State of Health Estimation for Lithium-Ion Batteries Using Enhanced Whale Optimization Algorithm for Feature Selection and Support Vector Regression Model
Evaluating the state of health (SOH) of lithium-ion batteries (LIBs) is essential for their safe deployment and the advancement of electric vehicles (EVs). Existing machine learning methods face challenges in the automation and effectiveness of feature extraction, necessitating improved computationa...
Gespeichert in:
| Veröffentlicht in: | Processes Jg. 13; H. 1; S. 158 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.01.2025
|
| Schlagworte: | |
| ISSN: | 2227-9717, 2227-9717 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Evaluating the state of health (SOH) of lithium-ion batteries (LIBs) is essential for their safe deployment and the advancement of electric vehicles (EVs). Existing machine learning methods face challenges in the automation and effectiveness of feature extraction, necessitating improved computational efficiency. To address this issue, we propose a collaborative approach integrating an enhanced whale optimization algorithm (EWOA) for feature selection and a lightweight support vector regression (SVR) model for SOH estimation. Key features are extracted from charging voltage, current, temperature, and incremental capacity (IC) curves. The EWOA selects features by initially assigning weights based on importance scores from a random forest model. Gaussian noise increases population diversity, while a dynamic threshold method optimizes the selection process, preventing local optima. The selected features construct the SVR model for SOH estimation. This method is validated using four aging datasets from the NASA database, conducting 50 prediction experiments per battery. The results indicate optimal average absolute error (MAE) and root mean square error (RMSE) within 0.41% and 0.71%, respectively, with average errors below 1% and 1.3%. This method enhances automation and accuracy in feature selection while ensuring efficient SOH estimation, providing valuable insights for practical LIB applications. |
|---|---|
| AbstractList | Evaluating the state of health (SOH) of lithium-ion batteries (LIBs) is essential for their safe deployment and the advancement of electric vehicles (EVs). Existing machine learning methods face challenges in the automation and effectiveness of feature extraction, necessitating improved computational efficiency. To address this issue, we propose a collaborative approach integrating an enhanced whale optimization algorithm (EWOA) for feature selection and a lightweight support vector regression (SVR) model for SOH estimation. Key features are extracted from charging voltage, current, temperature, and incremental capacity (IC) curves. The EWOA selects features by initially assigning weights based on importance scores from a random forest model. Gaussian noise increases population diversity, while a dynamic threshold method optimizes the selection process, preventing local optima. The selected features construct the SVR model for SOH estimation. This method is validated using four aging datasets from the NASA database, conducting 50 prediction experiments per battery. The results indicate optimal average absolute error (MAE) and root mean square error (RMSE) within 0.41% and 0.71%, respectively, with average errors below 1% and 1.3%. This method enhances automation and accuracy in feature selection while ensuring efficient SOH estimation, providing valuable insights for practical LIB applications. |
| Audience | Academic |
| Author | Zhou, Qi Ye, Jilei Xu, Xikang Wu, Yuping Wang, Jing Wang, Rui Zhang, Jingtao |
| Author_xml | – sequence: 1 givenname: Rui surname: Wang fullname: Wang, Rui – sequence: 2 givenname: Xikang surname: Xu fullname: Xu, Xikang – sequence: 3 givenname: Qi surname: Zhou fullname: Zhou, Qi – sequence: 4 givenname: Jingtao surname: Zhang fullname: Zhang, Jingtao – sequence: 5 givenname: Jing surname: Wang fullname: Wang, Jing – sequence: 6 givenname: Jilei surname: Ye fullname: Ye, Jilei – sequence: 7 givenname: Yuping orcidid: 0000-0002-0833-1205 surname: Wu fullname: Wu, Yuping |
| BookMark | eNptkc9u1DAQxi1UJErphSewxA0pxX_ixD4u1ZZWWlSJpXCMHGe86yqxg-0cyqPwtLi7SAVUz8Geme83lv29Ric-eEDoLSUXnCvyYY6UE0qokC_QKWOsrVRL25O_zq_QeUr3pCxFuRTNKfq1zToDDhZfgx7zHq9TdpPOLnhsQ8Qbl_dumaqbkn_UOUN0kPBdcn6H136vvYEBf9_rEfDtXEj388iuxl2IhZ0OU65A5yUC3sII5tDXfsDbZZ5DzPhbqRXRF9hFSOmx-zkMML5BL60eE5z_2c_Q3dX66-V1tbn9dHO52lSGNyxXfOiFVlL2ykCjrW4VAyMlG7hg1PK6b20DvRIEWF0To2pheiugaUWjCekVP0PvjnPnGH4skHJ3H5boy5Udp0KJum0Uf1Ltyls7523IUZvJJdOtJFOSy5aQorp4RlVigMmZYpd1pf4PQI6AiSGlCLYzLh--sIBu7CjpHr3tnrwtyPv_kDkWy-LDc-LfW-CnBA |
| CitedBy_id | crossref_primary_10_1016_j_energy_2025_138351 crossref_primary_10_1016_j_apenergy_2025_126688 crossref_primary_10_3390_physchem5010012 |
| Cites_doi | 10.3390/en13020375 10.1016/j.energy.2020.117852 10.1016/j.jhydrol.2020.125861 10.1016/j.asoc.2024.111477 10.1016/j.est.2021.103077 10.1016/j.est.2024.113172 10.1016/j.jclepro.2021.128015 10.1016/j.apenergy.2022.118588 10.1109/TPEL.2020.2987383 10.1016/j.est.2024.110678 10.1016/j.etran.2023.100254 10.1016/j.jpowsour.2021.230162 10.1016/j.est.2022.105046 10.1109/TEC.2021.3137423 10.1109/JIOT.2023.3342367 10.1016/j.est.2021.102743 10.1016/j.energy.2021.121023 10.3390/app8060925 10.1016/j.energy.2024.131085 10.3390/e23091208 10.1016/j.energy.2020.119530 10.1016/j.geits.2022.100001 10.1051/e3sconf/202018401068 10.1088/1742-6596/2591/1/012038 10.1109/TIE.2021.3066946 10.1016/j.energy.2022.125234 10.1016/j.jclepro.2020.120813 10.1016/j.advengsoft.2016.01.008 10.1109/TVT.2019.2927120 10.1016/j.energy.2021.121986 10.1016/j.apenergy.2024.123542 10.1016/j.energy.2021.120114 10.1016/j.est.2020.102122 10.1016/j.apenergy.2023.121674 10.1016/j.est.2023.107734 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SR 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ JG9 KB. LK8 M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.3390/pr13010158 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection AUTh Library subscriptions: ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Research Database Materials Science Database Biological Sciences Biological Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2227-9717 |
| ExternalDocumentID | A829838700 10_3390_pr13010158 |
| GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ACIWK ACPRK ADBBV ADMLS AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I HCIFZ IAO IGS ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PQGLB PROAC RNS 7SR 8FD ABUWG AZQEC DWQXO GNUQQ JG9 PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
| ID | FETCH-LOGICAL-c362t-3db5a988b9ce6afa792ec882d3521f34b7f6eb950e2440c945cbf5e6756a00b93 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001403818900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-9717 |
| IngestDate | Sat Aug 23 14:14:14 EDT 2025 Tue Nov 11 10:52:03 EST 2025 Tue Nov 04 18:12:42 EST 2025 Tue Nov 18 21:49:18 EST 2025 Sat Nov 29 07:12:43 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c362t-3db5a988b9ce6afa792ec882d3521f34b7f6eb950e2440c945cbf5e6756a00b93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0833-1205 |
| OpenAccessLink | https://www.proquest.com/docview/3159547693?pq-origsite=%requestingapplication% |
| PQID | 3159547693 |
| PQPubID | 2032344 |
| ParticipantIDs | proquest_journals_3159547693 gale_infotracmisc_A829838700 gale_infotracacademiconefile_A829838700 crossref_citationtrail_10_3390_pr13010158 crossref_primary_10_3390_pr13010158 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Processes |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Zhang (ref_25) 2021; 506 Zhang (ref_19) 2022; 239 Yu (ref_1) 2023; 349 Bokstaller (ref_9) 2024; 11 Yu (ref_7) 2022; 310 Kong (ref_22) 2021; 223 Desai (ref_33) 2021; 594 ref_34 Chen (ref_15) 2022; 1 Yang (ref_4) 2021; 314 Vignesh (ref_8) 2024; 369 Mirjalili (ref_30) 2016; 95 Li (ref_3) 2021; 33 ref_16 Feng (ref_21) 2019; 68 Kim (ref_10) 2021; 42 Cai (ref_13) 2020; 35 Rahman (ref_14) 2024; 98 Wu (ref_29) 2022; 37 Xu (ref_23) 2021; 218 Wen (ref_24) 2022; 261 Wu (ref_32) 2023; 2591 Zaman (ref_35) 2024; 156 Yu (ref_2) 2023; 17 Tang (ref_6) 2023; 68 He (ref_17) 2024; 83 Park (ref_12) 2021; 232 Li (ref_20) 2020; 203 Tummala (ref_18) 2020; 184 Gao (ref_11) 2022; 69 ref_28 Ma (ref_31) 2024; 295 Gong (ref_27) 2022; 53 Zhang (ref_26) 2021; 40 Tian (ref_5) 2020; 261 |
| References_xml | – ident: ref_28 doi: 10.3390/en13020375 – volume: 203 start-page: 117852 year: 2020 ident: ref_20 article-title: State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression publication-title: Energy doi: 10.1016/j.energy.2020.117852 – volume: 594 start-page: 125861 year: 2021 ident: ref_33 article-title: Regional hydrological frequency analysis at ungauged sites with random forest regression publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125861 – volume: 156 start-page: 111477 year: 2024 ident: ref_35 article-title: Adaptive threshold optimisation for online feature selection using dynamic particle swarm optimisation in determining feature relevancy and redundancy publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.111477 – volume: 42 start-page: 103077 year: 2021 ident: ref_10 article-title: Effective and practical parameters of electrochemical Li-ion battery models for degradation diagnosis publication-title: J. Energy Storage doi: 10.1016/j.est.2021.103077 – volume: 98 start-page: 113172 year: 2024 ident: ref_14 article-title: Data driven health and life prognosis management of supercapacitor and lithium-ion battery storage systems: Developments, implementation aspects, limitations, and future directions publication-title: J. Energy Storage doi: 10.1016/j.est.2024.113172 – volume: 314 start-page: 128015 year: 2021 ident: ref_4 article-title: Review on state-of-health of lithium-ion batteries: Characterizations, estimations and applications publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.128015 – volume: 310 start-page: 118588 year: 2022 ident: ref_7 article-title: Current sensor fault diagnosis method based on an improved equivalent circuit battery model publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.118588 – volume: 35 start-page: 11855 year: 2020 ident: ref_13 article-title: Multiobjective Optimization of Data-Driven Model for Lithium-Ion Battery SOH Estimation With Short-Term Feature publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2020.2987383 – volume: 83 start-page: 110678 year: 2024 ident: ref_17 article-title: SOH estimation for lithium-ion batteries: An improved GPR optimization method based on the developed feature extraction publication-title: J. Energy Storage doi: 10.1016/j.est.2024.110678 – volume: 17 start-page: 100254 year: 2023 ident: ref_2 article-title: Challenges and outlook for lithium-ion battery fault diagnosis methods from the laboratory to real world applications publication-title: eTransportation doi: 10.1016/j.etran.2023.100254 – volume: 506 start-page: 230162 year: 2021 ident: ref_25 article-title: State-of-health estimation of batteries in an energy storage system based on the actual operating parameters publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.230162 – volume: 53 start-page: 105046 year: 2022 ident: ref_27 article-title: State-of-health estimation of lithium-ion batteries based on improved long short-term memory algorithm publication-title: J. Energy Storage doi: 10.1016/j.est.2022.105046 – volume: 37 start-page: 1489 year: 2022 ident: ref_29 article-title: Optimized Multi-Source Fusion Based State of Health Estimation for Lithium-Ion Battery in Fast Charge Applications publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2021.3137423 – volume: 11 start-page: 7559 year: 2024 ident: ref_9 article-title: Estimating SoC, SoH, or RuL of Rechargeable Batteries via IoT: A Review publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2023.3342367 – volume: 40 start-page: 102743 year: 2021 ident: ref_26 article-title: Aging performance characterization and state-of-health assessment of retired lithium-ion battery modules publication-title: J. Energy Storage doi: 10.1016/j.est.2021.102743 – volume: 232 start-page: 121023 year: 2021 ident: ref_12 article-title: Complementary cooperative SOC/capacity estimator based on the discrete variational derivative combined with the DEKF for electric power applications publication-title: Energy doi: 10.1016/j.energy.2021.121023 – ident: ref_16 doi: 10.3390/app8060925 – volume: 295 start-page: 131085 year: 2024 ident: ref_31 article-title: State of health prediction of lithium-ion batteries under early partial data based on IWOA-BiLSTM with single feature publication-title: Energy doi: 10.1016/j.energy.2024.131085 – ident: ref_34 doi: 10.3390/e23091208 – volume: 218 start-page: 119530 year: 2021 ident: ref_23 article-title: A novel data-driven method for predicting the circulating capacity of lithium-ion battery under random variable current publication-title: Energy doi: 10.1016/j.energy.2020.119530 – volume: 1 start-page: 100001 year: 2022 ident: ref_15 article-title: A novel data-driven method for mining battery open-circuit voltage characterization publication-title: Green Energy Intell. Transp. doi: 10.1016/j.geits.2022.100001 – volume: 184 start-page: 01068 year: 2020 ident: ref_18 article-title: ANN based Battery Health Monitoring—A Comprehensive Review publication-title: E3S Web Conf. doi: 10.1051/e3sconf/202018401068 – volume: 2591 start-page: 012038 year: 2023 ident: ref_32 article-title: Remaining useful life prediction of lithium-ion batteries based on the Support Vector Regression Optimized and Enhanced Whale Optimization Algorithm publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/2591/1/012038 – volume: 69 start-page: 2684 year: 2022 ident: ref_11 article-title: Co-Estimation of State-of-Charge and State-of- Health for Lithium-Ion Batteries Using an Enhanced Electrochemical Model publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2021.3066946 – volume: 261 start-page: 125234 year: 2022 ident: ref_24 article-title: SOH prediction of lithium battery based on IC curve feature and BP neural network publication-title: Energy doi: 10.1016/j.energy.2022.125234 – volume: 261 start-page: 120813 year: 2020 ident: ref_5 article-title: A review of the state of health for lithium-ion batteries: Research status and suggestions publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120813 – volume: 95 start-page: 51 year: 2016 ident: ref_30 article-title: The Whale Optimization Algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 68 start-page: 8583 year: 2019 ident: ref_21 article-title: Online State-of-Health Estimation for Li-Ion Battery Using Partial Charging Segment Based on Support Vector Machine publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2927120 – volume: 239 start-page: 121986 year: 2022 ident: ref_19 article-title: State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression publication-title: Energy doi: 10.1016/j.energy.2021.121986 – volume: 369 start-page: 123542 year: 2024 ident: ref_8 article-title: State of Health (SoH) estimation methods for second life lithium-ion battery—Review and challenges publication-title: Appl. Energy doi: 10.1016/j.apenergy.2024.123542 – volume: 223 start-page: 120114 year: 2021 ident: ref_22 article-title: Voltage-temperature health feature extraction to improve prognostics and health management of lithium-ion batteries publication-title: Energy doi: 10.1016/j.energy.2021.120114 – volume: 33 start-page: 102122 year: 2021 ident: ref_3 article-title: On the feature selection for battery state of health estimation based on charging–discharging profiles publication-title: J. Energy Storage doi: 10.1016/j.est.2020.102122 – volume: 349 start-page: 121674 year: 2023 ident: ref_1 article-title: Evaluation of the safety standards system of power batteries for electric vehicles in China publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.121674 – volume: 68 start-page: 107734 year: 2023 ident: ref_6 article-title: A hybrid neural network model with attention mechanism for state of health estimation of lithium-ion batteries publication-title: J. Energy Storage doi: 10.1016/j.est.2023.107734 |
| SSID | ssj0000913856 |
| Score | 2.3180625 |
| Snippet | Evaluating the state of health (SOH) of lithium-ion batteries (LIBs) is essential for their safe deployment and the advancement of electric vehicles (EVs).... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 158 |
| SubjectTerms | Accuracy Aging Algorithms Automation Batteries Cetacea Datasets Electric vehicles Feature extraction Feature selection Gaussian process Health Lithium Lithium-ion batteries Machine learning Mathematical optimization Methods Neural networks Noise threshold Optimization Optimization algorithms Parameter identification Random noise Regression models Root-mean-square errors Support vector machines Technology application Temperature |
| Title | State of Health Estimation for Lithium-Ion Batteries Using Enhanced Whale Optimization Algorithm for Feature Selection and Support Vector Regression Model |
| URI | https://www.proquest.com/docview/3159547693 |
| Volume | 13 |
| WOSCitedRecordID | wos001403818900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: M7P dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: KB. dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMcgBYQC2VlCSTowTTN0z6hLUpFBSxRebWnKHbs7kq72WU3y5Efwq9lxvH2IVVcuESKbEWOPB5_Y898H8DLTFkMMrTiurKSxzoLuDBRxE1iK0QQJkoT7cQmsuFQnJ7Kwh-4LX1a5donOkddzzSdke9HuO8mMSn3vZ3_5KQaRberXkJjA7aIJSF0qXvFxRkLcV6KJO1YSSOM7vfnC_TZaIWk8H5lH7rZG7st5uj-_w7uAdzz4JINOmvYhlum2YG7VygHd2DbL-Yle-0Zp_cewh8HOdnMsq4qieW48LuaRoagln0ct6PxasqP8b0j5MT4mrlsA5Y3I5dEwH6M8O_YZ3RBU1_byQaTcxxlO5q6rxDaXC0M--Kkd6i9ampGsqIYArDv7vqAnZjzLjO3YSTTNnkE347yr-_ecy_awDXuhS2PapVUUggltUkrW2UyNBphfI1I78BGscpsapRMAoPAItAyTrSyicG4Ja2CQMnoMWw2s8Y8Aabq4EAIK0WCTiPTVNJrlLUmrlIEpSbswd56CkvtGc1JWGNSYmRD011eTncPXlz0nXc8Hjf2ekWWUNLixi_pytco4HiIJqsciFCKCF1c0IPdaz1xUerrzWtDKb1TWJaXVvL0383P4E5IMsPupGcXNtvFyjyH2_pXO14u-rB1mA-Lkz5sfDh803cWT8_fObYUx5-Ks78zzw1x |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL2aOiTgAdgAURhgCRDsIVqWxIn9gFAFnVatKxUMGE8hduy1UpuWNgXxV_gR_EbudZJ9SBNve-AxsmVFzsm51x_3HIDnibK4yNDK05mVXqQT3xMmDD3DbYYZhAljrp3ZRDIYiONjOVyDP00tDF2rbDjREXU-07RHvhNi3OUROfe9mX_3yDWKTlcbC40KFgfm109csi1f997h930RBHvdo7f7Xu0q4Gkk69ILc8UzKYSS2sSZzRIZGI15Zo6pyK4NI5XY2CjJfYORz9cy4lpZbjCxjjPfVyS-hJS_HhHYW7A-7B0Ov57u6pDKpuBxpYMahtLfmS8wSiDuyVP-XOS7nP9dUNu7_b9Nxx24VafPrFPhfQPWTLEJN8-JKm7CRk1XS_aq1tTevgu_XVLNZpZVdVesi9RWVW0yTNtZf1yOxqup18PnSnJ0jAO4-xSsW4zcNQn2ZYSzyd4jyU7r6lXWmZzgrJSjqRuF8unVwrCPzlyI2rMiZ2Sciosc9tkdkLAP5qS6e1wwMqKb3INPVzJj96FVzArzAJjK_V0hrBQcaTHRVLRslLUmymJMu03Qhu0GMqmuNdvJOmSS4tqN4JWewasNz077ziulkkt7vSTkpURfOJLO6ioMfB8SAks7IpAiRBL327B1oSfSjr7Y3AAzrWlvmZ6h8uG_m5_C9f2jw37a7w0OHsGNgEyV3b7WFrTKxco8hmv6RzleLp7UfxiDb1eN4r-qY2b8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB5VKUJwAFpABApYAgQ9rLLdp31AKKKJiFpCxLOclrXXbiIlm5BsQPwVfgq_jhmvtw-p4tYDx5Uta-Udf_ONd2Y-gKepNBhkKOmp3AgvUqnvcR2Gno5NjgxCh0msrNhEOhzyoyMx2oA_TS0MpVU2mGiBupgruiPvhOh344iU-zrGpUWM9vuvFt89UpCiP62NnEZtIgf6108M31YvB_v4rZ8FQb_38fUbzykMeAqBu_LCQsa54FwKpZPc5KkItELOWSAt2TNhJFOTaCliX6MX9JWIYiVNrJFkJ7nvS2rEhPC_iZQ8ClqwORq8HX09ueGhjps8TuqeqGEo_M5iiR4DzwDpy5_xghf7Auvg-jf_5625BTccrWbd-hxswYYut-H6mWaL27DlYGzFXrhe27u34bcl22xuWF2PxXoIeXU1J0M6zw4n1XiynnkDfK5bkU5wAZtnwXrl2KZPsC9j3Fn2DsF35qpaWXd6jLtSjWd2FeLZ66VmH6zoEI3nZcFIUBWDH_bZ_jhh7_VxnZNcMhKom96BT5eyY3ehVc5LfQ-YLPw9zo3gMcJlqqiYWUtjdJQnSMd10Ibdxnwy5Xq5k6TINMOYjkwtOzW1Njw5mbuoO5hcOOs5WWFGsIYrqdxVZ-D7UIOwrMsDwUMEd78NO-dmIhyp88ONkWYODlfZqYXe__fwY7iKppsdDoYHD-BaQFrL9rprB1rVcq0fwhX1o5qslo_cYWPw7bKN-C-JkW-8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State+of+Health+Estimation+for+Lithium-Ion+Batteries+Using+Enhanced+Whale+Optimization+Algorithm+for+Feature+Selection+and+Support+Vector+Regression+Model&rft.jtitle=Processes&rft.au=Wang%2C+Rui&rft.au=Xu%2C+Xikang&rft.au=Zhou%2C+Qi&rft.au=Zhang%2C+Jingtao&rft.date=2025-01-01&rft.pub=MDPI+AG&rft.issn=2227-9717&rft.eissn=2227-9717&rft.volume=13&rft.issue=1&rft_id=info:doi/10.3390%2Fpr13010158&rft.externalDocID=A829838700 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon |