FIESTA 2: Parallelizeable multiloop numerical calculations
The program FIESTA has been completely rewritten. Now it can be used not only as a tool to evaluate Feynman integrals numerically, but also to expand Feynman integrals automatically in limits of momenta and masses with the use of sector decompositions and Mellin–Barnes representations. Other importa...
Uložené v:
| Vydané v: | Computer physics communications Ročník 182; číslo 3; s. 790 - 803 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.03.2011
|
| Predmet: | |
| ISSN: | 0010-4655, 1879-2944 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The program
FIESTA has been completely rewritten. Now it can be used not only as a tool to evaluate Feynman integrals numerically, but also to expand Feynman integrals automatically in limits of momenta and masses with the use of sector decompositions and Mellin–Barnes representations. Other important improvements to the code are complete parallelization (even to multiple computers), high-precision arithmetics (allowing to calculate integrals which were undoable before), new integrators, Speer sectors as a strategy, the possibility to evaluate more general parametric integrals.
Program title:
FIESTA 2
Catalogue identifier: AECP_v2_0
Program summary URL:
http://cpc.cs.qub.ac.uk/summaries/AECP_v2_0.html
Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland
Licensing provisions: GNU GPL version 2
No. of lines in distributed program, including test data, etc.: 39 783
No. of bytes in distributed program, including test data, etc.: 6 154 515
Distribution format: tar.gz
Programming language: Wolfram Mathematica 6.0 (or higher) and C
Computer: From a desktop PC to a supercomputer
Operating system: Unix, Linux, Windows, Mac OS X
Has the code been vectorised or parallelized?: Yes, the code has been parallelized for use on multi-kernel computers as well as clusters via Mathlink over the TCP/IP protocol. The program can work successfully with a single processor, however, it is ready to work in a parallel environment and the use of multi-kernel processor and multi-processor computers significantly speeds up the calculation; on clusters the calculation speed can be improved even further.
RAM: Depends on the complexity of the problem
Classification: 4.4, 4.12, 5, 6.5
Catalogue identifier of previous version: AECP_v1_0
Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 735
External routines: QLink [1], Cuba library [2], MPFR [3]
Does the new version supersede the previous version?: Yes
Nature of problem: The sector decomposition approach to evaluating Feynman integrals falls apart into the sector decomposition itself, where one has to minimize the number of sectors; the pole resolution and epsilon expansion; and the numerical integration of the resulting expression.
Solution method: The sector decomposition is based on a new strategy as well as on classical strategies such as Speer sectors. The sector decomposition, pole resolution and epsilon-expansion are performed in Wolfram Mathematica 6.0 or, preferably, 7.0 (enabling parallelization) [4]. The data is stored on hard disk via a special program, QLink [1]. The expression for integration is passed to the C-part of the code, that parses the string and performs the integration by one of the algorithms in the Cuba library package [2]. This part of the evaluation is perfectly parallelized on multi-kernel computers.
Reasons for new version:
1.
The first version of
FIESTA had problems related to numerical instability, so for some classes of integrals it could not produce a result.
2.
The sector decomposition method can be applied not only for integral calculation.
Summary of revisions:
1.
New integrator library is used.
2.
New methods to deal with numerical instability (MPFR library).
3.
Parallelization in
Mathematica.
4.
Parallelization on multiple computers via TCP-IP.
5.
New sector decomposition strategy (Speer sectors).
6.
Possibility of using
FIESTA to for integral expansion.
7.
Possibility of using
FIESTA to discover poles in d.
8.
New negative terms resolution strategies.
Restrictions: The complexity of the problem is mostly restricted by CPU time required to perform the evaluation of the integral
Running time: Depends on the complexity of the problem
References:
[1]
http://qlink08.sourceforge.net, open source.
[2]
http://www.feynarts.de/cuba/, open source.
[3]
http://www.mpfr.org/, open source.
[4]
http://www.wolfram.com/products/mathematica/index.html. |
|---|---|
| AbstractList | The program FIESTA has been completely rewritten. Now it can be used not only as a tool to evaluate Feynman integrals numerically, but also to expand Feynman integrals automatically in limits of momenta and masses with the use of sector decompositions and Mellin-Barnes representations. Other important improvements to the code are complete parallelization (even to multiple computers), high-precision arithmetics (allowing to calculate integrals which were undoable before), new integrators, Speer sectors as a strategy, the possibility to evaluate more general parametric integrals. Program title: FIESTA 2 Catalogue identifier: AECP_v2_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AECP_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL version 2 No. of lines in distributed program, including test data, etc.: 39a[control]783 No. of bytes in distributed program, including test data, etc.: 6a[control]154a[control]515 Distribution format: tar.gz Programming language: Wolfram Mathematica 6.0 (or higher) and C Computer: From a desktop PC to a supercomputer Operating system: Unix, Linux, Windows, Mac OS X Has the code been vectorised or parallelized?: Yes, the code has been parallelized for use on multi-kernel computers as well as clusters via Mathlink over the TCP/IP protocol. The program can work successfully with a single processor, however, it is ready to work in a parallel environment and the use of multi-kernel processor and multi-processor computers significantly speeds up the calculation; on clusters the calculation speed can be improved even further. RAM: Depends on the complexity of the problem Classification: 4.4, 4.12, 5, 6.5 Catalogue identifier of previous version: AECP_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 735 External routines: QLink [1], Cuba library [2], MPFR [3] Does the new version supersede the previous version?: Yes Nature of problem: The sector decomposition approach to evaluating Feynman integrals falls apart into the sector decomposition itself, where one has to minimize the number of sectors; the pole resolution and epsilon expansion; and the numerical integration of the resulting expression. Solution method: The sector decomposition is based on a new strategy as well as on classical strategies such as Speer sectors. The sector decomposition, pole resolution and epsilon-expansion are performed in Wolfram Mathematica 6.0 or, preferably, 7.0 (enabling parallelization) [4]. The data is stored on hard disk via a special program, QLink [1]. The expression for integration is passed to the C-part of the code, that parses the string and performs the integration by one of the algorithms in the Cuba library package [2]. This part of the evaluation is perfectly parallelized on multi-kernel computers. Reasons for new version: 1. The first version of FIESTA had problems related to numerical instability, so for some classes of integrals it could not produce a result. 2. The sector decomposition method can be applied not only for integral calculation. Summary of revisions: 1. New integrator library is used. 2. New methods to deal with numerical instability (MPFR library). 3. Parallelization in Mathematica. 4. Parallelization on multiple computers via TCP-IP. 5. New sector decomposition strategy (Speer sectors). 6. Possibility of using FIESTA to for integral expansion. 7. Possibility of using FIESTA to discover poles in d. 8. New negative terms resolution strategies. Restrictions: The complexity of the problem is mostly restricted by CPU time required to perform the evaluation of the integral Running time: Depends on the complexity of the problem References: [1] http://qlink08.sourceforge.net, open source. [2] http://www.feynarts.de/cuba/, open source. [3] http://www.mpfr.org/, open source. [4] http://www.wolfram.com/products/mathematica/index.html. The program FIESTA has been completely rewritten. Now it can be used not only as a tool to evaluate Feynman integrals numerically, but also to expand Feynman integrals automatically in limits of momenta and masses with the use of sector decompositions and Mellin–Barnes representations. Other important improvements to the code are complete parallelization (even to multiple computers), high-precision arithmetics (allowing to calculate integrals which were undoable before), new integrators, Speer sectors as a strategy, the possibility to evaluate more general parametric integrals. Program title: FIESTA 2 Catalogue identifier: AECP_v2_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AECP_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL version 2 No. of lines in distributed program, including test data, etc.: 39 783 No. of bytes in distributed program, including test data, etc.: 6 154 515 Distribution format: tar.gz Programming language: Wolfram Mathematica 6.0 (or higher) and C Computer: From a desktop PC to a supercomputer Operating system: Unix, Linux, Windows, Mac OS X Has the code been vectorised or parallelized?: Yes, the code has been parallelized for use on multi-kernel computers as well as clusters via Mathlink over the TCP/IP protocol. The program can work successfully with a single processor, however, it is ready to work in a parallel environment and the use of multi-kernel processor and multi-processor computers significantly speeds up the calculation; on clusters the calculation speed can be improved even further. RAM: Depends on the complexity of the problem Classification: 4.4, 4.12, 5, 6.5 Catalogue identifier of previous version: AECP_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 735 External routines: QLink [1], Cuba library [2], MPFR [3] Does the new version supersede the previous version?: Yes Nature of problem: The sector decomposition approach to evaluating Feynman integrals falls apart into the sector decomposition itself, where one has to minimize the number of sectors; the pole resolution and epsilon expansion; and the numerical integration of the resulting expression. Solution method: The sector decomposition is based on a new strategy as well as on classical strategies such as Speer sectors. The sector decomposition, pole resolution and epsilon-expansion are performed in Wolfram Mathematica 6.0 or, preferably, 7.0 (enabling parallelization) [4]. The data is stored on hard disk via a special program, QLink [1]. The expression for integration is passed to the C-part of the code, that parses the string and performs the integration by one of the algorithms in the Cuba library package [2]. This part of the evaluation is perfectly parallelized on multi-kernel computers. Reasons for new version: 1. The first version of FIESTA had problems related to numerical instability, so for some classes of integrals it could not produce a result. 2. The sector decomposition method can be applied not only for integral calculation. Summary of revisions: 1. New integrator library is used. 2. New methods to deal with numerical instability (MPFR library). 3. Parallelization in Mathematica. 4. Parallelization on multiple computers via TCP-IP. 5. New sector decomposition strategy (Speer sectors). 6. Possibility of using FIESTA to for integral expansion. 7. Possibility of using FIESTA to discover poles in d. 8. New negative terms resolution strategies. Restrictions: The complexity of the problem is mostly restricted by CPU time required to perform the evaluation of the integral Running time: Depends on the complexity of the problem References: [1] http://qlink08.sourceforge.net, open source. [2] http://www.feynarts.de/cuba/, open source. [3] http://www.mpfr.org/, open source. [4] http://www.wolfram.com/products/mathematica/index.html. |
| Author | Smirnov, V.A. Tentyukov, M. Smirnov, A.V. |
| Author_xml | – sequence: 1 givenname: A.V. surname: Smirnov fullname: Smirnov, A.V. email: ASmirnov80@gmail.com organization: Scientific Research Computing Center, Moscow State University, 119992 Moscow, Russia – sequence: 2 givenname: V.A. surname: Smirnov fullname: Smirnov, V.A. organization: Skobeltsyn Institute of Nuclear Physics of Moscow State University, 119992 Moscow, Russia – sequence: 3 givenname: M. surname: Tentyukov fullname: Tentyukov, M. organization: Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology, D-76128 Karlsruhe, Germany |
| BookMark | eNp9kEFLwzAYQINMcJv-AG-96aU1adqmnacxNh0MFJznkCZfISNtatIK-uvNnCcPOyQh5L3w8WZo0tkOELolOCGYFA-HRPYySfHxThKc5hdoSkpWxWmVZRM0xeElzoo8v0Iz7w8YY8YqOkWLzXb9tl9G6SJ6FU4YA0Z_g6gNRO1oBm2s7aNubMFpKUwUlhyNGLTt_DW6bITxcPN3ztH7Zr1fPce7l6ftarmLJS3SIQwAVGElCkFlncmwlzUtRS1qqcpUZKoERhpZk0aoQDKsWNPkuCYsxVjVFZ2ju9O_vbMfI_iBt9pLMEZ0YEfPyyKjVZWyMpD3Z0nCGKYZDmMFlJxQ6az3DhreO90K98UJ5sei_MBDUX4sygnhoWhw2D9H6uG3xeCENmfNx5MJodOnBse91NBJUNqBHLiy-oz9A7hXkpc |
| CitedBy_id | crossref_primary_10_3390_sym15091806 crossref_primary_10_1016_j_nuclphysb_2018_12_010 crossref_primary_10_1016_j_physletb_2018_05_077 crossref_primary_10_1016_j_nuclphysb_2011_11_005 crossref_primary_10_1007_JHEP03_2012_101 crossref_primary_10_1007_JHEP12_2012_104 crossref_primary_10_1007_JHEP04_2014_121 crossref_primary_10_1088_1742_5468_add516 crossref_primary_10_1007_JHEP08_2018_111 crossref_primary_10_1016_j_ppnp_2016_06_004 crossref_primary_10_1007_JHEP08_2019_113 crossref_primary_10_1016_j_physletb_2017_12_030 crossref_primary_10_1016_j_nuclphysb_2015_11_016 crossref_primary_10_1007_JHEP07_2024_124 crossref_primary_10_1016_j_cpc_2024_109384 crossref_primary_10_1007_JHEP03_2014_088 crossref_primary_10_1016_j_cpc_2016_03_013 crossref_primary_10_1088_1742_6596_368_1_012050 crossref_primary_10_1016_j_cpc_2014_03_015 crossref_primary_10_1007_JHEP01_2020_024 crossref_primary_10_1007_JHEP07_2019_056 crossref_primary_10_1088_1742_6596_1525_1_012018 crossref_primary_10_1088_1361_6382_ad6740 crossref_primary_10_1007_JHEP12_2016_144 crossref_primary_10_1007_JHEP09_2024_197 crossref_primary_10_1016_j_cpc_2012_09_020 crossref_primary_10_1007_JHEP07_2023_181 crossref_primary_10_1016_j_cpc_2022_108386 crossref_primary_10_1007_JHEP04_2019_116 crossref_primary_10_1007_JHEP07_2013_128 crossref_primary_10_1007_JHEP08_2013_133 crossref_primary_10_1007_JHEP11_2012_114 crossref_primary_10_1016_j_cpc_2015_05_022 crossref_primary_10_1007_JHEP02_2015_120 crossref_primary_10_1007_JHEP08_2024_127 crossref_primary_10_1088_1742_6596_523_1_012048 crossref_primary_10_1007_JHEP02_2011_102 crossref_primary_10_1007_JHEP12_2013_045 crossref_primary_10_1007_JHEP10_2018_206 crossref_primary_10_1016_j_cpc_2021_107982 crossref_primary_10_1007_JHEP07_2023_197 crossref_primary_10_1016_j_cpc_2023_108956 crossref_primary_10_1007_JHEP11_2013_080 crossref_primary_10_1088_0954_3899_38_10_105004 crossref_primary_10_1007_JHEP06_2023_144 crossref_primary_10_1007_JHEP12_2016_096 crossref_primary_10_1016_j_nuclphysbps_2015_03_006 crossref_primary_10_1016_j_cpc_2017_09_015 crossref_primary_10_1140_epjc_s10052_011_1626_1 crossref_primary_10_1007_JHEP01_2011_068 crossref_primary_10_1016_j_nuclphysbps_2015_03_024 crossref_primary_10_1016_j_physletb_2019_135100 crossref_primary_10_1140_epjp_i2016_16271_7 crossref_primary_10_1007_JHEP09_2022_062 crossref_primary_10_1103_PhysRevD_111_096005 crossref_primary_10_1007_JHEP11_2013_041 crossref_primary_10_1016_j_cpc_2019_02_015 crossref_primary_10_1016_j_cpc_2025_109798 crossref_primary_10_1007_JHEP02_2024_158 crossref_primary_10_1140_epjc_s10052_012_2139_2 crossref_primary_10_1007_JHEP03_2013_162 crossref_primary_10_1140_epjc_s10052_011_1708_0 crossref_primary_10_1016_j_physletb_2011_06_060 crossref_primary_10_1016_j_physrep_2021_03_006 crossref_primary_10_1007_JHEP01_2018_153 crossref_primary_10_1007_JHEP11_2011_014 crossref_primary_10_1016_j_nuclphysb_2012_04_015 crossref_primary_10_1007_JHEP08_2015_108 |
| Cites_doi | 10.1016/S0370-2693(03)00895-5 10.1016/j.nuclphysb.2008.12.018 10.1016/j.nuclphysbps.2008.09.113 10.1016/S0370-2693(99)01061-8 10.1088/1126-6708/2007/09/014 10.1016/j.nuclphysbps.2006.03.034 10.1142/S0217751X08040263 10.1007/BF01609069 10.1016/j.cpc.2008.11.006 10.1007/BF01773358 10.1016/j.nuclphysb.2004.06.005 10.1103/PhysRevLett.102.212002 10.1016/j.nuclphysb.2009.04.015 10.1016/j.physletb.2009.06.038 10.1007/JHEP05(2010)084 10.1016/j.physletb.2009.05.070 10.1016/j.nuclphysb.2010.05.004 10.1145/1465482.1465560 10.1016/j.nuclphysb.2003.12.023 10.1088/1126-6708/2009/01/038 10.1016/j.cpc.2007.11.012 10.1088/1126-6708/2008/11/065 10.1007/BF02102092 10.1016/j.nuclphysb.2010.04.020 10.1103/PhysRevD.69.076010 10.1088/1126-6708/2009/05/004 10.1016/j.nuclphysb.2006.10.014 10.1016/S0550-3213(03)00307-9 10.1103/PhysRevLett.93.032002 10.1007/BF02557396 10.1088/1126-6708/2008/09/135 10.1007/JHEP03(2010)099 10.1088/1126-6708/2009/11/062 10.1016/j.cpc.2005.01.010 10.1016/j.physletb.2006.08.008 10.1016/S0550-3213(98)00138-2 10.1016/S0370-2693(99)01277-0 10.1103/PhysRevD.80.074017 10.1140/epjc/s2006-02612-9 10.1007/BF02895558 10.1088/1126-6708/2009/08/067 10.1016/0550-3213(96)00435-X 10.1007/BF01646611 10.1016/j.physletb.2008.03.028 10.1016/j.nuclphysb.2005.06.036 10.1177/109434200101500107 10.1063/1.523078 10.1016/j.nuclphysb.2005.03.036 10.1088/1126-6708/2008/11/062 10.1007/BF01248668 10.4213/tmf760 10.1063/1.1664729 10.1016/j.physletb.2006.01.052 10.1016/S0550-3213(00)00429-6 10.1016/j.nuclphysb.2004.05.025 10.1016/j.nuclphysb.2006.08.007 10.1103/PhysRevLett.93.262002 10.1016/0550-3213(72)90279-9 10.1016/S0370-2693(99)00777-7 10.1016/j.cpc.2006.07.002 10.1063/1.525296 10.1016/j.physletb.2008.08.070 |
| ContentType | Journal Article |
| Copyright | 2010 Elsevier B.V. |
| Copyright_xml | – notice: 2010 Elsevier B.V. |
| DBID | AAYXX CITATION 7SC 7U5 8FD H8D JQ2 L7M L~C L~D |
| DOI | 10.1016/j.cpc.2010.11.025 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-2944 |
| EndPage | 803 |
| ExternalDocumentID | 10_1016_j_cpc_2010_11_025 S0010465510004716 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO AAYFN ABBOA ABFNM ABMAC ABNEU ABQEM ABQYD ABXDB ABYKQ ACDAQ ACFVG ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADECG ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE IMUCA J1W KOM LG9 LZ4 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCB SDF SDG SES SEW SHN SPC SPCBC SPD SPG SSE SSK SSQ SSV SSZ T5K TN5 UPT VH1 WUQ ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7U5 8FD H8D JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c362t-29e3d0da6a3cb4ca3c8b38ababcd82a4d8e71fcb1fade3d70d7ff50b17200db93 |
| ISICitedReferencesCount | 86 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000287432200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-4655 |
| IngestDate | Sat Sep 27 18:39:00 EDT 2025 Sat Sep 27 20:34:43 EDT 2025 Sat Nov 29 05:32:20 EST 2025 Tue Nov 18 22:34:36 EST 2025 Fri Feb 23 02:30:56 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Data-driven evaluation Sector decomposition Numerical integration Feynman diagrams |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c362t-29e3d0da6a3cb4ca3c8b38ababcd82a4d8e71fcb1fade3d70d7ff50b17200db93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| PQID | 1770340362 |
| PQPubID | 23500 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_864399278 proquest_miscellaneous_1770340362 crossref_primary_10_1016_j_cpc_2010_11_025 crossref_citationtrail_10_1016_j_cpc_2010_11_025 elsevier_sciencedirect_doi_10_1016_j_cpc_2010_11_025 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-03-01 |
| PublicationDateYYYYMMDD | 2011-03-01 |
| PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Computer physics communications |
| PublicationYear | 2011 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Boughezal, Czakon (br0110) 2006; 755 Smirnov, Smirnov, Steinhauser, Bonciani, Ferroglia, Kiyo, Seidel, Steinhauser, Bell, Velizhanin, Ueda, Fujimoto, Seidel, Heinrich, Huber, Kosower, Smirnov, Gluza, Kajda, Riemann, Yundin, Bonciani, Ferroglia, Gehrmann, Studerus, Czakon, Mitov, Sterman, Ferroglia, Neubert, Pecjak, Yang, Ferroglia, Neubert, Pecjak, Yang (br0140) 2008; 668 Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser, Bekavac, Grozin, Seidel, Smirnov, Bekavac, Grozin, Marquard, Piclum, Seidel, Steinhauser, Dowling, Mondejar, Piclum, Czarnecki, Smirnov, Smirnov, Steinhauser, Smirnov, Smirnov, Steinhauser, Steinhauser, Lee, Smirnov, Smirnov (br0150) 2009; 102 Smirnov (br0090) 2003; 567 based on GMP library Baikov (br0270) 2006; 634 Speer (br0060) 1977; 23 GNU MPFR is a portable C library for arbitrary-precision binary floating-point computation with correct rounding Gehrmann, Heinrich, Huber, Studerus, Heinrich, Huber, Maitre (br0100) 2006; 640 Heinrich (br0080) 2008; 23 Marquard, Piclum, Seidel, Steinhauser (br0350) 2009; 678 Hahn (br0320) 2005; 168 Binoth, Heinrich, Binoth, Heinrich, Binoth, Heinrich (br0070) 2000; 585 Del Duca, Duhr, Smirnov, Del Duca, Duhr, Smirnov (br0160) 2010; 1003 Kaneko, Ueda (br0230) Pilipp (br0180) 2008; 0809 Smirnov (br0330) Breitenlohner, Maison (br0030) 1977; 52 t Hooft, Veltman (br0300) 1972; 44 Beneke, Smirnov, Smirnov, Rakhmetov, Smirnov, Rakhmetov, Smirnov (br0170) 1998; 522 G.M. Amdahl, Validity of the single processor approach to achieving large-scale computing capabilities, in: Proc. AFIPS Conf., Reston, VA, USA, 1967. Bollini, Giambiagi (br0310) 1972; 12 Bogner, Weinzierl, Bogner, Weinzierl (br0120) 2008; 178 Anastasiou, Melnikov, Petriello, Anastasiou, Melnikov, Petriello, Anastasiou, Melnikov, Petriello, Anastasiou, Melnikov, Petriello, Anastasiou, Melnikov, Petriello, Heinrich, Heinrich (br0220) 2004; 69 Smirnov (br0050) 2002; vol. 177 Smirnov, Tausk, Czakon, Smirnov, Smirnov (br0190) 1999; 460 Smirnov, Tentyukov (br0290) 2010; 837 Smirnov, Tentyukov (br0130) 2009; 180 Horoi, Enbody (br0240) 2001; 15 Hepp (br0010) 1966; 2 . Smirnov, Smirnov (br0260) 2009; 0905 Bergère, de Calan, Malbouisson, Pohlmeyer (br0040) 1978; 62 Roth, Denner, Denner, Melles, Pozzorini, Pozzorini, Denner, Pozzorini, Denner, Jantzen, Pozzorini, Denner, Jantzen, Pozzorini, Denner, Jantzen, Pozzorini (br0210) 1996; 479 Baikov, Chetyrkin (br0280) 2010; 837 Speer, Bergère, Zuber, Bergère, Lam, Zavialov, Smirnov (br0020) 1968; 9 Smirnov, Smirnov (br0200) 2004; vol. 211 Boughezal (10.1016/j.cpc.2010.11.025_br0110) 2006; 755 Tausk (10.1016/j.cpc.2010.11.025_br0190_2) 1999; 469 Bogner (10.1016/j.cpc.2010.11.025_br0120_1) 2008; 178 Smirnov (10.1016/j.cpc.2010.11.025_br0190_4) 2009; 0905 Kaneko (10.1016/j.cpc.2010.11.025_br0230) Baikov (10.1016/j.cpc.2010.11.025_br0270) 2006; 634 Smirnov (10.1016/j.cpc.2010.11.025_br0140_1) 2008; 668 Binoth (10.1016/j.cpc.2010.11.025_br0070_2) 2004; 680 Smirnov (10.1016/j.cpc.2010.11.025_br0200_2) 2006 Pozzorini (10.1016/j.cpc.2010.11.025_br0210_3) 2004; 692 Speer (10.1016/j.cpc.2010.11.025_br0020_1) 1968; 9 Steinhauser (10.1016/j.cpc.2010.11.025_br0150_7) Smirnov (10.1016/j.cpc.2010.11.025_br0130) 2009; 180 Denner (10.1016/j.cpc.2010.11.025_br0210_7) 2008; 0811 Smirnov (10.1016/j.cpc.2010.11.025_br0020_5) 1990; 134 Smirnov (10.1016/j.cpc.2010.11.025_br0090) 2003; 567 Heinrich (10.1016/j.cpc.2010.11.025_br0100_2) 2008; 662 Roth (10.1016/j.cpc.2010.11.025_br0210_1) 1996; 479 Smirnov (10.1016/j.cpc.2010.11.025_br0290) 2010; 837 Baikov (10.1016/j.cpc.2010.11.025_br0150_1) 2009; 102 Smirnov (10.1016/j.cpc.2010.11.025_br0170_4) 1999; 465 Anastasiou (10.1016/j.cpc.2010.11.025_br0220_4) 2005; 724 Smirnov (10.1016/j.cpc.2010.11.025_br0260) 2009; 0905 Seidel (10.1016/j.cpc.2010.11.025_br0140_7) Bollini (10.1016/j.cpc.2010.11.025_br0310) 1972; 12 Gehrmann (10.1016/j.cpc.2010.11.025_br0100_1) 2006; 640 Bergère (10.1016/j.cpc.2010.11.025_br0040_1) 1978; 62 Velizhanin (10.1016/j.cpc.2010.11.025_br0140_5) Del Duca (10.1016/j.cpc.2010.11.025_br0160_1) 2010; 1003 Beneke (10.1016/j.cpc.2010.11.025_br0170_1) 1998; 522 Bergère (10.1016/j.cpc.2010.11.025_br0020_2) 1974; 35 10.1016/j.cpc.2010.11.025_br0340 Pilipp (10.1016/j.cpc.2010.11.025_br0180) 2008; 0809 Anastasiou (10.1016/j.cpc.2010.11.025_br0220_3) 2004; 93 Bergère (10.1016/j.cpc.2010.11.025_br0020_3) 1976; 17 Del Duca (10.1016/j.cpc.2010.11.025_br0160_2) 2010; 1005 Lee (10.1016/j.cpc.2010.11.025_br0150_8) Denner (10.1016/j.cpc.2010.11.025_br0210_2) 2003; 662 Hepp (10.1016/j.cpc.2010.11.025_br0010) 1966; 2 Smirnov (10.1016/j.cpc.2010.11.025_br0170_3) 1999; 120 Speer (10.1016/j.cpc.2010.11.025_br0060) 1977; 23 Bonciani (10.1016/j.cpc.2010.11.025_br0140_10) 2009; 0908 Smirnov (10.1016/j.cpc.2010.11.025_br0170_2) 1999; 120 Binoth (10.1016/j.cpc.2010.11.025_br0070_1) 2000; 585 Smirnov (10.1016/j.cpc.2010.11.025_br0200_1) 2004; vol. 211 Denner (10.1016/j.cpc.2010.11.025_br0210_4) 2005; 717 Heinrich (10.1016/j.cpc.2010.11.025_br0080) 2008; 23 Bonciani (10.1016/j.cpc.2010.11.025_br0140_2) 2008; 0811 Bell (10.1016/j.cpc.2010.11.025_br0140_4) 2009; 812 Smirnov (10.1016/j.cpc.2010.11.025_br0190_1) 1999; 460 Bogner (10.1016/j.cpc.2010.11.025_br0120_2) 2008; 183 Ferroglia (10.1016/j.cpc.2010.11.025_br0140_13) 2009; 0911 Hahn (10.1016/j.cpc.2010.11.025_br0320) 2005; 168 Ueda (10.1016/j.cpc.2010.11.025_br0140_6) Kiyo (10.1016/j.cpc.2010.11.025_br0140_3) 2009; 0901 Smirnov (10.1016/j.cpc.2010.11.025_br0150_6) 10.1016/j.cpc.2010.11.025_br0250 Czakon (10.1016/j.cpc.2010.11.025_br0140_11) 2009; 80 Gluza (10.1016/j.cpc.2010.11.025_br0140_9) 2008; CAT08 Horoi (10.1016/j.cpc.2010.11.025_br0240) 2001; 15 Dowling (10.1016/j.cpc.2010.11.025_br0150_4) Denner (10.1016/j.cpc.2010.11.025_br0210_6) Baikov (10.1016/j.cpc.2010.11.025_br0280) 2010; 837 Marquard (10.1016/j.cpc.2010.11.025_br0350) 2009; 678 Bekavac (10.1016/j.cpc.2010.11.025_br0150_3) Heinrich (10.1016/j.cpc.2010.11.025_br0140_8) 2009; 678 Binoth (10.1016/j.cpc.2010.11.025_br0070_3) 2004; 693 Bekavac (10.1016/j.cpc.2010.11.025_br0150_2) 2009; 819 Anastasiou (10.1016/j.cpc.2010.11.025_br0220_1) 2004; 69 Anastasiou (10.1016/j.cpc.2010.11.025_br0220_5) 2007; 0709 Breitenlohner (10.1016/j.cpc.2010.11.025_br0030) 1977; 52 Denner (10.1016/j.cpc.2010.11.025_br0210_5) 2007; 761 Smirnov (10.1016/j.cpc.2010.11.025_br0330) Zavialov (10.1016/j.cpc.2010.11.025_br0020_4) 1990 Anastasiou (10.1016/j.cpc.2010.11.025_br0220_2) 2004; 93 Smirnov (10.1016/j.cpc.2010.11.025_br0150_5) Czakon (10.1016/j.cpc.2010.11.025_br0190_3) 2006; 175 Heinrich (10.1016/j.cpc.2010.11.025_br0220_6) 2006; 157 Pohlmeyer (10.1016/j.cpc.2010.11.025_br0040_2) 1982; 23 Heinrich (10.1016/j.cpc.2010.11.025_br0220_7) 2006; 48 t Hooft (10.1016/j.cpc.2010.11.025_br0300) 1972; 44 Smirnov (10.1016/j.cpc.2010.11.025_br0050) 2002; vol. 177 Ferroglia (10.1016/j.cpc.2010.11.025_br0140_12) |
| References_xml | – volume: vol. 177 year: 2002 ident: br0050 article-title: Applied Asymptotic Expansions in Momenta and Masses publication-title: STMP – volume: 567 start-page: 193 year: 2003 ident: br0090 publication-title: Phys. Lett. B – volume: 668 start-page: 293 year: 2008 ident: br0140 publication-title: Phys. Lett. B – ident: br0330 article-title: QLink – open-source program – volume: 837 start-page: 40 year: 2010 ident: br0290 publication-title: Nucl. Phys. B – volume: 755 start-page: 221 year: 2006 ident: br0110 publication-title: Nucl. Phys. B – volume: 178 start-page: 596 year: 2008 ident: br0120 publication-title: Comput. Phys. Comm. – volume: 522 start-page: 321 year: 1998 ident: br0170 publication-title: Nucl. Phys. B – volume: 12 start-page: 20 year: 1972 ident: br0310 publication-title: Nuovo Cimento B – volume: 1003 start-page: 099 year: 2010 ident: br0160 publication-title: JHEP – volume: 62 start-page: 137 year: 1978 ident: br0040 publication-title: Comm. Math. Phys. – volume: 23 start-page: 1 year: 1977 ident: br0060 publication-title: Ann. Inst. H. Poincaré – volume: 2 start-page: 301 year: 1966 ident: br0010 publication-title: Comm. Math. Phys. – volume: 102 start-page: 212002 year: 2009 ident: br0150 publication-title: Phys. Rev. Lett. – volume: 0809 start-page: 135 year: 2008 ident: br0180 publication-title: JHEP – volume: 640 start-page: 252 year: 2006 ident: br0100 publication-title: Phys. Lett. B – volume: 0905 start-page: 004 year: 2009 ident: br0260 publication-title: JHEP – reference: G.M. Amdahl, Validity of the single processor approach to achieving large-scale computing capabilities, in: Proc. AFIPS Conf., Reston, VA, USA, 1967. – volume: 837 start-page: 186 year: 2010 ident: br0280 publication-title: Nucl. Phys. B – volume: 15 start-page: 75 year: 2001 end-page: 80 ident: br0240 publication-title: Int. J. High Perform. Comput. Appl. – volume: 52 start-page: 11 year: 1977 ident: br0030 publication-title: Comm. Math. Phys. – volume: 168 start-page: 78 year: 2005 ident: br0320 publication-title: Comput. Phys. Comm. – volume: 9 start-page: 1404 year: 1968 ident: br0020 article-title: Renormalized Quantum Field Theory publication-title: J. Math. Phys. – volume: 44 start-page: 189 year: 1972 ident: br0300 publication-title: Nucl. Phys. B – reference: , based on GMP library – reference: GNU MPFR is a portable C library for arbitrary-precision binary floating-point computation with correct rounding, – volume: 23 start-page: 10 year: 2008 ident: br0080 publication-title: Internat. J. Modern Phys. A – volume: 479 start-page: 495 year: 1996 end-page: 514 ident: br0210 article-title: High-energy approximation of one-loop Feynman integrals publication-title: Nucl. Phys. B – ident: br0230 – volume: 585 start-page: 741 year: 2000 ident: br0070 publication-title: Nucl. Phys. B – volume: 460 start-page: 397 year: 1999 ident: br0190 publication-title: Phys. Lett. B – volume: vol. 211 year: 2004 ident: br0200 article-title: Evaluating Feynman Integrals publication-title: Springer Tracts Modern Phys. – volume: 678 start-page: 269 year: 2009 ident: br0350 publication-title: Phys. Lett. B – volume: 69 start-page: 076010 year: 2004 ident: br0220 publication-title: Phys. Rev. D – reference: . – volume: 180 start-page: 735 year: 2009 ident: br0130 publication-title: Comput. Phys. Comm. – volume: 634 start-page: 325 year: 2006 ident: br0270 publication-title: Phys. Lett. B – volume: 567 start-page: 193 year: 2003 ident: 10.1016/j.cpc.2010.11.025_br0090 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(03)00895-5 – ident: 10.1016/j.cpc.2010.11.025_br0150_7 – volume: 812 start-page: 264 year: 2009 ident: 10.1016/j.cpc.2010.11.025_br0140_4 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2008.12.018 – ident: 10.1016/j.cpc.2010.11.025_br0150_4 – volume: 183 start-page: 256 year: 2008 ident: 10.1016/j.cpc.2010.11.025_br0120_2 publication-title: Nucl. Phys. B Proc. Suppl. doi: 10.1016/j.nuclphysbps.2008.09.113 – volume: 465 start-page: 226 year: 1999 ident: 10.1016/j.cpc.2010.11.025_br0170_4 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(99)01061-8 – ident: 10.1016/j.cpc.2010.11.025_br0140_12 – volume: 0709 start-page: 014 year: 2007 ident: 10.1016/j.cpc.2010.11.025_br0220_5 publication-title: JHEP doi: 10.1088/1126-6708/2007/09/014 – volume: 157 start-page: 43 year: 2006 ident: 10.1016/j.cpc.2010.11.025_br0220_6 publication-title: Nucl. Phys. B Proc. Suppl. doi: 10.1016/j.nuclphysbps.2006.03.034 – volume: 23 start-page: 10 year: 2008 ident: 10.1016/j.cpc.2010.11.025_br0080 publication-title: Internat. J. Modern Phys. A doi: 10.1142/S0217751X08040263 – volume: 52 start-page: 11 year: 1977 ident: 10.1016/j.cpc.2010.11.025_br0030 publication-title: Comm. Math. Phys. doi: 10.1007/BF01609069 – volume: 180 start-page: 735 year: 2009 ident: 10.1016/j.cpc.2010.11.025_br0130 publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2008.11.006 – volume: 2 start-page: 301 year: 1966 ident: 10.1016/j.cpc.2010.11.025_br0010 publication-title: Comm. Math. Phys. doi: 10.1007/BF01773358 – ident: 10.1016/j.cpc.2010.11.025_br0140_6 – volume: 693 start-page: 134 year: 2004 ident: 10.1016/j.cpc.2010.11.025_br0070_3 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2004.06.005 – volume: 102 start-page: 212002 year: 2009 ident: 10.1016/j.cpc.2010.11.025_br0150_1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.212002 – ident: 10.1016/j.cpc.2010.11.025_br0340 – volume: vol. 177 year: 2002 ident: 10.1016/j.cpc.2010.11.025_br0050 article-title: Applied Asymptotic Expansions in Momenta and Masses – volume: 819 start-page: 183 year: 2009 ident: 10.1016/j.cpc.2010.11.025_br0150_2 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2009.04.015 – volume: 678 start-page: 359 year: 2009 ident: 10.1016/j.cpc.2010.11.025_br0140_8 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2009.06.038 – volume: 1005 start-page: 084 year: 2010 ident: 10.1016/j.cpc.2010.11.025_br0160_2 publication-title: JHEP doi: 10.1007/JHEP05(2010)084 – volume: 678 start-page: 269 year: 2009 ident: 10.1016/j.cpc.2010.11.025_br0350 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2009.05.070 – volume: 837 start-page: 186 year: 2010 ident: 10.1016/j.cpc.2010.11.025_br0280 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2010.05.004 – ident: 10.1016/j.cpc.2010.11.025_br0250 doi: 10.1145/1465482.1465560 – volume: 680 start-page: 375 year: 2004 ident: 10.1016/j.cpc.2010.11.025_br0070_2 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2003.12.023 – volume: 0901 start-page: 038 year: 2009 ident: 10.1016/j.cpc.2010.11.025_br0140_3 publication-title: JHEP doi: 10.1088/1126-6708/2009/01/038 – volume: 178 start-page: 596 year: 2008 ident: 10.1016/j.cpc.2010.11.025_br0120_1 publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2007.11.012 – volume: 0811 start-page: 065 year: 2008 ident: 10.1016/j.cpc.2010.11.025_br0140_2 publication-title: JHEP doi: 10.1088/1126-6708/2008/11/065 – volume: 23 start-page: 1 year: 1977 ident: 10.1016/j.cpc.2010.11.025_br0060 publication-title: Ann. Inst. H. Poincaré – volume: 134 start-page: 109 year: 1990 ident: 10.1016/j.cpc.2010.11.025_br0020_5 publication-title: Comm. Math. Phys. doi: 10.1007/BF02102092 – ident: 10.1016/j.cpc.2010.11.025_br0230 – ident: 10.1016/j.cpc.2010.11.025_br0140_7 – volume: 837 start-page: 40 year: 2010 ident: 10.1016/j.cpc.2010.11.025_br0290 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2010.04.020 – volume: 69 start-page: 076010 year: 2004 ident: 10.1016/j.cpc.2010.11.025_br0220_1 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.69.076010 – ident: 10.1016/j.cpc.2010.11.025_br0150_6 – volume: 0905 start-page: 004 year: 2009 ident: 10.1016/j.cpc.2010.11.025_br0190_4 publication-title: JHEP doi: 10.1088/1126-6708/2009/05/004 – volume: 761 start-page: 1 year: 2007 ident: 10.1016/j.cpc.2010.11.025_br0210_5 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2006.10.014 – volume: 662 start-page: 299 year: 2003 ident: 10.1016/j.cpc.2010.11.025_br0210_2 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(03)00307-9 – volume: 93 start-page: 032002 year: 2004 ident: 10.1016/j.cpc.2010.11.025_br0220_2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.032002 – volume: 120 start-page: 870 year: 1999 ident: 10.1016/j.cpc.2010.11.025_br0170_2 publication-title: Theoret. Math. Phys. doi: 10.1007/BF02557396 – volume: 0809 start-page: 135 year: 2008 ident: 10.1016/j.cpc.2010.11.025_br0180 publication-title: JHEP doi: 10.1088/1126-6708/2008/09/135 – ident: 10.1016/j.cpc.2010.11.025_br0330 – ident: 10.1016/j.cpc.2010.11.025_br0140_5 – volume: 1003 start-page: 099 year: 2010 ident: 10.1016/j.cpc.2010.11.025_br0160_1 publication-title: JHEP doi: 10.1007/JHEP03(2010)099 – volume: 0911 start-page: 062 year: 2009 ident: 10.1016/j.cpc.2010.11.025_br0140_13 publication-title: JHEP doi: 10.1088/1126-6708/2009/11/062 – ident: 10.1016/j.cpc.2010.11.025_br0150_3 – volume: 168 start-page: 78 year: 2005 ident: 10.1016/j.cpc.2010.11.025_br0320 publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2005.01.010 – volume: 640 start-page: 252 year: 2006 ident: 10.1016/j.cpc.2010.11.025_br0100_1 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2006.08.008 – volume: 522 start-page: 321 year: 1998 ident: 10.1016/j.cpc.2010.11.025_br0170_1 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(98)00138-2 – volume: 469 start-page: 225 year: 1999 ident: 10.1016/j.cpc.2010.11.025_br0190_2 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(99)01277-0 – volume: 80 start-page: 074017 year: 2009 ident: 10.1016/j.cpc.2010.11.025_br0140_11 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.80.074017 – volume: 48 start-page: 25 year: 2006 ident: 10.1016/j.cpc.2010.11.025_br0220_7 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s2006-02612-9 – ident: 10.1016/j.cpc.2010.11.025_br0150_8 – volume: 12 start-page: 20 year: 1972 ident: 10.1016/j.cpc.2010.11.025_br0310 publication-title: Nuovo Cimento B doi: 10.1007/BF02895558 – volume: 0908 start-page: 067 year: 2009 ident: 10.1016/j.cpc.2010.11.025_br0140_10 publication-title: JHEP doi: 10.1088/1126-6708/2009/08/067 – volume: 479 start-page: 495 year: 1996 ident: 10.1016/j.cpc.2010.11.025_br0210_1 article-title: High-energy approximation of one-loop Feynman integrals publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(96)00435-X – volume: 35 start-page: 113 year: 1974 ident: 10.1016/j.cpc.2010.11.025_br0020_2 publication-title: Comm. Math. Phys. doi: 10.1007/BF01646611 – volume: 662 start-page: 344 year: 2008 ident: 10.1016/j.cpc.2010.11.025_br0100_2 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2008.03.028 – volume: CAT08 start-page: 124 year: 2008 ident: 10.1016/j.cpc.2010.11.025_br0140_9 publication-title: PoS A – volume: 724 start-page: 197 year: 2005 ident: 10.1016/j.cpc.2010.11.025_br0220_4 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2005.06.036 – volume: 15 start-page: 75 issue: 1 year: 2001 ident: 10.1016/j.cpc.2010.11.025_br0240 publication-title: Int. J. High Perform. Comput. Appl. doi: 10.1177/109434200101500107 – year: 2006 ident: 10.1016/j.cpc.2010.11.025_br0200_2 – ident: 10.1016/j.cpc.2010.11.025_br0210_6 – volume: 0905 start-page: 004 year: 2009 ident: 10.1016/j.cpc.2010.11.025_br0260 publication-title: JHEP doi: 10.1088/1126-6708/2009/05/004 – volume: 17 start-page: 1546 year: 1976 ident: 10.1016/j.cpc.2010.11.025_br0020_3 publication-title: J. Math. Phys. doi: 10.1063/1.523078 – volume: 717 start-page: 48 year: 2005 ident: 10.1016/j.cpc.2010.11.025_br0210_4 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2005.03.036 – volume: 0811 start-page: 062 year: 2008 ident: 10.1016/j.cpc.2010.11.025_br0210_7 publication-title: JHEP doi: 10.1088/1126-6708/2008/11/062 – volume: 62 start-page: 137 year: 1978 ident: 10.1016/j.cpc.2010.11.025_br0040_1 publication-title: Comm. Math. Phys. doi: 10.1007/BF01248668 – volume: 120 start-page: 64 year: 1999 ident: 10.1016/j.cpc.2010.11.025_br0170_3 publication-title: Teoret. Mat. Fiz. doi: 10.4213/tmf760 – volume: 9 start-page: 1404 year: 1968 ident: 10.1016/j.cpc.2010.11.025_br0020_1 publication-title: J. Math. Phys. doi: 10.1063/1.1664729 – volume: 634 start-page: 325 year: 2006 ident: 10.1016/j.cpc.2010.11.025_br0270 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2006.01.052 – volume: 585 start-page: 741 year: 2000 ident: 10.1016/j.cpc.2010.11.025_br0070_1 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(00)00429-6 – volume: vol. 211 year: 2004 ident: 10.1016/j.cpc.2010.11.025_br0200_1 article-title: Evaluating Feynman Integrals – volume: 692 start-page: 135 year: 2004 ident: 10.1016/j.cpc.2010.11.025_br0210_3 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2004.05.025 – volume: 755 start-page: 221 year: 2006 ident: 10.1016/j.cpc.2010.11.025_br0110 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2006.08.007 – volume: 93 start-page: 262002 year: 2004 ident: 10.1016/j.cpc.2010.11.025_br0220_3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.262002 – volume: 44 start-page: 189 year: 1972 ident: 10.1016/j.cpc.2010.11.025_br0300 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(72)90279-9 – ident: 10.1016/j.cpc.2010.11.025_br0150_5 – volume: 460 start-page: 397 year: 1999 ident: 10.1016/j.cpc.2010.11.025_br0190_1 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(99)00777-7 – volume: 175 start-page: 559 year: 2006 ident: 10.1016/j.cpc.2010.11.025_br0190_3 publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2006.07.002 – volume: 23 start-page: 2511 year: 1982 ident: 10.1016/j.cpc.2010.11.025_br0040_2 publication-title: J. Math. Phys. doi: 10.1063/1.525296 – volume: 668 start-page: 293 year: 2008 ident: 10.1016/j.cpc.2010.11.025_br0140_1 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2008.08.070 – year: 1990 ident: 10.1016/j.cpc.2010.11.025_br0020_4 |
| SSID | ssj0007793 |
| Score | 2.4137692 |
| Snippet | The program
FIESTA has been completely rewritten. Now it can be used not only as a tool to evaluate Feynman integrals numerically, but also to expand Feynman... The program FIESTA has been completely rewritten. Now it can be used not only as a tool to evaluate Feynman integrals numerically, but also to expand Feynman... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 790 |
| SubjectTerms | Computation Computer simulation Data-driven evaluation Decomposition Feynman diagrams Integrals Libraries Mathematical models Numerical integration Parallel processing Sector decomposition Strategy |
| Title | FIESTA 2: Parallelizeable multiloop numerical calculations |
| URI | https://dx.doi.org/10.1016/j.cpc.2010.11.025 https://www.proquest.com/docview/1770340362 https://www.proquest.com/docview/864399278 |
| Volume | 182 |
| WOSCitedRecordID | wos000287432200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELagCxIXxFOUl4LEiSpRnrW9twrtChCsKlFWvVl-Sl1KUjXtauHXM46dbLbQFXvgECtyHCvJN5n5bI9nEHorCgUsXGeh0eM4zAsjQpLgJFSZwuMipSQxDdKf8ckJmc_p1Lvy1k06AVyW5OKCrv4r1FAHYNutszeAu-sUKuAcQIcSYIfyn4A_BoI3m4xSO9af8rXNlbJc_NLNFqnGfXBZVatRuXVLNcsRHNLn8Kr7VLXN9-AnP2rrfX65l6Sj4l9_LNZldd7omOg0-kv1aTTpqmdg435uv7sLX6L-nEPSc7pq9Shobxt57aoeTXsCk_W0InYZQVsD2wQ1-FN3u2mEs0iupHO5s9FV3a7oq3Gyd-xX51XYOqydMeiC2S5gfMOgi9voIMUFJQN0MPl4NP_UmWqMfVRm_zrtsnfjALjzHPuIy44Jb3jJ7AG67wcUwcQJwkN0S5eP0N2pw-wxOnTiEKSHwY4wBJ0wBJ0wBH1heIK-HR_N3n8Ifb6MUAIN2YQp1ZmKFR_zTIpcQklERrjgQiqS8lwRjRMjRWK4gpY4VtiYIhbAYeNYCZo9RYOyKvUzFAgTSzrOZSKMyXOVEG6oyCTNlSa0IHyI4vZjMOmDyducJku2F4QhetfdsnKRVK5rnLdfmHkq6CgeA2m57rY3LRoM1KRd--KlrrY1SzCYttzStSEK9rQhlp3TFJPnN3nUF-je5S_yEg02661-he7I882iXr_2EvcbvIyVbw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FIESTA+2%3A+Parallelizeable+multiloop+numerical+calculations&rft.jtitle=Computer+physics+communications&rft.au=Smirnov%2C+A.V.&rft.au=Smirnov%2C+V.A.&rft.au=Tentyukov%2C+M.&rft.date=2011-03-01&rft.issn=0010-4655&rft.volume=182&rft.issue=3&rft.spage=790&rft.epage=803&rft_id=info:doi/10.1016%2Fj.cpc.2010.11.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cpc_2010_11_025 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon |