Necessary conditions for STDP-based pattern recognition learning in a memristive spiking neural network

This work is aimed to study experimental and theoretical approaches for searching effective local training rules for unsupervised pattern recognition by high-performance memristor-based Spiking Neural Networks (SNNs). First, the possibility of weight change using Spike-Timing-Dependent Plasticity (S...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural networks Ročník 134; s. 64 - 75
Hlavní autoři: Demin, V.A., Nekhaev, D.V., Surazhevsky, I.A., Nikiruy, K.E., Emelyanov, A.V., Nikolaev, S.N., Rylkov, V.V., Kovalchuk, M.V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Ltd 01.02.2021
Témata:
ISSN:0893-6080, 1879-2782, 1879-2782
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This work is aimed to study experimental and theoretical approaches for searching effective local training rules for unsupervised pattern recognition by high-performance memristor-based Spiking Neural Networks (SNNs). First, the possibility of weight change using Spike-Timing-Dependent Plasticity (STDP) is demonstrated with a pair of hardware analog neurons connected through a (CoFeB)x(LiNbO3)1−x nanocomposite memristor. Next, the learning convergence to a solution of binary clusterization task is analyzed in a wide range of memristive STDP parameters for a single-layer fully connected feedforward SNN. The memristive STDP behavior supplying convergence in this simple task is shown also to provide it in the handwritten digit recognition domain by the more complex SNN architecture with a Winner-Take-All competition between neurons. To investigate basic conditions necessary for training convergence, an original probabilistic generative model of a rate-based single-layer network with independent or competing neurons is built and thoroughly analyzed. The main result is a statement of “correlation growth-anticorrelation decay” principle which prompts near-optimal policy to configure model parameters. This principle is in line with requiring the binary clusterization convergence which can be defined as the necessary condition for optimal learning and used as the simple benchmark for tuning parameters of various neural network realizations with population-rate information coding. At last, a heuristic algorithm is described to experimentally find out the convergence conditions in a memristive SNN, including robustness to a device variability. Due to the generality of the proposed approach, it can be applied to a wide range of memristors and neurons of software- or hardware-based rate-coding single-layer SNNs when searching for local rules that ensure their unsupervised learning convergence in a pattern recognition task domain. •Supporting correlations in activities of neurons is a near-optimal learning policy.•Binary clusterization can be a benchmark for tuning parameters of a rate-coding SNN.•Shaping memristive STDP window for binary clusterization helps in more complex tasks.•Nanocomposite LiNbO3-based memristors are suitable for always-on learning SNNs.
AbstractList This work is aimed to study experimental and theoretical approaches for searching effective local training rules for unsupervised pattern recognition by high-performance memristor-based Spiking Neural Networks (SNNs). First, the possibility of weight change using Spike-Timing-Dependent Plasticity (STDP) is demonstrated with a pair of hardware analog neurons connected through a (CoFeB)x(LiNbO3)1-x nanocomposite memristor. Next, the learning convergence to a solution of binary clusterization task is analyzed in a wide range of memristive STDP parameters for a single-layer fully connected feedforward SNN. The memristive STDP behavior supplying convergence in this simple task is shown also to provide it in the handwritten digit recognition domain by the more complex SNN architecture with a Winner-Take-All competition between neurons. To investigate basic conditions necessary for training convergence, an original probabilistic generative model of a rate-based single-layer network with independent or competing neurons is built and thoroughly analyzed. The main result is a statement of "correlation growth-anticorrelation decay" principle which prompts near-optimal policy to configure model parameters. This principle is in line with requiring the binary clusterization convergence which can be defined as the necessary condition for optimal learning and used as the simple benchmark for tuning parameters of various neural network realizations with population-rate information coding. At last, a heuristic algorithm is described to experimentally find out the convergence conditions in a memristive SNN, including robustness to a device variability. Due to the generality of the proposed approach, it can be applied to a wide range of memristors and neurons of software- or hardware-based rate-coding single-layer SNNs when searching for local rules that ensure their unsupervised learning convergence in a pattern recognition task domain.This work is aimed to study experimental and theoretical approaches for searching effective local training rules for unsupervised pattern recognition by high-performance memristor-based Spiking Neural Networks (SNNs). First, the possibility of weight change using Spike-Timing-Dependent Plasticity (STDP) is demonstrated with a pair of hardware analog neurons connected through a (CoFeB)x(LiNbO3)1-x nanocomposite memristor. Next, the learning convergence to a solution of binary clusterization task is analyzed in a wide range of memristive STDP parameters for a single-layer fully connected feedforward SNN. The memristive STDP behavior supplying convergence in this simple task is shown also to provide it in the handwritten digit recognition domain by the more complex SNN architecture with a Winner-Take-All competition between neurons. To investigate basic conditions necessary for training convergence, an original probabilistic generative model of a rate-based single-layer network with independent or competing neurons is built and thoroughly analyzed. The main result is a statement of "correlation growth-anticorrelation decay" principle which prompts near-optimal policy to configure model parameters. This principle is in line with requiring the binary clusterization convergence which can be defined as the necessary condition for optimal learning and used as the simple benchmark for tuning parameters of various neural network realizations with population-rate information coding. At last, a heuristic algorithm is described to experimentally find out the convergence conditions in a memristive SNN, including robustness to a device variability. Due to the generality of the proposed approach, it can be applied to a wide range of memristors and neurons of software- or hardware-based rate-coding single-layer SNNs when searching for local rules that ensure their unsupervised learning convergence in a pattern recognition task domain.
This work is aimed to study experimental and theoretical approaches for searching effective local training rules for unsupervised pattern recognition by high-performance memristor-based Spiking Neural Networks (SNNs). First, the possibility of weight change using Spike-Timing-Dependent Plasticity (STDP) is demonstrated with a pair of hardware analog neurons connected through a (CoFeB)x(LiNbO3)1−x nanocomposite memristor. Next, the learning convergence to a solution of binary clusterization task is analyzed in a wide range of memristive STDP parameters for a single-layer fully connected feedforward SNN. The memristive STDP behavior supplying convergence in this simple task is shown also to provide it in the handwritten digit recognition domain by the more complex SNN architecture with a Winner-Take-All competition between neurons. To investigate basic conditions necessary for training convergence, an original probabilistic generative model of a rate-based single-layer network with independent or competing neurons is built and thoroughly analyzed. The main result is a statement of “correlation growth-anticorrelation decay” principle which prompts near-optimal policy to configure model parameters. This principle is in line with requiring the binary clusterization convergence which can be defined as the necessary condition for optimal learning and used as the simple benchmark for tuning parameters of various neural network realizations with population-rate information coding. At last, a heuristic algorithm is described to experimentally find out the convergence conditions in a memristive SNN, including robustness to a device variability. Due to the generality of the proposed approach, it can be applied to a wide range of memristors and neurons of software- or hardware-based rate-coding single-layer SNNs when searching for local rules that ensure their unsupervised learning convergence in a pattern recognition task domain. •Supporting correlations in activities of neurons is a near-optimal learning policy.•Binary clusterization can be a benchmark for tuning parameters of a rate-coding SNN.•Shaping memristive STDP window for binary clusterization helps in more complex tasks.•Nanocomposite LiNbO3-based memristors are suitable for always-on learning SNNs.
This work is aimed to study experimental and theoretical approaches for searching effective local training rules for unsupervised pattern recognition by high-performance memristor-based Spiking Neural Networks (SNNs). First, the possibility of weight change using Spike-Timing-Dependent Plasticity (STDP) is demonstrated with a pair of hardware analog neurons connected through a (CoFeB) (LiNbO ) nanocomposite memristor. Next, the learning convergence to a solution of binary clusterization task is analyzed in a wide range of memristive STDP parameters for a single-layer fully connected feedforward SNN. The memristive STDP behavior supplying convergence in this simple task is shown also to provide it in the handwritten digit recognition domain by the more complex SNN architecture with a Winner-Take-All competition between neurons. To investigate basic conditions necessary for training convergence, an original probabilistic generative model of a rate-based single-layer network with independent or competing neurons is built and thoroughly analyzed. The main result is a statement of "correlation growth-anticorrelation decay" principle which prompts near-optimal policy to configure model parameters. This principle is in line with requiring the binary clusterization convergence which can be defined as the necessary condition for optimal learning and used as the simple benchmark for tuning parameters of various neural network realizations with population-rate information coding. At last, a heuristic algorithm is described to experimentally find out the convergence conditions in a memristive SNN, including robustness to a device variability. Due to the generality of the proposed approach, it can be applied to a wide range of memristors and neurons of software- or hardware-based rate-coding single-layer SNNs when searching for local rules that ensure their unsupervised learning convergence in a pattern recognition task domain.
Author Surazhevsky, I.A.
Nikiruy, K.E.
Kovalchuk, M.V.
Emelyanov, A.V.
Rylkov, V.V.
Nikolaev, S.N.
Nekhaev, D.V.
Demin, V.A.
Author_xml – sequence: 1
  givenname: V.A.
  orcidid: 0000-0001-9142-4295
  surname: Demin
  fullname: Demin, V.A.
  email: demin_va@nrcki.ru
  organization: National Research Center “Kurchatov Institute”, Moscow, Russia
– sequence: 2
  givenname: D.V.
  surname: Nekhaev
  fullname: Nekhaev, D.V.
  organization: National Research Center “Kurchatov Institute”, Moscow, Russia
– sequence: 3
  givenname: I.A.
  surname: Surazhevsky
  fullname: Surazhevsky, I.A.
  organization: National Research Center “Kurchatov Institute”, Moscow, Russia
– sequence: 4
  givenname: K.E.
  surname: Nikiruy
  fullname: Nikiruy, K.E.
  organization: National Research Center “Kurchatov Institute”, Moscow, Russia
– sequence: 5
  givenname: A.V.
  surname: Emelyanov
  fullname: Emelyanov, A.V.
  organization: National Research Center “Kurchatov Institute”, Moscow, Russia
– sequence: 6
  givenname: S.N.
  surname: Nikolaev
  fullname: Nikolaev, S.N.
  organization: National Research Center “Kurchatov Institute”, Moscow, Russia
– sequence: 7
  givenname: V.V.
  surname: Rylkov
  fullname: Rylkov, V.V.
  organization: National Research Center “Kurchatov Institute”, Moscow, Russia
– sequence: 8
  givenname: M.V.
  surname: Kovalchuk
  fullname: Kovalchuk, M.V.
  organization: National Research Center “Kurchatov Institute”, Moscow, Russia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33291017$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtrHDEQhEVwiNdO_kEIOuYyaz1mNBofDMHxI2CSgH0XevQsWs9Ia0lr438fbda--JCcGpqviu6qI3QQYgCEPlOypISKk_UywDZAWTLC6oouCeneoQWV_dCwXrIDtCBy4I0gkhyio5zXhBAhW_4BHXLOhmrSL9DqJ1jIWadnbGNwvvgYMh5jwrd33383RmdweKNLgRRwAhtX4S-DJ9Ap-LDCPmCNZ5iTz8U_As4bf7_b1-uSnuooTzHdf0TvRz1l-PQyj9Ht5cXd-XVz8-vqx_m3m8ZywUrDtWAgBkv6kQ2uda4z1DhOwcBIOTEd1dS1lnTSGKqF6TQxUgoBhvRa8GP0de-6SfFhC7mo2WcL06QDxG1WrBVS9DWWrqJfXtCtmcGpTfJzTUG9RlOB0z1gU8w5waisL3r3e0naT4oStetBrdW-B7XrQVGqag9V3L4Rv_r_R3a2l0GN6NFDUtl6CBacr9kX5aL_t8EfrNql_w
CitedBy_id crossref_primary_10_3389_fncom_2022_859874
crossref_primary_10_1016_j_jallcom_2021_160760
crossref_primary_10_3390_biomimetics8030277
crossref_primary_10_1016_j_chaos_2021_110783
crossref_primary_10_3367_UFNe_2021_05_038978
crossref_primary_10_1038_s41598_021_96197_8
crossref_primary_10_1088_1361_6463_ac203c
crossref_primary_10_1007_s12668_025_02024_z
crossref_primary_10_1007_s11063_023_11312_2
crossref_primary_10_3367_UFNr_2021_05_038978
crossref_primary_10_1016_j_jmst_2021_04_071
crossref_primary_10_1134_S2635167623700180
crossref_primary_10_1016_j_neucom_2023_126682
crossref_primary_10_1016_j_apsusc_2021_150563
crossref_primary_10_1016_j_mejo_2024_106449
crossref_primary_10_1016_j_aeue_2022_154424
crossref_primary_10_1007_s11571_025_10234_0
crossref_primary_10_3390_math11183888
crossref_primary_10_3390_s21082730
crossref_primary_10_1016_j_chaos_2024_115959
crossref_primary_10_1134_S2635167621020154
crossref_primary_10_1002_aelm_202200215
crossref_primary_10_1016_j_tsf_2023_139842
crossref_primary_10_1088_1361_6463_ac79de
crossref_primary_10_3390_nano12193455
crossref_primary_10_1016_j_apsusc_2021_152164
crossref_primary_10_1016_j_nanoen_2024_109272
crossref_primary_10_1134_S1063785021070075
crossref_primary_10_1016_j_aei_2024_102408
crossref_primary_10_3103_S0027134924702400
crossref_primary_10_1155_2023_5220356
crossref_primary_10_3390_bdcc7040184
crossref_primary_10_3390_math9243237
crossref_primary_10_1109_TCSI_2025_3553058
crossref_primary_10_1002_pssb_202200150
crossref_primary_10_1109_TNNLS_2023_3335450
crossref_primary_10_1134_S2635167621060057
crossref_primary_10_3103_S0027134924702084
crossref_primary_10_1134_S2635167623601067
crossref_primary_10_1002_pssr_202100471
crossref_primary_10_1134_S1064226923100170
crossref_primary_10_1007_s00521_023_09135_2
crossref_primary_10_1039_D5NR00456J
crossref_primary_10_1109_TCSI_2023_3250699
crossref_primary_10_1016_j_jallcom_2022_164743
crossref_primary_10_1016_j_neunet_2022_05_031
crossref_primary_10_1155_2022_5883324
crossref_primary_10_32604_cmc_2024_051860
crossref_primary_10_1016_j_neunet_2022_11_023
crossref_primary_10_1088_2634_4386_ad5c97
crossref_primary_10_3390_bdcc8030022
crossref_primary_10_1007_s00521_022_07170_z
crossref_primary_10_1134_S263516762106015X
crossref_primary_10_1134_S263516762460250X
crossref_primary_10_1134_S2635167623601535
crossref_primary_10_1002_aisy_202100151
crossref_primary_10_1002_aisy_202200407
crossref_primary_10_3390_s21165587
crossref_primary_10_1109_JEDS_2025_3556675
crossref_primary_10_1134_S2635167621060161
crossref_primary_10_1016_j_neunet_2025_107564
crossref_primary_10_1088_2634_4386_ac734a
crossref_primary_10_64214_jmsn_01_01005
crossref_primary_10_1016_j_chaos_2024_114648
crossref_primary_10_1016_j_flatc_2024_100755
crossref_primary_10_1016_j_neunet_2024_106355
crossref_primary_10_3390_jlpea12010014
crossref_primary_10_3390_biomimetics10080514
crossref_primary_10_1016_j_chaos_2021_111540
crossref_primary_10_1002_acs_3831
crossref_primary_10_1109_TKDE_2022_3178176
crossref_primary_10_3389_fnins_2022_983950
crossref_primary_10_1007_s00521_022_07513_w
crossref_primary_10_1109_ACCESS_2024_3412109
crossref_primary_10_1016_j_chaos_2021_111223
crossref_primary_10_1016_j_neunet_2023_07_031
crossref_primary_10_1134_S2635167621060227
crossref_primary_10_3390_sym15020535
crossref_primary_10_1016_j_neucom_2024_127448
crossref_primary_10_3390_met12081370
crossref_primary_10_1016_j_amc_2025_129715
Cites_doi 10.1073/pnas.1105933108
10.3389/fnins.2013.00002
10.1523/JNEUROSCI.18-24-10464.1998
10.1038/s41928-018-0023-2
10.1134/S1063776118020152
10.1021/acs.nanolett.5b00697
10.1021/acs.nanolett.7b00552
10.1038/s42256-018-0001-4
10.3389/fnins.2020.00088
10.1126/science.1254642
10.3389/fnins.2014.00412
10.1021/nl904092h
10.1162/neco.2007.19.6.1437
10.1109/MM.2018.112130359
10.1109/TNANO.2013.2250995
10.1038/nmat3510
10.3389/fnins.2016.00056
10.1109/TETCI.2018.2829922
10.1088/1361-6528/ab4a6d
10.1103/PhysRevLett.86.364
10.3389/fnins.2016.00482
10.1038/srep21331
10.1021/acsami.7b11191
10.1038/s41928-019-0270-x
10.1038/nature06932
10.1038/s41928-017-0002-z
10.1109/JSSC.2018.2884901
10.1109/JPROC.2014.2304638
10.1016/j.neunet.2019.09.004
10.1038/s41563-019-0291-x
10.1088/1361-6463/aad361
10.1007/s00422-008-0233-1
10.1111/j.2517-6161.1977.tb01600.x
10.1134/S1064226919100103
10.1073/pnas.1815682116
10.1162/089976603321891783
10.1134/S1063785019040278
10.1162/NECO_a_00446
10.1063/1.4963830
10.1109/IJCNN.2017.7966072
10.1146/annurev.neuro.31.060407.125639
10.1523/JNEUROSCI.20-23-08812.2000
10.1134/S106378501805022X
10.1016/j.neunet.2019.10.013
10.1038/s41598-019-47263-9
10.1007/s00521-020-04755-4
10.1063/1.5142089
10.1146/annurev-neuro-072116-031005
10.3389/fninf.2018.00079
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neunet.2020.11.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 75
ExternalDocumentID 33291017
10_1016_j_neunet_2020_11_005
S0893608020303907
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
ID FETCH-LOGICAL-c362t-3a62e69c07f29d4dd5b1bd31ebef130b51a1d4c058bb1a6b5a0b8866eb07a63
ISICitedReferencesCount 97
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000603296800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0893-6080
1879-2782
IngestDate Wed Oct 01 14:00:51 EDT 2025
Wed Feb 19 02:29:14 EST 2025
Sat Nov 29 07:09:33 EST 2025
Tue Nov 18 22:40:11 EST 2025
Fri Feb 23 02:48:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hardware analog neuron
Memristor
Memristive STDP
Probabilistic generative model
Spiking neural network
Unsupervised learning
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-3a62e69c07f29d4dd5b1bd31ebef130b51a1d4c058bb1a6b5a0b8866eb07a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9142-4295
PMID 33291017
PQID 2468670895
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2468670895
pubmed_primary_33291017
crossref_citationtrail_10_1016_j_neunet_2020_11_005
crossref_primary_10_1016_j_neunet_2020_11_005
elsevier_sciencedirect_doi_10_1016_j_neunet_2020_11_005
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
2021-Feb
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gerstner, Kistler (b22) 2002
Hebb (b27) 1949
Chen, Kumar, Sumbul, Knag, Krishnamurthy (b9) 2019; 54
Covi, George, Frascaroli, Brivio, Mayr, Mostafa (b13) 2018; 51
Demin, Nekhaev (b16) 2018; 12
Querlioz, Bichler, Dollfus, Gamrat (b60) 2013; 12
Morrison, Aertsen, Diesmann (b47) 2007; 19
Prezioso, Merrikh-Bayat, Hoskins, Likharev, Strukov (b58) 2016; 6
Mikhaylov, Morozov, Ovchinnikov, Antonov, Belov, Korolev (b44) 2018; 2
Ielmini, Waser (b29) 2016
Bi, Poo (b4) 1998; 18
Habenschuss, Bill, Nessler (b25) 2012
(pp. 1823–1830).
Furber, Galluppi, Temple, Plana (b21) 2014; 102
Moraitis, T., Sebastian, A., Boybat, I., Le Gallo, M., Tuma, T., & Eleftheriou, E. (2017). Fatiguing STDP: Learning from spike-timing codes in the presence of rate codes. B: In
Rubin, Lee, Sompolinsky (b63) 2001; 86
Bill, Legenstein (b5) 2014; 8
Kim, Kim, Hwang, Kim, Chang, Park (b34) 2017; 9
Martyshov, Emelyanov, Demin, Nikiruy, Minnekhanov, Nikolaev (b41) 2020; 14
Choi, Shin, Lee, Sheridan, Lu (b11) 2017; 17
Rossi (b61) 2018
Mahalanabis, Sivaraj, Chen, Shah, Barnaby, Kozicki (b39) 2016
Merolla, Arthur, Alvarez-Icaza, Cassidy, Sawada, Akopyan (b42) 2014; 345
Boyn, Grollier, Lecerf, Xu, Locatelli, Fusil (b6) 2017; 8
Kim, Du, Sheridan, Ma, Choi, Lu (b33) 2015; 15
Wang, Li, Song, Rao, Belkin, Li (b71) 2019
Chicca, Indiveri (b10) 2020; 116
Dempster, Laird, Rubin (b17) 1977; 39
Li, Hu, Li, Jiang, Ge, Montgomery (b35) 2018; 1
Wang, Joshi, Savel’ev, Song, Midya, Li (b70) 2018; 1
Morrison, Diesmann, Gerstner (b48) 2008; 98
Emelyanov, Nikiruy, Serenko, Sitnikov, Presnyakov, Rybka (b20) 2020; 31
Habenschuss, Puhr, Maass (b26) 2013; 25
Serb, Bill, Khiat, Berdan, Legenstein, Prodromakis (b65) 2016; 7
Dowling, Slipko, Pershin (b18) 2020
Nikiruy, Emelyanov, Rylkov, Sitnikov, Presnyakov, Kukueva (b53) 2019; 64
Cai, Correll, Lee, Lim, Bothra, Zhang (b7) 2019; 2
Strukov, Snider, Stewart, Williams (b68) 2008; 453
Sun, Pedretti, Ambrosi, Bricalli, Wang, Ielmini (b69) 2019; 116
Qu, Zhao, Wang, Wang (b59) 2020
Merrikh-Bayat, Prezioso, Chakrabarti, Nili, Kataeva, Strukov (b43) 2018; 9
Nikiruy, Emelyanov, Rylkov, Sitnikov, Demin (b52) 2019; 45
Nikiruy, Emelyanov, Demin, Sitnikov, Minnekhanov, Rylkov (b51) 2019; 9
Prezioso, Mahmoodi, Merrikh-Bayat, Nili, Kim, Vincent (b57) 2018; 9
Serrano-Gotarredona, Masquelier, Prodromakis, Indiveri, Linares-Barranco (b66) 2013; 7
Davies, Srinivasa, Lin, Chinya, Cao, Choday (b14) 2018; 38
Minnekhanov, Emelyanov, Lapkin, Nikiruy, Shvetsov, Nesmelov (b45) 2019; 9
Lobo, Del Ser, Bifet, Kasabov (b37) 2020; 121
Nikiruy, Surazhevsky, Demin, Emelyanov (b54) 2020
Del Valle, Ramírez, Rozenberg, Schuller (b15) 2018; 124
Silva, Sanz, Seixas, Solano, Omar (b67) 2020; 122
Rossum, Bi, Turrigiano (b62) 2000; 20
Emelyanov, Lapkin, Demin, Erokhin, Battistoni, Baldi (b19) 2016; 6
Glazman, Matveev (b24) 1988; 67
Izhikevich, Desai (b30) 2003; 15
Hennequin, Agnes, Vogels (b28) 2017; 40
Rylkov, Nikolaev, Demin, Emelyanov, Sitnikov, Nikiruy (b64) 2018; 126
Acciarito, Cardarilli, Cristini, Nunzio, Fazzolari, Khanal (b1) 2017; 59
Nessler, Pfeiffer, Maass (b49) 2009
Akhmetov, James (b2) 2019
Caporale, Dan (b8) 2008; 31
Maier, Hartmann, Rebello Sousa Dias, Emmerling, Schneider, Castelano (b40) 2016; 120
Li, Wang, Rao, Belkin, Song, Jiang (b36) 2019; 1
Covi, Brivio, Serb, Prodromakis, Fanciulli, Spiga (b12) 2016; 10
Jo, Chang, Ebong, Bhadviya, Mazumder, Lu (b31) 2010; 10
Pfister, Gerstner (b55) 2005; 1
Lobov, Mikhaylov, Shamshin, Makarov, Kazantsev (b38) 2020; 14
Xia, Yang (b73) 2019; 18
Nikiruy, Emelyanov, Demin, Rylkov, Sitnikov, Kashkarov (b50) 2018; 44
Ambrogio, Ciocchini, Laudato, Milo, Pirovano, Fantini (b3) 2016; 10
Gjorgjieva, Clopath, Audet, Pfister (b23) 2011; 108
Wu, Saxena, Zhu (b72) 2015
Keskar, Nocedal, Tang, Mudigere, Smelyanskiy (b32) 2016
Pickett, Medeiros-Ribeiro, Williams (b56) 2013; 12
Boyn (10.1016/j.neunet.2020.11.005_b6) 2017; 8
Covi (10.1016/j.neunet.2020.11.005_b12) 2016; 10
Merolla (10.1016/j.neunet.2020.11.005_b42) 2014; 345
Gerstner (10.1016/j.neunet.2020.11.005_b22) 2002
Acciarito (10.1016/j.neunet.2020.11.005_b1) 2017; 59
Bill (10.1016/j.neunet.2020.11.005_b5) 2014; 8
Rossum (10.1016/j.neunet.2020.11.005_b62) 2000; 20
Li (10.1016/j.neunet.2020.11.005_b36) 2019; 1
Serrano-Gotarredona (10.1016/j.neunet.2020.11.005_b66) 2013; 7
Chen (10.1016/j.neunet.2020.11.005_b9) 2019; 54
Kim (10.1016/j.neunet.2020.11.005_b33) 2015; 15
Nessler (10.1016/j.neunet.2020.11.005_b49) 2009
Del Valle (10.1016/j.neunet.2020.11.005_b15) 2018; 124
Nikiruy (10.1016/j.neunet.2020.11.005_b50) 2018; 44
Ielmini (10.1016/j.neunet.2020.11.005_b29) 2016
Rubin (10.1016/j.neunet.2020.11.005_b63) 2001; 86
Furber (10.1016/j.neunet.2020.11.005_b21) 2014; 102
Choi (10.1016/j.neunet.2020.11.005_b11) 2017; 17
Wu (10.1016/j.neunet.2020.11.005_b72) 2015
Hebb (10.1016/j.neunet.2020.11.005_b27) 1949
Gjorgjieva (10.1016/j.neunet.2020.11.005_b23) 2011; 108
Kim (10.1016/j.neunet.2020.11.005_b34) 2017; 9
Cai (10.1016/j.neunet.2020.11.005_b7) 2019; 2
Serb (10.1016/j.neunet.2020.11.005_b65) 2016; 7
Izhikevich (10.1016/j.neunet.2020.11.005_b30) 2003; 15
Lobov (10.1016/j.neunet.2020.11.005_b38) 2020; 14
Prezioso (10.1016/j.neunet.2020.11.005_b57) 2018; 9
Lobo (10.1016/j.neunet.2020.11.005_b37) 2020; 121
Minnekhanov (10.1016/j.neunet.2020.11.005_b45) 2019; 9
Rossi (10.1016/j.neunet.2020.11.005_b61) 2018
Chicca (10.1016/j.neunet.2020.11.005_b10) 2020; 116
10.1016/j.neunet.2020.11.005_b46
Habenschuss (10.1016/j.neunet.2020.11.005_b25) 2012
Pickett (10.1016/j.neunet.2020.11.005_b56) 2013; 12
Akhmetov (10.1016/j.neunet.2020.11.005_b2) 2019
Dowling (10.1016/j.neunet.2020.11.005_b18) 2020
Pfister (10.1016/j.neunet.2020.11.005_b55) 2005; 1
Strukov (10.1016/j.neunet.2020.11.005_b68) 2008; 453
Qu (10.1016/j.neunet.2020.11.005_b59) 2020
Emelyanov (10.1016/j.neunet.2020.11.005_b19) 2016; 6
Nikiruy (10.1016/j.neunet.2020.11.005_b51) 2019; 9
Morrison (10.1016/j.neunet.2020.11.005_b48) 2008; 98
Xia (10.1016/j.neunet.2020.11.005_b73) 2019; 18
Mahalanabis (10.1016/j.neunet.2020.11.005_b39) 2016
Maier (10.1016/j.neunet.2020.11.005_b40) 2016; 120
Keskar (10.1016/j.neunet.2020.11.005_b32) 2016
Mikhaylov (10.1016/j.neunet.2020.11.005_b44) 2018; 2
Wang (10.1016/j.neunet.2020.11.005_b71) 2019
Covi (10.1016/j.neunet.2020.11.005_b13) 2018; 51
Jo (10.1016/j.neunet.2020.11.005_b31) 2010; 10
Martyshov (10.1016/j.neunet.2020.11.005_b41) 2020; 14
Sun (10.1016/j.neunet.2020.11.005_b69) 2019; 116
Nikiruy (10.1016/j.neunet.2020.11.005_b53) 2019; 64
Prezioso (10.1016/j.neunet.2020.11.005_b58) 2016; 6
Habenschuss (10.1016/j.neunet.2020.11.005_b26) 2013; 25
Li (10.1016/j.neunet.2020.11.005_b35) 2018; 1
Emelyanov (10.1016/j.neunet.2020.11.005_b20) 2020; 31
Davies (10.1016/j.neunet.2020.11.005_b14) 2018; 38
Ambrogio (10.1016/j.neunet.2020.11.005_b3) 2016; 10
Merrikh-Bayat (10.1016/j.neunet.2020.11.005_b43) 2018; 9
Nikiruy (10.1016/j.neunet.2020.11.005_b52) 2019; 45
Silva (10.1016/j.neunet.2020.11.005_b67) 2020; 122
Dempster (10.1016/j.neunet.2020.11.005_b17) 1977; 39
Nikiruy (10.1016/j.neunet.2020.11.005_b54) 2020
Querlioz (10.1016/j.neunet.2020.11.005_b60) 2013; 12
Rylkov (10.1016/j.neunet.2020.11.005_b64) 2018; 126
Bi (10.1016/j.neunet.2020.11.005_b4) 1998; 18
Glazman (10.1016/j.neunet.2020.11.005_b24) 1988; 67
Caporale (10.1016/j.neunet.2020.11.005_b8) 2008; 31
Morrison (10.1016/j.neunet.2020.11.005_b47) 2007; 19
Demin (10.1016/j.neunet.2020.11.005_b16) 2018; 12
Hennequin (10.1016/j.neunet.2020.11.005_b28) 2017; 40
Wang (10.1016/j.neunet.2020.11.005_b70) 2018; 1
References_xml – volume: 19
  start-page: 1437
  year: 2007
  end-page: 1467
  ident: b47
  article-title: Spike-timing-dependent plasticity in balanced random networks
  publication-title: Neural Computation
– volume: 59
  start-page: 81
  year: 2017
  end-page: 89
  ident: b1
  article-title: Hardware design of LIF with Latency neuron model with memristive STDP synapses
  publication-title: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
– volume: 86
  start-page: 364
  year: 2001
  end-page: 367
  ident: b63
  article-title: Equilibrium properties of temporally asymmetric Hebbian plasticity
  publication-title: Physical Review Letters
– volume: 18
  start-page: 10464
  year: 1998
  end-page: 10472
  ident: b4
  article-title: Synaptic modifications in cultured hippocampal neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic cell type
  publication-title: The Journal of Neuroscience
– volume: 122
  start-page: 273
  year: 2020
  end-page: 278
  ident: b67
  article-title: Perceptrons from memristors
  publication-title: Neural Networks
– volume: 7
  start-page: 12611
  year: 2016
  ident: b65
  article-title: Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses
  publication-title: Neural Computation
– volume: 102
  start-page: 652
  year: 2014
  end-page: 665
  ident: b21
  article-title: The SpiNNaker project
  publication-title: Proceedings of the IEEE
– volume: 9
  year: 2019
  ident: b51
  article-title: Dopamine-like STDP modulation in nanocomposite memristors
  publication-title: Advances
– volume: 9
  start-page: 40420
  year: 2017
  end-page: 40427
  ident: b34
  article-title: Analog synaptic behavior of a Silicon Nitride Memristor
  publication-title: ACS Applied Materials & Interfaces
– volume: 18
  start-page: 309
  year: 2019
  end-page: 323
  ident: b73
  article-title: Memristive crossbar arrays for brain-inspired computing
  publication-title: Nature Materials
– year: 2020
  ident: b54
  article-title: Spike-timing-dependent and spike-shape-independent plasticities with dopamine-like modulation in nanocomposite memristive synapses
  publication-title: Physica Status Solidi (A) Applications and Materials Science
– volume: 6
  start-page: 21331
  year: 2016
  ident: b58
  article-title: Self-adaptive Spike-Time-Dependent Plasticity of Metal-oxide memristors
  publication-title: Scientific Reports
– volume: 40
  start-page: 557
  year: 2017
  end-page: 579
  ident: b28
  article-title: Inhibitory plasticity: Balance, control, and codependence
  publication-title: Annual Review of Neuroscience
– volume: 108
  start-page: 19383
  year: 2011
  end-page: 19388
  ident: b23
  article-title: A triplet spike-timing-dependent plasticity model generalizes the Bienenstock-Cooper-Munro rule to higher-order spatiotemporal correlations
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– start-page: 1
  year: 2015
  end-page: 6
  ident: b72
  article-title: A CMOS spiking neuron for Dense memristor-synapse connectivity for brain-inspired computing
  publication-title: B: Int. Jt. Conf. Neural Networks 2015
– volume: 31
  year: 2020
  ident: b20
  article-title: Self-adaptive STDP-based learning of a spiking neuron with nanocomposite memristive weights
  publication-title: Nanotechnology
– volume: 8
  start-page: 14736
  year: 2017
  ident: b6
  article-title: Learning through ferroelectric domain dynamics in solid-state synapses
  publication-title: Neural Computation
– volume: 15
  start-page: 1511
  year: 2003
  end-page: 1523
  ident: b30
  article-title: Relating STDP to BCM
  publication-title: Neural Computation
– year: 2016
  ident: b32
  article-title: On large-batch training for deep learning: Generalization gap and sharp minima
– year: 2016
  ident: b29
  article-title: Resistive switching: From fundamentals of nanoionic redox processes to memristive device applications
– volume: 64
  start-page: 1035
  year: 2019
  end-page: 1039
  ident: b53
  article-title: Formation of a memristive array of crossbar-structures based on (Co40Fe40B20)x(LiNbO3)100-x Nanocomposite
  publication-title: Journal of Communications Technology and Electronics
– volume: 8
  start-page: 412
  year: 2014
  ident: b5
  article-title: A compound memristive synapse model for statistical learning through STDP in spiking neural networks
  publication-title: Frontiers in Neuroscience
– volume: 67
  start-page: 1276
  year: 1988
  end-page: 1282
  ident: b24
  article-title: Inelastic tunneling across thin amorphous films
  publication-title: Soviet Physics - JETP
– volume: 6
  year: 2016
  ident: b19
  article-title: First steps towards the realization of a double layer perceptron based on organic memristive devices
  publication-title: Advances
– volume: 51
  start-page: 34003
  year: 2018
  ident: b13
  article-title: Spike-driven threshold-based learning with memristive synapses and neuromorphic silicon neurons
  publication-title: Journal of Physics D (Applied Physics)
– volume: 9
  start-page: 10800
  year: 2019
  ident: b45
  article-title: Parylene Based Memristive Devices with Multilevel resistive switching for Neuromorphic applications
  publication-title: Scientific Reports
– volume: 12
  start-page: 288
  year: 2013
  end-page: 295
  ident: b60
  article-title: Immunity to device variations in a spiking neural network with memristive nanodevices
  publication-title: IEEE Transactions on Nanotechnology
– reference: Moraitis, T., Sebastian, A., Boybat, I., Le Gallo, M., Tuma, T., & Eleftheriou, E. (2017). Fatiguing STDP: Learning from spike-timing codes in the presence of rate codes. B: In
– start-page: 773
  year: 2012
  end-page: 781
  ident: b25
  article-title: Homeostatic plasticity in Bayesian spiking networks a Expectation Maximization with posterior constraints
  publication-title: Advances in Neural Information Processing Systems
– year: 2002
  ident: b22
  article-title: Spiking neuron models
– volume: 25
  start-page: 1
  year: 2013
  end-page: 37
  ident: b26
  article-title: Emergence of optimal decoding of population codes through STDP
  publication-title: Neural Computation
– volume: 2
  start-page: 371
  year: 2018
  end-page: 379
  ident: b44
  article-title: One-board design and simulation of double-layer perceptron based on metal-oxide memristive nanostructures
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
– volume: 38
  start-page: 82
  year: 2018
  end-page: 99
  ident: b14
  article-title: Loihi: A neuromorphic Manycore processor with On-Chip Learning
  publication-title: IEEE Micro
– volume: 14
  year: 2020
  ident: b41
  article-title: Multifilamentary character of anticorrelated capacitive and resistive switching in memristive structures based on (CoFeB)x(LiNbO3)100-x nanocomposite
  publication-title: Physical Review A
– year: 2019
  ident: b2
  article-title: Probabilistic neural network with memristive crossbar circuits
  publication-title: Proc - IEEE Int Symp Circuits Syst
– volume: 14
  start-page: 88
  year: 2020
  ident: b38
  article-title: Spatial properties of STDP in a self-learning spiking neural network enable controlling a mobile robot
  publication-title: Frontiers in Neuroscience
– volume: 12
  start-page: 79
  year: 2018
  ident: b16
  article-title: Recurrent spiking neural network learning based on a competitive maximization of neuronal activity
  publication-title: Frontiers in Neuroinformatics
– volume: 10
  start-page: 1297
  year: 2010
  end-page: 1301
  ident: b31
  article-title: Nanoscale memristor device as synapse in neuromorphic systems
  publication-title: Nano Letters
– volume: 1
  start-page: 52
  year: 2018
  end-page: 59
  ident: b35
  article-title: Analogue signal and image processing with large memristor crossbars
  publication-title: Nature Electronics
– volume: 31
  start-page: 25
  year: 2008
  end-page: 46
  ident: b8
  article-title: Spike timing–dependent Plasticity: A Hebbian learning rule
  publication-title: Annual Review of Neuroscience
– volume: 20
  start-page: 8812
  year: 2000
  end-page: 8821
  ident: b62
  article-title: Stable Hebbian learning from spike timing-dependent plasticity
  publication-title: The Journal of Neuroscience
– year: 1949
  ident: b27
  article-title: The organization of behavior
– volume: 98
  start-page: 459
  year: 2008
  end-page: 478
  ident: b48
  article-title: Phenomenological models of synaptic plasticity based on spike timing
  publication-title: Biological Cybernetics
– volume: 15
  start-page: 2203
  year: 2015
  end-page: 2211
  ident: b33
  article-title: Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity
  publication-title: Nano Letters
– volume: 45
  start-page: 386
  year: 2019
  end-page: 390
  ident: b52
  article-title: Adaptive properties of spiking neuromorphic networks with synapses based on memristive elements
  publication-title: Technical Physics Letters
– volume: 1
  start-page: 137
  year: 2018
  end-page: 145
  ident: b70
  article-title: Fully memristive neural networks for pattern classification with unsupervised learning
  publication-title: Nature Electronics
– volume: 1
  start-page: 49
  year: 2019
  end-page: 57
  ident: b36
  article-title: Long short-term memory networks in memristor crossbar arrays
  publication-title: Nature Machine Intelligence
– volume: 12
  start-page: 114
  year: 2013
  end-page: 117
  ident: b56
  article-title: A scalable neuristor built with Mott memristors
  publication-title: Nature Materials
– volume: 124
  year: 2018
  ident: b15
  article-title: Challenges in materials and devices for resistive-switching-based neuromorphic computing
  publication-title: Journal of Applied Physics
– volume: 126
  start-page: 424
  year: 2018
  end-page: 441
  ident: b64
  article-title: Transport, magnetic, and memristive properties of a nanogranular (CoFeB)x(LiNbOy)100 – x Composite Material
  publication-title: Journal of Experimental and Theoretical Physics
– year: 2018
  ident: b61
  article-title: Mathematical statistics: An introduction to likelihood based inference
– volume: 54
  start-page: 992
  year: 2019
  end-page: 1002
  ident: b9
  article-title: A 4096-Neuron 1M-Synapse 3.8-pJ/SOP spiking neural network with On-Chip STDP Learning and Sparse Weights in 10-nm FinFET CMOS
  publication-title: IEEE Journal of Solid-State Circuits
– reference: (pp. 1823–1830).
– volume: 116
  year: 2020
  ident: b10
  article-title: A recipe for creating ideal hybrid memristive-CMOS neuromorphic processing systems
  publication-title: Applied Physics Letters
– volume: 17
  start-page: 3113
  year: 2017
  end-page: 3118
  ident: b11
  article-title: Experimental demonstration of feature extraction and dimensionality reduction using memristor networks
  publication-title: Nano Letters
– volume: 9
  start-page: 2331
  year: 2018
  ident: b43
  article-title: Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits
  publication-title: Neural Computation
– volume: 453
  start-page: 80
  year: 2008
  end-page: 83
  ident: b68
  article-title: The missing memristor found
  publication-title: Nature
– year: 2020
  ident: b59
  article-title: Efficient and hardware-friendly methods to implement competitive learning for spiking neural networks
  publication-title: Neural Computing and Applications
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: b17
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: The Journal of the Royal Statistical Society, Series B
– volume: 44
  start-page: 416
  year: 2018
  end-page: 419
  ident: b50
  article-title: A precise algorithm of memristor switching to a state with preset resistance
  publication-title: Technical Physics Letters
– start-page: 1357
  year: 2009
  end-page: 1365
  ident: b49
  article-title: STDP enables spiking neurons to detect hidden causes of their inputs
  publication-title: Adv Neural Inf Process Syst 22 - Proc 2009 Conf
– volume: 1
  start-page: 1081
  year: 2005
  end-page: 1088
  ident: b55
  article-title: Beyond pair-based STDP: A phenomenogical rule for spike triplet and frequency effects
  publication-title: Advances in Neural Information Processing Systems
– year: 2020
  ident: b18
  article-title: Probabilistic Memristive networks: Application of a Master Equation to Networks of binary ReRAM cells
– volume: 7
  start-page: 2
  year: 2013
  ident: b66
  article-title: STDP and STDP variations with memristors for spiking neuromorphic learning systems
  publication-title: Frontiers in Neuroscience
– volume: 10
  start-page: 56
  year: 2016
  ident: b3
  article-title: Unsupervised learning by spike timing dependent plasticity in phase change memory (PCM) synapses
  publication-title: Frontiers in Neuroscience
– volume: 10
  start-page: 482
  year: 2016
  ident: b12
  article-title: Analog memristive synapse in spiking networks implementing unsupervised learning
  publication-title: Frontiers in Neuroscience
– volume: 120
  year: 2016
  ident: b40
  article-title: Mimicking of pulse shape-dependent learning rules with a quantum dot memristor
  publication-title: Journal of Applied Physics
– volume: 345
  start-page: 668
  year: 2014
  end-page: 673
  ident: b42
  article-title: A million spiking-neuron integrated circuit with a scalable communication network and interface
  publication-title: Science (80- )
– year: 2019
  ident: b71
  article-title: Reinforcement learning with analogue memristor arrays
  publication-title: Nature Electronics
– volume: 2
  start-page: 290
  year: 2019
  end-page: 299
  ident: b7
  article-title: A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations
  publication-title: Nature Electronics
– start-page: 2314
  year: 2016
  end-page: 2317
  ident: b39
  article-title: Demonstration of spike timing dependent plasticity in CBRAM devices with silicon neurons
  publication-title: B: Proc. - IEEE Int. Symp. Circuits Syst.
– volume: 9
  start-page: 5311
  year: 2018
  ident: b57
  article-title: Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits
  publication-title: Neural Computation
– volume: 121
  start-page: 88
  year: 2020
  end-page: 100
  ident: b37
  article-title: Spiking Neural Networks and online learning: An overview and perspectives
  publication-title: Neural Networks
– volume: 116
  start-page: 4123
  year: 2019
  end-page: 4128
  ident: b69
  article-title: Solving matrix equations in one step with cross-point resistive arrays
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 108
  start-page: 19383
  issue: 48
  year: 2011
  ident: 10.1016/j.neunet.2020.11.005_b23
  article-title: A triplet spike-timing-dependent plasticity model generalizes the Bienenstock-Cooper-Munro rule to higher-order spatiotemporal correlations
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1105933108
– volume: 7
  start-page: 2
  year: 2013
  ident: 10.1016/j.neunet.2020.11.005_b66
  article-title: STDP and STDP variations with memristors for spiking neuromorphic learning systems
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2013.00002
– volume: 9
  year: 2019
  ident: 10.1016/j.neunet.2020.11.005_b51
  article-title: Dopamine-like STDP modulation in nanocomposite memristors
  publication-title: Advances
– volume: 18
  start-page: 10464
  issue: 24
  year: 1998
  ident: 10.1016/j.neunet.2020.11.005_b4
  article-title: Synaptic modifications in cultured hippocampal neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic cell type
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.18-24-10464.1998
– volume: 1
  start-page: 137
  year: 2018
  ident: 10.1016/j.neunet.2020.11.005_b70
  article-title: Fully memristive neural networks for pattern classification with unsupervised learning
  publication-title: Nature Electronics
  doi: 10.1038/s41928-018-0023-2
– volume: 6
  issue: 11
  year: 2016
  ident: 10.1016/j.neunet.2020.11.005_b19
  article-title: First steps towards the realization of a double layer perceptron based on organic memristive devices
  publication-title: Advances
– volume: 124
  issue: 21
  year: 2018
  ident: 10.1016/j.neunet.2020.11.005_b15
  article-title: Challenges in materials and devices for resistive-switching-based neuromorphic computing
  publication-title: Journal of Applied Physics
– volume: 126
  start-page: 424
  issue: 3
  year: 2018
  ident: 10.1016/j.neunet.2020.11.005_b64
  article-title: Transport, magnetic, and memristive properties of a nanogranular (CoFeB)x(LiNbOy)100 – x Composite Material
  publication-title: Journal of Experimental and Theoretical Physics
  doi: 10.1134/S1063776118020152
– volume: 15
  start-page: 2203
  year: 2015
  ident: 10.1016/j.neunet.2020.11.005_b33
  article-title: Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity
  publication-title: Nano Letters
  doi: 10.1021/acs.nanolett.5b00697
– volume: 17
  start-page: 3113
  year: 2017
  ident: 10.1016/j.neunet.2020.11.005_b11
  article-title: Experimental demonstration of feature extraction and dimensionality reduction using memristor networks
  publication-title: Nano Letters
  doi: 10.1021/acs.nanolett.7b00552
– start-page: 773
  year: 2012
  ident: 10.1016/j.neunet.2020.11.005_b25
  article-title: Homeostatic plasticity in Bayesian spiking networks a Expectation Maximization with posterior constraints
  publication-title: Advances in Neural Information Processing Systems
– volume: 1
  start-page: 49
  year: 2019
  ident: 10.1016/j.neunet.2020.11.005_b36
  article-title: Long short-term memory networks in memristor crossbar arrays
  publication-title: Nature Machine Intelligence
  doi: 10.1038/s42256-018-0001-4
– year: 2016
  ident: 10.1016/j.neunet.2020.11.005_b29
– year: 2020
  ident: 10.1016/j.neunet.2020.11.005_b18
– volume: 14
  start-page: 88
  year: 2020
  ident: 10.1016/j.neunet.2020.11.005_b38
  article-title: Spatial properties of STDP in a self-learning spiking neural network enable controlling a mobile robot
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2020.00088
– volume: 345
  start-page: 668
  issue: 6197
  year: 2014
  ident: 10.1016/j.neunet.2020.11.005_b42
  article-title: A million spiking-neuron integrated circuit with a scalable communication network and interface
  publication-title: Science (80- )
  doi: 10.1126/science.1254642
– volume: 1
  start-page: 1081
  year: 2005
  ident: 10.1016/j.neunet.2020.11.005_b55
  article-title: Beyond pair-based STDP: A phenomenogical rule for spike triplet and frequency effects
  publication-title: Advances in Neural Information Processing Systems
– volume: 8
  start-page: 412
  year: 2014
  ident: 10.1016/j.neunet.2020.11.005_b5
  article-title: A compound memristive synapse model for statistical learning through STDP in spiking neural networks
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2014.00412
– volume: 8
  start-page: 14736
  year: 2017
  ident: 10.1016/j.neunet.2020.11.005_b6
  article-title: Learning through ferroelectric domain dynamics in solid-state synapses
  publication-title: Neural Computation
– volume: 10
  start-page: 1297
  year: 2010
  ident: 10.1016/j.neunet.2020.11.005_b31
  article-title: Nanoscale memristor device as synapse in neuromorphic systems
  publication-title: Nano Letters
  doi: 10.1021/nl904092h
– volume: 19
  start-page: 1437
  issue: 6
  year: 2007
  ident: 10.1016/j.neunet.2020.11.005_b47
  article-title: Spike-timing-dependent plasticity in balanced random networks
  publication-title: Neural Computation
  doi: 10.1162/neco.2007.19.6.1437
– volume: 38
  start-page: 82
  issue: 1
  year: 2018
  ident: 10.1016/j.neunet.2020.11.005_b14
  article-title: Loihi: A neuromorphic Manycore processor with On-Chip Learning
  publication-title: IEEE Micro
  doi: 10.1109/MM.2018.112130359
– volume: 12
  start-page: 288
  issue: 3
  year: 2013
  ident: 10.1016/j.neunet.2020.11.005_b60
  article-title: Immunity to device variations in a spiking neural network with memristive nanodevices
  publication-title: IEEE Transactions on Nanotechnology
  doi: 10.1109/TNANO.2013.2250995
– volume: 12
  start-page: 114
  issue: 2
  year: 2013
  ident: 10.1016/j.neunet.2020.11.005_b56
  article-title: A scalable neuristor built with Mott memristors
  publication-title: Nature Materials
  doi: 10.1038/nmat3510
– volume: 10
  start-page: 56
  year: 2016
  ident: 10.1016/j.neunet.2020.11.005_b3
  article-title: Unsupervised learning by spike timing dependent plasticity in phase change memory (PCM) synapses
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2016.00056
– volume: 67
  start-page: 1276
  issue: 6
  year: 1988
  ident: 10.1016/j.neunet.2020.11.005_b24
  article-title: Inelastic tunneling across thin amorphous films
  publication-title: Soviet Physics - JETP
– volume: 2
  start-page: 371
  issue: 5
  year: 2018
  ident: 10.1016/j.neunet.2020.11.005_b44
  article-title: One-board design and simulation of double-layer perceptron based on metal-oxide memristive nanostructures
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
  doi: 10.1109/TETCI.2018.2829922
– year: 2019
  ident: 10.1016/j.neunet.2020.11.005_b71
  article-title: Reinforcement learning with analogue memristor arrays
  publication-title: Nature Electronics
– volume: 31
  year: 2020
  ident: 10.1016/j.neunet.2020.11.005_b20
  article-title: Self-adaptive STDP-based learning of a spiking neuron with nanocomposite memristive weights
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab4a6d
– volume: 86
  start-page: 364
  issue: 2
  year: 2001
  ident: 10.1016/j.neunet.2020.11.005_b63
  article-title: Equilibrium properties of temporally asymmetric Hebbian plasticity
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.86.364
– volume: 9
  start-page: 2331
  year: 2018
  ident: 10.1016/j.neunet.2020.11.005_b43
  article-title: Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits
  publication-title: Neural Computation
– year: 2019
  ident: 10.1016/j.neunet.2020.11.005_b2
  article-title: Probabilistic neural network with memristive crossbar circuits
– volume: 10
  start-page: 482
  year: 2016
  ident: 10.1016/j.neunet.2020.11.005_b12
  article-title: Analog memristive synapse in spiking networks implementing unsupervised learning
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2016.00482
– volume: 6
  start-page: 21331
  year: 2016
  ident: 10.1016/j.neunet.2020.11.005_b58
  article-title: Self-adaptive Spike-Time-Dependent Plasticity of Metal-oxide memristors
  publication-title: Scientific Reports
  doi: 10.1038/srep21331
– year: 2018
  ident: 10.1016/j.neunet.2020.11.005_b61
– volume: 9
  start-page: 40420
  issue: 46
  year: 2017
  ident: 10.1016/j.neunet.2020.11.005_b34
  article-title: Analog synaptic behavior of a Silicon Nitride Memristor
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.7b11191
– year: 1949
  ident: 10.1016/j.neunet.2020.11.005_b27
– volume: 2
  start-page: 290
  issue: 7
  year: 2019
  ident: 10.1016/j.neunet.2020.11.005_b7
  article-title: A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations
  publication-title: Nature Electronics
  doi: 10.1038/s41928-019-0270-x
– volume: 453
  start-page: 80
  year: 2008
  ident: 10.1016/j.neunet.2020.11.005_b68
  article-title: The missing memristor found
  publication-title: Nature
  doi: 10.1038/nature06932
– year: 2016
  ident: 10.1016/j.neunet.2020.11.005_b32
– volume: 1
  start-page: 52
  issue: 1
  year: 2018
  ident: 10.1016/j.neunet.2020.11.005_b35
  article-title: Analogue signal and image processing with large memristor crossbars
  publication-title: Nature Electronics
  doi: 10.1038/s41928-017-0002-z
– volume: 54
  start-page: 992
  issue: 4
  year: 2019
  ident: 10.1016/j.neunet.2020.11.005_b9
  article-title: A 4096-Neuron 1M-Synapse 3.8-pJ/SOP spiking neural network with On-Chip STDP Learning and Sparse Weights in 10-nm FinFET CMOS
  publication-title: IEEE Journal of Solid-State Circuits
  doi: 10.1109/JSSC.2018.2884901
– volume: 102
  start-page: 652
  issue: 5
  year: 2014
  ident: 10.1016/j.neunet.2020.11.005_b21
  article-title: The SpiNNaker project
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2014.2304638
– volume: 121
  start-page: 88
  year: 2020
  ident: 10.1016/j.neunet.2020.11.005_b37
  article-title: Spiking Neural Networks and online learning: An overview and perspectives
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2019.09.004
– volume: 18
  start-page: 309
  year: 2019
  ident: 10.1016/j.neunet.2020.11.005_b73
  article-title: Memristive crossbar arrays for brain-inspired computing
  publication-title: Nature Materials
  doi: 10.1038/s41563-019-0291-x
– volume: 51
  start-page: 34003
  year: 2018
  ident: 10.1016/j.neunet.2020.11.005_b13
  article-title: Spike-driven threshold-based learning with memristive synapses and neuromorphic silicon neurons
  publication-title: Journal of Physics D (Applied Physics)
  doi: 10.1088/1361-6463/aad361
– year: 2002
  ident: 10.1016/j.neunet.2020.11.005_b22
– volume: 98
  start-page: 459
  year: 2008
  ident: 10.1016/j.neunet.2020.11.005_b48
  article-title: Phenomenological models of synaptic plasticity based on spike timing
  publication-title: Biological Cybernetics
  doi: 10.1007/s00422-008-0233-1
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 10.1016/j.neunet.2020.11.005_b17
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: The Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 64
  start-page: 1035
  issue: 10
  year: 2019
  ident: 10.1016/j.neunet.2020.11.005_b53
  article-title: Formation of a memristive array of crossbar-structures based on (Co40Fe40B20)x(LiNbO3)100-x Nanocomposite
  publication-title: Journal of Communications Technology and Electronics
  doi: 10.1134/S1064226919100103
– volume: 9
  start-page: 5311
  year: 2018
  ident: 10.1016/j.neunet.2020.11.005_b57
  article-title: Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits
  publication-title: Neural Computation
– volume: 116
  start-page: 4123
  issue: 10
  year: 2019
  ident: 10.1016/j.neunet.2020.11.005_b69
  article-title: Solving matrix equations in one step with cross-point resistive arrays
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1815682116
– volume: 15
  start-page: 1511
  year: 2003
  ident: 10.1016/j.neunet.2020.11.005_b30
  article-title: Relating STDP to BCM
  publication-title: Neural Computation
  doi: 10.1162/089976603321891783
– volume: 45
  start-page: 386
  issue: 4
  year: 2019
  ident: 10.1016/j.neunet.2020.11.005_b52
  article-title: Adaptive properties of spiking neuromorphic networks with synapses based on memristive elements
  publication-title: Technical Physics Letters
  doi: 10.1134/S1063785019040278
– start-page: 1357
  year: 2009
  ident: 10.1016/j.neunet.2020.11.005_b49
  article-title: STDP enables spiking neurons to detect hidden causes of their inputs
– volume: 25
  start-page: 1
  year: 2013
  ident: 10.1016/j.neunet.2020.11.005_b26
  article-title: Emergence of optimal decoding of population codes through STDP
  publication-title: Neural Computation
  doi: 10.1162/NECO_a_00446
– year: 2020
  ident: 10.1016/j.neunet.2020.11.005_b54
  article-title: Spike-timing-dependent and spike-shape-independent plasticities with dopamine-like modulation in nanocomposite memristive synapses
  publication-title: Physica Status Solidi (A) Applications and Materials Science
– volume: 59
  start-page: 81
  issue: March
  year: 2017
  ident: 10.1016/j.neunet.2020.11.005_b1
  article-title: Hardware design of LIF with Latency neuron model with memristive STDP synapses
  publication-title: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
– volume: 120
  year: 2016
  ident: 10.1016/j.neunet.2020.11.005_b40
  article-title: Mimicking of pulse shape-dependent learning rules with a quantum dot memristor
  publication-title: Journal of Applied Physics
  doi: 10.1063/1.4963830
– ident: 10.1016/j.neunet.2020.11.005_b46
  doi: 10.1109/IJCNN.2017.7966072
– volume: 31
  start-page: 25
  year: 2008
  ident: 10.1016/j.neunet.2020.11.005_b8
  article-title: Spike timing–dependent Plasticity: A Hebbian learning rule
  publication-title: Annual Review of Neuroscience
  doi: 10.1146/annurev.neuro.31.060407.125639
– volume: 20
  start-page: 8812
  issue: 23
  year: 2000
  ident: 10.1016/j.neunet.2020.11.005_b62
  article-title: Stable Hebbian learning from spike timing-dependent plasticity
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.20-23-08812.2000
– start-page: 1
  year: 2015
  ident: 10.1016/j.neunet.2020.11.005_b72
  article-title: A CMOS spiking neuron for Dense memristor-synapse connectivity for brain-inspired computing
– volume: 44
  start-page: 416
  issue: 5
  year: 2018
  ident: 10.1016/j.neunet.2020.11.005_b50
  article-title: A precise algorithm of memristor switching to a state with preset resistance
  publication-title: Technical Physics Letters
  doi: 10.1134/S106378501805022X
– volume: 122
  start-page: 273
  year: 2020
  ident: 10.1016/j.neunet.2020.11.005_b67
  article-title: Perceptrons from memristors
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2019.10.013
– volume: 14
  year: 2020
  ident: 10.1016/j.neunet.2020.11.005_b41
  article-title: Multifilamentary character of anticorrelated capacitive and resistive switching in memristive structures based on (CoFeB)x(LiNbO3)100-x nanocomposite
  publication-title: Physical Review A
– volume: 9
  start-page: 10800
  year: 2019
  ident: 10.1016/j.neunet.2020.11.005_b45
  article-title: Parylene Based Memristive Devices with Multilevel resistive switching for Neuromorphic applications
  publication-title: Scientific Reports
  doi: 10.1038/s41598-019-47263-9
– year: 2020
  ident: 10.1016/j.neunet.2020.11.005_b59
  article-title: Efficient and hardware-friendly methods to implement competitive learning for spiking neural networks
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-020-04755-4
– volume: 7
  start-page: 12611
  year: 2016
  ident: 10.1016/j.neunet.2020.11.005_b65
  article-title: Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses
  publication-title: Neural Computation
– volume: 116
  year: 2020
  ident: 10.1016/j.neunet.2020.11.005_b10
  article-title: A recipe for creating ideal hybrid memristive-CMOS neuromorphic processing systems
  publication-title: Applied Physics Letters
  doi: 10.1063/1.5142089
– start-page: 2314
  year: 2016
  ident: 10.1016/j.neunet.2020.11.005_b39
  article-title: Demonstration of spike timing dependent plasticity in CBRAM devices with silicon neurons
– volume: 40
  start-page: 557
  issue: 1
  year: 2017
  ident: 10.1016/j.neunet.2020.11.005_b28
  article-title: Inhibitory plasticity: Balance, control, and codependence
  publication-title: Annual Review of Neuroscience
  doi: 10.1146/annurev-neuro-072116-031005
– volume: 12
  start-page: 79
  year: 2018
  ident: 10.1016/j.neunet.2020.11.005_b16
  article-title: Recurrent spiking neural network learning based on a competitive maximization of neuronal activity
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/fninf.2018.00079
SSID ssj0006843
Score 2.6096973
Snippet This work is aimed to study experimental and theoretical approaches for searching effective local training rules for unsupervised pattern recognition by...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 64
SubjectTerms Algorithms
Hardware analog neuron
Memristive STDP
Memristor
Models, Neurological
Neural Networks, Computer
Neuronal Plasticity - physiology
Neurons - physiology
Pattern Recognition, Automated - methods
Probabilistic generative model
Spiking neural network
Unsupervised learning
Title Necessary conditions for STDP-based pattern recognition learning in a memristive spiking neural network
URI https://dx.doi.org/10.1016/j.neunet.2020.11.005
https://www.ncbi.nlm.nih.gov/pubmed/33291017
https://www.proquest.com/docview/2468670895
Volume 134
WOSCitedRecordID wos000603296800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECUapyhy6b6kS8ACvRkKJFLicgzaFG0PRgD74JtAilTjNFEMbwj69R2KpOQgMNIeehEMkZRMv8fhcPzIQegT06yidVEn1GYiyaU1MOYymuSZlrRKNTHGJ5vgo5GYTuVZkBUt23QCvGnEzY2c_1eo4R6A7bbO_gPc3UPhBnwG0OEKsMP1r4AfWaf8d2I4WOoar8hqxYTjyZezxM1axp2m6gKBw04-BBy4jEGSWTN0maWv2uG_scPlfObi6UN39CUA2njh-LZXO7pV0qeqdweXtELaPmI6sr_OFXTJmbpeYDuG9r_P7SZGcrfqw7sXa68tCLsmQoyCZFHW7KYYb1cFlwnh4rbhDWFMbzr9YeZ3LLoPLlwcQx-hF7CgJ87MH6ftZu3VFp7zqxZQSol0Zqaf3zrVYSzaQ_uEFzwdoP2T76fTH93MzURO4_bKVgN496UH6FF8zC5PZtdKpfVYJk_R47DUwCeeIs_QA9s8R09iGg8crPoL9LNjDO4Zg4ExuGcMDozBW4zBkTF41mCFe8bgwBjsGYMDL16i8dfTyedvSci_kVTg1qwSqhixTFYpr4k0uTGFzrShGYz7GlwfXWQqM3mVFkLrTDFdqFQLwZjVKVeMvkKD5rqxbxBWuoK5pOLSapVTKqHcGqNSWdckL1J1iGj8JcsqHE3vMqRcllGDeFF6KEoHBaxaS4DiECVdq7k_muWe-jyCVAb30ruNJXDtnpYfI6YlWF_3l5pq7PV6WZKcCcZTIaHOaw92910iT97uLHmHDvrR8h4NVou1_YAeVpvVbLk4Qnt8Ko4CR_8AMKyudA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Necessary+conditions+for+STDP-based+pattern+recognition+learning+in+a+memristive+spiking+neural+network&rft.jtitle=Neural+networks&rft.au=Demin%2C+V+A&rft.au=Nekhaev%2C+D+V&rft.au=Surazhevsky%2C+I+A&rft.au=Nikiruy%2C+K+E&rft.date=2021-02-01&rft.eissn=1879-2782&rft.volume=134&rft.spage=64&rft_id=info:doi/10.1016%2Fj.neunet.2020.11.005&rft_id=info%3Apmid%2F33291017&rft.externalDocID=33291017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon