Online sequential echo state network with sparse RLS algorithm for time series prediction
Recently, the echo state networks (ESNs) have been widely used for time series prediction. To meet the demand of actual applications and avoid the overfitting issue, the online sequential ESN with sparse recursive least squares (OSESN-SRLS) algorithm is proposed. Firstly, the ℓ0 and ℓ1 norm sparsity...
Saved in:
| Published in: | Neural networks Vol. 118; pp. 32 - 42 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Ltd
01.10.2019
|
| Subjects: | |
| ISSN: | 0893-6080, 1879-2782, 1879-2782 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Recently, the echo state networks (ESNs) have been widely used for time series prediction. To meet the demand of actual applications and avoid the overfitting issue, the online sequential ESN with sparse recursive least squares (OSESN-SRLS) algorithm is proposed. Firstly, the ℓ0 and ℓ1 norm sparsity penalty constraints of output weights are separately employed to control the network size. Secondly, the sparse recursive least squares (SRLS) algorithm and the subgradients technique are combined to estimate the output weight matrix. Thirdly, an adaptive selection mechanism for the ℓ0 or ℓ1 norm regularization parameter is designed. With the selected regularization parameter, it is proved that the developed SRLS shows comparable or better performance than the regular RLS. Furthermore, the convergence of OSESN-SRLS is theoretically analyzed to guarantee its effectiveness. Simulation results illustrate that the proposed OSESN-SRLS always outperforms other existing ESNs in terms of estimation accuracy and network compactness.
•The online sequential ESN with sparse RLS algorithm is studied to improve estimation accuracy and network compactness.•The network size is controlled by the ℓ0 and ℓ1 norm sparsity penalty constraints.•The estimation performance is improved by the regularization parameters selection rule.•The algorithm convergence is analyzed to guarantee its effectiveness. |
|---|---|
| AbstractList | Recently, the echo state networks (ESNs) have been widely used for time series prediction. To meet the demand of actual applications and avoid the overfitting issue, the online sequential ESN with sparse recursive least squares (OSESN-SRLS) algorithm is proposed. Firstly, the ℓ
and ℓ
norm sparsity penalty constraints of output weights are separately employed to control the network size. Secondly, the sparse recursive least squares (SRLS) algorithm and the subgradients technique are combined to estimate the output weight matrix. Thirdly, an adaptive selection mechanism for the ℓ
or ℓ
norm regularization parameter is designed. With the selected regularization parameter, it is proved that the developed SRLS shows comparable or better performance than the regular RLS. Furthermore, the convergence of OSESN-SRLS is theoretically analyzed to guarantee its effectiveness. Simulation results illustrate that the proposed OSESN-SRLS always outperforms other existing ESNs in terms of estimation accuracy and network compactness. Recently, the echo state networks (ESNs) have been widely used for time series prediction. To meet the demand of actual applications and avoid the overfitting issue, the online sequential ESN with sparse recursive least squares (OSESN-SRLS) algorithm is proposed. Firstly, the ℓ0 and ℓ1 norm sparsity penalty constraints of output weights are separately employed to control the network size. Secondly, the sparse recursive least squares (SRLS) algorithm and the subgradients technique are combined to estimate the output weight matrix. Thirdly, an adaptive selection mechanism for the ℓ0 or ℓ1 norm regularization parameter is designed. With the selected regularization parameter, it is proved that the developed SRLS shows comparable or better performance than the regular RLS. Furthermore, the convergence of OSESN-SRLS is theoretically analyzed to guarantee its effectiveness. Simulation results illustrate that the proposed OSESN-SRLS always outperforms other existing ESNs in terms of estimation accuracy and network compactness. •The online sequential ESN with sparse RLS algorithm is studied to improve estimation accuracy and network compactness.•The network size is controlled by the ℓ0 and ℓ1 norm sparsity penalty constraints.•The estimation performance is improved by the regularization parameters selection rule.•The algorithm convergence is analyzed to guarantee its effectiveness. Recently, the echo state networks (ESNs) have been widely used for time series prediction. To meet the demand of actual applications and avoid the overfitting issue, the online sequential ESN with sparse recursive least squares (OSESN-SRLS) algorithm is proposed. Firstly, the ℓ0 and ℓ1 norm sparsity penalty constraints of output weights are separately employed to control the network size. Secondly, the sparse recursive least squares (SRLS) algorithm and the subgradients technique are combined to estimate the output weight matrix. Thirdly, an adaptive selection mechanism for the ℓ0 or ℓ1 norm regularization parameter is designed. With the selected regularization parameter, it is proved that the developed SRLS shows comparable or better performance than the regular RLS. Furthermore, the convergence of OSESN-SRLS is theoretically analyzed to guarantee its effectiveness. Simulation results illustrate that the proposed OSESN-SRLS always outperforms other existing ESNs in terms of estimation accuracy and network compactness.Recently, the echo state networks (ESNs) have been widely used for time series prediction. To meet the demand of actual applications and avoid the overfitting issue, the online sequential ESN with sparse recursive least squares (OSESN-SRLS) algorithm is proposed. Firstly, the ℓ0 and ℓ1 norm sparsity penalty constraints of output weights are separately employed to control the network size. Secondly, the sparse recursive least squares (SRLS) algorithm and the subgradients technique are combined to estimate the output weight matrix. Thirdly, an adaptive selection mechanism for the ℓ0 or ℓ1 norm regularization parameter is designed. With the selected regularization parameter, it is proved that the developed SRLS shows comparable or better performance than the regular RLS. Furthermore, the convergence of OSESN-SRLS is theoretically analyzed to guarantee its effectiveness. Simulation results illustrate that the proposed OSESN-SRLS always outperforms other existing ESNs in terms of estimation accuracy and network compactness. |
| Author | Qiao, Junfei Wang, Lei Yang, Cuili Nie, Kaizhe Ahmad, Zohaib |
| Author_xml | – sequence: 1 givenname: Cuili surname: Yang fullname: Yang, Cuili – sequence: 2 givenname: Junfei surname: Qiao fullname: Qiao, Junfei email: junfeiq@bjut.edu.cn, 804340106@qq.com – sequence: 3 givenname: Zohaib surname: Ahmad fullname: Ahmad, Zohaib – sequence: 4 givenname: Kaizhe surname: Nie fullname: Nie, Kaizhe – sequence: 5 givenname: Lei surname: Wang fullname: Wang, Lei |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31228722$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkEtLJDEURoMo2j7-gQxZuqmaVNKdhwtBRJ2BBsHHwlVIpW6NaauSNkkr_nvTtG5moatAON-Be_bRtg8eEDpuSN2Qhv9e1B5WHnJNSaNqMqsJ4Vto0kihKiok3UYTIhWrOJFkD-2ntCCFkFO2i_ZYQ6kUlE7Q440fnAec4GUFPjszYLBPAadsMuCifwvxGb-5_ITT0sQE-HZ-h83wL8TyN-I-RJzduBZEBwkvI3TOZhf8IdrpzZDg6PM9QA9Xl_cXf6r5zfXfi_N5ZRmnuaJctUQx1jOlpBLSCGrb3rYzBi1npjUtENFBZ7gkpDVNb4UFPjXAQVnZK3aATjbeZQzlhpT16JKFYTAewippSqczToWgrKC_PtFVO0Knl9GNJr7rrxwFON0ANoaUIvTauhKiXJOjcYNuiF631wu9aa_X7TWZ6VK2jKf_jb_8P8zONjMokV4dRJ2sA29Lxwg26y647wUf8VGh2A |
| CitedBy_id | crossref_primary_10_1016_j_neucom_2025_130084 crossref_primary_10_1016_j_asoc_2021_108317 crossref_primary_10_1007_s10489_021_03106_7 crossref_primary_10_1016_j_neunet_2022_08_025 crossref_primary_10_1016_j_asoc_2020_106239 crossref_primary_10_1049_cth2_12591 crossref_primary_10_1109_TAI_2022_3225780 crossref_primary_10_1007_s00521_022_07711_6 crossref_primary_10_3390_electronics12224635 crossref_primary_10_3390_math9131580 crossref_primary_10_1007_s43069_025_00514_0 crossref_primary_10_1002_aisy_202400278 crossref_primary_10_1140_epjs_s11734_024_01287_z crossref_primary_10_1155_2022_1264385 crossref_primary_10_1007_s40313_021_00874_y crossref_primary_10_1016_j_engappai_2021_104596 crossref_primary_10_1007_s00521_023_08562_5 crossref_primary_10_59277_PRA_SER_A_24_2_10 crossref_primary_10_1016_j_artint_2022_103667 crossref_primary_10_1109_TSMC_2023_3319357 crossref_primary_10_1007_s10462_021_10038_8 crossref_primary_10_1007_s11227_021_04142_3 crossref_primary_10_1007_s00521_020_05477_3 crossref_primary_10_1016_j_ins_2022_02_009 crossref_primary_10_1007_s11063_021_10672_x crossref_primary_10_1016_j_neucom_2020_02_034 crossref_primary_10_1109_TNNLS_2021_3098866 crossref_primary_10_1007_s10489_025_06347_y crossref_primary_10_1109_TNNLS_2021_3109821 crossref_primary_10_1109_TCDS_2022_3176888 crossref_primary_10_1109_TII_2020_2987096 crossref_primary_10_1177_01423312211069483 crossref_primary_10_3389_fnhum_2023_1075666 |
| Cites_doi | 10.1109/TNNLS.2015.2496281 10.1137/S003614450037906X 10.1016/j.neucom.2016.01.088 10.1016/j.neucom.2018.02.036 10.1016/j.neunet.2011.04.006 10.1016/j.watres.2012.01.029 10.1109/TSP.2014.2302731 10.1109/LSP.2011.2159373 10.1214/aos/1176344136 10.1016/j.knosys.2015.06.003 10.1016/j.neunet.2016.09.009 10.1162/neco.2007.19.1.111 10.1214/009053604000000067 10.1016/j.ins.2016.07.065 10.1016/j.neunet.2015.07.005 10.1016/j.neunet.2015.07.006 10.1016/j.neunet.2007.04.021 10.1016/j.asoc.2017.09.015 10.1109/TNNLS.2014.2316291 10.1109/72.159069 10.1126/science.1091277 10.1109/TSP.2010.2048103 10.1016/S0005-1098(96)80007-0 10.1016/j.neunet.2012.08.008 10.1111/j.2517-6161.1996.tb02080.x 10.1016/j.spl.2013.05.014 10.1109/TAC.1974.1100705 10.1109/TNNLS.2015.2479117 10.1109/LSP.2009.2024736 10.1016/j.neunet.2015.08.010 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 10.1126/science.1127647 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.neunet.2019.05.006 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1879-2782 |
| EndPage | 42 |
| ExternalDocumentID | 31228722 10_1016_j_neunet_2019_05_006 S0893608019301388 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM PKN 7X8 |
| ID | FETCH-LOGICAL-c362t-269b0933f3998978a72cbfcb53eb63ababe07deda6800ba1fc7ce64ae6e9c8f93 |
| ISICitedReferencesCount | 36 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000483920500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0893-6080 1879-2782 |
| IngestDate | Sat Sep 27 16:19:23 EDT 2025 Wed Feb 19 02:31:47 EST 2025 Sat Nov 29 07:14:27 EST 2025 Tue Nov 18 22:38:10 EST 2025 Fri Feb 23 02:28:36 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Regularization method Online sequential learning Time series prediction Sparse recursive least squares algorithm Echo state networks |
| Language | English |
| License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c362t-269b0933f3998978a72cbfcb53eb63ababe07deda6800ba1fc7ce64ae6e9c8f93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 31228722 |
| PQID | 2245627723 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2245627723 pubmed_primary_31228722 crossref_citationtrail_10_1016_j_neunet_2019_05_006 crossref_primary_10_1016_j_neunet_2019_05_006 elsevier_sciencedirect_doi_10_1016_j_neunet_2019_05_006 |
| PublicationCentury | 2000 |
| PublicationDate | October 2019 2019-10-00 2019-Oct 20191001 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neural networks |
| PublicationTitleAlternate | Neural Netw |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ozturk, Xu, Principe (b29) 2007; 19 Zhou (b43) 2013; 83 Chen, Gu, Hero (b5) 2009; 312 Zhang, Tommy, Jonathan (b42) 2016; 27 Denis (b6) 2013 Eric, Eduardo, Bjarne (b11) 2017; 85 Gu, Jin, Mei (b14) 2009; 16 Lachezar, Petia, Petia (b24) 2016; 78 Hinton, Salakhutdinov (b18) 2006; 313 Efron, Hastie, Johnstone (b9) 2004; 32 Yang, Qiao, Han (b40) 2018; 290 Han, Chen, Qiao (b15) 2011; 24 Jagannathan, Lewis (b22) 1996; 32 Chen, David, Michael (b4) 2001; 43 Simone, Wang, Massimo (b34) 2016; 78 Yin, Lewis, Zeng (b41) 2018 Koryakin, Lohmann, Butz (b23) 2012; 36 Sebastian, Martin, Danil (b33) 2016; 192 Tibshiranit (b36) 1996; 58 Han, Wu, Qiao (b16) 2014; 44 Wang, Yan (b37) 2015; 86 Jaeger, Haas (b21) 2004; 304 Babadi, Kalouptsidis, Tarokh (b2) 2010; 58 Song, Zhao, Feng (b35) 2011 Schwarz (b32) 1978; 6 Eksioglu, Tanc (b10) 2011; 18 Liu, Liu, Johnson (b25) 2012; 46 Horikawa, Furuhashi, Uchikawa (b19) 1992; 3 Dimitri, Angelia, Asuman (b7) 2013 Akaike (b1) 1974; 19 Bo, Zhang (b3) 2018; 62 Lorenz (b27) 1963; 20 Jaeger (b20) 2003; 15 Lun, Yao, Hu (b28) 2016; 370 Filippo, Simone, Aurelio (b12) 2015; 71 Qiao, Wang, Yang (b30) 2018 Duan, Wang (b8) 2016; 27 Ganesh (b13) 2007; 20 Rao, Mitra (b31) 1971 Xu, Han (b39) 2016; 46 Wen, Hu, Yang (b38) 2018 Harold, Yiannis (b17) 2015; 26 Liu, Liu, Li (b26) 2014; 62 Lun (10.1016/j.neunet.2019.05.006_b28) 2016; 370 Denis (10.1016/j.neunet.2019.05.006_b6) 2013 Efron (10.1016/j.neunet.2019.05.006_b9) 2004; 32 Gu (10.1016/j.neunet.2019.05.006_b14) 2009; 16 Tibshiranit (10.1016/j.neunet.2019.05.006_b36) 1996; 58 Filippo (10.1016/j.neunet.2019.05.006_b12) 2015; 71 Wen (10.1016/j.neunet.2019.05.006_b38) 2018 Akaike (10.1016/j.neunet.2019.05.006_b1) 1974; 19 Han (10.1016/j.neunet.2019.05.006_b16) 2014; 44 Jaeger (10.1016/j.neunet.2019.05.006_b20) 2003; 15 Jaeger (10.1016/j.neunet.2019.05.006_b21) 2004; 304 Babadi (10.1016/j.neunet.2019.05.006_b2) 2010; 58 Chen (10.1016/j.neunet.2019.05.006_b5) 2009; 312 Koryakin (10.1016/j.neunet.2019.05.006_b23) 2012; 36 Liu (10.1016/j.neunet.2019.05.006_b25) 2012; 46 Zhou (10.1016/j.neunet.2019.05.006_b43) 2013; 83 Horikawa (10.1016/j.neunet.2019.05.006_b19) 1992; 3 Zhang (10.1016/j.neunet.2019.05.006_b42) 2016; 27 Yang (10.1016/j.neunet.2019.05.006_b40) 2018; 290 Jagannathan (10.1016/j.neunet.2019.05.006_b22) 1996; 32 Eric (10.1016/j.neunet.2019.05.006_b11) 2017; 85 Liu (10.1016/j.neunet.2019.05.006_b26) 2014; 62 Chen (10.1016/j.neunet.2019.05.006_b4) 2001; 43 Ozturk (10.1016/j.neunet.2019.05.006_b29) 2007; 19 Hinton (10.1016/j.neunet.2019.05.006_b18) 2006; 313 Duan (10.1016/j.neunet.2019.05.006_b8) 2016; 27 Song (10.1016/j.neunet.2019.05.006_b35) 2011 Dimitri (10.1016/j.neunet.2019.05.006_b7) 2013 Harold (10.1016/j.neunet.2019.05.006_b17) 2015; 26 Lachezar (10.1016/j.neunet.2019.05.006_b24) 2016; 78 Qiao (10.1016/j.neunet.2019.05.006_b30) 2018 Schwarz (10.1016/j.neunet.2019.05.006_b32) 1978; 6 Lorenz (10.1016/j.neunet.2019.05.006_b27) 1963; 20 Yin (10.1016/j.neunet.2019.05.006_b41) 2018 Sebastian (10.1016/j.neunet.2019.05.006_b33) 2016; 192 Xu (10.1016/j.neunet.2019.05.006_b39) 2016; 46 Simone (10.1016/j.neunet.2019.05.006_b34) 2016; 78 Han (10.1016/j.neunet.2019.05.006_b15) 2011; 24 Rao (10.1016/j.neunet.2019.05.006_b31) 1971 Wang (10.1016/j.neunet.2019.05.006_b37) 2015; 86 Eksioglu (10.1016/j.neunet.2019.05.006_b10) 2011; 18 Ganesh (10.1016/j.neunet.2019.05.006_b13) 2007; 20 Bo (10.1016/j.neunet.2019.05.006_b3) 2018; 62 |
| References_xml | – volume: 44 start-page: 554 year: 2014 end-page: 564 ident: b16 article-title: Nonlinear systems modeling based on self-organizing fuzzy-neural-network with adaptive computation algorithm publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 46 start-page: 2121 year: 2012 end-page: 2130 ident: b25 article-title: Effects of vertical mixing on phytoplankton blooms in xiangxi bay of three gorges reservoir: Implications for management publication-title: Water Research – volume: 3 start-page: 801 year: 1992 end-page: 806 ident: b19 article-title: On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm publication-title: IEEE Transactions on Neural Networks – volume: 304 start-page: 78 year: 2004 end-page: 80 ident: b21 article-title: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication publication-title: Science – volume: 83 start-page: 2108 year: 2013 end-page: 2112 ident: b43 article-title: On grouping effect of elastic net publication-title: Statistics & Probability Letters – volume: 86 start-page: 182 year: 2015 end-page: 193 ident: b37 article-title: Optimizing the echo state network with a binary particle swarm optimization algorithm publication-title: Knowledge-Based Systems – volume: 46 start-page: 2173 year: 2016 end-page: 2183 ident: b39 article-title: Adaptive elastic echo state network for multivariate time series prediction publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 15 start-page: 593 year: 2003 end-page: 600 ident: b20 article-title: Adaptive nonlinear systems identification with echo state network publication-title: Advances in Neural Information Processing Systems – volume: 78 start-page: 65 year: 2016 end-page: 74 ident: b34 article-title: A decentralized training algorithm for echo state networks in distributed big data applications publication-title: Neural Networks – volume: 26 start-page: 522 year: 2015 end-page: 536 ident: b17 article-title: Spatio-temporal learning with the online finite and infinite echo-state gaussian processes publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 78 start-page: 112 year: 2016 end-page: 119 ident: b24 article-title: Learning to decode human emotions with echo state networks publication-title: Neural Networks – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: b18 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – start-page: 1 year: 2018 end-page: 15 ident: b30 article-title: Adaptive lasso echo state network based on modified Bayesian information criterion for nonlinear system modeling publication-title: Neural Computing and Applications – volume: 62 start-page: 1386 year: 2014 end-page: 1395 ident: b26 article-title: Distributed sparse recursive least-squares over networks publication-title: IEEE Transactions on Signal Processing – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: b36 article-title: Regression shrinkage and selection via the lasso publication-title: Journal of the Royal Statistical Society Series B-methodological – volume: 62 start-page: 830 year: 2018 end-page: 839 ident: b3 article-title: Online adaptive dynamic programming based on echo state networks for dissolved oxygen control publication-title: Applied Soft Computing – volume: 290 start-page: 148 year: 2018 end-page: 160 ident: b40 article-title: Design of polynomial echo state networks for time series prediction publication-title: Neurocomputing – volume: 16 start-page: 774 year: 2009 end-page: 777 ident: b14 article-title: -Norm constraint LMS algorithm algorithm for sparse system identification publication-title: IEEE Signal Processing Letters – volume: 58 start-page: 4013 year: 2010 end-page: 4025 ident: b2 article-title: SPARLS: The sparse RLS algorithm publication-title: IEEE Transactions on Signal Processing – volume: 20 start-page: 130 year: 1963 end-page: 141 ident: b27 article-title: Deterministic nonperiodic flow publication-title: Journal of the Atmospheric Sciences – volume: 19 start-page: 716 year: 1974 end-page: 723 ident: b1 article-title: A new look at the statistical model identification publication-title: IEEE Transactions on Automatic Control – volume: 18 start-page: 470 year: 2011 end-page: 473 ident: b10 article-title: RLS Algorithm with convex regularization publication-title: IEEE Signal Processing Letters – volume: 20 start-page: 404 year: 2007 end-page: 413 ident: b13 article-title: Online design of an echo state network based wide area monitor for a multimachine power system publication-title: Neural Networks – volume: 36 start-page: 35 year: 2012 end-page: 45 ident: b23 article-title: Balanced echo state networks publication-title: Neural Networks – volume: 27 start-page: 2413 year: 2016 end-page: 2425 ident: b8 article-title: Echo state networks with orthogonal pigeon-inspired optimization for image restoration publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 71 start-page: 204 year: 2015 end-page: 213 ident: b12 article-title: Prediction of telephone calls load using echo state network with exogenous variables publication-title: Neural Networks – volume: 32 start-page: 1707 year: 1996 end-page: 1712 ident: b22 article-title: Identification of nonlinear dynamical systems using multilayered neural networks publication-title: Automatica – volume: 312 start-page: 5 year: 2009 end-page: 3128 ident: b5 article-title: Sparse LMS for system identification publication-title: International Conference on Acoustics, Speech, and Signal Processing – year: 2013 ident: b7 article-title: Convex analysis and optimization – volume: 24 start-page: 717 year: 2011 end-page: 725 ident: b15 article-title: An efficient self-organizing RBF neural network for water quality prediction publication-title: Neural Networks – volume: 43 start-page: 129 year: 2001 end-page: 159 ident: b4 article-title: Atomic decomposition by basis pursuit publication-title: Siam Review – year: 1971 ident: b31 article-title: Generalized inverse of matrices and its applications – start-page: 1 year: 2018 end-page: 12 ident: b41 article-title: Exponential stabilization of fuzzy memristive neural networks with hybrid unbounded time-varying delays publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 27 start-page: 2537 year: 2016 end-page: 2550 ident: b42 article-title: Organizing books and authors using multi-layer SOM publication-title: IEEE Transactions on Neural Networks and Learning Systems – year: 2013 ident: b6 article-title: Matrices: theory and applications – volume: 370 start-page: 103 year: 2016 end-page: 119 ident: b28 article-title: A new echo state network with variable memory length publication-title: Information Sciences – volume: 85 start-page: 106 year: 2017 end-page: 117 ident: b11 article-title: Echo state networks for data-driven downhole pressure estimation in gas-lift oil wells publication-title: Neural Networks – volume: 6 start-page: 461 year: 1978 end-page: 464 ident: b32 article-title: Estimating the dimension of a model publication-title: The Annals of Statistics – volume: 192 start-page: 128 year: 2016 end-page: 138 ident: b33 article-title: Optimizing recurrent reservoirs with neuro-evolution publication-title: Neurocomputing – start-page: 295 year: 2011 end-page: 298 ident: b35 article-title: Recursive least squares algorithm with adaptive forgetting factor based on echo state network publication-title: Proceedings of the 8th world congress on intelligent control and automation – start-page: 1 year: 2018 end-page: 10 ident: b38 article-title: Memristor-based echo state network with online eeast mean square publication-title: IEEE Transactions on Systems, Man, and Cybernetics Systems – volume: 32 start-page: 407 year: 2004 end-page: 499 ident: b9 article-title: Least angle regression publication-title: The Annals of Statistics – volume: 19 start-page: 111 year: 2007 end-page: 138 ident: b29 article-title: Analysis and design of echo state networks publication-title: Neural Computation – volume: 27 start-page: 2537 issue: 12 year: 2016 ident: 10.1016/j.neunet.2019.05.006_b42 article-title: Organizing books and authors using multi-layer SOM publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2015.2496281 – volume: 43 start-page: 129 issue: 1 year: 2001 ident: 10.1016/j.neunet.2019.05.006_b4 article-title: Atomic decomposition by basis pursuit publication-title: Siam Review doi: 10.1137/S003614450037906X – volume: 15 start-page: 593 year: 2003 ident: 10.1016/j.neunet.2019.05.006_b20 article-title: Adaptive nonlinear systems identification with echo state network publication-title: Advances in Neural Information Processing Systems – volume: 192 start-page: 128 year: 2016 ident: 10.1016/j.neunet.2019.05.006_b33 article-title: Optimizing recurrent reservoirs with neuro-evolution publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.01.088 – volume: 46 start-page: 2173 issue: 10 year: 2016 ident: 10.1016/j.neunet.2019.05.006_b39 article-title: Adaptive elastic echo state network for multivariate time series prediction publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 290 start-page: 148 year: 2018 ident: 10.1016/j.neunet.2019.05.006_b40 article-title: Design of polynomial echo state networks for time series prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.02.036 – volume: 24 start-page: 717 issue: 7 year: 2011 ident: 10.1016/j.neunet.2019.05.006_b15 article-title: An efficient self-organizing RBF neural network for water quality prediction publication-title: Neural Networks doi: 10.1016/j.neunet.2011.04.006 – volume: 46 start-page: 2121 issue: 7 year: 2012 ident: 10.1016/j.neunet.2019.05.006_b25 article-title: Effects of vertical mixing on phytoplankton blooms in xiangxi bay of three gorges reservoir: Implications for management publication-title: Water Research doi: 10.1016/j.watres.2012.01.029 – volume: 62 start-page: 1386 issue: 6 year: 2014 ident: 10.1016/j.neunet.2019.05.006_b26 article-title: Distributed sparse recursive least-squares over networks publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2014.2302731 – start-page: 1 year: 2018 ident: 10.1016/j.neunet.2019.05.006_b41 article-title: Exponential stabilization of fuzzy memristive neural networks with hybrid unbounded time-varying delays publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 18 start-page: 470 issue: 8 year: 2011 ident: 10.1016/j.neunet.2019.05.006_b10 article-title: RLS Algorithm with convex regularization publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2011.2159373 – volume: 6 start-page: 461 issue: 2 year: 1978 ident: 10.1016/j.neunet.2019.05.006_b32 article-title: Estimating the dimension of a model publication-title: The Annals of Statistics doi: 10.1214/aos/1176344136 – volume: 86 start-page: 182 year: 2015 ident: 10.1016/j.neunet.2019.05.006_b37 article-title: Optimizing the echo state network with a binary particle swarm optimization algorithm publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2015.06.003 – volume: 85 start-page: 106 year: 2017 ident: 10.1016/j.neunet.2019.05.006_b11 article-title: Echo state networks for data-driven downhole pressure estimation in gas-lift oil wells publication-title: Neural Networks doi: 10.1016/j.neunet.2016.09.009 – start-page: 1 year: 2018 ident: 10.1016/j.neunet.2019.05.006_b38 article-title: Memristor-based echo state network with online eeast mean square publication-title: IEEE Transactions on Systems, Man, and Cybernetics Systems – volume: 19 start-page: 111 issue: 1 year: 2007 ident: 10.1016/j.neunet.2019.05.006_b29 article-title: Analysis and design of echo state networks publication-title: Neural Computation doi: 10.1162/neco.2007.19.1.111 – volume: 32 start-page: 407 issue: 2 year: 2004 ident: 10.1016/j.neunet.2019.05.006_b9 article-title: Least angle regression publication-title: The Annals of Statistics doi: 10.1214/009053604000000067 – year: 2013 ident: 10.1016/j.neunet.2019.05.006_b7 – volume: 370 start-page: 103 year: 2016 ident: 10.1016/j.neunet.2019.05.006_b28 article-title: A new echo state network with variable memory length publication-title: Information Sciences doi: 10.1016/j.ins.2016.07.065 – volume: 78 start-page: 112 year: 2016 ident: 10.1016/j.neunet.2019.05.006_b24 article-title: Learning to decode human emotions with echo state networks publication-title: Neural Networks doi: 10.1016/j.neunet.2015.07.005 – volume: 78 start-page: 65 year: 2016 ident: 10.1016/j.neunet.2019.05.006_b34 article-title: A decentralized training algorithm for echo state networks in distributed big data applications publication-title: Neural Networks doi: 10.1016/j.neunet.2015.07.006 – volume: 312 start-page: 5 year: 2009 ident: 10.1016/j.neunet.2019.05.006_b5 article-title: Sparse LMS for system identification publication-title: International Conference on Acoustics, Speech, and Signal Processing – volume: 20 start-page: 404 issue: 3 year: 2007 ident: 10.1016/j.neunet.2019.05.006_b13 article-title: Online design of an echo state network based wide area monitor for a multimachine power system publication-title: Neural Networks doi: 10.1016/j.neunet.2007.04.021 – start-page: 295 year: 2011 ident: 10.1016/j.neunet.2019.05.006_b35 article-title: Recursive least squares algorithm with adaptive forgetting factor based on echo state network – volume: 62 start-page: 830 year: 2018 ident: 10.1016/j.neunet.2019.05.006_b3 article-title: Online adaptive dynamic programming based on echo state networks for dissolved oxygen control publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.09.015 – volume: 26 start-page: 522 issue: 3 year: 2015 ident: 10.1016/j.neunet.2019.05.006_b17 article-title: Spatio-temporal learning with the online finite and infinite echo-state gaussian processes publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2014.2316291 – volume: 3 start-page: 801 issue: 5 year: 1992 ident: 10.1016/j.neunet.2019.05.006_b19 article-title: On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.159069 – volume: 304 start-page: 78 issue: 5667 year: 2004 ident: 10.1016/j.neunet.2019.05.006_b21 article-title: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication publication-title: Science doi: 10.1126/science.1091277 – start-page: 1 year: 2018 ident: 10.1016/j.neunet.2019.05.006_b30 article-title: Adaptive lasso echo state network based on modified Bayesian information criterion for nonlinear system modeling publication-title: Neural Computing and Applications – volume: 58 start-page: 4013 issue: 8 year: 2010 ident: 10.1016/j.neunet.2019.05.006_b2 article-title: SPARLS: The sparse RLS algorithm publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2010.2048103 – volume: 32 start-page: 1707 issue: 12 year: 1996 ident: 10.1016/j.neunet.2019.05.006_b22 article-title: Identification of nonlinear dynamical systems using multilayered neural networks publication-title: Automatica doi: 10.1016/S0005-1098(96)80007-0 – volume: 36 start-page: 35 issue: 8 year: 2012 ident: 10.1016/j.neunet.2019.05.006_b23 article-title: Balanced echo state networks publication-title: Neural Networks doi: 10.1016/j.neunet.2012.08.008 – year: 2013 ident: 10.1016/j.neunet.2019.05.006_b6 – year: 1971 ident: 10.1016/j.neunet.2019.05.006_b31 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 10.1016/j.neunet.2019.05.006_b36 article-title: Regression shrinkage and selection via the lasso publication-title: Journal of the Royal Statistical Society Series B-methodological doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 83 start-page: 2108 issue: 9 year: 2013 ident: 10.1016/j.neunet.2019.05.006_b43 article-title: On grouping effect of elastic net publication-title: Statistics & Probability Letters doi: 10.1016/j.spl.2013.05.014 – volume: 19 start-page: 716 issue: 6 year: 1974 ident: 10.1016/j.neunet.2019.05.006_b1 article-title: A new look at the statistical model identification publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.1974.1100705 – volume: 27 start-page: 2413 issue: 11 year: 2016 ident: 10.1016/j.neunet.2019.05.006_b8 article-title: Echo state networks with orthogonal pigeon-inspired optimization for image restoration publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2015.2479117 – volume: 16 start-page: 774 issue: 9 year: 2009 ident: 10.1016/j.neunet.2019.05.006_b14 article-title: ℓ0-Norm constraint LMS algorithm algorithm for sparse system identification publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2009.2024736 – volume: 71 start-page: 204 year: 2015 ident: 10.1016/j.neunet.2019.05.006_b12 article-title: Prediction of telephone calls load using echo state network with exogenous variables publication-title: Neural Networks doi: 10.1016/j.neunet.2015.08.010 – volume: 20 start-page: 130 issue: 2 year: 1963 ident: 10.1016/j.neunet.2019.05.006_b27 article-title: Deterministic nonperiodic flow publication-title: Journal of the Atmospheric Sciences doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 – volume: 44 start-page: 554 issue: 4 year: 2014 ident: 10.1016/j.neunet.2019.05.006_b16 article-title: Nonlinear systems modeling based on self-organizing fuzzy-neural-network with adaptive computation algorithm publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.neunet.2019.05.006_b18 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 |
| SSID | ssj0006843 |
| Score | 2.4866452 |
| Snippet | Recently, the echo state networks (ESNs) have been widely used for time series prediction. To meet the demand of actual applications and avoid the overfitting... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 32 |
| SubjectTerms | Algorithms Echo state networks Forecasting Least-Squares Analysis Neural Networks, Computer Online sequential learning Regularization method Sparse recursive least squares algorithm Time Factors Time series prediction |
| Title | Online sequential echo state network with sparse RLS algorithm for time series prediction |
| URI | https://dx.doi.org/10.1016/j.neunet.2019.05.006 https://www.ncbi.nlm.nih.gov/pubmed/31228722 https://www.proquest.com/docview/2245627723 |
| Volume | 118 |
| WOSCitedRecordID | wos000483920500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpu4e97H7JLkWDvQUXW3Ys6TGUjm2MMtYO0r0YSZYXh8QJaVzK9ud35CPb20rpNtiLCSJ2FH2fj845-nREyGsb6ijPHQLgzAeJMfDOaQuBK491YjVXeVI0h03w42MxncqPg8H3di_MxYJXlbi8lOv_CjW0Adhu6-xfwN09FBrgM4AOV4Adrn8EPBYPHaFGeusS4hZM3KjZOTSqUPXtlelriGrt6NOHk5FafF1toG2JssNy6R7gomhXRCAvTQffvK321JTr8I_r_PIzn30-rMtF2eVUS4XLO3VV2K51Mlsiu76sZqrU_fqIRZFH-W1mf05JRLITt_k8WbtXphcmNeZMxkEa4rlNBxbNreAyYFz8ao-9QUaL6rOfODdjIa4rVh8TEPODytbwv51eTzblWMPfimw30_aJ64jrB7iubplW7JA9xscSTOLe5N3R9H03kacCRZdtx9udl4088OpvXefZXBe5NB7M6T1yx4cedIKUuU8GtnpA7rbHelBv5R-SM2QQ7RlEHYNowyDqIaeOQRQZRIFBtGMQBQZRxyCKDKI9gx6Rz2-OTg_fBv4EjsCAY7MNWCq1S3kV4MYKyYXizOjC6HFsdRorrbQNeW5zlULcoVVUGG5smiibWmlEIePHZLdaVfYpoZFKcx6nUe7mibFOlGA5KzhPw0RLVeghidvRy4wvT-9OSVlkrQ5xnuGYZ27Ms3CcwZgPSdDdtcbyLDd8n7fAZN7FRNcxAy7dcOerFscMLLBbVlOVXdXnGXPaAQZRajwkTxDgri9xxJjgjD375999Tm73r9gLsrvd1PYluWUutuX5Zp_s8KnY98T9AWjmutQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+sequential+echo+state+network+with+sparse+RLS+algorithm+for+time+series+prediction&rft.jtitle=Neural+networks&rft.au=Yang%2C+Cuili&rft.au=Qiao%2C+Junfei&rft.au=Ahmad%2C+Zohaib&rft.au=Nie%2C+Kaizhe&rft.date=2019-10-01&rft.pub=Elsevier+Ltd&rft.issn=0893-6080&rft.eissn=1879-2782&rft.volume=118&rft.spage=32&rft.epage=42&rft_id=info:doi/10.1016%2Fj.neunet.2019.05.006&rft.externalDocID=S0893608019301388 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |