Novel density-based and hierarchical density-based clustering algorithms for uncertain data

Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural networks Ročník 93; s. 240 - 255
Hlavní autoři: Zhang, Xianchao, Liu, Han, Zhang, Xiaotong
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Ltd 01.09.2017
Témata:
ISSN:0893-6080, 1879-2782, 1879-2782
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information, high time complexity and nonadaptive threshold have not been addressed well in the previous density-based algorithm FDBSCAN and hierarchical density-based algorithm FOPTICS. In this paper, we firstly propose a novel density-based algorithm PDBSCAN, which improves the previous FDBSCAN from the following aspects: (1) it employs a more accurate method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in FDBSCAN; (2) it introduces new definitions of probability neighborhood, support degree, core object probability, direct reachability probability, thus reducing the complexity and solving the issue of nonadaptive threshold (for core object judgement) in FDBSCAN. Then, we modify the algorithm PDBSCAN to an improved version (PDBSCANi), by using a better cluster assignment strategy to ensure that every object will be assigned to the most appropriate cluster, thus solving the issue of nonadaptive threshold (for direct density reachability judgement) in FDBSCAN. Furthermore, as PDBSCAN and PDBSCANi have difficulties for clustering uncertain data with non-uniform cluster density, we propose a novel hierarchical density-based algorithm POPTICS by extending the definitions of PDBSCAN, adding new definitions of fuzzy core distance and fuzzy reachability distance, and employing a new clustering framework. POPTICS can reveal the cluster structures of the datasets with different local densities in different regions better than PDBSCAN and PDBSCANi, and it addresses the issues in FOPTICS. Experimental results demonstrate the superiority of our proposed algorithms over the existing algorithms in accuracy and efficiency.
AbstractList Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information, high time complexity and nonadaptive threshold have not been addressed well in the previous density-based algorithm FDBSCAN and hierarchical density-based algorithm FOPTICS. In this paper, we firstly propose a novel density-based algorithm PDBSCAN, which improves the previous FDBSCAN from the following aspects: (1) it employs a more accurate method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in FDBSCAN; (2) it introduces new definitions of probability neighborhood, support degree, core object probability, direct reachability probability, thus reducing the complexity and solving the issue of nonadaptive threshold (for core object judgement) in FDBSCAN. Then, we modify the algorithm PDBSCAN to an improved version (PDBSCANi), by using a better cluster assignment strategy to ensure that every object will be assigned to the most appropriate cluster, thus solving the issue of nonadaptive threshold (for direct density reachability judgement) in FDBSCAN. Furthermore, as PDBSCAN and PDBSCANi have difficulties for clustering uncertain data with non-uniform cluster density, we propose a novel hierarchical density-based algorithm POPTICS by extending the definitions of PDBSCAN, adding new definitions of fuzzy core distance and fuzzy reachability distance, and employing a new clustering framework. POPTICS can reveal the cluster structures of the datasets with different local densities in different regions better than PDBSCAN and PDBSCANi, and it addresses the issues in FOPTICS. Experimental results demonstrate the superiority of our proposed algorithms over the existing algorithms in accuracy and efficiency.
Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information, high time complexity and nonadaptive threshold have not been addressed well in the previous density-based algorithm FDBSCAN and hierarchical density-based algorithm FOPTICS. In this paper, we firstly propose a novel density-based algorithm PDBSCAN, which improves the previous FDBSCAN from the following aspects: (1) it employs a more accurate method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in FDBSCAN; (2) it introduces new definitions of probability neighborhood, support degree, core object probability, direct reachability probability, thus reducing the complexity and solving the issue of nonadaptive threshold (for core object judgement) in FDBSCAN. Then, we modify the algorithm PDBSCAN to an improved version (PDBSCANi), by using a better cluster assignment strategy to ensure that every object will be assigned to the most appropriate cluster, thus solving the issue of nonadaptive threshold (for direct density reachability judgement) in FDBSCAN. Furthermore, as PDBSCAN and PDBSCANi have difficulties for clustering uncertain data with non-uniform cluster density, we propose a novel hierarchical density-based algorithm POPTICS by extending the definitions of PDBSCAN, adding new definitions of fuzzy core distance and fuzzy reachability distance, and employing a new clustering framework. POPTICS can reveal the cluster structures of the datasets with different local densities in different regions better than PDBSCAN and PDBSCANi, and it addresses the issues in FOPTICS. Experimental results demonstrate the superiority of our proposed algorithms over the existing algorithms in accuracy and efficiency.Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information, high time complexity and nonadaptive threshold have not been addressed well in the previous density-based algorithm FDBSCAN and hierarchical density-based algorithm FOPTICS. In this paper, we firstly propose a novel density-based algorithm PDBSCAN, which improves the previous FDBSCAN from the following aspects: (1) it employs a more accurate method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in FDBSCAN; (2) it introduces new definitions of probability neighborhood, support degree, core object probability, direct reachability probability, thus reducing the complexity and solving the issue of nonadaptive threshold (for core object judgement) in FDBSCAN. Then, we modify the algorithm PDBSCAN to an improved version (PDBSCANi), by using a better cluster assignment strategy to ensure that every object will be assigned to the most appropriate cluster, thus solving the issue of nonadaptive threshold (for direct density reachability judgement) in FDBSCAN. Furthermore, as PDBSCAN and PDBSCANi have difficulties for clustering uncertain data with non-uniform cluster density, we propose a novel hierarchical density-based algorithm POPTICS by extending the definitions of PDBSCAN, adding new definitions of fuzzy core distance and fuzzy reachability distance, and employing a new clustering framework. POPTICS can reveal the cluster structures of the datasets with different local densities in different regions better than PDBSCAN and PDBSCANi, and it addresses the issues in FOPTICS. Experimental results demonstrate the superiority of our proposed algorithms over the existing algorithms in accuracy and efficiency.
Author Zhang, Xianchao
Zhang, Xiaotong
Liu, Han
Author_xml – sequence: 1
  givenname: Xianchao
  surname: Zhang
  fullname: Zhang, Xianchao
  email: xczhang@dlut.edu.cn
– sequence: 2
  givenname: Han
  surname: Liu
  fullname: Liu, Han
  email: liu.han.dut@gmail.com
– sequence: 3
  givenname: Xiaotong
  surname: Zhang
  fullname: Zhang, Xiaotong
  email: zxt.dut@hotmail.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28686946$$D View this record in MEDLINE/PubMed
BookMark eNqFkD9P3TAUR60KVB603wBVGbskXCe2Y3eoVKHyR0KwwMRgOfYNz095NrUdJL59gx50YCjTHe45v-Eckr0QAxJyTKGhQMXJpgk4ByxNC7RvQDQA7BNZUdmruu1lu0dWIFVXC5BwQA5z3gCAkKz7TA5aKaRQTKzI_XV8wqlyGLIvz_VgMrrKBFetPSaT7Npb8_5tpzkXTD48VGZ6iMmX9TZXY0zVHCymYnyonCnmC9kfzZTx6-s9Indnv29PL-qrm_PL019Xte1EW2rGOaNqYMK2SuAoR2BOSdFzy4UYgHIOgrLWMDsY1qNVI7N86BnjKJRrsTsi33e7jyn-mTEXvfXZ4jSZgHHOmirad4IBpwv67RWdhy06_Zj81qRn_RZkAdgOsCnmnHD8h1DQL931Ru-665fuGoReui_aj3ea9cUUH0NJxk8fyT93Mi6RnpbuOluPS0rnE9qiXfT_H_gL4_ShMA
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3066629
crossref_primary_10_3390_sym12050747
crossref_primary_10_1016_j_knosys_2023_110811
crossref_primary_10_3390_cells11071231
crossref_primary_10_1109_TAES_2024_3464561
crossref_primary_10_1016_j_knosys_2019_104930
crossref_primary_10_1016_j_ins_2024_121653
crossref_primary_10_1109_TII_2019_2929108
crossref_primary_10_1177_0142331219887827
crossref_primary_10_1016_j_comcom_2021_06_002
crossref_primary_10_3390_life11070716
crossref_primary_10_1155_2018_6385104
crossref_primary_10_3390_biomimetics9010007
crossref_primary_10_1016_j_knosys_2018_12_024
crossref_primary_10_1016_j_knosys_2018_12_007
crossref_primary_10_1109_TBDATA_2022_3160477
crossref_primary_10_1177_1550147719864884
crossref_primary_10_1109_ACCESS_2019_2954158
crossref_primary_10_3390_ijgi11080454
crossref_primary_10_1007_s10463_025_00947_8
crossref_primary_10_1016_j_jksuci_2022_04_009
crossref_primary_10_1016_j_ijepes_2019_105611
crossref_primary_10_7717_peerj_cs_2315
crossref_primary_10_1186_s12859_021_04227_z
crossref_primary_10_3390_informatics12020038
crossref_primary_10_1155_2022_8220029
Cites_doi 10.1109/TKDE.2008.190
10.1093/bioinformatics/bti583
10.1145/1016028.1016030
10.1109/TKDE.2011.221
10.1016/j.is.2010.09.005
10.1109/TKDE.2009.175
10.1007/s00778-009-0147-0
10.1016/j.fss.2013.07.012
10.1109/TKDE.2015.2499200
10.1145/2435209.2435210
10.1017/CBO9780511809071
10.1016/j.patcog.2010.02.020
10.1007/s10584-009-9622-2
10.1007/s00778-005-0159-3
10.1109/TKDE.2016.2603983
10.1109/TKDE.2010.82
10.1109/TKDE.2015.2453162
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neunet.2017.06.004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 255
ExternalDocumentID 28686946
10_1016_j_neunet_2017_06_004
S0893608017301405
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
ID FETCH-LOGICAL-c362t-455419b46c296ef8f04d98675c566b015506142a4cba47ec9f4c5b7445e69d2e3
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000406784500022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0893-6080
1879-2782
IngestDate Thu Oct 02 16:50:53 EDT 2025
Wed Feb 19 02:41:42 EST 2025
Tue Nov 18 21:02:05 EST 2025
Sat Nov 29 07:15:53 EST 2025
Fri Feb 23 02:28:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Density-based algorithm
Hierarchical density-based algorithm
Clustering
Uncertain data
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-455419b46c296ef8f04d98675c566b015506142a4cba47ec9f4c5b7445e69d2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28686946
PQID 1917364051
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_1917364051
pubmed_primary_28686946
crossref_primary_10_1016_j_neunet_2017_06_004
crossref_citationtrail_10_1016_j_neunet_2017_06_004
elsevier_sciencedirect_doi_10_1016_j_neunet_2017_06_004
PublicationCentury 2000
PublicationDate September 2017
2017-09-00
2017-Sep
20170901
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: September 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bounhas, Hamed, Prade, Serrurier, Mellouli (b7) 2014; 239
Kaufman, Rousseeuw (b23) 1990
Schikuta (b33) 1996
Ankerst, Breunig, Kriegel, Sander (b5) 1999
Baker, Diaz, Hargrove, Hoffman (b6) 2010; 98
Liu, Milo, Lawrence, Rattray (b27) 2005; 21
Yu, Luo, You, Wong, Leung, Wu (b38) 2016; 28
Günnemann, Kremer, Seidl (b19) 2010
Zhang, Liu, Zhang, Liu (b43) 2014
Tsang, Kao, Yip, Ho, Lee (b35) 2011; 23
Yu, Li, Liu, Zhang, Han (b37) 2015; 27
Angiulli, Fassetti (b4) 2013; 7
Yu, Wong (b39) 2006
Sarma, Benjelloun, Halevy, Nabar, Widom (b32) 2009; 18
Dallachiesa, Palpanas, Ilyas (b11) 2014
Chau, Cheng, Kao, Ng (b8) 2006
Lee, Kao, Cheng (b26) 2007
Yu, Zhu, Wong, You, Zhang, Han (b41) 2016; PP
(b2) 2014
Kriegel, Pfeifle (b24) 2005
Volk, Rosenthal, Hahmann, Habich, Lehner (b36) 2009
Cormode, McGregor (b10) 2008
Kriegel, Pfeifle (b25) 2005
Deshpande, Guestrin, Madden, Hellerstein, Hong (b12) 2005; 14
Kao, Lee, Cheung, Ho, Chan (b21) 2008
Zhang, Zhang, Liu, Liu (b44) 2016; 28
Aggarwal (b1) 2009
Jiang, Pei, Tao, Lin (b20) 2013; 25
Züfle, Emrich, Schmid, Mamoulis, Zimek, Renz (b45) 2014
Forgy (b14) 1965; 21
Cheng, Singh, Prabhakar (b9) 2005
Aggarwal, Yu (b3) 2009; 21
Kao, Lee, Lee, Cheung, Ho (b22) 2010; 22
Manning, Raghavan, Schütze (b29) 2008
Trajcevski, Wolfson, Hinrichs, Chamberlain (b34) 2004; 29
Gullo, Tagarelli (b18) 2012
Zelnik-Manor, Perona (b42) 2004
Ngai, Kao, Cheng, Chau, Lee, Cheung (b30) 2011; 36
Yu, Wong (b40) 2010; 43
Gullo, Ponti, Tagarelli, Greco (b17) 2008
Ester, Kriegel, Sander, Xu (b13) 1996
Lukic, Köhler, Slavek (b28) 2012
Gullo, Ponti, Tagarelli (b15) 2008
Ngai, Kao, Chui, Cheng, Chau, Yip (b31) 2006
Gullo, Ponti, Tagarelli (b16) 2010
Manning (10.1016/j.neunet.2017.06.004_b29) 2008
Züfle (10.1016/j.neunet.2017.06.004_b45) 2014
Ngai (10.1016/j.neunet.2017.06.004_b30) 2011; 36
Trajcevski (10.1016/j.neunet.2017.06.004_b34) 2004; 29
Zhang (10.1016/j.neunet.2017.06.004_b43) 2014
Kriegel (10.1016/j.neunet.2017.06.004_b24) 2005
Schikuta (10.1016/j.neunet.2017.06.004_b33) 1996
Ankerst (10.1016/j.neunet.2017.06.004_b5) 1999
Günnemann (10.1016/j.neunet.2017.06.004_b19) 2010
Cormode (10.1016/j.neunet.2017.06.004_b10) 2008
Kaufman (10.1016/j.neunet.2017.06.004_b23) 1990
Chau (10.1016/j.neunet.2017.06.004_b8) 2006
Ngai (10.1016/j.neunet.2017.06.004_b31) 2006
Lukic (10.1016/j.neunet.2017.06.004_b28) 2012
Angiulli (10.1016/j.neunet.2017.06.004_b4) 2013; 7
Gullo (10.1016/j.neunet.2017.06.004_b17) 2008
Kao (10.1016/j.neunet.2017.06.004_b21) 2008
Yu (10.1016/j.neunet.2017.06.004_b40) 2010; 43
Gullo (10.1016/j.neunet.2017.06.004_b18) 2012
Cheng (10.1016/j.neunet.2017.06.004_b9) 2005
Lee (10.1016/j.neunet.2017.06.004_b26) 2007
Yu (10.1016/j.neunet.2017.06.004_b37) 2015; 27
Forgy (10.1016/j.neunet.2017.06.004_b14) 1965; 21
Sarma (10.1016/j.neunet.2017.06.004_b32) 2009; 18
Yu (10.1016/j.neunet.2017.06.004_b41) 2016; PP
Aggarwal (10.1016/j.neunet.2017.06.004_b3) 2009; 21
Kriegel (10.1016/j.neunet.2017.06.004_b25) 2005
Zhang (10.1016/j.neunet.2017.06.004_b44) 2016; 28
Volk (10.1016/j.neunet.2017.06.004_b36) 2009
Gullo (10.1016/j.neunet.2017.06.004_b15) 2008
Jiang (10.1016/j.neunet.2017.06.004_b20) 2013; 25
Yu (10.1016/j.neunet.2017.06.004_b38) 2016; 28
Zelnik-Manor (10.1016/j.neunet.2017.06.004_b42) 2004
Baker (10.1016/j.neunet.2017.06.004_b6) 2010; 98
Tsang (10.1016/j.neunet.2017.06.004_b35) 2011; 23
Liu (10.1016/j.neunet.2017.06.004_b27) 2005; 21
Gullo (10.1016/j.neunet.2017.06.004_b16) 2010
Aggarwal (10.1016/j.neunet.2017.06.004_b1) 2009
Ester (10.1016/j.neunet.2017.06.004_b13) 1996
Bounhas (10.1016/j.neunet.2017.06.004_b7) 2014; 239
Kao (10.1016/j.neunet.2017.06.004_b22) 2010; 22
Deshpande (10.1016/j.neunet.2017.06.004_b12) 2005; 14
(10.1016/j.neunet.2017.06.004_b2) 2014
Yu (10.1016/j.neunet.2017.06.004_b39) 2006
Dallachiesa (10.1016/j.neunet.2017.06.004_b11) 2014
References_xml – start-page: 1625
  year: 2009
  end-page: 1632
  ident: b36
  article-title: Clustering uncertain data with possible worlds
  publication-title: Proceedings of ICDE
– start-page: 483
  year: 2007
  end-page: 488
  ident: b26
  article-title: Reducing UK-Means to K-means
  publication-title: Proceedings of ICDM Workshops
– volume: 28
  start-page: 701
  year: 2016
  end-page: 714
  ident: b38
  article-title: Incremental semi-supervised clustering ensemble for high dimensional data clustering
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 21
  start-page: 609
  year: 2009
  end-page: 623
  ident: b3
  article-title: A survey of uncertain data algorithms and applications
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– year: 2009
  ident: b1
  article-title: Managing and mining uncertain data
  publication-title: Advances in database systems
– start-page: 436
  year: 2006
  end-page: 445
  ident: b31
  article-title: Efficient clustering of uncertain data
  publication-title: Proceedings of ICDM
– start-page: 740
  year: 2006
  end-page: 743
  ident: b39
  article-title: GCA: A real-time grid-based clustering algorithm for large data set
  publication-title: Proceedings of ICPR
– start-page: 2191
  year: 2014
  end-page: 2197
  ident: b43
  article-title: Novel density-based clustering algorithms for uncertain data
  publication-title: Proceedings of AAAI
– start-page: 839
  year: 2010
  end-page: 844
  ident: b16
  article-title: Minimizing the variance of cluster mixture models for clustering uncertain objects
  publication-title: Proceedings of ICDM
– volume: 21
  start-page: 41
  year: 1965
  end-page: 52
  ident: b14
  article-title: Cluster analysis of multivariate data: Efficiency vs. interpretability of classification
  publication-title: Biometrics
– volume: 25
  start-page: 751
  year: 2013
  end-page: 763
  ident: b20
  article-title: Clustering uncertain data based on probability distribution similarity
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 672
  year: 2005
  end-page: 677
  ident: b24
  article-title: Density-based clustering of uncertain data
  publication-title: Proceedings of KDD
– volume: 18
  start-page: 989
  year: 2009
  end-page: 1019
  ident: b32
  article-title: Representing uncertain data: models, properties, and algorithms
  publication-title: VLDB Journal
– volume: 36
  start-page: 476
  year: 2011
  end-page: 497
  ident: b30
  article-title: Metric and trigonometric pruning for clustering of uncertain data in 2D geometric space
  publication-title: Information Systems
– volume: 29
  start-page: 463
  year: 2004
  end-page: 507
  ident: b34
  article-title: Managing uncertainty in moving objects databases
  publication-title: ACM Transactions on Database Systems
– volume: 7
  start-page: 1
  year: 2013
  end-page: 34
  ident: b4
  article-title: Nearest neighbor-based classification of uncertain data
  publication-title: ACM Transactions on Knowledge Discovery from Data
– start-page: 13
  year: 2014
  end-page: 24
  ident: b11
  article-title: Top-k nearest neighbor search in uncertain data series
  publication-title: Proceedings of VLDB
– start-page: 101
  year: 1996
  end-page: 105
  ident: b33
  article-title: Grid-clustering: An efficient hierarchical clustering method for very large data sets
  publication-title: Proceedings of ICPR
– start-page: 243
  year: 2014
  end-page: 252
  ident: b45
  article-title: Representative clustering of uncertain data
  publication-title: Proceedings of KDD
– volume: PP
  start-page: 1
  year: 2016
  end-page: 14
  ident: b41
  article-title: Distribution-Based cluster structure selection
  publication-title: IEEE Transactions on Cybernetics
– volume: 98
  start-page: 113
  year: 2010
  end-page: 131
  ident: b6
  article-title: Use of the Köppen-Trewartha climate classification to evaluate climatic refugia in statistically derived ecoregions for the People’s Republic of China
  publication-title: Climatic Change
– start-page: 1601
  year: 2004
  end-page: 1608
  ident: b42
  article-title: Self-tuning spectral clustering
  publication-title: Proceedings of NIPS
– start-page: 226
  year: 1996
  end-page: 231
  ident: b13
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proceedings of KDD
– start-page: 229
  year: 2008
  end-page: 242
  ident: b15
  article-title: Clustering uncertain data via K-medoids
  publication-title: Proceedings of SUM
– volume: 239
  start-page: 137
  year: 2014
  end-page: 156
  ident: b7
  article-title: Naive possibilistic classifiers for imprecise or uncertain numerical data
  publication-title: Fuzzy Sets and Systems
– volume: 21
  start-page: 3637
  year: 2005
  end-page: 3644
  ident: b27
  article-title: A tractable probabilistic model for affymetrix probe-level analysis across multiple chips
  publication-title: Bioinformatics
– start-page: 821
  year: 2008
  end-page: 826
  ident: b17
  article-title: A hierarchical algorithm for clustering uncertain data via an information-theoretic approach
  publication-title: Proceedings of ICDM
– start-page: 333
  year: 2008
  end-page: 342
  ident: b21
  article-title: Clustering uncertain data using Voronoi diagrams
  publication-title: Proceedings of ICDM
– start-page: 355
  year: 2012
  end-page: 360
  ident: b28
  article-title: Improved bisector pruning for uncertain data mining
  publication-title: Proceedings of ITI
– volume: 23
  start-page: 64
  year: 2011
  end-page: 78
  ident: b35
  article-title: Decision trees for uncertain data
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 1271
  year: 2005
  end-page: 1274
  ident: b9
  article-title: U-DBMS: A database system for managing constantly-evolving data
  publication-title: Proceedings of VLDB
– start-page: 610
  year: 2012
  end-page: 621
  ident: b18
  article-title: Uncertain centroid based partitional clustering of uncertain data
  publication-title: Proceedings of VLDB
– volume: 43
  start-page: 2698
  year: 2010
  end-page: 2711
  ident: b40
  article-title: Quantization-based clustering algorithm
  publication-title: Pattern Recognition
– start-page: I
  year: 2008
  end-page: XXI, 1–482
  ident: b29
  article-title: Introduction to information retrieval
– start-page: 199
  year: 2006
  end-page: 204
  ident: b8
  article-title: Uncertain data mining: an example in clustering location data
  publication-title: Proceedings of PAKDD
– start-page: 385
  year: 2010
  end-page: 396
  ident: b19
  article-title: Subspace clustering for uncertain data
  publication-title: Proceedings of SDM
– volume: 14
  start-page: 417
  year: 2005
  end-page: 443
  ident: b12
  article-title: Model-based approximate querying in sensor networks
  publication-title: VLDB Journal
– volume: 27
  start-page: 3176
  year: 2015
  end-page: 3189
  ident: b37
  article-title: Adaptive noise immune cluster ensemble using affinity propagation
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 22
  start-page: 1219
  year: 2010
  end-page: 1233
  ident: b22
  article-title: Clustering uncertain data using Voronoi diagrams and R-tree index
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 689
  year: 2005
  end-page: 692
  ident: b25
  article-title: Hierarchical density-based clustering of uncertain data
  publication-title: Proceedings of ICDM
– year: 1990
  ident: b23
  article-title: Finding groups in data: An introduction to cluster analysis
– year: 2014
  ident: b2
  article-title: Data clustering: Algorithms and applications
– start-page: 49
  year: 1999
  end-page: 60
  ident: b5
  article-title: OPTICS: Ordering points to identify the clustering structure
  publication-title: Proceedings of SIGMOD
– start-page: 191
  year: 2008
  end-page: 200
  ident: b10
  article-title: Approximation algorithms for clustering uncertain data
  publication-title: Proceedings of PODS
– volume: 28
  start-page: 3324
  year: 2016
  end-page: 3338
  ident: b44
  article-title: Multi-task multi-view clustering
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 21
  start-page: 609
  issue: 5
  year: 2009
  ident: 10.1016/j.neunet.2017.06.004_b3
  article-title: A survey of uncertain data algorithms and applications
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2008.190
– start-page: 49
  year: 1999
  ident: 10.1016/j.neunet.2017.06.004_b5
  article-title: OPTICS: Ordering points to identify the clustering structure
– volume: 21
  start-page: 3637
  issue: 18
  year: 2005
  ident: 10.1016/j.neunet.2017.06.004_b27
  article-title: A tractable probabilistic model for affymetrix probe-level analysis across multiple chips
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti583
– start-page: 243
  year: 2014
  ident: 10.1016/j.neunet.2017.06.004_b45
  article-title: Representative clustering of uncertain data
– volume: 29
  start-page: 463
  issue: 3
  year: 2004
  ident: 10.1016/j.neunet.2017.06.004_b34
  article-title: Managing uncertainty in moving objects databases
  publication-title: ACM Transactions on Database Systems
  doi: 10.1145/1016028.1016030
– start-page: 355
  year: 2012
  ident: 10.1016/j.neunet.2017.06.004_b28
  article-title: Improved bisector pruning for uncertain data mining
– start-page: 436
  year: 2006
  ident: 10.1016/j.neunet.2017.06.004_b31
  article-title: Efficient clustering of uncertain data
– start-page: 199
  year: 2006
  ident: 10.1016/j.neunet.2017.06.004_b8
  article-title: Uncertain data mining: an example in clustering location data
– volume: 25
  start-page: 751
  issue: 4
  year: 2013
  ident: 10.1016/j.neunet.2017.06.004_b20
  article-title: Clustering uncertain data based on probability distribution similarity
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2011.221
– start-page: 839
  year: 2010
  ident: 10.1016/j.neunet.2017.06.004_b16
  article-title: Minimizing the variance of cluster mixture models for clustering uncertain objects
– volume: 36
  start-page: 476
  issue: 2
  year: 2011
  ident: 10.1016/j.neunet.2017.06.004_b30
  article-title: Metric and trigonometric pruning for clustering of uncertain data in 2D geometric space
  publication-title: Information Systems
  doi: 10.1016/j.is.2010.09.005
– volume: 23
  start-page: 64
  issue: 1
  year: 2011
  ident: 10.1016/j.neunet.2017.06.004_b35
  article-title: Decision trees for uncertain data
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2009.175
– start-page: 333
  year: 2008
  ident: 10.1016/j.neunet.2017.06.004_b21
  article-title: Clustering uncertain data using Voronoi diagrams
– volume: 18
  start-page: 989
  issue: 5
  year: 2009
  ident: 10.1016/j.neunet.2017.06.004_b32
  article-title: Representing uncertain data: models, properties, and algorithms
  publication-title: VLDB Journal
  doi: 10.1007/s00778-009-0147-0
– start-page: 13
  year: 2014
  ident: 10.1016/j.neunet.2017.06.004_b11
  article-title: Top-k nearest neighbor search in uncertain data series
– start-page: 740
  year: 2006
  ident: 10.1016/j.neunet.2017.06.004_b39
  article-title: GCA: A real-time grid-based clustering algorithm for large data set
– volume: PP
  start-page: 1
  issue: 99
  year: 2016
  ident: 10.1016/j.neunet.2017.06.004_b41
  article-title: Distribution-Based cluster structure selection
  publication-title: IEEE Transactions on Cybernetics
– start-page: 229
  year: 2008
  ident: 10.1016/j.neunet.2017.06.004_b15
  article-title: Clustering uncertain data via K-medoids
– year: 2009
  ident: 10.1016/j.neunet.2017.06.004_b1
  article-title: Managing and mining uncertain data
– volume: 239
  start-page: 137
  year: 2014
  ident: 10.1016/j.neunet.2017.06.004_b7
  article-title: Naive possibilistic classifiers for imprecise or uncertain numerical data
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2013.07.012
– start-page: 1271
  year: 2005
  ident: 10.1016/j.neunet.2017.06.004_b9
  article-title: U-DBMS: A database system for managing constantly-evolving data
– volume: 28
  start-page: 701
  issue: 3
  year: 2016
  ident: 10.1016/j.neunet.2017.06.004_b38
  article-title: Incremental semi-supervised clustering ensemble for high dimensional data clustering
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2015.2499200
– volume: 21
  start-page: 41
  issue: 3
  year: 1965
  ident: 10.1016/j.neunet.2017.06.004_b14
  article-title: Cluster analysis of multivariate data: Efficiency vs. interpretability of classification
  publication-title: Biometrics
– start-page: 226
  year: 1996
  ident: 10.1016/j.neunet.2017.06.004_b13
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– volume: 7
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.neunet.2017.06.004_b4
  article-title: Nearest neighbor-based classification of uncertain data
  publication-title: ACM Transactions on Knowledge Discovery from Data
  doi: 10.1145/2435209.2435210
– start-page: 483
  year: 2007
  ident: 10.1016/j.neunet.2017.06.004_b26
  article-title: Reducing UK-Means to K-means
– start-page: I
  year: 2008
  ident: 10.1016/j.neunet.2017.06.004_b29
  doi: 10.1017/CBO9780511809071
– start-page: 2191
  year: 2014
  ident: 10.1016/j.neunet.2017.06.004_b43
  article-title: Novel density-based clustering algorithms for uncertain data
– start-page: 672
  year: 2005
  ident: 10.1016/j.neunet.2017.06.004_b24
  article-title: Density-based clustering of uncertain data
– start-page: 689
  year: 2005
  ident: 10.1016/j.neunet.2017.06.004_b25
  article-title: Hierarchical density-based clustering of uncertain data
– volume: 43
  start-page: 2698
  issue: 8
  year: 2010
  ident: 10.1016/j.neunet.2017.06.004_b40
  article-title: Quantization-based clustering algorithm
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2010.02.020
– start-page: 101
  year: 1996
  ident: 10.1016/j.neunet.2017.06.004_b33
  article-title: Grid-clustering: An efficient hierarchical clustering method for very large data sets
– volume: 98
  start-page: 113
  issue: 1–2
  year: 2010
  ident: 10.1016/j.neunet.2017.06.004_b6
  article-title: Use of the Köppen-Trewartha climate classification to evaluate climatic refugia in statistically derived ecoregions for the People’s Republic of China
  publication-title: Climatic Change
  doi: 10.1007/s10584-009-9622-2
– volume: 14
  start-page: 417
  issue: 4
  year: 2005
  ident: 10.1016/j.neunet.2017.06.004_b12
  article-title: Model-based approximate querying in sensor networks
  publication-title: VLDB Journal
  doi: 10.1007/s00778-005-0159-3
– start-page: 821
  year: 2008
  ident: 10.1016/j.neunet.2017.06.004_b17
  article-title: A hierarchical algorithm for clustering uncertain data via an information-theoretic approach
– year: 1990
  ident: 10.1016/j.neunet.2017.06.004_b23
– start-page: 1601
  year: 2004
  ident: 10.1016/j.neunet.2017.06.004_b42
  article-title: Self-tuning spectral clustering
– start-page: 610
  year: 2012
  ident: 10.1016/j.neunet.2017.06.004_b18
  article-title: Uncertain centroid based partitional clustering of uncertain data
– year: 2014
  ident: 10.1016/j.neunet.2017.06.004_b2
  article-title: Data clustering: Algorithms and applications
– start-page: 1625
  year: 2009
  ident: 10.1016/j.neunet.2017.06.004_b36
  article-title: Clustering uncertain data with possible worlds
– start-page: 191
  year: 2008
  ident: 10.1016/j.neunet.2017.06.004_b10
  article-title: Approximation algorithms for clustering uncertain data
– volume: 28
  start-page: 3324
  issue: 12
  year: 2016
  ident: 10.1016/j.neunet.2017.06.004_b44
  article-title: Multi-task multi-view clustering
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2016.2603983
– start-page: 385
  year: 2010
  ident: 10.1016/j.neunet.2017.06.004_b19
  article-title: Subspace clustering for uncertain data
– volume: 22
  start-page: 1219
  issue: 9
  year: 2010
  ident: 10.1016/j.neunet.2017.06.004_b22
  article-title: Clustering uncertain data using Voronoi diagrams and R-tree index
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2010.82
– volume: 27
  start-page: 3176
  issue: 12
  year: 2015
  ident: 10.1016/j.neunet.2017.06.004_b37
  article-title: Adaptive noise immune cluster ensemble using affinity propagation
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2015.2453162
SSID ssj0006843
Score 2.4186037
Snippet Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 240
SubjectTerms Algorithms
Cluster Analysis
Clustering
Density-based algorithm
Hierarchical density-based algorithm
Uncertain data
Uncertainty
Title Novel density-based and hierarchical density-based clustering algorithms for uncertain data
URI https://dx.doi.org/10.1016/j.neunet.2017.06.004
https://www.ncbi.nlm.nih.gov/pubmed/28686946
https://www.proquest.com/docview/1917364051
Volume 93
WOSCitedRecordID wos000406784500022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pa9swFBZpu8Mu-_0j3VY02C14xLZiSccyOrYywg4dGHYQtiy3Ka4dUjt0_32fJEtxWkK3wy4mWLZj8n1573vSe08IfcrDkhVJFgZyVqiAxCoPWER0GReICQgfcqoM0j_ofM7SlP8cjU5dLcy6onXNbm748r9CDecAbF06-w9w-4fCCfgMoMMRYIfjXwE_b9aqmhQ6Mb39E2gvZbqxTvSm12bZwKzLbA3LqtP9Eky9YnXerBbthe3TMAGvZ3MGJn0Rm1eyuqsHPKi2aeRemfsJ6FTPllxkjc_4WXTGzW3YOLy0AQl6PpyBAK_mUqzAgVirySgPIsq2zCqPh3bR9mS6Z6_t1MHl51p18L46046adqp2S-IBWssrA1fEEpZwcqd5tnHHbmgPHUR0xsFIHxx_P0lPvV9OGIld8aTJ8Lv_pbo1dP-YXTplVxxi9MjZM_SkDyTwsSXAczRS9Qv01G3SgXub_RL9NnzAW4Bj4AMe8uHO8IYPeMMHDHzAng9Y8-EV-vX15OzLt6DfUSOQIFTagIB4DHlOEhnxRJWsnJKCM4gZJaj63ISrINeijMg8I1RJXhI5yykhM5XwIlLxa7RfN7V6i3CYsFgWU8XACBBVTllZZCHLICCmSrEyG6PY_X5C9u3m9a4nlXB5hZfCAiA0AMKkV5IxCvxdS9tu5YHrqYNG9JLRSkEBDHvgzo8OSQEWVS-TZbVqumuhZzDiBAKZcIzeWIj9uzh2HO4ceYceb_4j79F-u-rUB_RIrtvF9eoI7dGUHfXMvAWmvp93
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+density-based+and+hierarchical+density-based+clustering+algorithms+for+uncertain+data&rft.jtitle=Neural+networks&rft.au=Zhang%2C+Xianchao&rft.au=Liu%2C+Han&rft.au=Zhang%2C+Xiaotong&rft.date=2017-09-01&rft.eissn=1879-2782&rft.volume=93&rft.spage=240&rft_id=info:doi/10.1016%2Fj.neunet.2017.06.004&rft_id=info%3Apmid%2F28686946&rft.externalDocID=28686946
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon