmetric interactions for modelling spatial context in structured scene labelling
  publication-title: J. Sig. Proc. Syst.
– ident: 10.1016/j.cviu.2011.08.001_b0085
  doi: 10.1109/ICMLA.2007.26
– volume: 21
  start-page: 65
  issue: 153
  year: 1926
  ident: 10.1016/j.cviu.2011.08.001_b0255
  article-title: The choice of a class interval
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1926.10502161
– year: 1995
  ident: 10.1016/j.cviu.2011.08.001_b0220
– ident: 10.1016/j.cviu.2011.08.001_b0295
– volume: 8
  issue: 2
  year: 2004
  ident: 10.1016/j.cviu.2011.08.001_b0230
  article-title: RobotCub: an open framework for research in embodied cognition
  publication-title: Int. J. Humanoid Robotics
– ident: 10.1016/j.cviu.2011.08.001_b0070
  doi: 10.1109/ROBOT.2005.1570108
– start-page: 149
  year: 2003
  ident: 10.1016/j.cviu.2011.08.001_b0005
  article-title: Behavioural knowledge representation for the understanding and creation of video sequences
– ident: 10.1016/j.cviu.2011.08.001_b0060
  doi: 10.1109/CVPR.2005.16
– volume: 96
  start-page: 60
  issue: 1
  year: 2004
  ident: 10.1016/j.cviu.2011.08.001_b0135
  article-title: Automatic description of complex buildings from multiple fimages
  publication-title: Comput. Vision Image Und.
  doi: 10.1016/j.cviu.2004.05.004
– ident: 10.1016/j.cviu.2011.08.001_b0055
  doi: 10.1109/ICAR.2005.1507432
SSID ssj0011491
Score 2.0790508
Snippet ► Linguistically inspired reasoning architecture. ► Generic framework for combining logic and conventional statistical pattern recognition. ► Generic framework...
We explore a newly proposed system architecture, called tower of knowledge (ToK), in the context of labelling components of building scenes. The ToK...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1581
SubjectTerms Applied sciences
Architecture
Artificial intelligence
Computer science; control theory; systems
Exact sciences and technology
Labelling
Labels
Logic
Logic and probabilities
Machine learning
Mathematical analysis
Mathematical models
Pattern recognition. Digital image processing. Computational geometry
Scene labelling systems
System architecture
Three dimensional models
Title 3D Scene interpretation by combining probability theory and logic: The tower of knowledge
URI https://dx.doi.org/10.1016/j.cviu.2011.08.001
https://www.proquest.com/docview/926319887
Volume 115
WOSCitedRecordID wos000295424200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1090-235X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011491
  issn: 1077-3142
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwMIcRmgjcvkB96mTEnsJA5vExsCHiYkhhSeLNuxpU4jrdqm2v79jmM7TbhMgMRLVB0ltdvvy_Hx8bkg9AZWDCqTWkdFXmYRVYZEzEgaFTEzpJYyNrLumk0UZ2esqsrPk0kbcmE2l0XTsKurcvFfoQYZgG1TZ_8C7v5LQQCfAXS4Auxw_SPgyQm8sLorBjKKJwQ7E4aTXUMIG5YlXYXua5fL6MowdYowBGJ0DdSsMdn73YaWbGgHceiy090hxHcbAdQO82UCoFXrMoNmW128Xs690IU6994HG_428j70aTGjqE3YUlrnpyubdaS9rIyjlGTVSPW6VM7AsWSgSZPMtXLxqzJYXfkvNb5zPlwcqc2s3VZk9VMcV9L-Yudlp2XL5IEqo3fQTlpkJZuineOPp9Wn_vgJto2JC1Z1v8NnW7nAwB9H-p1F82AhVvCeGdcg5ae1vjNgzh-jh37ngY8dY56giW520SO_C8Fex69AFJANsl10f1C18in6Rk5wxzA8ZhiW17hnGB4wDDuGYWAE7hj2FgO_cMcvPDe459cz9PX96fm7D5Hv0BEpMHzWEdU5FdpQ6z4ksRKwWaUskzFJVa6JKTOlWa4LagwjwiS6FpKJmFIlWcwKoclzNG3mjd5DOCW1YrYJCyEZTVgpSF7WStjyfCJLCrOPkvAvc-XL19suKpc8xClecIsMt8hw21o1TvbRYf_MwhVvufXuLIDHvfnpzEoOXLv1uYMR0v1QKbUt3AncgAP0HJS3PZETjZ63K16mOSyBsM6_-MexX6J727fyFZqul61-je6qzXq2Wh54Wt8APrLBEA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Scene+interpretation+by+combining+probability+theory+and+logic%3A+The+tower+of+knowledge&rft.jtitle=Computer+vision+and+image+understanding&rft.au=Xu%2C+Mai&rft.au=Petrou%2C+Maria&rft.date=2011-11-01&rft.pub=Elsevier+Inc&rft.issn=1077-3142&rft.eissn=1090-235X&rft.volume=115&rft.issue=11&rft.spage=1581&rft.epage=1596&rft_id=info:doi/10.1016%2Fj.cviu.2011.08.001&rft.externalDocID=S1077314211001834
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon