Efficient VLSI architecture for the parallel dictionary LZW data compression algorithm

The Lempel–Ziv–Welch (LZW) algorithm is an important dictionary-based data compression approach that is used in many communication and storage systems. The parallel dictionary LZW (PDLZW) algorithm speeds up the LZW encoding by using multiple dictionaries. This simplifies the parallel search in the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET circuits, devices & systems Ročník 13; číslo 5; s. 576 - 583
Hlavní autoři: Safieh, Malek, Freudenberger, Jürgen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Stevenage The Institution of Engineering and Technology 01.08.2019
John Wiley & Sons, Inc
Témata:
ISSN:1751-858X, 1751-8598, 1751-8598
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The Lempel–Ziv–Welch (LZW) algorithm is an important dictionary-based data compression approach that is used in many communication and storage systems. The parallel dictionary LZW (PDLZW) algorithm speeds up the LZW encoding by using multiple dictionaries. This simplifies the parallel search in the dictionaries. However, the compression gain of the PDLZW depends on the partitioning of the address space, i.e. on the sizes of the parallel dictionaries. This work proposes an address space partitioning technique that optimises the compression rate of the PDLZW. Numerical results for address spaces with 512, 1024, and 2048 entries demonstrate that the proposed address partitioning improves the performance of the PDLZW compared with the original proposal. These address space sizes are suitable for flash storage systems. Moreover, the PDLZW has relative high memory requirements which dominate the costs of a hardware implementation. This work proposes a recursive dictionary structure and a word partitioning technique that significantly reduce the memory size of the parallel dictionaries.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1751-858X
1751-8598
1751-8598
DOI:10.1049/iet-cds.2018.5017