Novel density-based and hierarchical density-based clustering algorithms for uncertain data
Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information...
Uloženo v:
| Vydáno v: | Neural networks Ročník 93; s. 240 - 255 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Ltd
01.09.2017
|
| Témata: | |
| ISSN: | 0893-6080, 1879-2782, 1879-2782 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information, high time complexity and nonadaptive threshold have not been addressed well in the previous density-based algorithm FDBSCAN and hierarchical density-based algorithm FOPTICS. In this paper, we firstly propose a novel density-based algorithm PDBSCAN, which improves the previous FDBSCAN from the following aspects: (1) it employs a more accurate method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in FDBSCAN; (2) it introduces new definitions of probability neighborhood, support degree, core object probability, direct reachability probability, thus reducing the complexity and solving the issue of nonadaptive threshold (for core object judgement) in FDBSCAN. Then, we modify the algorithm PDBSCAN to an improved version (PDBSCANi), by using a better cluster assignment strategy to ensure that every object will be assigned to the most appropriate cluster, thus solving the issue of nonadaptive threshold (for direct density reachability judgement) in FDBSCAN. Furthermore, as PDBSCAN and PDBSCANi have difficulties for clustering uncertain data with non-uniform cluster density, we propose a novel hierarchical density-based algorithm POPTICS by extending the definitions of PDBSCAN, adding new definitions of fuzzy core distance and fuzzy reachability distance, and employing a new clustering framework. POPTICS can reveal the cluster structures of the datasets with different local densities in different regions better than PDBSCAN and PDBSCANi, and it addresses the issues in FOPTICS. Experimental results demonstrate the superiority of our proposed algorithms over the existing algorithms in accuracy and efficiency. |
|---|---|
| AbstractList | Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information, high time complexity and nonadaptive threshold have not been addressed well in the previous density-based algorithm FDBSCAN and hierarchical density-based algorithm FOPTICS. In this paper, we firstly propose a novel density-based algorithm PDBSCAN, which improves the previous FDBSCAN from the following aspects: (1) it employs a more accurate method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in FDBSCAN; (2) it introduces new definitions of probability neighborhood, support degree, core object probability, direct reachability probability, thus reducing the complexity and solving the issue of nonadaptive threshold (for core object judgement) in FDBSCAN. Then, we modify the algorithm PDBSCAN to an improved version (PDBSCANi), by using a better cluster assignment strategy to ensure that every object will be assigned to the most appropriate cluster, thus solving the issue of nonadaptive threshold (for direct density reachability judgement) in FDBSCAN. Furthermore, as PDBSCAN and PDBSCANi have difficulties for clustering uncertain data with non-uniform cluster density, we propose a novel hierarchical density-based algorithm POPTICS by extending the definitions of PDBSCAN, adding new definitions of fuzzy core distance and fuzzy reachability distance, and employing a new clustering framework. POPTICS can reveal the cluster structures of the datasets with different local densities in different regions better than PDBSCAN and PDBSCANi, and it addresses the issues in FOPTICS. Experimental results demonstrate the superiority of our proposed algorithms over the existing algorithms in accuracy and efficiency. Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information, high time complexity and nonadaptive threshold have not been addressed well in the previous density-based algorithm FDBSCAN and hierarchical density-based algorithm FOPTICS. In this paper, we firstly propose a novel density-based algorithm PDBSCAN, which improves the previous FDBSCAN from the following aspects: (1) it employs a more accurate method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in FDBSCAN; (2) it introduces new definitions of probability neighborhood, support degree, core object probability, direct reachability probability, thus reducing the complexity and solving the issue of nonadaptive threshold (for core object judgement) in FDBSCAN. Then, we modify the algorithm PDBSCAN to an improved version (PDBSCANi), by using a better cluster assignment strategy to ensure that every object will be assigned to the most appropriate cluster, thus solving the issue of nonadaptive threshold (for direct density reachability judgement) in FDBSCAN. Furthermore, as PDBSCAN and PDBSCANi have difficulties for clustering uncertain data with non-uniform cluster density, we propose a novel hierarchical density-based algorithm POPTICS by extending the definitions of PDBSCAN, adding new definitions of fuzzy core distance and fuzzy reachability distance, and employing a new clustering framework. POPTICS can reveal the cluster structures of the datasets with different local densities in different regions better than PDBSCAN and PDBSCANi, and it addresses the issues in FOPTICS. Experimental results demonstrate the superiority of our proposed algorithms over the existing algorithms in accuracy and efficiency.Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information, high time complexity and nonadaptive threshold have not been addressed well in the previous density-based algorithm FDBSCAN and hierarchical density-based algorithm FOPTICS. In this paper, we firstly propose a novel density-based algorithm PDBSCAN, which improves the previous FDBSCAN from the following aspects: (1) it employs a more accurate method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in FDBSCAN; (2) it introduces new definitions of probability neighborhood, support degree, core object probability, direct reachability probability, thus reducing the complexity and solving the issue of nonadaptive threshold (for core object judgement) in FDBSCAN. Then, we modify the algorithm PDBSCAN to an improved version (PDBSCANi), by using a better cluster assignment strategy to ensure that every object will be assigned to the most appropriate cluster, thus solving the issue of nonadaptive threshold (for direct density reachability judgement) in FDBSCAN. Furthermore, as PDBSCAN and PDBSCANi have difficulties for clustering uncertain data with non-uniform cluster density, we propose a novel hierarchical density-based algorithm POPTICS by extending the definitions of PDBSCAN, adding new definitions of fuzzy core distance and fuzzy reachability distance, and employing a new clustering framework. POPTICS can reveal the cluster structures of the datasets with different local densities in different regions better than PDBSCAN and PDBSCANi, and it addresses the issues in FOPTICS. Experimental results demonstrate the superiority of our proposed algorithms over the existing algorithms in accuracy and efficiency. |
| Author | Zhang, Xianchao Zhang, Xiaotong Liu, Han |
| Author_xml | – sequence: 1 givenname: Xianchao surname: Zhang fullname: Zhang, Xianchao email: xczhang@dlut.edu.cn – sequence: 2 givenname: Han surname: Liu fullname: Liu, Han email: liu.han.dut@gmail.com – sequence: 3 givenname: Xiaotong surname: Zhang fullname: Zhang, Xiaotong email: zxt.dut@hotmail.com |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28686946$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkD9P3TAUR60KVB603wBVGbskXCe2Y3eoVKHyR0KwwMRgOfYNz095NrUdJL59gx50YCjTHe45v-Eckr0QAxJyTKGhQMXJpgk4ByxNC7RvQDQA7BNZUdmruu1lu0dWIFVXC5BwQA5z3gCAkKz7TA5aKaRQTKzI_XV8wqlyGLIvz_VgMrrKBFetPSaT7Npb8_5tpzkXTD48VGZ6iMmX9TZXY0zVHCymYnyonCnmC9kfzZTx6-s9Indnv29PL-qrm_PL019Xte1EW2rGOaNqYMK2SuAoR2BOSdFzy4UYgHIOgrLWMDsY1qNVI7N86BnjKJRrsTsi33e7jyn-mTEXvfXZ4jSZgHHOmirad4IBpwv67RWdhy06_Zj81qRn_RZkAdgOsCnmnHD8h1DQL931Ru-665fuGoReui_aj3ea9cUUH0NJxk8fyT93Mi6RnpbuOluPS0rnE9qiXfT_H_gL4_ShMA |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3066629 crossref_primary_10_3390_sym12050747 crossref_primary_10_1016_j_knosys_2023_110811 crossref_primary_10_3390_cells11071231 crossref_primary_10_1109_TAES_2024_3464561 crossref_primary_10_1016_j_knosys_2019_104930 crossref_primary_10_1016_j_ins_2024_121653 crossref_primary_10_1109_TII_2019_2929108 crossref_primary_10_1177_0142331219887827 crossref_primary_10_1016_j_comcom_2021_06_002 crossref_primary_10_3390_life11070716 crossref_primary_10_1155_2018_6385104 crossref_primary_10_3390_biomimetics9010007 crossref_primary_10_1016_j_knosys_2018_12_024 crossref_primary_10_1016_j_knosys_2018_12_007 crossref_primary_10_1109_TBDATA_2022_3160477 crossref_primary_10_1177_1550147719864884 crossref_primary_10_1109_ACCESS_2019_2954158 crossref_primary_10_3390_ijgi11080454 crossref_primary_10_1007_s10463_025_00947_8 crossref_primary_10_1016_j_jksuci_2022_04_009 crossref_primary_10_1016_j_ijepes_2019_105611 crossref_primary_10_7717_peerj_cs_2315 crossref_primary_10_1186_s12859_021_04227_z crossref_primary_10_3390_informatics12020038 crossref_primary_10_1155_2022_8220029 |
| Cites_doi | 10.1109/TKDE.2008.190 10.1093/bioinformatics/bti583 10.1145/1016028.1016030 10.1109/TKDE.2011.221 10.1016/j.is.2010.09.005 10.1109/TKDE.2009.175 10.1007/s00778-009-0147-0 10.1016/j.fss.2013.07.012 10.1109/TKDE.2015.2499200 10.1145/2435209.2435210 10.1017/CBO9780511809071 10.1016/j.patcog.2010.02.020 10.1007/s10584-009-9622-2 10.1007/s00778-005-0159-3 10.1109/TKDE.2016.2603983 10.1109/TKDE.2010.82 10.1109/TKDE.2015.2453162 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.neunet.2017.06.004 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1879-2782 |
| EndPage | 255 |
| ExternalDocumentID | 28686946 10_1016_j_neunet_2017_06_004 S0893608017301405 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM PKN 7X8 |
| ID | FETCH-LOGICAL-c362t-455419b46c296ef8f04d98675c566b015506142a4cba47ec9f4c5b7445e69d2e3 |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000406784500022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0893-6080 1879-2782 |
| IngestDate | Thu Oct 02 16:50:53 EDT 2025 Wed Feb 19 02:41:42 EST 2025 Tue Nov 18 21:02:05 EST 2025 Sat Nov 29 07:15:53 EST 2025 Fri Feb 23 02:28:36 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Density-based algorithm Hierarchical density-based algorithm Clustering Uncertain data |
| Language | English |
| License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c362t-455419b46c296ef8f04d98675c566b015506142a4cba47ec9f4c5b7445e69d2e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 28686946 |
| PQID | 1917364051 |
| PQPubID | 23479 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_1917364051 pubmed_primary_28686946 crossref_primary_10_1016_j_neunet_2017_06_004 crossref_citationtrail_10_1016_j_neunet_2017_06_004 elsevier_sciencedirect_doi_10_1016_j_neunet_2017_06_004 |
| PublicationCentury | 2000 |
| PublicationDate | September 2017 2017-09-00 2017-Sep 20170901 |
| PublicationDateYYYYMMDD | 2017-09-01 |
| PublicationDate_xml | – month: 09 year: 2017 text: September 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neural networks |
| PublicationTitleAlternate | Neural Netw |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Bounhas, Hamed, Prade, Serrurier, Mellouli (b7) 2014; 239 Kaufman, Rousseeuw (b23) 1990 Schikuta (b33) 1996 Ankerst, Breunig, Kriegel, Sander (b5) 1999 Baker, Diaz, Hargrove, Hoffman (b6) 2010; 98 Liu, Milo, Lawrence, Rattray (b27) 2005; 21 Yu, Luo, You, Wong, Leung, Wu (b38) 2016; 28 Günnemann, Kremer, Seidl (b19) 2010 Zhang, Liu, Zhang, Liu (b43) 2014 Tsang, Kao, Yip, Ho, Lee (b35) 2011; 23 Yu, Li, Liu, Zhang, Han (b37) 2015; 27 Angiulli, Fassetti (b4) 2013; 7 Yu, Wong (b39) 2006 Sarma, Benjelloun, Halevy, Nabar, Widom (b32) 2009; 18 Dallachiesa, Palpanas, Ilyas (b11) 2014 Chau, Cheng, Kao, Ng (b8) 2006 Lee, Kao, Cheng (b26) 2007 Yu, Zhu, Wong, You, Zhang, Han (b41) 2016; PP (b2) 2014 Kriegel, Pfeifle (b24) 2005 Volk, Rosenthal, Hahmann, Habich, Lehner (b36) 2009 Cormode, McGregor (b10) 2008 Kriegel, Pfeifle (b25) 2005 Deshpande, Guestrin, Madden, Hellerstein, Hong (b12) 2005; 14 Kao, Lee, Cheung, Ho, Chan (b21) 2008 Zhang, Zhang, Liu, Liu (b44) 2016; 28 Aggarwal (b1) 2009 Jiang, Pei, Tao, Lin (b20) 2013; 25 Züfle, Emrich, Schmid, Mamoulis, Zimek, Renz (b45) 2014 Forgy (b14) 1965; 21 Cheng, Singh, Prabhakar (b9) 2005 Aggarwal, Yu (b3) 2009; 21 Kao, Lee, Lee, Cheung, Ho (b22) 2010; 22 Manning, Raghavan, Schütze (b29) 2008 Trajcevski, Wolfson, Hinrichs, Chamberlain (b34) 2004; 29 Gullo, Tagarelli (b18) 2012 Zelnik-Manor, Perona (b42) 2004 Ngai, Kao, Cheng, Chau, Lee, Cheung (b30) 2011; 36 Yu, Wong (b40) 2010; 43 Gullo, Ponti, Tagarelli, Greco (b17) 2008 Ester, Kriegel, Sander, Xu (b13) 1996 Lukic, Köhler, Slavek (b28) 2012 Gullo, Ponti, Tagarelli (b15) 2008 Ngai, Kao, Chui, Cheng, Chau, Yip (b31) 2006 Gullo, Ponti, Tagarelli (b16) 2010 Manning (10.1016/j.neunet.2017.06.004_b29) 2008 Züfle (10.1016/j.neunet.2017.06.004_b45) 2014 Ngai (10.1016/j.neunet.2017.06.004_b30) 2011; 36 Trajcevski (10.1016/j.neunet.2017.06.004_b34) 2004; 29 Zhang (10.1016/j.neunet.2017.06.004_b43) 2014 Kriegel (10.1016/j.neunet.2017.06.004_b24) 2005 Schikuta (10.1016/j.neunet.2017.06.004_b33) 1996 Ankerst (10.1016/j.neunet.2017.06.004_b5) 1999 Günnemann (10.1016/j.neunet.2017.06.004_b19) 2010 Cormode (10.1016/j.neunet.2017.06.004_b10) 2008 Kaufman (10.1016/j.neunet.2017.06.004_b23) 1990 Chau (10.1016/j.neunet.2017.06.004_b8) 2006 Ngai (10.1016/j.neunet.2017.06.004_b31) 2006 Lukic (10.1016/j.neunet.2017.06.004_b28) 2012 Angiulli (10.1016/j.neunet.2017.06.004_b4) 2013; 7 Gullo (10.1016/j.neunet.2017.06.004_b17) 2008 Kao (10.1016/j.neunet.2017.06.004_b21) 2008 Yu (10.1016/j.neunet.2017.06.004_b40) 2010; 43 Gullo (10.1016/j.neunet.2017.06.004_b18) 2012 Cheng (10.1016/j.neunet.2017.06.004_b9) 2005 Lee (10.1016/j.neunet.2017.06.004_b26) 2007 Yu (10.1016/j.neunet.2017.06.004_b37) 2015; 27 Forgy (10.1016/j.neunet.2017.06.004_b14) 1965; 21 Sarma (10.1016/j.neunet.2017.06.004_b32) 2009; 18 Yu (10.1016/j.neunet.2017.06.004_b41) 2016; PP Aggarwal (10.1016/j.neunet.2017.06.004_b3) 2009; 21 Kriegel (10.1016/j.neunet.2017.06.004_b25) 2005 Zhang (10.1016/j.neunet.2017.06.004_b44) 2016; 28 Volk (10.1016/j.neunet.2017.06.004_b36) 2009 Gullo (10.1016/j.neunet.2017.06.004_b15) 2008 Jiang (10.1016/j.neunet.2017.06.004_b20) 2013; 25 Yu (10.1016/j.neunet.2017.06.004_b38) 2016; 28 Zelnik-Manor (10.1016/j.neunet.2017.06.004_b42) 2004 Baker (10.1016/j.neunet.2017.06.004_b6) 2010; 98 Tsang (10.1016/j.neunet.2017.06.004_b35) 2011; 23 Liu (10.1016/j.neunet.2017.06.004_b27) 2005; 21 Gullo (10.1016/j.neunet.2017.06.004_b16) 2010 Aggarwal (10.1016/j.neunet.2017.06.004_b1) 2009 Ester (10.1016/j.neunet.2017.06.004_b13) 1996 Bounhas (10.1016/j.neunet.2017.06.004_b7) 2014; 239 Kao (10.1016/j.neunet.2017.06.004_b22) 2010; 22 Deshpande (10.1016/j.neunet.2017.06.004_b12) 2005; 14 (10.1016/j.neunet.2017.06.004_b2) 2014 Yu (10.1016/j.neunet.2017.06.004_b39) 2006 Dallachiesa (10.1016/j.neunet.2017.06.004_b11) 2014 |
| References_xml | – start-page: 1625 year: 2009 end-page: 1632 ident: b36 article-title: Clustering uncertain data with possible worlds publication-title: Proceedings of ICDE – start-page: 483 year: 2007 end-page: 488 ident: b26 article-title: Reducing UK-Means to K-means publication-title: Proceedings of ICDM Workshops – volume: 28 start-page: 701 year: 2016 end-page: 714 ident: b38 article-title: Incremental semi-supervised clustering ensemble for high dimensional data clustering publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 21 start-page: 609 year: 2009 end-page: 623 ident: b3 article-title: A survey of uncertain data algorithms and applications publication-title: IEEE Transactions on Knowledge and Data Engineering – year: 2009 ident: b1 article-title: Managing and mining uncertain data publication-title: Advances in database systems – start-page: 436 year: 2006 end-page: 445 ident: b31 article-title: Efficient clustering of uncertain data publication-title: Proceedings of ICDM – start-page: 740 year: 2006 end-page: 743 ident: b39 article-title: GCA: A real-time grid-based clustering algorithm for large data set publication-title: Proceedings of ICPR – start-page: 2191 year: 2014 end-page: 2197 ident: b43 article-title: Novel density-based clustering algorithms for uncertain data publication-title: Proceedings of AAAI – start-page: 839 year: 2010 end-page: 844 ident: b16 article-title: Minimizing the variance of cluster mixture models for clustering uncertain objects publication-title: Proceedings of ICDM – volume: 21 start-page: 41 year: 1965 end-page: 52 ident: b14 article-title: Cluster analysis of multivariate data: Efficiency vs. interpretability of classification publication-title: Biometrics – volume: 25 start-page: 751 year: 2013 end-page: 763 ident: b20 article-title: Clustering uncertain data based on probability distribution similarity publication-title: IEEE Transactions on Knowledge and Data Engineering – start-page: 672 year: 2005 end-page: 677 ident: b24 article-title: Density-based clustering of uncertain data publication-title: Proceedings of KDD – volume: 18 start-page: 989 year: 2009 end-page: 1019 ident: b32 article-title: Representing uncertain data: models, properties, and algorithms publication-title: VLDB Journal – volume: 36 start-page: 476 year: 2011 end-page: 497 ident: b30 article-title: Metric and trigonometric pruning for clustering of uncertain data in 2D geometric space publication-title: Information Systems – volume: 29 start-page: 463 year: 2004 end-page: 507 ident: b34 article-title: Managing uncertainty in moving objects databases publication-title: ACM Transactions on Database Systems – volume: 7 start-page: 1 year: 2013 end-page: 34 ident: b4 article-title: Nearest neighbor-based classification of uncertain data publication-title: ACM Transactions on Knowledge Discovery from Data – start-page: 13 year: 2014 end-page: 24 ident: b11 article-title: Top-k nearest neighbor search in uncertain data series publication-title: Proceedings of VLDB – start-page: 101 year: 1996 end-page: 105 ident: b33 article-title: Grid-clustering: An efficient hierarchical clustering method for very large data sets publication-title: Proceedings of ICPR – start-page: 243 year: 2014 end-page: 252 ident: b45 article-title: Representative clustering of uncertain data publication-title: Proceedings of KDD – volume: PP start-page: 1 year: 2016 end-page: 14 ident: b41 article-title: Distribution-Based cluster structure selection publication-title: IEEE Transactions on Cybernetics – volume: 98 start-page: 113 year: 2010 end-page: 131 ident: b6 article-title: Use of the Köppen-Trewartha climate classification to evaluate climatic refugia in statistically derived ecoregions for the People’s Republic of China publication-title: Climatic Change – start-page: 1601 year: 2004 end-page: 1608 ident: b42 article-title: Self-tuning spectral clustering publication-title: Proceedings of NIPS – start-page: 226 year: 1996 end-page: 231 ident: b13 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Proceedings of KDD – start-page: 229 year: 2008 end-page: 242 ident: b15 article-title: Clustering uncertain data via K-medoids publication-title: Proceedings of SUM – volume: 239 start-page: 137 year: 2014 end-page: 156 ident: b7 article-title: Naive possibilistic classifiers for imprecise or uncertain numerical data publication-title: Fuzzy Sets and Systems – volume: 21 start-page: 3637 year: 2005 end-page: 3644 ident: b27 article-title: A tractable probabilistic model for affymetrix probe-level analysis across multiple chips publication-title: Bioinformatics – start-page: 821 year: 2008 end-page: 826 ident: b17 article-title: A hierarchical algorithm for clustering uncertain data via an information-theoretic approach publication-title: Proceedings of ICDM – start-page: 333 year: 2008 end-page: 342 ident: b21 article-title: Clustering uncertain data using Voronoi diagrams publication-title: Proceedings of ICDM – start-page: 355 year: 2012 end-page: 360 ident: b28 article-title: Improved bisector pruning for uncertain data mining publication-title: Proceedings of ITI – volume: 23 start-page: 64 year: 2011 end-page: 78 ident: b35 article-title: Decision trees for uncertain data publication-title: IEEE Transactions on Knowledge and Data Engineering – start-page: 1271 year: 2005 end-page: 1274 ident: b9 article-title: U-DBMS: A database system for managing constantly-evolving data publication-title: Proceedings of VLDB – start-page: 610 year: 2012 end-page: 621 ident: b18 article-title: Uncertain centroid based partitional clustering of uncertain data publication-title: Proceedings of VLDB – volume: 43 start-page: 2698 year: 2010 end-page: 2711 ident: b40 article-title: Quantization-based clustering algorithm publication-title: Pattern Recognition – start-page: I year: 2008 end-page: XXI, 1–482 ident: b29 article-title: Introduction to information retrieval – start-page: 199 year: 2006 end-page: 204 ident: b8 article-title: Uncertain data mining: an example in clustering location data publication-title: Proceedings of PAKDD – start-page: 385 year: 2010 end-page: 396 ident: b19 article-title: Subspace clustering for uncertain data publication-title: Proceedings of SDM – volume: 14 start-page: 417 year: 2005 end-page: 443 ident: b12 article-title: Model-based approximate querying in sensor networks publication-title: VLDB Journal – volume: 27 start-page: 3176 year: 2015 end-page: 3189 ident: b37 article-title: Adaptive noise immune cluster ensemble using affinity propagation publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 22 start-page: 1219 year: 2010 end-page: 1233 ident: b22 article-title: Clustering uncertain data using Voronoi diagrams and R-tree index publication-title: IEEE Transactions on Knowledge and Data Engineering – start-page: 689 year: 2005 end-page: 692 ident: b25 article-title: Hierarchical density-based clustering of uncertain data publication-title: Proceedings of ICDM – year: 1990 ident: b23 article-title: Finding groups in data: An introduction to cluster analysis – year: 2014 ident: b2 article-title: Data clustering: Algorithms and applications – start-page: 49 year: 1999 end-page: 60 ident: b5 article-title: OPTICS: Ordering points to identify the clustering structure publication-title: Proceedings of SIGMOD – start-page: 191 year: 2008 end-page: 200 ident: b10 article-title: Approximation algorithms for clustering uncertain data publication-title: Proceedings of PODS – volume: 28 start-page: 3324 year: 2016 end-page: 3338 ident: b44 article-title: Multi-task multi-view clustering publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 21 start-page: 609 issue: 5 year: 2009 ident: 10.1016/j.neunet.2017.06.004_b3 article-title: A survey of uncertain data algorithms and applications publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2008.190 – start-page: 49 year: 1999 ident: 10.1016/j.neunet.2017.06.004_b5 article-title: OPTICS: Ordering points to identify the clustering structure – volume: 21 start-page: 3637 issue: 18 year: 2005 ident: 10.1016/j.neunet.2017.06.004_b27 article-title: A tractable probabilistic model for affymetrix probe-level analysis across multiple chips publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti583 – start-page: 243 year: 2014 ident: 10.1016/j.neunet.2017.06.004_b45 article-title: Representative clustering of uncertain data – volume: 29 start-page: 463 issue: 3 year: 2004 ident: 10.1016/j.neunet.2017.06.004_b34 article-title: Managing uncertainty in moving objects databases publication-title: ACM Transactions on Database Systems doi: 10.1145/1016028.1016030 – start-page: 355 year: 2012 ident: 10.1016/j.neunet.2017.06.004_b28 article-title: Improved bisector pruning for uncertain data mining – start-page: 436 year: 2006 ident: 10.1016/j.neunet.2017.06.004_b31 article-title: Efficient clustering of uncertain data – start-page: 199 year: 2006 ident: 10.1016/j.neunet.2017.06.004_b8 article-title: Uncertain data mining: an example in clustering location data – volume: 25 start-page: 751 issue: 4 year: 2013 ident: 10.1016/j.neunet.2017.06.004_b20 article-title: Clustering uncertain data based on probability distribution similarity publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2011.221 – start-page: 839 year: 2010 ident: 10.1016/j.neunet.2017.06.004_b16 article-title: Minimizing the variance of cluster mixture models for clustering uncertain objects – volume: 36 start-page: 476 issue: 2 year: 2011 ident: 10.1016/j.neunet.2017.06.004_b30 article-title: Metric and trigonometric pruning for clustering of uncertain data in 2D geometric space publication-title: Information Systems doi: 10.1016/j.is.2010.09.005 – volume: 23 start-page: 64 issue: 1 year: 2011 ident: 10.1016/j.neunet.2017.06.004_b35 article-title: Decision trees for uncertain data publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2009.175 – start-page: 333 year: 2008 ident: 10.1016/j.neunet.2017.06.004_b21 article-title: Clustering uncertain data using Voronoi diagrams – volume: 18 start-page: 989 issue: 5 year: 2009 ident: 10.1016/j.neunet.2017.06.004_b32 article-title: Representing uncertain data: models, properties, and algorithms publication-title: VLDB Journal doi: 10.1007/s00778-009-0147-0 – start-page: 13 year: 2014 ident: 10.1016/j.neunet.2017.06.004_b11 article-title: Top-k nearest neighbor search in uncertain data series – start-page: 740 year: 2006 ident: 10.1016/j.neunet.2017.06.004_b39 article-title: GCA: A real-time grid-based clustering algorithm for large data set – volume: PP start-page: 1 issue: 99 year: 2016 ident: 10.1016/j.neunet.2017.06.004_b41 article-title: Distribution-Based cluster structure selection publication-title: IEEE Transactions on Cybernetics – start-page: 229 year: 2008 ident: 10.1016/j.neunet.2017.06.004_b15 article-title: Clustering uncertain data via K-medoids – year: 2009 ident: 10.1016/j.neunet.2017.06.004_b1 article-title: Managing and mining uncertain data – volume: 239 start-page: 137 year: 2014 ident: 10.1016/j.neunet.2017.06.004_b7 article-title: Naive possibilistic classifiers for imprecise or uncertain numerical data publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2013.07.012 – start-page: 1271 year: 2005 ident: 10.1016/j.neunet.2017.06.004_b9 article-title: U-DBMS: A database system for managing constantly-evolving data – volume: 28 start-page: 701 issue: 3 year: 2016 ident: 10.1016/j.neunet.2017.06.004_b38 article-title: Incremental semi-supervised clustering ensemble for high dimensional data clustering publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2015.2499200 – volume: 21 start-page: 41 issue: 3 year: 1965 ident: 10.1016/j.neunet.2017.06.004_b14 article-title: Cluster analysis of multivariate data: Efficiency vs. interpretability of classification publication-title: Biometrics – start-page: 226 year: 1996 ident: 10.1016/j.neunet.2017.06.004_b13 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise – volume: 7 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.neunet.2017.06.004_b4 article-title: Nearest neighbor-based classification of uncertain data publication-title: ACM Transactions on Knowledge Discovery from Data doi: 10.1145/2435209.2435210 – start-page: 483 year: 2007 ident: 10.1016/j.neunet.2017.06.004_b26 article-title: Reducing UK-Means to K-means – start-page: I year: 2008 ident: 10.1016/j.neunet.2017.06.004_b29 doi: 10.1017/CBO9780511809071 – start-page: 2191 year: 2014 ident: 10.1016/j.neunet.2017.06.004_b43 article-title: Novel density-based clustering algorithms for uncertain data – start-page: 672 year: 2005 ident: 10.1016/j.neunet.2017.06.004_b24 article-title: Density-based clustering of uncertain data – start-page: 689 year: 2005 ident: 10.1016/j.neunet.2017.06.004_b25 article-title: Hierarchical density-based clustering of uncertain data – volume: 43 start-page: 2698 issue: 8 year: 2010 ident: 10.1016/j.neunet.2017.06.004_b40 article-title: Quantization-based clustering algorithm publication-title: Pattern Recognition doi: 10.1016/j.patcog.2010.02.020 – start-page: 101 year: 1996 ident: 10.1016/j.neunet.2017.06.004_b33 article-title: Grid-clustering: An efficient hierarchical clustering method for very large data sets – volume: 98 start-page: 113 issue: 1–2 year: 2010 ident: 10.1016/j.neunet.2017.06.004_b6 article-title: Use of the Köppen-Trewartha climate classification to evaluate climatic refugia in statistically derived ecoregions for the People’s Republic of China publication-title: Climatic Change doi: 10.1007/s10584-009-9622-2 – volume: 14 start-page: 417 issue: 4 year: 2005 ident: 10.1016/j.neunet.2017.06.004_b12 article-title: Model-based approximate querying in sensor networks publication-title: VLDB Journal doi: 10.1007/s00778-005-0159-3 – start-page: 821 year: 2008 ident: 10.1016/j.neunet.2017.06.004_b17 article-title: A hierarchical algorithm for clustering uncertain data via an information-theoretic approach – year: 1990 ident: 10.1016/j.neunet.2017.06.004_b23 – start-page: 1601 year: 2004 ident: 10.1016/j.neunet.2017.06.004_b42 article-title: Self-tuning spectral clustering – start-page: 610 year: 2012 ident: 10.1016/j.neunet.2017.06.004_b18 article-title: Uncertain centroid based partitional clustering of uncertain data – year: 2014 ident: 10.1016/j.neunet.2017.06.004_b2 article-title: Data clustering: Algorithms and applications – start-page: 1625 year: 2009 ident: 10.1016/j.neunet.2017.06.004_b36 article-title: Clustering uncertain data with possible worlds – start-page: 191 year: 2008 ident: 10.1016/j.neunet.2017.06.004_b10 article-title: Approximation algorithms for clustering uncertain data – volume: 28 start-page: 3324 issue: 12 year: 2016 ident: 10.1016/j.neunet.2017.06.004_b44 article-title: Multi-task multi-view clustering publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2016.2603983 – start-page: 385 year: 2010 ident: 10.1016/j.neunet.2017.06.004_b19 article-title: Subspace clustering for uncertain data – volume: 22 start-page: 1219 issue: 9 year: 2010 ident: 10.1016/j.neunet.2017.06.004_b22 article-title: Clustering uncertain data using Voronoi diagrams and R-tree index publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2010.82 – volume: 27 start-page: 3176 issue: 12 year: 2015 ident: 10.1016/j.neunet.2017.06.004_b37 article-title: Adaptive noise immune cluster ensemble using affinity propagation publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2015.2453162 |
| SSID | ssj0006843 |
| Score | 2.4186037 |
| Snippet | Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data,... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 240 |
| SubjectTerms | Algorithms Cluster Analysis Clustering Density-based algorithm Hierarchical density-based algorithm Uncertain data Uncertainty |
| Title | Novel density-based and hierarchical density-based clustering algorithms for uncertain data |
| URI | https://dx.doi.org/10.1016/j.neunet.2017.06.004 https://www.ncbi.nlm.nih.gov/pubmed/28686946 https://www.proquest.com/docview/1917364051 |
| Volume | 93 |
| WOSCitedRecordID | wos000406784500022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pa9swFBZpu8Mu-_0j3VY02C14xLZiSccyOrYywg4dGHYQtiy3Ka4dUjt0_32fJEtxWkK3wy4mWLZj8n1573vSe08IfcrDkhVJFgZyVqiAxCoPWER0GReICQgfcqoM0j_ofM7SlP8cjU5dLcy6onXNbm748r9CDecAbF06-w9w-4fCCfgMoMMRYIfjXwE_b9aqmhQ6Mb39E2gvZbqxTvSm12bZwKzLbA3LqtP9Eky9YnXerBbthe3TMAGvZ3MGJn0Rm1eyuqsHPKi2aeRemfsJ6FTPllxkjc_4WXTGzW3YOLy0AQl6PpyBAK_mUqzAgVirySgPIsq2zCqPh3bR9mS6Z6_t1MHl51p18L46046adqp2S-IBWssrA1fEEpZwcqd5tnHHbmgPHUR0xsFIHxx_P0lPvV9OGIld8aTJ8Lv_pbo1dP-YXTplVxxi9MjZM_SkDyTwsSXAczRS9Qv01G3SgXub_RL9NnzAW4Bj4AMe8uHO8IYPeMMHDHzAng9Y8-EV-vX15OzLt6DfUSOQIFTagIB4DHlOEhnxRJWsnJKCM4gZJaj63ISrINeijMg8I1RJXhI5yykhM5XwIlLxa7RfN7V6i3CYsFgWU8XACBBVTllZZCHLICCmSrEyG6PY_X5C9u3m9a4nlXB5hZfCAiA0AMKkV5IxCvxdS9tu5YHrqYNG9JLRSkEBDHvgzo8OSQEWVS-TZbVqumuhZzDiBAKZcIzeWIj9uzh2HO4ceYceb_4j79F-u-rUB_RIrtvF9eoI7dGUHfXMvAWmvp93 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+density-based+and+hierarchical+density-based+clustering+algorithms+for+uncertain+data&rft.jtitle=Neural+networks&rft.au=Zhang%2C+Xianchao&rft.au=Liu%2C+Han&rft.au=Zhang%2C+Xiaotong&rft.date=2017-09-01&rft.eissn=1879-2782&rft.volume=93&rft.spage=240&rft_id=info:doi/10.1016%2Fj.neunet.2017.06.004&rft_id=info%3Apmid%2F28686946&rft.externalDocID=28686946 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |