EEG Signal Classification Using Bayesian-Optimized Neural Networks in IoMT Systems

The Internet of Medical Things (IoMT) consists of interconnected devices and applications that enable real-time collection, transmission, and analysis of medical data for healthcare applications. This study utilizes medical data from the publicly available BCICIV2a dataset rather than data collected...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computing and information technology Vol. 33; no. 2; pp. 109 - 122
Main Author: Alnaily, Rana Raad Shaker
Format: Journal Article Paper
Language:English
Published: Sveuciliste U Zagrebu 01.06.2025
Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva
University of Zagreb Faculty of Electrical Engineering and Computing
Subjects:
ISSN:1330-1136, 1846-3908
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The Internet of Medical Things (IoMT) consists of interconnected devices and applications that enable real-time collection, transmission, and analysis of medical data for healthcare applications. This study utilizes medical data from the publicly available BCICIV2a dataset rather than data collected directly from individuals or medical institutions. With advancements in neuroinformatics and intelligent computing, the classification of electroencephalography (EEG) signals has become increasingly important, particularly for detecting and predicting epilepsy. However, existing EEG classification methods often suffer from low accuracy, high computational complexity, and slow processing. To address these challenges, this study proposes an EEG classification approach utilizing a Backpropagation Neural Network (BPNN) enhanced with Bayesian optimization. This method enhances the identification and prediction of epileptic seizures by utilizing IoT-enabled EEG data. Performance evaluation on the BCICIV2a dataset demonstrates that the proposed model achieves an accuracy of 93.21%, outperforming conventional techniques. The results indicate that this approach enhances efficiency and accuracy in EEG signal processing, contributing to real-time medical diagnostics. The integration of IoMT with advanced neural networks represents a significant advancement in medical informatics and telemedicine, providing promising directions for future research and clinical applications.
AbstractList The Internet of Medical Things (IoMT) consists of interconnected devices and applications that enable real-time collection, transmission, and analysis of medical data for healthcare applications. This study utilizes medical data from the publicly available BCICIV2a dataset rather than data collected directly from individuals or medical institutions. With advancements in neuroinformatics and intelligent computing, the classification of electroencephalography (EEG) signals has become increasingly important, particularly for detecting and predicting epilepsy. However, existing EEG classification methods often suffer from low accuracy, high computational complexity, and slow processing. To address these challenges, this study proposes an EEG classification approach utilizing a Backpropagation Neural Network (BPNN) enhanced with Bayesian optimization. This method enhances the identification and prediction of epileptic seizures by utilizing IoT-enabled EEG data. Performance evaluation on the BCICIV2a dataset demonstrates that the proposed model achieves an accuracy of 93.21%, outperforming conventional techniques. The results indicate that this approach enhances efficiency and accuracy in EEG signal processing, contributing to real-time medical diagnostics. The integration of IoMT with advanced neural networks represents a significant advancement in medical informatics and telemedicine, providing promising directions for future research and clinical applications.
The Internet of Medical Things (IoMT) consists of interconnected devices and applications that enable real-time collection, transmission, and analysis of medical data for healthcare applications. This study utilizes medical data from the publicly available BCICIV2a dataset rather than data collected directly from individuals or medical institutions. With advancements in neuroinformatics and intelligent computing, the classification of electroencephalography (EEG) signals has become increasingly important, particularly for detecting and predicting epilepsy. However, existing EEG classification methods often suffer from low accuracy, high computational complexity, and slow processing. To address these challenges, this study proposes an EEG classification approach utilizing a Backpropagation Neural Network (BPNN) enhanced with Bayesian optimization. This method enhances the identification and prediction of epileptic seizures by utilizing IoT-enabled EEG data. Performance evaluation on the BCICIV2a dataset demonstrates that the proposed model achieves an accuracy of 93.21%, outperforming conventional techniques. The results indicate that this approach enhances efficiency and accuracy in EEG signal processing, contributing to real-time medical diagnostics. The integration of IoMT with advanced neural networks represents a significant advancement in medical informatics and telemedicine, providing promising directions for future research and clinical applications. ACM CCS (2012) Classification: Computing methodologies [right arrow] Artificial intelligence [right arrow] Machine learning [right arrow] Machine learning approaches [right arrow] Neural networks Computer systems organization [right arrow] Embedded and cyber-physical systems [right arrow] Embedded systems [right arrow] Internet of Things. Keywords: Back Propagation Neural Network (BPNN), Bayesian optimization algorithm, Seizure, Internet of Things, Electroencephalogram
Audience Academic
Author Alnaily, Rana Raad Shaker
Author_xml – sequence: 1
  givenname: Rana Raad Shaker
  surname: Alnaily
  fullname: Alnaily, Rana Raad Shaker
  organization: Mathematics Department, College of Education, University of Al-Qadisiyah, Diwaniya, Iraq
BookMark eNptkl1LHDEYhUOxUKv-gN4N9KoXs83X5OPSLqsuWAVXr8PbfEyjOxNJRuz215s6Ulgwucjh8LyHF3I-o4MxjR6hLwQvKO4Y_W7jVBXtFgTjTmv5AR0SxUXLNFYHVTOGW0KY-IROSrnH9TAtBCeH6Ga1Om82sR9h2yy3UEoM0cIU09jclTj2zQ_Y-RJhbK8fpzjEv941V_4pV_zKT88pP5Qmjs06_bxtNrsy-aEco48BtsWfvL1H6O5sdbu8aC-vz9fL08vWMkFlywW3SnMSfhFLKdNOy6A9Dk4xhwPljmDgmGgPQigZmO6klWCdIipIRwI7Qus51yW4N485DpB3JkE0r0bKvYE8Rbv1RllFCVZY2MC47EAHYrmTDBRT3mNds9o563e28LAXNjslW1-lYUxgTCr_deZ7qPFxDGnKYIdYrDlVXGHKqKaVWrxD1ev8EG39wxCrvzfwbW-gMpP_M_XwVIpZb272WTKzNqdSsg__tybYvNbC1FqYf7Uwb7VgL5SIqT0
CODEN CJCTEM
ContentType Journal Article
Paper
Copyright COPYRIGHT 2025 Sveuciliste U Zagrebu
Copyright_xml – notice: COPYRIGHT 2025 Sveuciliste U Zagrebu
DBID AAYXX
CITATION
ISR
VP8
DOA
DOI 10.20532/cit.2025.1005997
DatabaseName CrossRef
Gale In Context: Science
Portal of Croatian Scientific and Professional Journals – HRČAK
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef





Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1846-3908
EndPage 122
ExternalDocumentID oai_doaj_org_article_8c8210806cf3475a9f1c4d73a838ee09
oai_hrcak_srce_hr_336001
A848023292
10_20532_cit_2025_1005997
GeographicLocations Iraq
GeographicLocations_xml – name: Iraq
GroupedDBID .4S
.DC
29B
29K
2WC
5GY
5VS
77I
AAYXX
ADMLS
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BAIFH
BBTPI
CITATION
CS3
D-I
DU5
E3Z
EBS
EDO
EJD
EN8
EOJEC
GROUPED_DOAJ
I-F
IAO
ICD
ISR
ITC
IVC
KQ8
KWQ
MK~
ML~
M~E
OBODZ
OK1
OVT
P2P
PV9
RZL
TR2
TUS
VP8
XH6
ID FETCH-LOGICAL-c3627-464c8941fb1c2239d97f9e0fd83d0f24d10a4019ea6687f3957c7acd818f7d1f3
IEDL.DBID DOA
ISSN 1330-1136
IngestDate Fri Oct 03 12:41:29 EDT 2025
Tue Sep 30 04:10:28 EDT 2025
Sat Nov 29 13:47:51 EST 2025
Sat Nov 29 10:30:10 EST 2025
Thu Nov 13 15:53:50 EST 2025
Sat Nov 29 07:51:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License cc-by-nd: openAccess
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3627-464c8941fb1c2239d97f9e0fd83d0f24d10a4019ea6687f3957c7acd818f7d1f3
Notes 336001
OpenAccessLink https://doaj.org/article/8c8210806cf3475a9f1c4d73a838ee09
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_8c8210806cf3475a9f1c4d73a838ee09
hrcak_primary_oai_hrcak_srce_hr_336001
gale_infotracmisc_A848023292
gale_infotracacademiconefile_A848023292
gale_incontextgauss_ISR_A848023292
crossref_primary_10_20532_cit_2025_1005997
PublicationCentury 2000
PublicationDate 20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 20250601
  day: 01
PublicationDecade 2020
PublicationTitle Journal of computing and information technology
PublicationYear 2025
Publisher Sveuciliste U Zagrebu
Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva
University of Zagreb Faculty of Electrical Engineering and Computing
Publisher_xml – name: Sveuciliste U Zagrebu
– name: Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva
– name: University of Zagreb Faculty of Electrical Engineering and Computing
SSID ssj0000396641
Score 2.3068812
Snippet The Internet of Medical Things (IoMT) consists of interconnected devices and applications that enable real-time collection, transmission, and analysis of...
SourceID doaj
hrcak
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 109
SubjectTerms Algorithms
Analysis
Artificial intelligence
Back Propagation Neural Network (BPNN)
Bayesian optimization algorithm
Electroencephalogram
Electroencephalography
Embedded systems
Epilepsy
Iraq
Machine learning
Mathematical optimization
Medical advice systems
Medical care
Medical informatics
Methods
Neural networks
Seizure, Internet of Things
Seizures (Medicine)
Signal processing
Technology application
Title EEG Signal Classification Using Bayesian-Optimized Neural Networks in IoMT Systems
URI https://hrcak.srce.hr/336001
https://doaj.org/article/8c8210806cf3475a9f1c4d73a838ee09
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1846-3908
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000396641
  issn: 1330-1136
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1846-3908
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000396641
  issn: 1330-1136
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PSxwxFA6iHnqp1rZ0rS2hlAqFwcmPmSRHLWsr6FbUFm8hmx86iLNlZi3Ug39785JRdk-99DIMmXdIvjfJS8j3vofQR0UoiJSTonL1tOCKhELWflrULJRTYZhXKY_757GYTOTlpTpdKPUFnLAsD5yB25NWUuDB1TYwLiqjArHcCWYkk97n1L1SqIXDVFqDWdzGc5KvMSlUP9izDVAnaQW8gEqByNNCIEp6_U-r8tp1Z83NQpw53ETPhw0i3s8de4FWfLuFNh6LL-BhLr5EZ-PxV3zeXIFxqmwJnJ8EM040AHxg_njIkCy-x1Xhtrn3DoMSRzSfZOp3j5sWH81OLvAgW_4K_TgcX3z5VgwFEgob444oeM2tVJyEKbExzCunRFC-DE4yVwbKHSlNPD8pb-paigBXclYY62KQDsKRwF6j1XbW-jcIS15VzClDhWc8lM4IQ50zTBhFQxD1CH1-REv_yjoYOp4fErQ6QqsBWj1AO0IHgOeTIUhYp4boWD04Vv_LsSP0AbyhQaSiBRbMlbnre310fqb3JQfdOqroCO0ORmE274w1Q1JBHBToWi1Z7ixZxllklz5_Sk5f6nNu6Tvr46tmDDaH2_9jbG_RM8ArU8520Oq8u_Pv0Lr9PW_67n36lePz5GH8F2cG9fE
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG+Signal+Classification+Using+Bayesian-Optimized+Neural+Networks+in+IoMT+Systems&rft.jtitle=Journal+of+computing+and+information+technology&rft.au=Alnaily%2C+Rana+Raad+Shaker&rft.date=2025-06-01&rft.pub=Sveuciliste+U+Zagrebu&rft.issn=1330-1136&rft.volume=33&rft.issue=2&rft.spage=109&rft_id=info:doi/10.20532%2Fcit.2025.1005997&rft.externalDocID=A848023292
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1330-1136&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1330-1136&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1330-1136&client=summon