FIESTA 2: Parallelizeable multiloop numerical calculations

The program FIESTA has been completely rewritten. Now it can be used not only as a tool to evaluate Feynman integrals numerically, but also to expand Feynman integrals automatically in limits of momenta and masses with the use of sector decompositions and Mellin–Barnes representations. Other importa...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer physics communications Ročník 182; číslo 3; s. 790 - 803
Hlavní autori: Smirnov, A.V., Smirnov, V.A., Tentyukov, M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.03.2011
Predmet:
ISSN:0010-4655, 1879-2944
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The program FIESTA has been completely rewritten. Now it can be used not only as a tool to evaluate Feynman integrals numerically, but also to expand Feynman integrals automatically in limits of momenta and masses with the use of sector decompositions and Mellin–Barnes representations. Other important improvements to the code are complete parallelization (even to multiple computers), high-precision arithmetics (allowing to calculate integrals which were undoable before), new integrators, Speer sectors as a strategy, the possibility to evaluate more general parametric integrals. Program title: FIESTA 2 Catalogue identifier: AECP_v2_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AECP_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL version 2 No. of lines in distributed program, including test data, etc.: 39 783 No. of bytes in distributed program, including test data, etc.: 6 154 515 Distribution format: tar.gz Programming language: Wolfram Mathematica 6.0 (or higher) and C Computer: From a desktop PC to a supercomputer Operating system: Unix, Linux, Windows, Mac OS X Has the code been vectorised or parallelized?: Yes, the code has been parallelized for use on multi-kernel computers as well as clusters via Mathlink over the TCP/IP protocol. The program can work successfully with a single processor, however, it is ready to work in a parallel environment and the use of multi-kernel processor and multi-processor computers significantly speeds up the calculation; on clusters the calculation speed can be improved even further. RAM: Depends on the complexity of the problem Classification: 4.4, 4.12, 5, 6.5 Catalogue identifier of previous version: AECP_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 735 External routines: QLink [1], Cuba library [2], MPFR [3] Does the new version supersede the previous version?: Yes Nature of problem: The sector decomposition approach to evaluating Feynman integrals falls apart into the sector decomposition itself, where one has to minimize the number of sectors; the pole resolution and epsilon expansion; and the numerical integration of the resulting expression. Solution method: The sector decomposition is based on a new strategy as well as on classical strategies such as Speer sectors. The sector decomposition, pole resolution and epsilon-expansion are performed in Wolfram Mathematica 6.0 or, preferably, 7.0 (enabling parallelization) [4]. The data is stored on hard disk via a special program, QLink [1]. The expression for integration is passed to the C-part of the code, that parses the string and performs the integration by one of the algorithms in the Cuba library package [2]. This part of the evaluation is perfectly parallelized on multi-kernel computers. Reasons for new version: 1. The first version of FIESTA had problems related to numerical instability, so for some classes of integrals it could not produce a result. 2. The sector decomposition method can be applied not only for integral calculation. Summary of revisions: 1. New integrator library is used. 2. New methods to deal with numerical instability (MPFR library). 3. Parallelization in Mathematica. 4. Parallelization on multiple computers via TCP-IP. 5. New sector decomposition strategy (Speer sectors). 6. Possibility of using FIESTA to for integral expansion. 7. Possibility of using FIESTA to discover poles in d. 8. New negative terms resolution strategies. Restrictions: The complexity of the problem is mostly restricted by CPU time required to perform the evaluation of the integral Running time: Depends on the complexity of the problem References: [1] http://qlink08.sourceforge.net, open source. [2] http://www.feynarts.de/cuba/, open source. [3] http://www.mpfr.org/, open source. [4] http://www.wolfram.com/products/mathematica/index.html.
AbstractList The program FIESTA has been completely rewritten. Now it can be used not only as a tool to evaluate Feynman integrals numerically, but also to expand Feynman integrals automatically in limits of momenta and masses with the use of sector decompositions and Mellin-Barnes representations. Other important improvements to the code are complete parallelization (even to multiple computers), high-precision arithmetics (allowing to calculate integrals which were undoable before), new integrators, Speer sectors as a strategy, the possibility to evaluate more general parametric integrals. Program title: FIESTA 2 Catalogue identifier: AECP_v2_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AECP_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL version 2 No. of lines in distributed program, including test data, etc.: 39a[control]783 No. of bytes in distributed program, including test data, etc.: 6a[control]154a[control]515 Distribution format: tar.gz Programming language: Wolfram Mathematica 6.0 (or higher) and C Computer: From a desktop PC to a supercomputer Operating system: Unix, Linux, Windows, Mac OS X Has the code been vectorised or parallelized?: Yes, the code has been parallelized for use on multi-kernel computers as well as clusters via Mathlink over the TCP/IP protocol. The program can work successfully with a single processor, however, it is ready to work in a parallel environment and the use of multi-kernel processor and multi-processor computers significantly speeds up the calculation; on clusters the calculation speed can be improved even further. RAM: Depends on the complexity of the problem Classification: 4.4, 4.12, 5, 6.5 Catalogue identifier of previous version: AECP_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 735 External routines: QLink [1], Cuba library [2], MPFR [3] Does the new version supersede the previous version?: Yes Nature of problem: The sector decomposition approach to evaluating Feynman integrals falls apart into the sector decomposition itself, where one has to minimize the number of sectors; the pole resolution and epsilon expansion; and the numerical integration of the resulting expression. Solution method: The sector decomposition is based on a new strategy as well as on classical strategies such as Speer sectors. The sector decomposition, pole resolution and epsilon-expansion are performed in Wolfram Mathematica 6.0 or, preferably, 7.0 (enabling parallelization) [4]. The data is stored on hard disk via a special program, QLink [1]. The expression for integration is passed to the C-part of the code, that parses the string and performs the integration by one of the algorithms in the Cuba library package [2]. This part of the evaluation is perfectly parallelized on multi-kernel computers. Reasons for new version: 1. The first version of FIESTA had problems related to numerical instability, so for some classes of integrals it could not produce a result. 2. The sector decomposition method can be applied not only for integral calculation. Summary of revisions: 1. New integrator library is used. 2. New methods to deal with numerical instability (MPFR library). 3. Parallelization in Mathematica. 4. Parallelization on multiple computers via TCP-IP. 5. New sector decomposition strategy (Speer sectors). 6. Possibility of using FIESTA to for integral expansion. 7. Possibility of using FIESTA to discover poles in d. 8. New negative terms resolution strategies. Restrictions: The complexity of the problem is mostly restricted by CPU time required to perform the evaluation of the integral Running time: Depends on the complexity of the problem References: [1] http://qlink08.sourceforge.net, open source. [2] http://www.feynarts.de/cuba/, open source. [3] http://www.mpfr.org/, open source. [4] http://www.wolfram.com/products/mathematica/index.html.
The program FIESTA has been completely rewritten. Now it can be used not only as a tool to evaluate Feynman integrals numerically, but also to expand Feynman integrals automatically in limits of momenta and masses with the use of sector decompositions and Mellin–Barnes representations. Other important improvements to the code are complete parallelization (even to multiple computers), high-precision arithmetics (allowing to calculate integrals which were undoable before), new integrators, Speer sectors as a strategy, the possibility to evaluate more general parametric integrals. Program title: FIESTA 2 Catalogue identifier: AECP_v2_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AECP_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL version 2 No. of lines in distributed program, including test data, etc.: 39 783 No. of bytes in distributed program, including test data, etc.: 6 154 515 Distribution format: tar.gz Programming language: Wolfram Mathematica 6.0 (or higher) and C Computer: From a desktop PC to a supercomputer Operating system: Unix, Linux, Windows, Mac OS X Has the code been vectorised or parallelized?: Yes, the code has been parallelized for use on multi-kernel computers as well as clusters via Mathlink over the TCP/IP protocol. The program can work successfully with a single processor, however, it is ready to work in a parallel environment and the use of multi-kernel processor and multi-processor computers significantly speeds up the calculation; on clusters the calculation speed can be improved even further. RAM: Depends on the complexity of the problem Classification: 4.4, 4.12, 5, 6.5 Catalogue identifier of previous version: AECP_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 735 External routines: QLink [1], Cuba library [2], MPFR [3] Does the new version supersede the previous version?: Yes Nature of problem: The sector decomposition approach to evaluating Feynman integrals falls apart into the sector decomposition itself, where one has to minimize the number of sectors; the pole resolution and epsilon expansion; and the numerical integration of the resulting expression. Solution method: The sector decomposition is based on a new strategy as well as on classical strategies such as Speer sectors. The sector decomposition, pole resolution and epsilon-expansion are performed in Wolfram Mathematica 6.0 or, preferably, 7.0 (enabling parallelization) [4]. The data is stored on hard disk via a special program, QLink [1]. The expression for integration is passed to the C-part of the code, that parses the string and performs the integration by one of the algorithms in the Cuba library package [2]. This part of the evaluation is perfectly parallelized on multi-kernel computers. Reasons for new version: 1. The first version of FIESTA had problems related to numerical instability, so for some classes of integrals it could not produce a result. 2. The sector decomposition method can be applied not only for integral calculation. Summary of revisions: 1. New integrator library is used. 2. New methods to deal with numerical instability (MPFR library). 3. Parallelization in Mathematica. 4. Parallelization on multiple computers via TCP-IP. 5. New sector decomposition strategy (Speer sectors). 6. Possibility of using FIESTA to for integral expansion. 7. Possibility of using FIESTA to discover poles in d. 8. New negative terms resolution strategies. Restrictions: The complexity of the problem is mostly restricted by CPU time required to perform the evaluation of the integral Running time: Depends on the complexity of the problem References: [1] http://qlink08.sourceforge.net, open source. [2] http://www.feynarts.de/cuba/, open source. [3] http://www.mpfr.org/, open source. [4] http://www.wolfram.com/products/mathematica/index.html.
Author Smirnov, V.A.
Tentyukov, M.
Smirnov, A.V.
Author_xml – sequence: 1
  givenname: A.V.
  surname: Smirnov
  fullname: Smirnov, A.V.
  email: ASmirnov80@gmail.com
  organization: Scientific Research Computing Center, Moscow State University, 119992 Moscow, Russia
– sequence: 2
  givenname: V.A.
  surname: Smirnov
  fullname: Smirnov, V.A.
  organization: Skobeltsyn Institute of Nuclear Physics of Moscow State University, 119992 Moscow, Russia
– sequence: 3
  givenname: M.
  surname: Tentyukov
  fullname: Tentyukov, M.
  organization: Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology, D-76128 Karlsruhe, Germany
BookMark eNp9kEFLwzAYQINMcJv-AG-96aU1adqmnacxNh0MFJznkCZfISNtatIK-uvNnCcPOyQh5L3w8WZo0tkOELolOCGYFA-HRPYySfHxThKc5hdoSkpWxWmVZRM0xeElzoo8v0Iz7w8YY8YqOkWLzXb9tl9G6SJ6FU4YA0Z_g6gNRO1oBm2s7aNubMFpKUwUlhyNGLTt_DW6bITxcPN3ztH7Zr1fPce7l6ftarmLJS3SIQwAVGElCkFlncmwlzUtRS1qqcpUZKoERhpZk0aoQDKsWNPkuCYsxVjVFZ2ju9O_vbMfI_iBt9pLMEZ0YEfPyyKjVZWyMpD3Z0nCGKYZDmMFlJxQ6az3DhreO90K98UJ5sei_MBDUX4sygnhoWhw2D9H6uG3xeCENmfNx5MJodOnBse91NBJUNqBHLiy-oz9A7hXkpc
CitedBy_id crossref_primary_10_3390_sym15091806
crossref_primary_10_1016_j_nuclphysb_2018_12_010
crossref_primary_10_1016_j_physletb_2018_05_077
crossref_primary_10_1016_j_nuclphysb_2011_11_005
crossref_primary_10_1007_JHEP03_2012_101
crossref_primary_10_1007_JHEP12_2012_104
crossref_primary_10_1007_JHEP04_2014_121
crossref_primary_10_1088_1742_5468_add516
crossref_primary_10_1007_JHEP08_2018_111
crossref_primary_10_1016_j_ppnp_2016_06_004
crossref_primary_10_1007_JHEP08_2019_113
crossref_primary_10_1016_j_physletb_2017_12_030
crossref_primary_10_1016_j_nuclphysb_2015_11_016
crossref_primary_10_1007_JHEP07_2024_124
crossref_primary_10_1016_j_cpc_2024_109384
crossref_primary_10_1007_JHEP03_2014_088
crossref_primary_10_1016_j_cpc_2016_03_013
crossref_primary_10_1088_1742_6596_368_1_012050
crossref_primary_10_1016_j_cpc_2014_03_015
crossref_primary_10_1007_JHEP01_2020_024
crossref_primary_10_1007_JHEP07_2019_056
crossref_primary_10_1088_1742_6596_1525_1_012018
crossref_primary_10_1088_1361_6382_ad6740
crossref_primary_10_1007_JHEP12_2016_144
crossref_primary_10_1007_JHEP09_2024_197
crossref_primary_10_1016_j_cpc_2012_09_020
crossref_primary_10_1007_JHEP07_2023_181
crossref_primary_10_1016_j_cpc_2022_108386
crossref_primary_10_1007_JHEP04_2019_116
crossref_primary_10_1007_JHEP07_2013_128
crossref_primary_10_1007_JHEP08_2013_133
crossref_primary_10_1007_JHEP11_2012_114
crossref_primary_10_1016_j_cpc_2015_05_022
crossref_primary_10_1007_JHEP02_2015_120
crossref_primary_10_1007_JHEP08_2024_127
crossref_primary_10_1088_1742_6596_523_1_012048
crossref_primary_10_1007_JHEP02_2011_102
crossref_primary_10_1007_JHEP12_2013_045
crossref_primary_10_1007_JHEP10_2018_206
crossref_primary_10_1016_j_cpc_2021_107982
crossref_primary_10_1007_JHEP07_2023_197
crossref_primary_10_1016_j_cpc_2023_108956
crossref_primary_10_1007_JHEP11_2013_080
crossref_primary_10_1088_0954_3899_38_10_105004
crossref_primary_10_1007_JHEP06_2023_144
crossref_primary_10_1007_JHEP12_2016_096
crossref_primary_10_1016_j_nuclphysbps_2015_03_006
crossref_primary_10_1016_j_cpc_2017_09_015
crossref_primary_10_1140_epjc_s10052_011_1626_1
crossref_primary_10_1007_JHEP01_2011_068
crossref_primary_10_1016_j_nuclphysbps_2015_03_024
crossref_primary_10_1016_j_physletb_2019_135100
crossref_primary_10_1140_epjp_i2016_16271_7
crossref_primary_10_1007_JHEP09_2022_062
crossref_primary_10_1103_PhysRevD_111_096005
crossref_primary_10_1007_JHEP11_2013_041
crossref_primary_10_1016_j_cpc_2019_02_015
crossref_primary_10_1016_j_cpc_2025_109798
crossref_primary_10_1007_JHEP02_2024_158
crossref_primary_10_1140_epjc_s10052_012_2139_2
crossref_primary_10_1007_JHEP03_2013_162
crossref_primary_10_1140_epjc_s10052_011_1708_0
crossref_primary_10_1016_j_physletb_2011_06_060
crossref_primary_10_1016_j_physrep_2021_03_006
crossref_primary_10_1007_JHEP01_2018_153
crossref_primary_10_1007_JHEP11_2011_014
crossref_primary_10_1016_j_nuclphysb_2012_04_015
crossref_primary_10_1007_JHEP08_2015_108
Cites_doi 10.1016/S0370-2693(03)00895-5
10.1016/j.nuclphysb.2008.12.018
10.1016/j.nuclphysbps.2008.09.113
10.1016/S0370-2693(99)01061-8
10.1088/1126-6708/2007/09/014
10.1016/j.nuclphysbps.2006.03.034
10.1142/S0217751X08040263
10.1007/BF01609069
10.1016/j.cpc.2008.11.006
10.1007/BF01773358
10.1016/j.nuclphysb.2004.06.005
10.1103/PhysRevLett.102.212002
10.1016/j.nuclphysb.2009.04.015
10.1016/j.physletb.2009.06.038
10.1007/JHEP05(2010)084
10.1016/j.physletb.2009.05.070
10.1016/j.nuclphysb.2010.05.004
10.1145/1465482.1465560
10.1016/j.nuclphysb.2003.12.023
10.1088/1126-6708/2009/01/038
10.1016/j.cpc.2007.11.012
10.1088/1126-6708/2008/11/065
10.1007/BF02102092
10.1016/j.nuclphysb.2010.04.020
10.1103/PhysRevD.69.076010
10.1088/1126-6708/2009/05/004
10.1016/j.nuclphysb.2006.10.014
10.1016/S0550-3213(03)00307-9
10.1103/PhysRevLett.93.032002
10.1007/BF02557396
10.1088/1126-6708/2008/09/135
10.1007/JHEP03(2010)099
10.1088/1126-6708/2009/11/062
10.1016/j.cpc.2005.01.010
10.1016/j.physletb.2006.08.008
10.1016/S0550-3213(98)00138-2
10.1016/S0370-2693(99)01277-0
10.1103/PhysRevD.80.074017
10.1140/epjc/s2006-02612-9
10.1007/BF02895558
10.1088/1126-6708/2009/08/067
10.1016/0550-3213(96)00435-X
10.1007/BF01646611
10.1016/j.physletb.2008.03.028
10.1016/j.nuclphysb.2005.06.036
10.1177/109434200101500107
10.1063/1.523078
10.1016/j.nuclphysb.2005.03.036
10.1088/1126-6708/2008/11/062
10.1007/BF01248668
10.4213/tmf760
10.1063/1.1664729
10.1016/j.physletb.2006.01.052
10.1016/S0550-3213(00)00429-6
10.1016/j.nuclphysb.2004.05.025
10.1016/j.nuclphysb.2006.08.007
10.1103/PhysRevLett.93.262002
10.1016/0550-3213(72)90279-9
10.1016/S0370-2693(99)00777-7
10.1016/j.cpc.2006.07.002
10.1063/1.525296
10.1016/j.physletb.2008.08.070
ContentType Journal Article
Copyright 2010 Elsevier B.V.
Copyright_xml – notice: 2010 Elsevier B.V.
DBID AAYXX
CITATION
7SC
7U5
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cpc.2010.11.025
DatabaseName CrossRef
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2944
EndPage 803
ExternalDocumentID 10_1016_j_cpc_2010_11_025
S0010465510004716
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABNEU
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADECG
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7U5
8FD
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c362t-29e3d0da6a3cb4ca3c8b38ababcd82a4d8e71fcb1fade3d70d7ff50b17200db93
ISICitedReferencesCount 86
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000287432200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-4655
IngestDate Sat Sep 27 18:39:00 EDT 2025
Sat Sep 27 20:34:43 EDT 2025
Sat Nov 29 05:32:20 EST 2025
Tue Nov 18 22:34:36 EST 2025
Fri Feb 23 02:30:56 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Data-driven evaluation
Sector decomposition
Numerical integration
Feynman diagrams
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-29e3d0da6a3cb4ca3c8b38ababcd82a4d8e71fcb1fade3d70d7ff50b17200db93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1770340362
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_864399278
proquest_miscellaneous_1770340362
crossref_primary_10_1016_j_cpc_2010_11_025
crossref_citationtrail_10_1016_j_cpc_2010_11_025
elsevier_sciencedirect_doi_10_1016_j_cpc_2010_11_025
PublicationCentury 2000
PublicationDate 2011-03-01
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Computer physics communications
PublicationYear 2011
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Boughezal, Czakon (br0110) 2006; 755
Smirnov, Smirnov, Steinhauser, Bonciani, Ferroglia, Kiyo, Seidel, Steinhauser, Bell, Velizhanin, Ueda, Fujimoto, Seidel, Heinrich, Huber, Kosower, Smirnov, Gluza, Kajda, Riemann, Yundin, Bonciani, Ferroglia, Gehrmann, Studerus, Czakon, Mitov, Sterman, Ferroglia, Neubert, Pecjak, Yang, Ferroglia, Neubert, Pecjak, Yang (br0140) 2008; 668
Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser, Bekavac, Grozin, Seidel, Smirnov, Bekavac, Grozin, Marquard, Piclum, Seidel, Steinhauser, Dowling, Mondejar, Piclum, Czarnecki, Smirnov, Smirnov, Steinhauser, Smirnov, Smirnov, Steinhauser, Steinhauser, Lee, Smirnov, Smirnov (br0150) 2009; 102
Smirnov (br0090) 2003; 567
based on GMP library
Baikov (br0270) 2006; 634
Speer (br0060) 1977; 23
GNU MPFR is a portable C library for arbitrary-precision binary floating-point computation with correct rounding
Gehrmann, Heinrich, Huber, Studerus, Heinrich, Huber, Maitre (br0100) 2006; 640
Heinrich (br0080) 2008; 23
Marquard, Piclum, Seidel, Steinhauser (br0350) 2009; 678
Hahn (br0320) 2005; 168
Binoth, Heinrich, Binoth, Heinrich, Binoth, Heinrich (br0070) 2000; 585
Del Duca, Duhr, Smirnov, Del Duca, Duhr, Smirnov (br0160) 2010; 1003
Kaneko, Ueda (br0230)
Pilipp (br0180) 2008; 0809
Smirnov (br0330)
Breitenlohner, Maison (br0030) 1977; 52
t Hooft, Veltman (br0300) 1972; 44
Beneke, Smirnov, Smirnov, Rakhmetov, Smirnov, Rakhmetov, Smirnov (br0170) 1998; 522
G.M. Amdahl, Validity of the single processor approach to achieving large-scale computing capabilities, in: Proc. AFIPS Conf., Reston, VA, USA, 1967.
Bollini, Giambiagi (br0310) 1972; 12
Bogner, Weinzierl, Bogner, Weinzierl (br0120) 2008; 178
Anastasiou, Melnikov, Petriello, Anastasiou, Melnikov, Petriello, Anastasiou, Melnikov, Petriello, Anastasiou, Melnikov, Petriello, Anastasiou, Melnikov, Petriello, Heinrich, Heinrich (br0220) 2004; 69
Smirnov (br0050) 2002; vol. 177
Smirnov, Tausk, Czakon, Smirnov, Smirnov (br0190) 1999; 460
Smirnov, Tentyukov (br0290) 2010; 837
Smirnov, Tentyukov (br0130) 2009; 180
Horoi, Enbody (br0240) 2001; 15
Hepp (br0010) 1966; 2
.
Smirnov, Smirnov (br0260) 2009; 0905
Bergère, de Calan, Malbouisson, Pohlmeyer (br0040) 1978; 62
Roth, Denner, Denner, Melles, Pozzorini, Pozzorini, Denner, Pozzorini, Denner, Jantzen, Pozzorini, Denner, Jantzen, Pozzorini, Denner, Jantzen, Pozzorini (br0210) 1996; 479
Baikov, Chetyrkin (br0280) 2010; 837
Speer, Bergère, Zuber, Bergère, Lam, Zavialov, Smirnov (br0020) 1968; 9
Smirnov, Smirnov (br0200) 2004; vol. 211
Boughezal (10.1016/j.cpc.2010.11.025_br0110) 2006; 755
Tausk (10.1016/j.cpc.2010.11.025_br0190_2) 1999; 469
Bogner (10.1016/j.cpc.2010.11.025_br0120_1) 2008; 178
Smirnov (10.1016/j.cpc.2010.11.025_br0190_4) 2009; 0905
Kaneko (10.1016/j.cpc.2010.11.025_br0230)
Baikov (10.1016/j.cpc.2010.11.025_br0270) 2006; 634
Smirnov (10.1016/j.cpc.2010.11.025_br0140_1) 2008; 668
Binoth (10.1016/j.cpc.2010.11.025_br0070_2) 2004; 680
Smirnov (10.1016/j.cpc.2010.11.025_br0200_2) 2006
Pozzorini (10.1016/j.cpc.2010.11.025_br0210_3) 2004; 692
Speer (10.1016/j.cpc.2010.11.025_br0020_1) 1968; 9
Steinhauser (10.1016/j.cpc.2010.11.025_br0150_7)
Smirnov (10.1016/j.cpc.2010.11.025_br0130) 2009; 180
Denner (10.1016/j.cpc.2010.11.025_br0210_7) 2008; 0811
Smirnov (10.1016/j.cpc.2010.11.025_br0020_5) 1990; 134
Smirnov (10.1016/j.cpc.2010.11.025_br0090) 2003; 567
Heinrich (10.1016/j.cpc.2010.11.025_br0100_2) 2008; 662
Roth (10.1016/j.cpc.2010.11.025_br0210_1) 1996; 479
Smirnov (10.1016/j.cpc.2010.11.025_br0290) 2010; 837
Baikov (10.1016/j.cpc.2010.11.025_br0150_1) 2009; 102
Smirnov (10.1016/j.cpc.2010.11.025_br0170_4) 1999; 465
Anastasiou (10.1016/j.cpc.2010.11.025_br0220_4) 2005; 724
Smirnov (10.1016/j.cpc.2010.11.025_br0260) 2009; 0905
Seidel (10.1016/j.cpc.2010.11.025_br0140_7)
Bollini (10.1016/j.cpc.2010.11.025_br0310) 1972; 12
Gehrmann (10.1016/j.cpc.2010.11.025_br0100_1) 2006; 640
Bergère (10.1016/j.cpc.2010.11.025_br0040_1) 1978; 62
Velizhanin (10.1016/j.cpc.2010.11.025_br0140_5)
Del Duca (10.1016/j.cpc.2010.11.025_br0160_1) 2010; 1003
Beneke (10.1016/j.cpc.2010.11.025_br0170_1) 1998; 522
Bergère (10.1016/j.cpc.2010.11.025_br0020_2) 1974; 35
10.1016/j.cpc.2010.11.025_br0340
Pilipp (10.1016/j.cpc.2010.11.025_br0180) 2008; 0809
Anastasiou (10.1016/j.cpc.2010.11.025_br0220_3) 2004; 93
Bergère (10.1016/j.cpc.2010.11.025_br0020_3) 1976; 17
Del Duca (10.1016/j.cpc.2010.11.025_br0160_2) 2010; 1005
Lee (10.1016/j.cpc.2010.11.025_br0150_8)
Denner (10.1016/j.cpc.2010.11.025_br0210_2) 2003; 662
Hepp (10.1016/j.cpc.2010.11.025_br0010) 1966; 2
Smirnov (10.1016/j.cpc.2010.11.025_br0170_3) 1999; 120
Speer (10.1016/j.cpc.2010.11.025_br0060) 1977; 23
Bonciani (10.1016/j.cpc.2010.11.025_br0140_10) 2009; 0908
Smirnov (10.1016/j.cpc.2010.11.025_br0170_2) 1999; 120
Binoth (10.1016/j.cpc.2010.11.025_br0070_1) 2000; 585
Smirnov (10.1016/j.cpc.2010.11.025_br0200_1) 2004; vol. 211
Denner (10.1016/j.cpc.2010.11.025_br0210_4) 2005; 717
Heinrich (10.1016/j.cpc.2010.11.025_br0080) 2008; 23
Bonciani (10.1016/j.cpc.2010.11.025_br0140_2) 2008; 0811
Bell (10.1016/j.cpc.2010.11.025_br0140_4) 2009; 812
Smirnov (10.1016/j.cpc.2010.11.025_br0190_1) 1999; 460
Bogner (10.1016/j.cpc.2010.11.025_br0120_2) 2008; 183
Ferroglia (10.1016/j.cpc.2010.11.025_br0140_13) 2009; 0911
Hahn (10.1016/j.cpc.2010.11.025_br0320) 2005; 168
Ueda (10.1016/j.cpc.2010.11.025_br0140_6)
Kiyo (10.1016/j.cpc.2010.11.025_br0140_3) 2009; 0901
Smirnov (10.1016/j.cpc.2010.11.025_br0150_6)
10.1016/j.cpc.2010.11.025_br0250
Czakon (10.1016/j.cpc.2010.11.025_br0140_11) 2009; 80
Gluza (10.1016/j.cpc.2010.11.025_br0140_9) 2008; CAT08
Horoi (10.1016/j.cpc.2010.11.025_br0240) 2001; 15
Dowling (10.1016/j.cpc.2010.11.025_br0150_4)
Denner (10.1016/j.cpc.2010.11.025_br0210_6)
Baikov (10.1016/j.cpc.2010.11.025_br0280) 2010; 837
Marquard (10.1016/j.cpc.2010.11.025_br0350) 2009; 678
Bekavac (10.1016/j.cpc.2010.11.025_br0150_3)
Heinrich (10.1016/j.cpc.2010.11.025_br0140_8) 2009; 678
Binoth (10.1016/j.cpc.2010.11.025_br0070_3) 2004; 693
Bekavac (10.1016/j.cpc.2010.11.025_br0150_2) 2009; 819
Anastasiou (10.1016/j.cpc.2010.11.025_br0220_1) 2004; 69
Anastasiou (10.1016/j.cpc.2010.11.025_br0220_5) 2007; 0709
Breitenlohner (10.1016/j.cpc.2010.11.025_br0030) 1977; 52
Denner (10.1016/j.cpc.2010.11.025_br0210_5) 2007; 761
Smirnov (10.1016/j.cpc.2010.11.025_br0330)
Zavialov (10.1016/j.cpc.2010.11.025_br0020_4) 1990
Anastasiou (10.1016/j.cpc.2010.11.025_br0220_2) 2004; 93
Smirnov (10.1016/j.cpc.2010.11.025_br0150_5)
Czakon (10.1016/j.cpc.2010.11.025_br0190_3) 2006; 175
Heinrich (10.1016/j.cpc.2010.11.025_br0220_6) 2006; 157
Pohlmeyer (10.1016/j.cpc.2010.11.025_br0040_2) 1982; 23
Heinrich (10.1016/j.cpc.2010.11.025_br0220_7) 2006; 48
t Hooft (10.1016/j.cpc.2010.11.025_br0300) 1972; 44
Smirnov (10.1016/j.cpc.2010.11.025_br0050) 2002; vol. 177
Ferroglia (10.1016/j.cpc.2010.11.025_br0140_12)
References_xml – volume: vol. 177
  year: 2002
  ident: br0050
  article-title: Applied Asymptotic Expansions in Momenta and Masses
  publication-title: STMP
– volume: 567
  start-page: 193
  year: 2003
  ident: br0090
  publication-title: Phys. Lett. B
– volume: 668
  start-page: 293
  year: 2008
  ident: br0140
  publication-title: Phys. Lett. B
– ident: br0330
  article-title: QLink – open-source program
– volume: 837
  start-page: 40
  year: 2010
  ident: br0290
  publication-title: Nucl. Phys. B
– volume: 755
  start-page: 221
  year: 2006
  ident: br0110
  publication-title: Nucl. Phys. B
– volume: 178
  start-page: 596
  year: 2008
  ident: br0120
  publication-title: Comput. Phys. Comm.
– volume: 522
  start-page: 321
  year: 1998
  ident: br0170
  publication-title: Nucl. Phys. B
– volume: 12
  start-page: 20
  year: 1972
  ident: br0310
  publication-title: Nuovo Cimento B
– volume: 1003
  start-page: 099
  year: 2010
  ident: br0160
  publication-title: JHEP
– volume: 62
  start-page: 137
  year: 1978
  ident: br0040
  publication-title: Comm. Math. Phys.
– volume: 23
  start-page: 1
  year: 1977
  ident: br0060
  publication-title: Ann. Inst. H. Poincaré
– volume: 2
  start-page: 301
  year: 1966
  ident: br0010
  publication-title: Comm. Math. Phys.
– volume: 102
  start-page: 212002
  year: 2009
  ident: br0150
  publication-title: Phys. Rev. Lett.
– volume: 0809
  start-page: 135
  year: 2008
  ident: br0180
  publication-title: JHEP
– volume: 640
  start-page: 252
  year: 2006
  ident: br0100
  publication-title: Phys. Lett. B
– volume: 0905
  start-page: 004
  year: 2009
  ident: br0260
  publication-title: JHEP
– reference: G.M. Amdahl, Validity of the single processor approach to achieving large-scale computing capabilities, in: Proc. AFIPS Conf., Reston, VA, USA, 1967.
– volume: 837
  start-page: 186
  year: 2010
  ident: br0280
  publication-title: Nucl. Phys. B
– volume: 15
  start-page: 75
  year: 2001
  end-page: 80
  ident: br0240
  publication-title: Int. J. High Perform. Comput. Appl.
– volume: 52
  start-page: 11
  year: 1977
  ident: br0030
  publication-title: Comm. Math. Phys.
– volume: 168
  start-page: 78
  year: 2005
  ident: br0320
  publication-title: Comput. Phys. Comm.
– volume: 9
  start-page: 1404
  year: 1968
  ident: br0020
  article-title: Renormalized Quantum Field Theory
  publication-title: J. Math. Phys.
– volume: 44
  start-page: 189
  year: 1972
  ident: br0300
  publication-title: Nucl. Phys. B
– reference: , based on GMP library
– reference: GNU MPFR is a portable C library for arbitrary-precision binary floating-point computation with correct rounding,
– volume: 23
  start-page: 10
  year: 2008
  ident: br0080
  publication-title: Internat. J. Modern Phys. A
– volume: 479
  start-page: 495
  year: 1996
  end-page: 514
  ident: br0210
  article-title: High-energy approximation of one-loop Feynman integrals
  publication-title: Nucl. Phys. B
– ident: br0230
– volume: 585
  start-page: 741
  year: 2000
  ident: br0070
  publication-title: Nucl. Phys. B
– volume: 460
  start-page: 397
  year: 1999
  ident: br0190
  publication-title: Phys. Lett. B
– volume: vol. 211
  year: 2004
  ident: br0200
  article-title: Evaluating Feynman Integrals
  publication-title: Springer Tracts Modern Phys.
– volume: 678
  start-page: 269
  year: 2009
  ident: br0350
  publication-title: Phys. Lett. B
– volume: 69
  start-page: 076010
  year: 2004
  ident: br0220
  publication-title: Phys. Rev. D
– reference: .
– volume: 180
  start-page: 735
  year: 2009
  ident: br0130
  publication-title: Comput. Phys. Comm.
– volume: 634
  start-page: 325
  year: 2006
  ident: br0270
  publication-title: Phys. Lett. B
– volume: 567
  start-page: 193
  year: 2003
  ident: 10.1016/j.cpc.2010.11.025_br0090
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(03)00895-5
– ident: 10.1016/j.cpc.2010.11.025_br0150_7
– volume: 812
  start-page: 264
  year: 2009
  ident: 10.1016/j.cpc.2010.11.025_br0140_4
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2008.12.018
– ident: 10.1016/j.cpc.2010.11.025_br0150_4
– volume: 183
  start-page: 256
  year: 2008
  ident: 10.1016/j.cpc.2010.11.025_br0120_2
  publication-title: Nucl. Phys. B Proc. Suppl.
  doi: 10.1016/j.nuclphysbps.2008.09.113
– volume: 465
  start-page: 226
  year: 1999
  ident: 10.1016/j.cpc.2010.11.025_br0170_4
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(99)01061-8
– ident: 10.1016/j.cpc.2010.11.025_br0140_12
– volume: 0709
  start-page: 014
  year: 2007
  ident: 10.1016/j.cpc.2010.11.025_br0220_5
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/09/014
– volume: 157
  start-page: 43
  year: 2006
  ident: 10.1016/j.cpc.2010.11.025_br0220_6
  publication-title: Nucl. Phys. B Proc. Suppl.
  doi: 10.1016/j.nuclphysbps.2006.03.034
– volume: 23
  start-page: 10
  year: 2008
  ident: 10.1016/j.cpc.2010.11.025_br0080
  publication-title: Internat. J. Modern Phys. A
  doi: 10.1142/S0217751X08040263
– volume: 52
  start-page: 11
  year: 1977
  ident: 10.1016/j.cpc.2010.11.025_br0030
  publication-title: Comm. Math. Phys.
  doi: 10.1007/BF01609069
– volume: 180
  start-page: 735
  year: 2009
  ident: 10.1016/j.cpc.2010.11.025_br0130
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2008.11.006
– volume: 2
  start-page: 301
  year: 1966
  ident: 10.1016/j.cpc.2010.11.025_br0010
  publication-title: Comm. Math. Phys.
  doi: 10.1007/BF01773358
– ident: 10.1016/j.cpc.2010.11.025_br0140_6
– volume: 693
  start-page: 134
  year: 2004
  ident: 10.1016/j.cpc.2010.11.025_br0070_3
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2004.06.005
– volume: 102
  start-page: 212002
  year: 2009
  ident: 10.1016/j.cpc.2010.11.025_br0150_1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.212002
– ident: 10.1016/j.cpc.2010.11.025_br0340
– volume: vol. 177
  year: 2002
  ident: 10.1016/j.cpc.2010.11.025_br0050
  article-title: Applied Asymptotic Expansions in Momenta and Masses
– volume: 819
  start-page: 183
  year: 2009
  ident: 10.1016/j.cpc.2010.11.025_br0150_2
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2009.04.015
– volume: 678
  start-page: 359
  year: 2009
  ident: 10.1016/j.cpc.2010.11.025_br0140_8
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2009.06.038
– volume: 1005
  start-page: 084
  year: 2010
  ident: 10.1016/j.cpc.2010.11.025_br0160_2
  publication-title: JHEP
  doi: 10.1007/JHEP05(2010)084
– volume: 678
  start-page: 269
  year: 2009
  ident: 10.1016/j.cpc.2010.11.025_br0350
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2009.05.070
– volume: 837
  start-page: 186
  year: 2010
  ident: 10.1016/j.cpc.2010.11.025_br0280
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2010.05.004
– ident: 10.1016/j.cpc.2010.11.025_br0250
  doi: 10.1145/1465482.1465560
– volume: 680
  start-page: 375
  year: 2004
  ident: 10.1016/j.cpc.2010.11.025_br0070_2
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2003.12.023
– volume: 0901
  start-page: 038
  year: 2009
  ident: 10.1016/j.cpc.2010.11.025_br0140_3
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/01/038
– volume: 178
  start-page: 596
  year: 2008
  ident: 10.1016/j.cpc.2010.11.025_br0120_1
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2007.11.012
– volume: 0811
  start-page: 065
  year: 2008
  ident: 10.1016/j.cpc.2010.11.025_br0140_2
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/11/065
– volume: 23
  start-page: 1
  year: 1977
  ident: 10.1016/j.cpc.2010.11.025_br0060
  publication-title: Ann. Inst. H. Poincaré
– volume: 134
  start-page: 109
  year: 1990
  ident: 10.1016/j.cpc.2010.11.025_br0020_5
  publication-title: Comm. Math. Phys.
  doi: 10.1007/BF02102092
– ident: 10.1016/j.cpc.2010.11.025_br0230
– ident: 10.1016/j.cpc.2010.11.025_br0140_7
– volume: 837
  start-page: 40
  year: 2010
  ident: 10.1016/j.cpc.2010.11.025_br0290
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2010.04.020
– volume: 69
  start-page: 076010
  year: 2004
  ident: 10.1016/j.cpc.2010.11.025_br0220_1
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.69.076010
– ident: 10.1016/j.cpc.2010.11.025_br0150_6
– volume: 0905
  start-page: 004
  year: 2009
  ident: 10.1016/j.cpc.2010.11.025_br0190_4
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/05/004
– volume: 761
  start-page: 1
  year: 2007
  ident: 10.1016/j.cpc.2010.11.025_br0210_5
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2006.10.014
– volume: 662
  start-page: 299
  year: 2003
  ident: 10.1016/j.cpc.2010.11.025_br0210_2
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(03)00307-9
– volume: 93
  start-page: 032002
  year: 2004
  ident: 10.1016/j.cpc.2010.11.025_br0220_2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.032002
– volume: 120
  start-page: 870
  year: 1999
  ident: 10.1016/j.cpc.2010.11.025_br0170_2
  publication-title: Theoret. Math. Phys.
  doi: 10.1007/BF02557396
– volume: 0809
  start-page: 135
  year: 2008
  ident: 10.1016/j.cpc.2010.11.025_br0180
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/09/135
– ident: 10.1016/j.cpc.2010.11.025_br0330
– ident: 10.1016/j.cpc.2010.11.025_br0140_5
– volume: 1003
  start-page: 099
  year: 2010
  ident: 10.1016/j.cpc.2010.11.025_br0160_1
  publication-title: JHEP
  doi: 10.1007/JHEP03(2010)099
– volume: 0911
  start-page: 062
  year: 2009
  ident: 10.1016/j.cpc.2010.11.025_br0140_13
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/11/062
– ident: 10.1016/j.cpc.2010.11.025_br0150_3
– volume: 168
  start-page: 78
  year: 2005
  ident: 10.1016/j.cpc.2010.11.025_br0320
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2005.01.010
– volume: 640
  start-page: 252
  year: 2006
  ident: 10.1016/j.cpc.2010.11.025_br0100_1
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2006.08.008
– volume: 522
  start-page: 321
  year: 1998
  ident: 10.1016/j.cpc.2010.11.025_br0170_1
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(98)00138-2
– volume: 469
  start-page: 225
  year: 1999
  ident: 10.1016/j.cpc.2010.11.025_br0190_2
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(99)01277-0
– volume: 80
  start-page: 074017
  year: 2009
  ident: 10.1016/j.cpc.2010.11.025_br0140_11
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.80.074017
– volume: 48
  start-page: 25
  year: 2006
  ident: 10.1016/j.cpc.2010.11.025_br0220_7
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s2006-02612-9
– ident: 10.1016/j.cpc.2010.11.025_br0150_8
– volume: 12
  start-page: 20
  year: 1972
  ident: 10.1016/j.cpc.2010.11.025_br0310
  publication-title: Nuovo Cimento B
  doi: 10.1007/BF02895558
– volume: 0908
  start-page: 067
  year: 2009
  ident: 10.1016/j.cpc.2010.11.025_br0140_10
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/08/067
– volume: 479
  start-page: 495
  year: 1996
  ident: 10.1016/j.cpc.2010.11.025_br0210_1
  article-title: High-energy approximation of one-loop Feynman integrals
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(96)00435-X
– volume: 35
  start-page: 113
  year: 1974
  ident: 10.1016/j.cpc.2010.11.025_br0020_2
  publication-title: Comm. Math. Phys.
  doi: 10.1007/BF01646611
– volume: 662
  start-page: 344
  year: 2008
  ident: 10.1016/j.cpc.2010.11.025_br0100_2
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2008.03.028
– volume: CAT08
  start-page: 124
  year: 2008
  ident: 10.1016/j.cpc.2010.11.025_br0140_9
  publication-title: PoS A
– volume: 724
  start-page: 197
  year: 2005
  ident: 10.1016/j.cpc.2010.11.025_br0220_4
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2005.06.036
– volume: 15
  start-page: 75
  issue: 1
  year: 2001
  ident: 10.1016/j.cpc.2010.11.025_br0240
  publication-title: Int. J. High Perform. Comput. Appl.
  doi: 10.1177/109434200101500107
– year: 2006
  ident: 10.1016/j.cpc.2010.11.025_br0200_2
– ident: 10.1016/j.cpc.2010.11.025_br0210_6
– volume: 0905
  start-page: 004
  year: 2009
  ident: 10.1016/j.cpc.2010.11.025_br0260
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/05/004
– volume: 17
  start-page: 1546
  year: 1976
  ident: 10.1016/j.cpc.2010.11.025_br0020_3
  publication-title: J. Math. Phys.
  doi: 10.1063/1.523078
– volume: 717
  start-page: 48
  year: 2005
  ident: 10.1016/j.cpc.2010.11.025_br0210_4
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2005.03.036
– volume: 0811
  start-page: 062
  year: 2008
  ident: 10.1016/j.cpc.2010.11.025_br0210_7
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/11/062
– volume: 62
  start-page: 137
  year: 1978
  ident: 10.1016/j.cpc.2010.11.025_br0040_1
  publication-title: Comm. Math. Phys.
  doi: 10.1007/BF01248668
– volume: 120
  start-page: 64
  year: 1999
  ident: 10.1016/j.cpc.2010.11.025_br0170_3
  publication-title: Teoret. Mat. Fiz.
  doi: 10.4213/tmf760
– volume: 9
  start-page: 1404
  year: 1968
  ident: 10.1016/j.cpc.2010.11.025_br0020_1
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1664729
– volume: 634
  start-page: 325
  year: 2006
  ident: 10.1016/j.cpc.2010.11.025_br0270
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2006.01.052
– volume: 585
  start-page: 741
  year: 2000
  ident: 10.1016/j.cpc.2010.11.025_br0070_1
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(00)00429-6
– volume: vol. 211
  year: 2004
  ident: 10.1016/j.cpc.2010.11.025_br0200_1
  article-title: Evaluating Feynman Integrals
– volume: 692
  start-page: 135
  year: 2004
  ident: 10.1016/j.cpc.2010.11.025_br0210_3
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2004.05.025
– volume: 755
  start-page: 221
  year: 2006
  ident: 10.1016/j.cpc.2010.11.025_br0110
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2006.08.007
– volume: 93
  start-page: 262002
  year: 2004
  ident: 10.1016/j.cpc.2010.11.025_br0220_3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.262002
– volume: 44
  start-page: 189
  year: 1972
  ident: 10.1016/j.cpc.2010.11.025_br0300
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(72)90279-9
– ident: 10.1016/j.cpc.2010.11.025_br0150_5
– volume: 460
  start-page: 397
  year: 1999
  ident: 10.1016/j.cpc.2010.11.025_br0190_1
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(99)00777-7
– volume: 175
  start-page: 559
  year: 2006
  ident: 10.1016/j.cpc.2010.11.025_br0190_3
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2006.07.002
– volume: 23
  start-page: 2511
  year: 1982
  ident: 10.1016/j.cpc.2010.11.025_br0040_2
  publication-title: J. Math. Phys.
  doi: 10.1063/1.525296
– volume: 668
  start-page: 293
  year: 2008
  ident: 10.1016/j.cpc.2010.11.025_br0140_1
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2008.08.070
– year: 1990
  ident: 10.1016/j.cpc.2010.11.025_br0020_4
SSID ssj0007793
Score 2.4137692
Snippet The program FIESTA has been completely rewritten. Now it can be used not only as a tool to evaluate Feynman integrals numerically, but also to expand Feynman...
The program FIESTA has been completely rewritten. Now it can be used not only as a tool to evaluate Feynman integrals numerically, but also to expand Feynman...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 790
SubjectTerms Computation
Computer simulation
Data-driven evaluation
Decomposition
Feynman diagrams
Integrals
Libraries
Mathematical models
Numerical integration
Parallel processing
Sector decomposition
Strategy
Title FIESTA 2: Parallelizeable multiloop numerical calculations
URI https://dx.doi.org/10.1016/j.cpc.2010.11.025
https://www.proquest.com/docview/1770340362
https://www.proquest.com/docview/864399278
Volume 182
WOSCitedRecordID wos000287432200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELagCxIXxFOUl4LEiSpRnrW9twrtChCsKlFWvVl-Sl1KUjXtauHXM46dbLbQFXvgECtyHCvJN5n5bI9nEHorCgUsXGeh0eM4zAsjQpLgJFSZwuMipSQxDdKf8ckJmc_p1Lvy1k06AVyW5OKCrv4r1FAHYNutszeAu-sUKuAcQIcSYIfyn4A_BoI3m4xSO9af8rXNlbJc_NLNFqnGfXBZVatRuXVLNcsRHNLn8Kr7VLXN9-AnP2rrfX65l6Sj4l9_LNZldd7omOg0-kv1aTTpqmdg435uv7sLX6L-nEPSc7pq9Shobxt57aoeTXsCk_W0InYZQVsD2wQ1-FN3u2mEs0iupHO5s9FV3a7oq3Gyd-xX51XYOqydMeiC2S5gfMOgi9voIMUFJQN0MPl4NP_UmWqMfVRm_zrtsnfjALjzHPuIy44Jb3jJ7AG67wcUwcQJwkN0S5eP0N2pw-wxOnTiEKSHwY4wBJ0wBJ0wBH1heIK-HR_N3n8Ifb6MUAIN2YQp1ZmKFR_zTIpcQklERrjgQiqS8lwRjRMjRWK4gpY4VtiYIhbAYeNYCZo9RYOyKvUzFAgTSzrOZSKMyXOVEG6oyCTNlSa0IHyI4vZjMOmDyducJku2F4QhetfdsnKRVK5rnLdfmHkq6CgeA2m57rY3LRoM1KRd--KlrrY1SzCYttzStSEK9rQhlp3TFJPnN3nUF-je5S_yEg02661-he7I882iXr_2EvcbvIyVbw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FIESTA+2%3A+Parallelizeable+multiloop+numerical+calculations&rft.jtitle=Computer+physics+communications&rft.au=Smirnov%2C+A.V.&rft.au=Smirnov%2C+V.A.&rft.au=Tentyukov%2C+M.&rft.date=2011-03-01&rft.issn=0010-4655&rft.volume=182&rft.issue=3&rft.spage=790&rft.epage=803&rft_id=info:doi/10.1016%2Fj.cpc.2010.11.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cpc_2010_11_025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon