State of Health Estimation for Lithium-Ion Batteries Using Enhanced Whale Optimization Algorithm for Feature Selection and Support Vector Regression Model

Evaluating the state of health (SOH) of lithium-ion batteries (LIBs) is essential for their safe deployment and the advancement of electric vehicles (EVs). Existing machine learning methods face challenges in the automation and effectiveness of feature extraction, necessitating improved computationa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes Jg. 13; H. 1; S. 158
Hauptverfasser: Wang, Rui, Xu, Xikang, Zhou, Qi, Zhang, Jingtao, Wang, Jing, Ye, Jilei, Wu, Yuping
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.01.2025
Schlagworte:
ISSN:2227-9717, 2227-9717
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Evaluating the state of health (SOH) of lithium-ion batteries (LIBs) is essential for their safe deployment and the advancement of electric vehicles (EVs). Existing machine learning methods face challenges in the automation and effectiveness of feature extraction, necessitating improved computational efficiency. To address this issue, we propose a collaborative approach integrating an enhanced whale optimization algorithm (EWOA) for feature selection and a lightweight support vector regression (SVR) model for SOH estimation. Key features are extracted from charging voltage, current, temperature, and incremental capacity (IC) curves. The EWOA selects features by initially assigning weights based on importance scores from a random forest model. Gaussian noise increases population diversity, while a dynamic threshold method optimizes the selection process, preventing local optima. The selected features construct the SVR model for SOH estimation. This method is validated using four aging datasets from the NASA database, conducting 50 prediction experiments per battery. The results indicate optimal average absolute error (MAE) and root mean square error (RMSE) within 0.41% and 0.71%, respectively, with average errors below 1% and 1.3%. This method enhances automation and accuracy in feature selection while ensuring efficient SOH estimation, providing valuable insights for practical LIB applications.
AbstractList Evaluating the state of health (SOH) of lithium-ion batteries (LIBs) is essential for their safe deployment and the advancement of electric vehicles (EVs). Existing machine learning methods face challenges in the automation and effectiveness of feature extraction, necessitating improved computational efficiency. To address this issue, we propose a collaborative approach integrating an enhanced whale optimization algorithm (EWOA) for feature selection and a lightweight support vector regression (SVR) model for SOH estimation. Key features are extracted from charging voltage, current, temperature, and incremental capacity (IC) curves. The EWOA selects features by initially assigning weights based on importance scores from a random forest model. Gaussian noise increases population diversity, while a dynamic threshold method optimizes the selection process, preventing local optima. The selected features construct the SVR model for SOH estimation. This method is validated using four aging datasets from the NASA database, conducting 50 prediction experiments per battery. The results indicate optimal average absolute error (MAE) and root mean square error (RMSE) within 0.41% and 0.71%, respectively, with average errors below 1% and 1.3%. This method enhances automation and accuracy in feature selection while ensuring efficient SOH estimation, providing valuable insights for practical LIB applications.
Audience Academic
Author Zhou, Qi
Ye, Jilei
Xu, Xikang
Wu, Yuping
Wang, Jing
Wang, Rui
Zhang, Jingtao
Author_xml – sequence: 1
  givenname: Rui
  surname: Wang
  fullname: Wang, Rui
– sequence: 2
  givenname: Xikang
  surname: Xu
  fullname: Xu, Xikang
– sequence: 3
  givenname: Qi
  surname: Zhou
  fullname: Zhou, Qi
– sequence: 4
  givenname: Jingtao
  surname: Zhang
  fullname: Zhang, Jingtao
– sequence: 5
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
– sequence: 6
  givenname: Jilei
  surname: Ye
  fullname: Ye, Jilei
– sequence: 7
  givenname: Yuping
  orcidid: 0000-0002-0833-1205
  surname: Wu
  fullname: Wu, Yuping
BookMark eNptkc9u1DAQxi1UJErphSewxA0pxX_ixD4u1ZZWWlSJpXCMHGe86yqxg-0cyqPwtLi7SAVUz8Geme83lv29Ric-eEDoLSUXnCvyYY6UE0qokC_QKWOsrVRL25O_zq_QeUr3pCxFuRTNKfq1zToDDhZfgx7zHq9TdpPOLnhsQ8Qbl_dumaqbkn_UOUN0kPBdcn6H136vvYEBf9_rEfDtXEj388iuxl2IhZ0OU65A5yUC3sII5tDXfsDbZZ5DzPhbqRXRF9hFSOmx-zkMML5BL60eE5z_2c_Q3dX66-V1tbn9dHO52lSGNyxXfOiFVlL2ykCjrW4VAyMlG7hg1PK6b20DvRIEWF0To2pheiugaUWjCekVP0PvjnPnGH4skHJ3H5boy5Udp0KJum0Uf1Ltyls7523IUZvJJdOtJFOSy5aQorp4RlVigMmZYpd1pf4PQI6AiSGlCLYzLh--sIBu7CjpHr3tnrwtyPv_kDkWy-LDc-LfW-CnBA
CitedBy_id crossref_primary_10_1016_j_energy_2025_138351
crossref_primary_10_1016_j_apenergy_2025_126688
crossref_primary_10_3390_physchem5010012
Cites_doi 10.3390/en13020375
10.1016/j.energy.2020.117852
10.1016/j.jhydrol.2020.125861
10.1016/j.asoc.2024.111477
10.1016/j.est.2021.103077
10.1016/j.est.2024.113172
10.1016/j.jclepro.2021.128015
10.1016/j.apenergy.2022.118588
10.1109/TPEL.2020.2987383
10.1016/j.est.2024.110678
10.1016/j.etran.2023.100254
10.1016/j.jpowsour.2021.230162
10.1016/j.est.2022.105046
10.1109/TEC.2021.3137423
10.1109/JIOT.2023.3342367
10.1016/j.est.2021.102743
10.1016/j.energy.2021.121023
10.3390/app8060925
10.1016/j.energy.2024.131085
10.3390/e23091208
10.1016/j.energy.2020.119530
10.1016/j.geits.2022.100001
10.1051/e3sconf/202018401068
10.1088/1742-6596/2591/1/012038
10.1109/TIE.2021.3066946
10.1016/j.energy.2022.125234
10.1016/j.jclepro.2020.120813
10.1016/j.advengsoft.2016.01.008
10.1109/TVT.2019.2927120
10.1016/j.energy.2021.121986
10.1016/j.apenergy.2024.123542
10.1016/j.energy.2021.120114
10.1016/j.est.2020.102122
10.1016/j.apenergy.2023.121674
10.1016/j.est.2023.107734
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
JG9
KB.
LK8
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/pr13010158
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
Materials Science Database
Biological Sciences
Biological Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2227-9717
ExternalDocumentID A829838700
10_3390_pr13010158
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ACPRK
ADBBV
ADMLS
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
HCIFZ
IAO
IGS
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RNS
7SR
8FD
ABUWG
AZQEC
DWQXO
GNUQQ
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c362t-3db5a988b9ce6afa792ec882d3521f34b7f6eb950e2440c945cbf5e6756a00b93
IEDL.DBID M7P
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001403818900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-9717
IngestDate Sat Aug 23 14:14:14 EDT 2025
Tue Nov 11 10:52:03 EST 2025
Tue Nov 04 18:12:42 EST 2025
Tue Nov 18 21:49:18 EST 2025
Sat Nov 29 07:12:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-3db5a988b9ce6afa792ec882d3521f34b7f6eb950e2440c945cbf5e6756a00b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0833-1205
OpenAccessLink https://www.proquest.com/docview/3159547693?pq-origsite=%requestingapplication%
PQID 3159547693
PQPubID 2032344
ParticipantIDs proquest_journals_3159547693
gale_infotracmisc_A829838700
gale_infotracacademiconefile_A829838700
crossref_citationtrail_10_3390_pr13010158
crossref_primary_10_3390_pr13010158
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Processes
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhang (ref_25) 2021; 506
Zhang (ref_19) 2022; 239
Yu (ref_1) 2023; 349
Bokstaller (ref_9) 2024; 11
Yu (ref_7) 2022; 310
Kong (ref_22) 2021; 223
Desai (ref_33) 2021; 594
ref_34
Chen (ref_15) 2022; 1
Yang (ref_4) 2021; 314
Vignesh (ref_8) 2024; 369
Mirjalili (ref_30) 2016; 95
Li (ref_3) 2021; 33
ref_16
Feng (ref_21) 2019; 68
Kim (ref_10) 2021; 42
Cai (ref_13) 2020; 35
Rahman (ref_14) 2024; 98
Wu (ref_29) 2022; 37
Xu (ref_23) 2021; 218
Wen (ref_24) 2022; 261
Wu (ref_32) 2023; 2591
Zaman (ref_35) 2024; 156
Yu (ref_2) 2023; 17
Tang (ref_6) 2023; 68
He (ref_17) 2024; 83
Park (ref_12) 2021; 232
Li (ref_20) 2020; 203
Tummala (ref_18) 2020; 184
Gao (ref_11) 2022; 69
ref_28
Ma (ref_31) 2024; 295
Gong (ref_27) 2022; 53
Zhang (ref_26) 2021; 40
Tian (ref_5) 2020; 261
References_xml – ident: ref_28
  doi: 10.3390/en13020375
– volume: 203
  start-page: 117852
  year: 2020
  ident: ref_20
  article-title: State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117852
– volume: 594
  start-page: 125861
  year: 2021
  ident: ref_33
  article-title: Regional hydrological frequency analysis at ungauged sites with random forest regression
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125861
– volume: 156
  start-page: 111477
  year: 2024
  ident: ref_35
  article-title: Adaptive threshold optimisation for online feature selection using dynamic particle swarm optimisation in determining feature relevancy and redundancy
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.111477
– volume: 42
  start-page: 103077
  year: 2021
  ident: ref_10
  article-title: Effective and practical parameters of electrochemical Li-ion battery models for degradation diagnosis
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.103077
– volume: 98
  start-page: 113172
  year: 2024
  ident: ref_14
  article-title: Data driven health and life prognosis management of supercapacitor and lithium-ion battery storage systems: Developments, implementation aspects, limitations, and future directions
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.113172
– volume: 314
  start-page: 128015
  year: 2021
  ident: ref_4
  article-title: Review on state-of-health of lithium-ion batteries: Characterizations, estimations and applications
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.128015
– volume: 310
  start-page: 118588
  year: 2022
  ident: ref_7
  article-title: Current sensor fault diagnosis method based on an improved equivalent circuit battery model
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.118588
– volume: 35
  start-page: 11855
  year: 2020
  ident: ref_13
  article-title: Multiobjective Optimization of Data-Driven Model for Lithium-Ion Battery SOH Estimation With Short-Term Feature
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2020.2987383
– volume: 83
  start-page: 110678
  year: 2024
  ident: ref_17
  article-title: SOH estimation for lithium-ion batteries: An improved GPR optimization method based on the developed feature extraction
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.110678
– volume: 17
  start-page: 100254
  year: 2023
  ident: ref_2
  article-title: Challenges and outlook for lithium-ion battery fault diagnosis methods from the laboratory to real world applications
  publication-title: eTransportation
  doi: 10.1016/j.etran.2023.100254
– volume: 506
  start-page: 230162
  year: 2021
  ident: ref_25
  article-title: State-of-health estimation of batteries in an energy storage system based on the actual operating parameters
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230162
– volume: 53
  start-page: 105046
  year: 2022
  ident: ref_27
  article-title: State-of-health estimation of lithium-ion batteries based on improved long short-term memory algorithm
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.105046
– volume: 37
  start-page: 1489
  year: 2022
  ident: ref_29
  article-title: Optimized Multi-Source Fusion Based State of Health Estimation for Lithium-Ion Battery in Fast Charge Applications
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2021.3137423
– volume: 11
  start-page: 7559
  year: 2024
  ident: ref_9
  article-title: Estimating SoC, SoH, or RuL of Rechargeable Batteries via IoT: A Review
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2023.3342367
– volume: 40
  start-page: 102743
  year: 2021
  ident: ref_26
  article-title: Aging performance characterization and state-of-health assessment of retired lithium-ion battery modules
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.102743
– volume: 232
  start-page: 121023
  year: 2021
  ident: ref_12
  article-title: Complementary cooperative SOC/capacity estimator based on the discrete variational derivative combined with the DEKF for electric power applications
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121023
– ident: ref_16
  doi: 10.3390/app8060925
– volume: 295
  start-page: 131085
  year: 2024
  ident: ref_31
  article-title: State of health prediction of lithium-ion batteries under early partial data based on IWOA-BiLSTM with single feature
  publication-title: Energy
  doi: 10.1016/j.energy.2024.131085
– ident: ref_34
  doi: 10.3390/e23091208
– volume: 218
  start-page: 119530
  year: 2021
  ident: ref_23
  article-title: A novel data-driven method for predicting the circulating capacity of lithium-ion battery under random variable current
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119530
– volume: 1
  start-page: 100001
  year: 2022
  ident: ref_15
  article-title: A novel data-driven method for mining battery open-circuit voltage characterization
  publication-title: Green Energy Intell. Transp.
  doi: 10.1016/j.geits.2022.100001
– volume: 184
  start-page: 01068
  year: 2020
  ident: ref_18
  article-title: ANN based Battery Health Monitoring—A Comprehensive Review
  publication-title: E3S Web Conf.
  doi: 10.1051/e3sconf/202018401068
– volume: 2591
  start-page: 012038
  year: 2023
  ident: ref_32
  article-title: Remaining useful life prediction of lithium-ion batteries based on the Support Vector Regression Optimized and Enhanced Whale Optimization Algorithm
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/2591/1/012038
– volume: 69
  start-page: 2684
  year: 2022
  ident: ref_11
  article-title: Co-Estimation of State-of-Charge and State-of- Health for Lithium-Ion Batteries Using an Enhanced Electrochemical Model
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2021.3066946
– volume: 261
  start-page: 125234
  year: 2022
  ident: ref_24
  article-title: SOH prediction of lithium battery based on IC curve feature and BP neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125234
– volume: 261
  start-page: 120813
  year: 2020
  ident: ref_5
  article-title: A review of the state of health for lithium-ion batteries: Research status and suggestions
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120813
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_30
  article-title: The Whale Optimization Algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 68
  start-page: 8583
  year: 2019
  ident: ref_21
  article-title: Online State-of-Health Estimation for Li-Ion Battery Using Partial Charging Segment Based on Support Vector Machine
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2927120
– volume: 239
  start-page: 121986
  year: 2022
  ident: ref_19
  article-title: State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121986
– volume: 369
  start-page: 123542
  year: 2024
  ident: ref_8
  article-title: State of Health (SoH) estimation methods for second life lithium-ion battery—Review and challenges
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2024.123542
– volume: 223
  start-page: 120114
  year: 2021
  ident: ref_22
  article-title: Voltage-temperature health feature extraction to improve prognostics and health management of lithium-ion batteries
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120114
– volume: 33
  start-page: 102122
  year: 2021
  ident: ref_3
  article-title: On the feature selection for battery state of health estimation based on charging–discharging profiles
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.102122
– volume: 349
  start-page: 121674
  year: 2023
  ident: ref_1
  article-title: Evaluation of the safety standards system of power batteries for electric vehicles in China
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.121674
– volume: 68
  start-page: 107734
  year: 2023
  ident: ref_6
  article-title: A hybrid neural network model with attention mechanism for state of health estimation of lithium-ion batteries
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.107734
SSID ssj0000913856
Score 2.3180625
Snippet Evaluating the state of health (SOH) of lithium-ion batteries (LIBs) is essential for their safe deployment and the advancement of electric vehicles (EVs)....
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 158
SubjectTerms Accuracy
Aging
Algorithms
Automation
Batteries
Cetacea
Datasets
Electric vehicles
Feature extraction
Feature selection
Gaussian process
Health
Lithium
Lithium-ion batteries
Machine learning
Mathematical optimization
Methods
Neural networks
Noise threshold
Optimization
Optimization algorithms
Parameter identification
Random noise
Regression models
Root-mean-square errors
Support vector machines
Technology application
Temperature
Title State of Health Estimation for Lithium-Ion Batteries Using Enhanced Whale Optimization Algorithm for Feature Selection and Support Vector Regression Model
URI https://www.proquest.com/docview/3159547693
Volume 13
WOSCitedRecordID wos001403818900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: M7P
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: KB.
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMcgBYQC2VlCSTowTTN0z6hLUpFBSxRebWnKHbs7kq72WU3y5Efwq9lxvH2IVVcuESKbEWOPB5_Y898H8DLTFkMMrTiurKSxzoLuDBRxE1iK0QQJkoT7cQmsuFQnJ7Kwh-4LX1a5donOkddzzSdke9HuO8mMSn3vZ3_5KQaRberXkJjA7aIJSF0qXvFxRkLcV6KJO1YSSOM7vfnC_TZaIWk8H5lH7rZG7st5uj-_w7uAdzz4JINOmvYhlum2YG7VygHd2DbL-Yle-0Zp_cewh8HOdnMsq4qieW48LuaRoagln0ct6PxasqP8b0j5MT4mrlsA5Y3I5dEwH6M8O_YZ3RBU1_byQaTcxxlO5q6rxDaXC0M--Kkd6i9ampGsqIYArDv7vqAnZjzLjO3YSTTNnkE347yr-_ecy_awDXuhS2PapVUUggltUkrW2UyNBphfI1I78BGscpsapRMAoPAItAyTrSyicG4Ja2CQMnoMWw2s8Y8Aabq4EAIK0WCTiPTVNJrlLUmrlIEpSbswd56CkvtGc1JWGNSYmRD011eTncPXlz0nXc8Hjf2ekWWUNLixi_pytco4HiIJqsciFCKCF1c0IPdaz1xUerrzWtDKb1TWJaXVvL0383P4E5IMsPupGcXNtvFyjyH2_pXO14u-rB1mA-Lkz5sfDh803cWT8_fObYUx5-Ks78zzw1x
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL2aOiTgAdgAURhgCRDsIVqWxIn9gFAFnVatKxUMGE8hduy1UpuWNgXxV_gR_EbudZJ9SBNve-AxsmVFzsm51x_3HIDnibK4yNDK05mVXqQT3xMmDD3DbYYZhAljrp3ZRDIYiONjOVyDP00tDF2rbDjREXU-07RHvhNi3OUROfe9mX_3yDWKTlcbC40KFgfm109csi1f997h930RBHvdo7f7Xu0q4Gkk69ILc8UzKYSS2sSZzRIZGI15Zo6pyK4NI5XY2CjJfYORz9cy4lpZbjCxjjPfVyS-hJS_HhHYW7A-7B0Ov57u6pDKpuBxpYMahtLfmS8wSiDuyVP-XOS7nP9dUNu7_b9Nxx24VafPrFPhfQPWTLEJN8-JKm7CRk1XS_aq1tTevgu_XVLNZpZVdVesi9RWVW0yTNtZf1yOxqup18PnSnJ0jAO4-xSsW4zcNQn2ZYSzyd4jyU7r6lXWmZzgrJSjqRuF8unVwrCPzlyI2rMiZ2Sciosc9tkdkLAP5qS6e1wwMqKb3INPVzJj96FVzArzAJjK_V0hrBQcaTHRVLRslLUmymJMu03Qhu0GMqmuNdvJOmSS4tqN4JWewasNz077ziulkkt7vSTkpURfOJLO6ioMfB8SAks7IpAiRBL327B1oSfSjr7Y3AAzrWlvmZ6h8uG_m5_C9f2jw37a7w0OHsGNgEyV3b7WFrTKxco8hmv6RzleLp7UfxiDb1eN4r-qY2b8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB5VKUJwAFpABApYAgQ9rLLdp31AKKKJiFpCxLOclrXXbiIlm5BsQPwVfgq_jhmvtw-p4tYDx5Uta-Udf_ONd2Y-gKepNBhkKOmp3AgvUqnvcR2Gno5NjgxCh0msrNhEOhzyoyMx2oA_TS0MpVU2mGiBupgruiPvhOh344iU-zrGpUWM9vuvFt89UpCiP62NnEZtIgf6108M31YvB_v4rZ8FQb_38fUbzykMeAqBu_LCQsa54FwKpZPc5KkItELOWSAt2TNhJFOTaCliX6MX9JWIYiVNrJFkJ7nvS2rEhPC_iZQ8ClqwORq8HX09ueGhjps8TuqeqGEo_M5iiR4DzwDpy5_xghf7Auvg-jf_5625BTccrWbd-hxswYYut-H6mWaL27DlYGzFXrhe27u34bcl22xuWF2PxXoIeXU1J0M6zw4n1XiynnkDfK5bkU5wAZtnwXrl2KZPsC9j3Fn2DsF35qpaWXd6jLtSjWd2FeLZ66VmH6zoEI3nZcFIUBWDH_bZ_jhh7_VxnZNcMhKom96BT5eyY3ehVc5LfQ-YLPw9zo3gMcJlqqiYWUtjdJQnSMd10Ibdxnwy5Xq5k6TINMOYjkwtOzW1Njw5mbuoO5hcOOs5WWFGsIYrqdxVZ-D7UIOwrMsDwUMEd78NO-dmIhyp88ONkWYODlfZqYXe__fwY7iKppsdDoYHD-BaQFrL9rprB1rVcq0fwhX1o5qslo_cYWPw7bKN-C-JkW-8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State+of+Health+Estimation+for+Lithium-Ion+Batteries+Using+Enhanced+Whale+Optimization+Algorithm+for+Feature+Selection+and+Support+Vector+Regression+Model&rft.jtitle=Processes&rft.au=Wang%2C+Rui&rft.au=Xu%2C+Xikang&rft.au=Zhou%2C+Qi&rft.au=Zhang%2C+Jingtao&rft.date=2025-01-01&rft.pub=MDPI+AG&rft.issn=2227-9717&rft.eissn=2227-9717&rft.volume=13&rft.issue=1&rft_id=info:doi/10.3390%2Fpr13010158&rft.externalDocID=A829838700
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon