Online sequential echo state network with sparse RLS algorithm for time series prediction

Recently, the echo state networks (ESNs) have been widely used for time series prediction. To meet the demand of actual applications and avoid the overfitting issue, the online sequential ESN with sparse recursive least squares (OSESN-SRLS) algorithm is proposed. Firstly, the ℓ0 and ℓ1 norm sparsity...

Full description

Saved in:
Bibliographic Details
Published in:Neural networks Vol. 118; pp. 32 - 42
Main Authors: Yang, Cuili, Qiao, Junfei, Ahmad, Zohaib, Nie, Kaizhe, Wang, Lei
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 01.10.2019
Subjects:
ISSN:0893-6080, 1879-2782, 1879-2782
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recently, the echo state networks (ESNs) have been widely used for time series prediction. To meet the demand of actual applications and avoid the overfitting issue, the online sequential ESN with sparse recursive least squares (OSESN-SRLS) algorithm is proposed. Firstly, the ℓ0 and ℓ1 norm sparsity penalty constraints of output weights are separately employed to control the network size. Secondly, the sparse recursive least squares (SRLS) algorithm and the subgradients technique are combined to estimate the output weight matrix. Thirdly, an adaptive selection mechanism for the ℓ0 or ℓ1 norm regularization parameter is designed. With the selected regularization parameter, it is proved that the developed SRLS shows comparable or better performance than the regular RLS. Furthermore, the convergence of OSESN-SRLS is theoretically analyzed to guarantee its effectiveness. Simulation results illustrate that the proposed OSESN-SRLS always outperforms other existing ESNs in terms of estimation accuracy and network compactness. •The online sequential ESN with sparse RLS algorithm is studied to improve estimation accuracy and network compactness.•The network size is controlled by the ℓ0 and ℓ1 norm sparsity penalty constraints.•The estimation performance is improved by the regularization parameters selection rule.•The algorithm convergence is analyzed to guarantee its effectiveness.
AbstractList Recently, the echo state networks (ESNs) have been widely used for time series prediction. To meet the demand of actual applications and avoid the overfitting issue, the online sequential ESN with sparse recursive least squares (OSESN-SRLS) algorithm is proposed. Firstly, the ℓ and ℓ norm sparsity penalty constraints of output weights are separately employed to control the network size. Secondly, the sparse recursive least squares (SRLS) algorithm and the subgradients technique are combined to estimate the output weight matrix. Thirdly, an adaptive selection mechanism for the ℓ or ℓ norm regularization parameter is designed. With the selected regularization parameter, it is proved that the developed SRLS shows comparable or better performance than the regular RLS. Furthermore, the convergence of OSESN-SRLS is theoretically analyzed to guarantee its effectiveness. Simulation results illustrate that the proposed OSESN-SRLS always outperforms other existing ESNs in terms of estimation accuracy and network compactness.
Recently, the echo state networks (ESNs) have been widely used for time series prediction. To meet the demand of actual applications and avoid the overfitting issue, the online sequential ESN with sparse recursive least squares (OSESN-SRLS) algorithm is proposed. Firstly, the ℓ0 and ℓ1 norm sparsity penalty constraints of output weights are separately employed to control the network size. Secondly, the sparse recursive least squares (SRLS) algorithm and the subgradients technique are combined to estimate the output weight matrix. Thirdly, an adaptive selection mechanism for the ℓ0 or ℓ1 norm regularization parameter is designed. With the selected regularization parameter, it is proved that the developed SRLS shows comparable or better performance than the regular RLS. Furthermore, the convergence of OSESN-SRLS is theoretically analyzed to guarantee its effectiveness. Simulation results illustrate that the proposed OSESN-SRLS always outperforms other existing ESNs in terms of estimation accuracy and network compactness. •The online sequential ESN with sparse RLS algorithm is studied to improve estimation accuracy and network compactness.•The network size is controlled by the ℓ0 and ℓ1 norm sparsity penalty constraints.•The estimation performance is improved by the regularization parameters selection rule.•The algorithm convergence is analyzed to guarantee its effectiveness.
Recently, the echo state networks (ESNs) have been widely used for time series prediction. To meet the demand of actual applications and avoid the overfitting issue, the online sequential ESN with sparse recursive least squares (OSESN-SRLS) algorithm is proposed. Firstly, the ℓ0 and ℓ1 norm sparsity penalty constraints of output weights are separately employed to control the network size. Secondly, the sparse recursive least squares (SRLS) algorithm and the subgradients technique are combined to estimate the output weight matrix. Thirdly, an adaptive selection mechanism for the ℓ0 or ℓ1 norm regularization parameter is designed. With the selected regularization parameter, it is proved that the developed SRLS shows comparable or better performance than the regular RLS. Furthermore, the convergence of OSESN-SRLS is theoretically analyzed to guarantee its effectiveness. Simulation results illustrate that the proposed OSESN-SRLS always outperforms other existing ESNs in terms of estimation accuracy and network compactness.Recently, the echo state networks (ESNs) have been widely used for time series prediction. To meet the demand of actual applications and avoid the overfitting issue, the online sequential ESN with sparse recursive least squares (OSESN-SRLS) algorithm is proposed. Firstly, the ℓ0 and ℓ1 norm sparsity penalty constraints of output weights are separately employed to control the network size. Secondly, the sparse recursive least squares (SRLS) algorithm and the subgradients technique are combined to estimate the output weight matrix. Thirdly, an adaptive selection mechanism for the ℓ0 or ℓ1 norm regularization parameter is designed. With the selected regularization parameter, it is proved that the developed SRLS shows comparable or better performance than the regular RLS. Furthermore, the convergence of OSESN-SRLS is theoretically analyzed to guarantee its effectiveness. Simulation results illustrate that the proposed OSESN-SRLS always outperforms other existing ESNs in terms of estimation accuracy and network compactness.
Author Qiao, Junfei
Wang, Lei
Yang, Cuili
Nie, Kaizhe
Ahmad, Zohaib
Author_xml – sequence: 1
  givenname: Cuili
  surname: Yang
  fullname: Yang, Cuili
– sequence: 2
  givenname: Junfei
  surname: Qiao
  fullname: Qiao, Junfei
  email: junfeiq@bjut.edu.cn, 804340106@qq.com
– sequence: 3
  givenname: Zohaib
  surname: Ahmad
  fullname: Ahmad, Zohaib
– sequence: 4
  givenname: Kaizhe
  surname: Nie
  fullname: Nie, Kaizhe
– sequence: 5
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31228722$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtLJDEURoMo2j7-gQxZuqmaVNKdhwtBRJ2BBsHHwlVIpW6NaauSNkkr_nvTtG5moatAON-Be_bRtg8eEDpuSN2Qhv9e1B5WHnJNSaNqMqsJ4Vto0kihKiok3UYTIhWrOJFkD-2ntCCFkFO2i_ZYQ6kUlE7Q440fnAec4GUFPjszYLBPAadsMuCifwvxGb-5_ITT0sQE-HZ-h83wL8TyN-I-RJzduBZEBwkvI3TOZhf8IdrpzZDg6PM9QA9Xl_cXf6r5zfXfi_N5ZRmnuaJctUQx1jOlpBLSCGrb3rYzBi1npjUtENFBZ7gkpDVNb4UFPjXAQVnZK3aATjbeZQzlhpT16JKFYTAewippSqczToWgrKC_PtFVO0Knl9GNJr7rrxwFON0ANoaUIvTauhKiXJOjcYNuiF631wu9aa_X7TWZ6VK2jKf_jb_8P8zONjMokV4dRJ2sA29Lxwg26y647wUf8VGh2A
CitedBy_id crossref_primary_10_1016_j_neucom_2025_130084
crossref_primary_10_1016_j_asoc_2021_108317
crossref_primary_10_1007_s10489_021_03106_7
crossref_primary_10_1016_j_neunet_2022_08_025
crossref_primary_10_1016_j_asoc_2020_106239
crossref_primary_10_1049_cth2_12591
crossref_primary_10_1109_TAI_2022_3225780
crossref_primary_10_1007_s00521_022_07711_6
crossref_primary_10_3390_electronics12224635
crossref_primary_10_3390_math9131580
crossref_primary_10_1007_s43069_025_00514_0
crossref_primary_10_1002_aisy_202400278
crossref_primary_10_1140_epjs_s11734_024_01287_z
crossref_primary_10_1155_2022_1264385
crossref_primary_10_1007_s40313_021_00874_y
crossref_primary_10_1016_j_engappai_2021_104596
crossref_primary_10_1007_s00521_023_08562_5
crossref_primary_10_59277_PRA_SER_A_24_2_10
crossref_primary_10_1016_j_artint_2022_103667
crossref_primary_10_1109_TSMC_2023_3319357
crossref_primary_10_1007_s10462_021_10038_8
crossref_primary_10_1007_s11227_021_04142_3
crossref_primary_10_1007_s00521_020_05477_3
crossref_primary_10_1016_j_ins_2022_02_009
crossref_primary_10_1007_s11063_021_10672_x
crossref_primary_10_1016_j_neucom_2020_02_034
crossref_primary_10_1109_TNNLS_2021_3098866
crossref_primary_10_1007_s10489_025_06347_y
crossref_primary_10_1109_TNNLS_2021_3109821
crossref_primary_10_1109_TCDS_2022_3176888
crossref_primary_10_1109_TII_2020_2987096
crossref_primary_10_1177_01423312211069483
crossref_primary_10_3389_fnhum_2023_1075666
Cites_doi 10.1109/TNNLS.2015.2496281
10.1137/S003614450037906X
10.1016/j.neucom.2016.01.088
10.1016/j.neucom.2018.02.036
10.1016/j.neunet.2011.04.006
10.1016/j.watres.2012.01.029
10.1109/TSP.2014.2302731
10.1109/LSP.2011.2159373
10.1214/aos/1176344136
10.1016/j.knosys.2015.06.003
10.1016/j.neunet.2016.09.009
10.1162/neco.2007.19.1.111
10.1214/009053604000000067
10.1016/j.ins.2016.07.065
10.1016/j.neunet.2015.07.005
10.1016/j.neunet.2015.07.006
10.1016/j.neunet.2007.04.021
10.1016/j.asoc.2017.09.015
10.1109/TNNLS.2014.2316291
10.1109/72.159069
10.1126/science.1091277
10.1109/TSP.2010.2048103
10.1016/S0005-1098(96)80007-0
10.1016/j.neunet.2012.08.008
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.spl.2013.05.014
10.1109/TAC.1974.1100705
10.1109/TNNLS.2015.2479117
10.1109/LSP.2009.2024736
10.1016/j.neunet.2015.08.010
10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
10.1126/science.1127647
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neunet.2019.05.006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 42
ExternalDocumentID 31228722
10_1016_j_neunet_2019_05_006
S0893608019301388
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
ID FETCH-LOGICAL-c362t-269b0933f3998978a72cbfcb53eb63ababe07deda6800ba1fc7ce64ae6e9c8f93
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000483920500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0893-6080
1879-2782
IngestDate Sat Sep 27 16:19:23 EDT 2025
Wed Feb 19 02:31:47 EST 2025
Sat Nov 29 07:14:27 EST 2025
Tue Nov 18 22:38:10 EST 2025
Fri Feb 23 02:28:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Regularization method
Online sequential learning
Time series prediction
Sparse recursive least squares algorithm
Echo state networks
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-269b0933f3998978a72cbfcb53eb63ababe07deda6800ba1fc7ce64ae6e9c8f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31228722
PQID 2245627723
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2245627723
pubmed_primary_31228722
crossref_citationtrail_10_1016_j_neunet_2019_05_006
crossref_primary_10_1016_j_neunet_2019_05_006
elsevier_sciencedirect_doi_10_1016_j_neunet_2019_05_006
PublicationCentury 2000
PublicationDate October 2019
2019-10-00
2019-Oct
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ozturk, Xu, Principe (b29) 2007; 19
Zhou (b43) 2013; 83
Chen, Gu, Hero (b5) 2009; 312
Zhang, Tommy, Jonathan (b42) 2016; 27
Denis (b6) 2013
Eric, Eduardo, Bjarne (b11) 2017; 85
Gu, Jin, Mei (b14) 2009; 16
Lachezar, Petia, Petia (b24) 2016; 78
Hinton, Salakhutdinov (b18) 2006; 313
Efron, Hastie, Johnstone (b9) 2004; 32
Yang, Qiao, Han (b40) 2018; 290
Han, Chen, Qiao (b15) 2011; 24
Jagannathan, Lewis (b22) 1996; 32
Chen, David, Michael (b4) 2001; 43
Simone, Wang, Massimo (b34) 2016; 78
Yin, Lewis, Zeng (b41) 2018
Koryakin, Lohmann, Butz (b23) 2012; 36
Sebastian, Martin, Danil (b33) 2016; 192
Tibshiranit (b36) 1996; 58
Han, Wu, Qiao (b16) 2014; 44
Wang, Yan (b37) 2015; 86
Jaeger, Haas (b21) 2004; 304
Babadi, Kalouptsidis, Tarokh (b2) 2010; 58
Song, Zhao, Feng (b35) 2011
Schwarz (b32) 1978; 6
Eksioglu, Tanc (b10) 2011; 18
Liu, Liu, Johnson (b25) 2012; 46
Horikawa, Furuhashi, Uchikawa (b19) 1992; 3
Dimitri, Angelia, Asuman (b7) 2013
Akaike (b1) 1974; 19
Bo, Zhang (b3) 2018; 62
Lorenz (b27) 1963; 20
Jaeger (b20) 2003; 15
Lun, Yao, Hu (b28) 2016; 370
Filippo, Simone, Aurelio (b12) 2015; 71
Qiao, Wang, Yang (b30) 2018
Duan, Wang (b8) 2016; 27
Ganesh (b13) 2007; 20
Rao, Mitra (b31) 1971
Xu, Han (b39) 2016; 46
Wen, Hu, Yang (b38) 2018
Harold, Yiannis (b17) 2015; 26
Liu, Liu, Li (b26) 2014; 62
Lun (10.1016/j.neunet.2019.05.006_b28) 2016; 370
Denis (10.1016/j.neunet.2019.05.006_b6) 2013
Efron (10.1016/j.neunet.2019.05.006_b9) 2004; 32
Gu (10.1016/j.neunet.2019.05.006_b14) 2009; 16
Tibshiranit (10.1016/j.neunet.2019.05.006_b36) 1996; 58
Filippo (10.1016/j.neunet.2019.05.006_b12) 2015; 71
Wen (10.1016/j.neunet.2019.05.006_b38) 2018
Akaike (10.1016/j.neunet.2019.05.006_b1) 1974; 19
Han (10.1016/j.neunet.2019.05.006_b16) 2014; 44
Jaeger (10.1016/j.neunet.2019.05.006_b20) 2003; 15
Jaeger (10.1016/j.neunet.2019.05.006_b21) 2004; 304
Babadi (10.1016/j.neunet.2019.05.006_b2) 2010; 58
Chen (10.1016/j.neunet.2019.05.006_b5) 2009; 312
Koryakin (10.1016/j.neunet.2019.05.006_b23) 2012; 36
Liu (10.1016/j.neunet.2019.05.006_b25) 2012; 46
Zhou (10.1016/j.neunet.2019.05.006_b43) 2013; 83
Horikawa (10.1016/j.neunet.2019.05.006_b19) 1992; 3
Zhang (10.1016/j.neunet.2019.05.006_b42) 2016; 27
Yang (10.1016/j.neunet.2019.05.006_b40) 2018; 290
Jagannathan (10.1016/j.neunet.2019.05.006_b22) 1996; 32
Eric (10.1016/j.neunet.2019.05.006_b11) 2017; 85
Liu (10.1016/j.neunet.2019.05.006_b26) 2014; 62
Chen (10.1016/j.neunet.2019.05.006_b4) 2001; 43
Ozturk (10.1016/j.neunet.2019.05.006_b29) 2007; 19
Hinton (10.1016/j.neunet.2019.05.006_b18) 2006; 313
Duan (10.1016/j.neunet.2019.05.006_b8) 2016; 27
Song (10.1016/j.neunet.2019.05.006_b35) 2011
Dimitri (10.1016/j.neunet.2019.05.006_b7) 2013
Harold (10.1016/j.neunet.2019.05.006_b17) 2015; 26
Lachezar (10.1016/j.neunet.2019.05.006_b24) 2016; 78
Qiao (10.1016/j.neunet.2019.05.006_b30) 2018
Schwarz (10.1016/j.neunet.2019.05.006_b32) 1978; 6
Lorenz (10.1016/j.neunet.2019.05.006_b27) 1963; 20
Yin (10.1016/j.neunet.2019.05.006_b41) 2018
Sebastian (10.1016/j.neunet.2019.05.006_b33) 2016; 192
Xu (10.1016/j.neunet.2019.05.006_b39) 2016; 46
Simone (10.1016/j.neunet.2019.05.006_b34) 2016; 78
Han (10.1016/j.neunet.2019.05.006_b15) 2011; 24
Rao (10.1016/j.neunet.2019.05.006_b31) 1971
Wang (10.1016/j.neunet.2019.05.006_b37) 2015; 86
Eksioglu (10.1016/j.neunet.2019.05.006_b10) 2011; 18
Ganesh (10.1016/j.neunet.2019.05.006_b13) 2007; 20
Bo (10.1016/j.neunet.2019.05.006_b3) 2018; 62
References_xml – volume: 44
  start-page: 554
  year: 2014
  end-page: 564
  ident: b16
  article-title: Nonlinear systems modeling based on self-organizing fuzzy-neural-network with adaptive computation algorithm
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 46
  start-page: 2121
  year: 2012
  end-page: 2130
  ident: b25
  article-title: Effects of vertical mixing on phytoplankton blooms in xiangxi bay of three gorges reservoir: Implications for management
  publication-title: Water Research
– volume: 3
  start-page: 801
  year: 1992
  end-page: 806
  ident: b19
  article-title: On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm
  publication-title: IEEE Transactions on Neural Networks
– volume: 304
  start-page: 78
  year: 2004
  end-page: 80
  ident: b21
  article-title: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
  publication-title: Science
– volume: 83
  start-page: 2108
  year: 2013
  end-page: 2112
  ident: b43
  article-title: On grouping effect of elastic net
  publication-title: Statistics & Probability Letters
– volume: 86
  start-page: 182
  year: 2015
  end-page: 193
  ident: b37
  article-title: Optimizing the echo state network with a binary particle swarm optimization algorithm
  publication-title: Knowledge-Based Systems
– volume: 46
  start-page: 2173
  year: 2016
  end-page: 2183
  ident: b39
  article-title: Adaptive elastic echo state network for multivariate time series prediction
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 15
  start-page: 593
  year: 2003
  end-page: 600
  ident: b20
  article-title: Adaptive nonlinear systems identification with echo state network
  publication-title: Advances in Neural Information Processing Systems
– volume: 78
  start-page: 65
  year: 2016
  end-page: 74
  ident: b34
  article-title: A decentralized training algorithm for echo state networks in distributed big data applications
  publication-title: Neural Networks
– volume: 26
  start-page: 522
  year: 2015
  end-page: 536
  ident: b17
  article-title: Spatio-temporal learning with the online finite and infinite echo-state gaussian processes
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 78
  start-page: 112
  year: 2016
  end-page: 119
  ident: b24
  article-title: Learning to decode human emotions with echo state networks
  publication-title: Neural Networks
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b18
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– start-page: 1
  year: 2018
  end-page: 15
  ident: b30
  article-title: Adaptive lasso echo state network based on modified Bayesian information criterion for nonlinear system modeling
  publication-title: Neural Computing and Applications
– volume: 62
  start-page: 1386
  year: 2014
  end-page: 1395
  ident: b26
  article-title: Distributed sparse recursive least-squares over networks
  publication-title: IEEE Transactions on Signal Processing
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: b36
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society Series B-methodological
– volume: 62
  start-page: 830
  year: 2018
  end-page: 839
  ident: b3
  article-title: Online adaptive dynamic programming based on echo state networks for dissolved oxygen control
  publication-title: Applied Soft Computing
– volume: 290
  start-page: 148
  year: 2018
  end-page: 160
  ident: b40
  article-title: Design of polynomial echo state networks for time series prediction
  publication-title: Neurocomputing
– volume: 16
  start-page: 774
  year: 2009
  end-page: 777
  ident: b14
  article-title: -Norm constraint LMS algorithm algorithm for sparse system identification
  publication-title: IEEE Signal Processing Letters
– volume: 58
  start-page: 4013
  year: 2010
  end-page: 4025
  ident: b2
  article-title: SPARLS: The sparse RLS algorithm
  publication-title: IEEE Transactions on Signal Processing
– volume: 20
  start-page: 130
  year: 1963
  end-page: 141
  ident: b27
  article-title: Deterministic nonperiodic flow
  publication-title: Journal of the Atmospheric Sciences
– volume: 19
  start-page: 716
  year: 1974
  end-page: 723
  ident: b1
  article-title: A new look at the statistical model identification
  publication-title: IEEE Transactions on Automatic Control
– volume: 18
  start-page: 470
  year: 2011
  end-page: 473
  ident: b10
  article-title: RLS Algorithm with convex regularization
  publication-title: IEEE Signal Processing Letters
– volume: 20
  start-page: 404
  year: 2007
  end-page: 413
  ident: b13
  article-title: Online design of an echo state network based wide area monitor for a multimachine power system
  publication-title: Neural Networks
– volume: 36
  start-page: 35
  year: 2012
  end-page: 45
  ident: b23
  article-title: Balanced echo state networks
  publication-title: Neural Networks
– volume: 27
  start-page: 2413
  year: 2016
  end-page: 2425
  ident: b8
  article-title: Echo state networks with orthogonal pigeon-inspired optimization for image restoration
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 71
  start-page: 204
  year: 2015
  end-page: 213
  ident: b12
  article-title: Prediction of telephone calls load using echo state network with exogenous variables
  publication-title: Neural Networks
– volume: 32
  start-page: 1707
  year: 1996
  end-page: 1712
  ident: b22
  article-title: Identification of nonlinear dynamical systems using multilayered neural networks
  publication-title: Automatica
– volume: 312
  start-page: 5
  year: 2009
  end-page: 3128
  ident: b5
  article-title: Sparse LMS for system identification
  publication-title: International Conference on Acoustics, Speech, and Signal Processing
– year: 2013
  ident: b7
  article-title: Convex analysis and optimization
– volume: 24
  start-page: 717
  year: 2011
  end-page: 725
  ident: b15
  article-title: An efficient self-organizing RBF neural network for water quality prediction
  publication-title: Neural Networks
– volume: 43
  start-page: 129
  year: 2001
  end-page: 159
  ident: b4
  article-title: Atomic decomposition by basis pursuit
  publication-title: Siam Review
– year: 1971
  ident: b31
  article-title: Generalized inverse of matrices and its applications
– start-page: 1
  year: 2018
  end-page: 12
  ident: b41
  article-title: Exponential stabilization of fuzzy memristive neural networks with hybrid unbounded time-varying delays
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 27
  start-page: 2537
  year: 2016
  end-page: 2550
  ident: b42
  article-title: Organizing books and authors using multi-layer SOM
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– year: 2013
  ident: b6
  article-title: Matrices: theory and applications
– volume: 370
  start-page: 103
  year: 2016
  end-page: 119
  ident: b28
  article-title: A new echo state network with variable memory length
  publication-title: Information Sciences
– volume: 85
  start-page: 106
  year: 2017
  end-page: 117
  ident: b11
  article-title: Echo state networks for data-driven downhole pressure estimation in gas-lift oil wells
  publication-title: Neural Networks
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  ident: b32
  article-title: Estimating the dimension of a model
  publication-title: The Annals of Statistics
– volume: 192
  start-page: 128
  year: 2016
  end-page: 138
  ident: b33
  article-title: Optimizing recurrent reservoirs with neuro-evolution
  publication-title: Neurocomputing
– start-page: 295
  year: 2011
  end-page: 298
  ident: b35
  article-title: Recursive least squares algorithm with adaptive forgetting factor based on echo state network
  publication-title: Proceedings of the 8th world congress on intelligent control and automation
– start-page: 1
  year: 2018
  end-page: 10
  ident: b38
  article-title: Memristor-based echo state network with online eeast mean square
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics Systems
– volume: 32
  start-page: 407
  year: 2004
  end-page: 499
  ident: b9
  article-title: Least angle regression
  publication-title: The Annals of Statistics
– volume: 19
  start-page: 111
  year: 2007
  end-page: 138
  ident: b29
  article-title: Analysis and design of echo state networks
  publication-title: Neural Computation
– volume: 27
  start-page: 2537
  issue: 12
  year: 2016
  ident: 10.1016/j.neunet.2019.05.006_b42
  article-title: Organizing books and authors using multi-layer SOM
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2015.2496281
– volume: 43
  start-page: 129
  issue: 1
  year: 2001
  ident: 10.1016/j.neunet.2019.05.006_b4
  article-title: Atomic decomposition by basis pursuit
  publication-title: Siam Review
  doi: 10.1137/S003614450037906X
– volume: 15
  start-page: 593
  year: 2003
  ident: 10.1016/j.neunet.2019.05.006_b20
  article-title: Adaptive nonlinear systems identification with echo state network
  publication-title: Advances in Neural Information Processing Systems
– volume: 192
  start-page: 128
  year: 2016
  ident: 10.1016/j.neunet.2019.05.006_b33
  article-title: Optimizing recurrent reservoirs with neuro-evolution
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.01.088
– volume: 46
  start-page: 2173
  issue: 10
  year: 2016
  ident: 10.1016/j.neunet.2019.05.006_b39
  article-title: Adaptive elastic echo state network for multivariate time series prediction
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 290
  start-page: 148
  year: 2018
  ident: 10.1016/j.neunet.2019.05.006_b40
  article-title: Design of polynomial echo state networks for time series prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.036
– volume: 24
  start-page: 717
  issue: 7
  year: 2011
  ident: 10.1016/j.neunet.2019.05.006_b15
  article-title: An efficient self-organizing RBF neural network for water quality prediction
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2011.04.006
– volume: 46
  start-page: 2121
  issue: 7
  year: 2012
  ident: 10.1016/j.neunet.2019.05.006_b25
  article-title: Effects of vertical mixing on phytoplankton blooms in xiangxi bay of three gorges reservoir: Implications for management
  publication-title: Water Research
  doi: 10.1016/j.watres.2012.01.029
– volume: 62
  start-page: 1386
  issue: 6
  year: 2014
  ident: 10.1016/j.neunet.2019.05.006_b26
  article-title: Distributed sparse recursive least-squares over networks
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2014.2302731
– start-page: 1
  year: 2018
  ident: 10.1016/j.neunet.2019.05.006_b41
  article-title: Exponential stabilization of fuzzy memristive neural networks with hybrid unbounded time-varying delays
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 18
  start-page: 470
  issue: 8
  year: 2011
  ident: 10.1016/j.neunet.2019.05.006_b10
  article-title: RLS Algorithm with convex regularization
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2011.2159373
– volume: 6
  start-page: 461
  issue: 2
  year: 1978
  ident: 10.1016/j.neunet.2019.05.006_b32
  article-title: Estimating the dimension of a model
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176344136
– volume: 86
  start-page: 182
  year: 2015
  ident: 10.1016/j.neunet.2019.05.006_b37
  article-title: Optimizing the echo state network with a binary particle swarm optimization algorithm
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.06.003
– volume: 85
  start-page: 106
  year: 2017
  ident: 10.1016/j.neunet.2019.05.006_b11
  article-title: Echo state networks for data-driven downhole pressure estimation in gas-lift oil wells
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2016.09.009
– start-page: 1
  year: 2018
  ident: 10.1016/j.neunet.2019.05.006_b38
  article-title: Memristor-based echo state network with online eeast mean square
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics Systems
– volume: 19
  start-page: 111
  issue: 1
  year: 2007
  ident: 10.1016/j.neunet.2019.05.006_b29
  article-title: Analysis and design of echo state networks
  publication-title: Neural Computation
  doi: 10.1162/neco.2007.19.1.111
– volume: 32
  start-page: 407
  issue: 2
  year: 2004
  ident: 10.1016/j.neunet.2019.05.006_b9
  article-title: Least angle regression
  publication-title: The Annals of Statistics
  doi: 10.1214/009053604000000067
– year: 2013
  ident: 10.1016/j.neunet.2019.05.006_b7
– volume: 370
  start-page: 103
  year: 2016
  ident: 10.1016/j.neunet.2019.05.006_b28
  article-title: A new echo state network with variable memory length
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2016.07.065
– volume: 78
  start-page: 112
  year: 2016
  ident: 10.1016/j.neunet.2019.05.006_b24
  article-title: Learning to decode human emotions with echo state networks
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2015.07.005
– volume: 78
  start-page: 65
  year: 2016
  ident: 10.1016/j.neunet.2019.05.006_b34
  article-title: A decentralized training algorithm for echo state networks in distributed big data applications
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2015.07.006
– volume: 312
  start-page: 5
  year: 2009
  ident: 10.1016/j.neunet.2019.05.006_b5
  article-title: Sparse LMS for system identification
  publication-title: International Conference on Acoustics, Speech, and Signal Processing
– volume: 20
  start-page: 404
  issue: 3
  year: 2007
  ident: 10.1016/j.neunet.2019.05.006_b13
  article-title: Online design of an echo state network based wide area monitor for a multimachine power system
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2007.04.021
– start-page: 295
  year: 2011
  ident: 10.1016/j.neunet.2019.05.006_b35
  article-title: Recursive least squares algorithm with adaptive forgetting factor based on echo state network
– volume: 62
  start-page: 830
  year: 2018
  ident: 10.1016/j.neunet.2019.05.006_b3
  article-title: Online adaptive dynamic programming based on echo state networks for dissolved oxygen control
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.09.015
– volume: 26
  start-page: 522
  issue: 3
  year: 2015
  ident: 10.1016/j.neunet.2019.05.006_b17
  article-title: Spatio-temporal learning with the online finite and infinite echo-state gaussian processes
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2014.2316291
– volume: 3
  start-page: 801
  issue: 5
  year: 1992
  ident: 10.1016/j.neunet.2019.05.006_b19
  article-title: On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.159069
– volume: 304
  start-page: 78
  issue: 5667
  year: 2004
  ident: 10.1016/j.neunet.2019.05.006_b21
  article-title: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
  publication-title: Science
  doi: 10.1126/science.1091277
– start-page: 1
  year: 2018
  ident: 10.1016/j.neunet.2019.05.006_b30
  article-title: Adaptive lasso echo state network based on modified Bayesian information criterion for nonlinear system modeling
  publication-title: Neural Computing and Applications
– volume: 58
  start-page: 4013
  issue: 8
  year: 2010
  ident: 10.1016/j.neunet.2019.05.006_b2
  article-title: SPARLS: The sparse RLS algorithm
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2010.2048103
– volume: 32
  start-page: 1707
  issue: 12
  year: 1996
  ident: 10.1016/j.neunet.2019.05.006_b22
  article-title: Identification of nonlinear dynamical systems using multilayered neural networks
  publication-title: Automatica
  doi: 10.1016/S0005-1098(96)80007-0
– volume: 36
  start-page: 35
  issue: 8
  year: 2012
  ident: 10.1016/j.neunet.2019.05.006_b23
  article-title: Balanced echo state networks
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2012.08.008
– year: 2013
  ident: 10.1016/j.neunet.2019.05.006_b6
– year: 1971
  ident: 10.1016/j.neunet.2019.05.006_b31
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.neunet.2019.05.006_b36
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society Series B-methodological
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 83
  start-page: 2108
  issue: 9
  year: 2013
  ident: 10.1016/j.neunet.2019.05.006_b43
  article-title: On grouping effect of elastic net
  publication-title: Statistics & Probability Letters
  doi: 10.1016/j.spl.2013.05.014
– volume: 19
  start-page: 716
  issue: 6
  year: 1974
  ident: 10.1016/j.neunet.2019.05.006_b1
  article-title: A new look at the statistical model identification
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.1974.1100705
– volume: 27
  start-page: 2413
  issue: 11
  year: 2016
  ident: 10.1016/j.neunet.2019.05.006_b8
  article-title: Echo state networks with orthogonal pigeon-inspired optimization for image restoration
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2015.2479117
– volume: 16
  start-page: 774
  issue: 9
  year: 2009
  ident: 10.1016/j.neunet.2019.05.006_b14
  article-title: ℓ0-Norm constraint LMS algorithm algorithm for sparse system identification
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2009.2024736
– volume: 71
  start-page: 204
  year: 2015
  ident: 10.1016/j.neunet.2019.05.006_b12
  article-title: Prediction of telephone calls load using echo state network with exogenous variables
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2015.08.010
– volume: 20
  start-page: 130
  issue: 2
  year: 1963
  ident: 10.1016/j.neunet.2019.05.006_b27
  article-title: Deterministic nonperiodic flow
  publication-title: Journal of the Atmospheric Sciences
  doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
– volume: 44
  start-page: 554
  issue: 4
  year: 2014
  ident: 10.1016/j.neunet.2019.05.006_b16
  article-title: Nonlinear systems modeling based on self-organizing fuzzy-neural-network with adaptive computation algorithm
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.neunet.2019.05.006_b18
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
SSID ssj0006843
Score 2.4866452
Snippet Recently, the echo state networks (ESNs) have been widely used for time series prediction. To meet the demand of actual applications and avoid the overfitting...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 32
SubjectTerms Algorithms
Echo state networks
Forecasting
Least-Squares Analysis
Neural Networks, Computer
Online sequential learning
Regularization method
Sparse recursive least squares algorithm
Time Factors
Time series prediction
Title Online sequential echo state network with sparse RLS algorithm for time series prediction
URI https://dx.doi.org/10.1016/j.neunet.2019.05.006
https://www.ncbi.nlm.nih.gov/pubmed/31228722
https://www.proquest.com/docview/2245627723
Volume 118
WOSCitedRecordID wos000483920500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpu4e97H7JLkWDvQUXW3Ys6TGUjm2MMtYO0r0YSZYXh8QJaVzK9ud35CPb20rpNtiLCSJ2FH2fj845-nREyGsb6ijPHQLgzAeJMfDOaQuBK491YjVXeVI0h03w42MxncqPg8H3di_MxYJXlbi8lOv_CjW0Adhu6-xfwN09FBrgM4AOV4Adrn8EPBYPHaFGeusS4hZM3KjZOTSqUPXtlelriGrt6NOHk5FafF1toG2JssNy6R7gomhXRCAvTQffvK321JTr8I_r_PIzn30-rMtF2eVUS4XLO3VV2K51Mlsiu76sZqrU_fqIRZFH-W1mf05JRLITt_k8WbtXphcmNeZMxkEa4rlNBxbNreAyYFz8ao-9QUaL6rOfODdjIa4rVh8TEPODytbwv51eTzblWMPfimw30_aJ64jrB7iubplW7JA9xscSTOLe5N3R9H03kacCRZdtx9udl4088OpvXefZXBe5NB7M6T1yx4cedIKUuU8GtnpA7rbHelBv5R-SM2QQ7RlEHYNowyDqIaeOQRQZRIFBtGMQBQZRxyCKDKI9gx6Rz2-OTg_fBv4EjsCAY7MNWCq1S3kV4MYKyYXizOjC6HFsdRorrbQNeW5zlULcoVVUGG5smiibWmlEIePHZLdaVfYpoZFKcx6nUe7mibFOlGA5KzhPw0RLVeghidvRy4wvT-9OSVlkrQ5xnuGYZ27Ms3CcwZgPSdDdtcbyLDd8n7fAZN7FRNcxAy7dcOerFscMLLBbVlOVXdXnGXPaAQZRajwkTxDgri9xxJjgjD375999Tm73r9gLsrvd1PYluWUutuX5Zp_s8KnY98T9AWjmutQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+sequential+echo+state+network+with+sparse+RLS+algorithm+for+time+series+prediction&rft.jtitle=Neural+networks&rft.au=Yang%2C+Cuili&rft.au=Qiao%2C+Junfei&rft.au=Ahmad%2C+Zohaib&rft.au=Nie%2C+Kaizhe&rft.date=2019-10-01&rft.pub=Elsevier+Ltd&rft.issn=0893-6080&rft.eissn=1879-2782&rft.volume=118&rft.spage=32&rft.epage=42&rft_id=info:doi/10.1016%2Fj.neunet.2019.05.006&rft.externalDocID=S0893608019301388
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon