Multi‐station multi‐robot task assignment method based on deep reinforcement learning

This paper focuses on the problem of multi‐station multi‐robot spot welding task assignment, and proposes a deep reinforcement learning (DRL) framework, which is made up of a public graph attention network and independent policy networks. The graph of welding spots distribution is encoded using the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:CAAI Transactions on Intelligence Technology Ročník 10; číslo 1; s. 134 - 146
Hlavní autori: Zhang, Junnan, Wang, Ke, Mu, Chaoxu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Beijing John Wiley & Sons, Inc 01.02.2025
Wiley
Predmet:
ISSN:2468-2322, 2468-6557, 2468-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper focuses on the problem of multi‐station multi‐robot spot welding task assignment, and proposes a deep reinforcement learning (DRL) framework, which is made up of a public graph attention network and independent policy networks. The graph of welding spots distribution is encoded using the graph attention network. Independent policy networks with attention mechanism as a decoder can handle the encoded graph and decide to assign robots to different tasks. The policy network is used to convert the large scale welding spots allocation problem to multiple small scale single‐robot welding path planning problems, and the path planning problem is quickly solved through existing methods. Then, the model is trained through reinforcement learning. In addition, the task balancing method is used to allocate tasks to multiple stations. The proposed algorithm is compared with classical algorithms, and the results show that the algorithm based on DRL can produce higher quality solutions.
AbstractList Abstract This paper focuses on the problem of multi‐station multi‐robot spot welding task assignment, and proposes a deep reinforcement learning (DRL) framework, which is made up of a public graph attention network and independent policy networks. The graph of welding spots distribution is encoded using the graph attention network. Independent policy networks with attention mechanism as a decoder can handle the encoded graph and decide to assign robots to different tasks. The policy network is used to convert the large scale welding spots allocation problem to multiple small scale single‐robot welding path planning problems, and the path planning problem is quickly solved through existing methods. Then, the model is trained through reinforcement learning. In addition, the task balancing method is used to allocate tasks to multiple stations. The proposed algorithm is compared with classical algorithms, and the results show that the algorithm based on DRL can produce higher quality solutions.
This paper focuses on the problem of multi‐station multi‐robot spot welding task assignment, and proposes a deep reinforcement learning (DRL) framework, which is made up of a public graph attention network and independent policy networks. The graph of welding spots distribution is encoded using the graph attention network. Independent policy networks with attention mechanism as a decoder can handle the encoded graph and decide to assign robots to different tasks. The policy network is used to convert the large scale welding spots allocation problem to multiple small scale single‐robot welding path planning problems, and the path planning problem is quickly solved through existing methods. Then, the model is trained through reinforcement learning. In addition, the task balancing method is used to allocate tasks to multiple stations. The proposed algorithm is compared with classical algorithms, and the results show that the algorithm based on DRL can produce higher quality solutions.
Author Zhang, Junnan
Mu, Chaoxu
Wang, Ke
Author_xml – sequence: 1
  givenname: Junnan
  surname: Zhang
  fullname: Zhang, Junnan
  organization: Tianjin University
– sequence: 2
  givenname: Ke
  orcidid: 0000-0002-8306-1663
  surname: Wang
  fullname: Wang, Ke
  email: walker_wang@tju.edu.cn
  organization: Tianjin University
– sequence: 3
  givenname: Chaoxu
  orcidid: 0000-0003-1055-9513
  surname: Mu
  fullname: Mu, Chaoxu
  organization: Tianjin University
BookMark eNp9kc9qGzEQh0VJoY7rS59gIbeAXf3f1bGYJDU49JIeehKzktaVs5ZcSSb4lkfIM_ZJuvaGkFNPGg3ffDPwu0QXIQaH0BeCFwRz9dX4QheEMsU_oAnlsplTRunFu_oTmuW8xRgTpZRg9QT9uj_0xf99fskFio-h2r3-U2xjqQrkxwpy9puwc6FUO1d-R1u1kJ2tBto6t6-S86GLybgz0jtIwYfNZ_Sxgz672es7RT9vbx6W3-frH3er5bf13DBJ-Rwo540SCqRjQlCOsbC14R1XlllGmOw4o6ZzWGBmLLccN7Vgsm7bhgAzhk3RavTaCFu9T34H6agjeH1uxLTRkIo3vdMU17LhoiNUMA7EgmyhodKQwQtQn1xXo2uf4p-Dy0Vv4yGF4XzNSFMziYWqB-p6pEyKOSfXvW0lWJ-S0Kck9DmJASYj_OR7d_wPqZerBzrO_ANeCY2m
Cites_doi 10.1109/tsmc.2021.3094190
10.1049/cit2.12103
10.1016/j.engappai.2021.104422
10.1038/nature24270
10.1016/j.rcim.2016.08.006
10.1016/j.jii.2018.08.001
10.1016/j.rcim.2020.101934
10.1109/tase.2017.2761180
10.1049/cit2.12066
10.1016/j.ins.2018.04.044
10.1016/j.cirp.2014.03.015
10.1080/0305215x.2015.1005084
10.1049/iet‐cta.2018.6125
10.1016/j.robot.2019.04.012
10.1109/jiot.2018.2815982
10.1016/j.rcim.2021.102197
10.1016/j.robot.2018.02.016
10.1038/nature14540
10.1016/j.ejor.2017.06.001
10.1016/j.rcim.2018.08.003
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology.
2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology.
– notice: 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1049/cit2.12394
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2468-2322
EndPage 146
ExternalDocumentID oai_doaj_org_article_2076845f12534a1da6ba826c1d4daa7c
10_1049_cit2_12394
CIT212394
Genre article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2021YFB1714700
– fundername: Postdoctoral Fellowship Program of CPSF
  funderid: GZB20240525
– fundername: Postdoctoral Research Foundation of China
  funderid: 2024M752364
GroupedDBID 0R~
1OC
24P
AACTN
AAEDW
AAHHS
AAHJG
AAJGR
AALRI
AAXUO
ABMAC
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACXQS
ADBBV
ADMLS
ADVLN
ADZOD
AEEZP
AEQDE
AEXQZ
AFKRA
AITUG
AIWBW
AJBDE
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMRAJ
ARAPS
ARCSS
AVUZU
BCNDV
BENPR
BGLVJ
CCPQU
EBS
EJD
FDB
GROUPED_DOAJ
HCIFZ
IAO
IDLOA
ITC
K7-
M41
M43
O9-
OK1
PHGZT
PIMPY
RIG
ROL
RUI
SSZ
AAMMB
AAYWO
AAYXX
ACVFH
ADCNI
AEFGJ
AEUPX
AFFHD
AFPUW
AGXDD
AIDQK
AIDYY
AIGII
AKBMS
AKYEP
CITATION
ICD
PHGZM
PQGLB
WIN
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3624-a2448959a6e35524005d7c4f49d3d3136f432cfe0503cd4d40875367bb81a3cc3
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001354257800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2468-2322
2468-6557
IngestDate Mon Nov 10 04:35:34 EST 2025
Wed Aug 13 02:51:25 EDT 2025
Wed Oct 29 21:18:41 EDT 2025
Tue Mar 04 09:30:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3624-a2448959a6e35524005d7c4f49d3d3136f432cfe0503cd4d40875367bb81a3cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1055-9513
0000-0002-8306-1663
OpenAccessLink https://doaj.org/article/2076845f12534a1da6ba826c1d4daa7c
PQID 3187360597
PQPubID 6852857
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_2076845f12534a1da6ba826c1d4daa7c
proquest_journals_3187360597
crossref_primary_10_1049_cit2_12394
wiley_primary_10_1049_cit2_12394_CIT212394
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
20250201
2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle CAAI Transactions on Intelligence Technology
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2018; 5
2020; 64
2015; 521
2020
2022; 73
2017; 44
2022; 7
2019; 13
2019; 56
2018; 453
2021; 105
2019; 15
2018; 103
2019
2018
2017
2022; 52
2016
2017; 263
2019; 118
2017; 550
2014; 63
2016; 48
2018; 15
Mittal A. (e_1_2_9_29_1) 2019
e_1_2_9_31_1
e_1_2_9_10_1
Kartal B. (e_1_2_9_20_1) 2016
Bello I. (e_1_2_9_25_1) 2017
e_1_2_9_13_1
e_1_2_9_12_1
Vaswani A. (e_1_2_9_26_1) 2017
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_18_1
Drori I. (e_1_2_9_32_1) 2020
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Dai H. (e_1_2_9_28_1) 2017
Kartal B. (e_1_2_9_19_1) 2016
e_1_2_9_9_1
Kool W. (e_1_2_9_27_1) 2019
Zhao G. (e_1_2_9_11_1) 2020
Velikovi P. (e_1_2_9_30_1) 2018
References_xml – start-page: 33
  year: 2016
– start-page: 1
  year: 2018
  end-page: 12
– start-page: 1190
  year: 2020
  end-page: 1195
– volume: 263
  start-page: 1033
  issue: 3
  year: 2017
  end-page: 1048
  article-title: Balancing a robotic spot welding manufacturing line: an industrial case study
  publication-title: Eur. J. Oper. Res.
– start-page: 19
  year: 2020
  end-page: 24
– volume: 103
  start-page: 151
  year: 2018
  end-page: 161
  article-title: Resource‐based task allocation for multi‐robot systems
  publication-title: Robot. Autonom. Syst.
– start-page: 6349
  year: 2017
  end-page: 6359
  article-title: Learning combinatorial optimization algorithms over graphs
  publication-title: Neural Inf. Process. Syst.
– start-page: 1
  year: 2017
  end-page: 15
– volume: 56
  start-page: 12
  year: 2019
  end-page: 37
  article-title: Advances in weld seam tracking techniques for robotic welding: a review
  publication-title: Robot. Comput. Integrated Manuf.
– volume: 521
  start-page: 445
  issue: 7553
  year: 2015
  end-page: 451
  article-title: Reinforcement learning improves behaviour from evaluative feedback
  publication-title: Nature
– start-page: 1
  year: 2019
  end-page: 25
– start-page: 5999
  year: 2017
  end-page: 6009
  article-title: Attention is all you need
  publication-title: Neural Inf. Process. Syst.
– volume: 15
  start-page: 842
  issue: 2
  year: 2018
  end-page: 851
  article-title: Intersection‐free geometrical partitioning of multirobot stations for cycle time optimization
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 13
  start-page: 2886
  issue: 17
  year: 2019
  end-page: 2893
  article-title: Distributed multi‐vehicle task assignment in a time‐invariant drift field with obstacles
  publication-title: IET Control Theory & Appl.
– year: 2016
– volume: 118
  start-page: 31
  year: 2019
  end-page: 46
  article-title: A distributed method for dynamic multi‐robot task allocation problems with critical time constraints
  publication-title: Robot. Autonom. Syst.
– volume: 63
  start-page: 17
  issue: 1
  year: 2014
  end-page: 20
  article-title: Multi‐robot spot‐welding cells: an integrated approach to cell design and motion planning
  publication-title: CIRP Ann. ‐ Manuf. Technol.
– volume: 550
  start-page: 354
  issue: 7676
  year: 2017
  end-page: 359
  article-title: Mastering the game of go without human knowledge
  publication-title: Nature
– volume: 52
  start-page: 4259
  issue: 7
  year: 2022
  end-page: 4271
  article-title: Distributed task assignment for multiple robots under limited communication range
  publication-title: IEEE Trans. Syst. Man Cybern.‐syst.
– volume: 73
  year: 2022
  article-title: Multi‐robot multi‐station cooperative spot welding task allocation based on stepwise optimization: an industrial case study
  publication-title: Robot. Comput. Integrated Manuf.
– volume: 7
  start-page: 671
  issue: 4
  year: 2022
  end-page: 684
  article-title: Adaptive composite frequency control of power systems using reinforcement learning
  publication-title: CAAI Trans. Intell. Technol.
– volume: 453
  start-page: 227
  year: 2018
  end-page: 238
  article-title: An integrated multi‐population genetic algorithm for multi‐vehicle task assignment in a drift field
  publication-title: Inf. Sci.
– start-page: 1
  year: 2017
  end-page: 19
– volume: 5
  start-page: 1749
  issue: 3
  year: 2018
  end-page: 1764
  article-title: Task allocation in spatial crowdsourcing: current state and future directions
  publication-title: IEEE Internet Things J.
– volume: 44
  start-page: 97
  year: 2017
  end-page: 116
  article-title: Multi‐robot spot‐welding cells for car‐body assembly: design and motion planning
  publication-title: Robot. Comput. Integrated Manuf.
– volume: 48
  start-page: 299
  issue: 2
  year: 2016
  end-page: 316
  article-title: Double global optimum genetic algorithm particle swarm optimization‐based welding robot path planning
  publication-title: Eng. Optim.
– volume: 105
  issue: 80‐
  year: 2021
  article-title: Learning to traverse over graphs with a Monte Carlo tree search‐based self‐play framework
  publication-title: Eng. Appl. Artif. Intell.
– volume: 64
  year: 2020
  article-title: A welding task data model for intelligent process planning of robotic welding
  publication-title: Robot. Comput. Integrated Manuf.
– volume: 15
  start-page: 207
  year: 2019
  end-page: 218
  article-title: Task allocation in manufacturing: a review
  publication-title: J. Ind. Inf. Integr.
– volume: 7
  start-page: 15
  issue: 3
  year: 2022
  end-page: 536
  article-title: Research on scheduling strategy for automated storage and retrieval system
  publication-title: CAAI Trans. Intell. Technol.
– year: 2019
– ident: e_1_2_9_17_1
  doi: 10.1109/tsmc.2021.3094190
– ident: e_1_2_9_22_1
  doi: 10.1049/cit2.12103
– start-page: 5999
  year: 2017
  ident: e_1_2_9_26_1
  article-title: Attention is all you need
  publication-title: Neural Inf. Process. Syst.
– ident: e_1_2_9_31_1
  doi: 10.1016/j.engappai.2021.104422
– ident: e_1_2_9_24_1
  doi: 10.1038/nature24270
– ident: e_1_2_9_7_1
  doi: 10.1016/j.rcim.2016.08.006
– start-page: 1
  volume-title: International Conference on Learning Representations
  year: 2018
  ident: e_1_2_9_30_1
– ident: e_1_2_9_2_1
  doi: 10.1016/j.jii.2018.08.001
– volume-title: Learning Heuristics over Large Graphs via Deep Reinforcement Learning
  year: 2019
  ident: e_1_2_9_29_1
– ident: e_1_2_9_6_1
  doi: 10.1016/j.rcim.2020.101934
– ident: e_1_2_9_10_1
  doi: 10.1109/tase.2017.2761180
– ident: e_1_2_9_14_1
  doi: 10.1049/cit2.12066
– ident: e_1_2_9_15_1
  doi: 10.1016/j.ins.2018.04.044
– start-page: 6349
  year: 2017
  ident: e_1_2_9_28_1
  article-title: Learning combinatorial optimization algorithms over graphs
  publication-title: Neural Inf. Process. Syst.
– start-page: 33
  volume-title: The IJCAI‐16 Workshop on Autonomous Mobile Service Robots
  year: 2016
  ident: e_1_2_9_20_1
– ident: e_1_2_9_8_1
  doi: 10.1016/j.cirp.2014.03.015
– ident: e_1_2_9_12_1
  doi: 10.1080/0305215x.2015.1005084
– start-page: 1
  volume-title: International Conference on Learning Representations
  year: 2017
  ident: e_1_2_9_25_1
– start-page: 1
  volume-title: International Conference on Learning Representations
  year: 2019
  ident: e_1_2_9_27_1
– start-page: 19
  volume-title: International Conference on Machine Learning and Applications
  year: 2020
  ident: e_1_2_9_32_1
– ident: e_1_2_9_16_1
  doi: 10.1049/iet‐cta.2018.6125
– ident: e_1_2_9_5_1
  doi: 10.1016/j.robot.2019.04.012
– ident: e_1_2_9_3_1
  doi: 10.1109/jiot.2018.2815982
– ident: e_1_2_9_13_1
  doi: 10.1016/j.rcim.2021.102197
– ident: e_1_2_9_18_1
  doi: 10.1016/j.robot.2018.02.016
– ident: e_1_2_9_21_1
  doi: 10.1038/nature14540
– ident: e_1_2_9_23_1
– ident: e_1_2_9_9_1
  doi: 10.1016/j.ejor.2017.06.001
– start-page: 1190
  volume-title: 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
  year: 2020
  ident: e_1_2_9_11_1
– volume-title: Thirtieth AAAI Conference on Artificial Intelligence
  year: 2016
  ident: e_1_2_9_19_1
– ident: e_1_2_9_4_1
  doi: 10.1016/j.rcim.2018.08.003
SSID ssj0001999537
ssib050169717
ssib050729737
ssib052855658
Score 2.2957876
Snippet This paper focuses on the problem of multi‐station multi‐robot spot welding task assignment, and proposes a deep reinforcement learning (DRL) framework, which...
Abstract This paper focuses on the problem of multi‐station multi‐robot spot welding task assignment, and proposes a deep reinforcement learning (DRL)...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 134
SubjectTerms Algorithms
Artificial intelligence
Assignment problem
Attention
attention mechanism
Automation
Coding
Deep learning
deep reinforcement learning
graph neural network
Heuristic
industrial robot
Linear programming
Methods
Neural networks
Path planning
Process planning
Robots
Spot welding
task allocation
Vehicles
Working hours
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46PXjxBypWpwT0JNTZJm2ak-hwKMjwMGGeQpofY4jrbKtn_wT_Rv8SkzRz7rKLt7Y8SuhL8r6-9_J9AJxRTImtqIWXWKchxnEe8tysR5ImBo1EsUy4Y9d_IP1-NhzSR59wq3xb5WxPdBu1LITNkXfM3CPIYG9KrqZvoVWNstVVL6GxCtai2GzCtihLwnmOxaCfBJEZKymmHTGu44vIyoEvxCFH17-AMf8iVRdqelv_HeQ22PQgE143s2IHrKjJLnh2Z22_P7-qpvoOX_19WeRFDWtevUCDpMcj1x8AG2lpaKOchMZaKjWFpXJEq8LlFKFXnBjtgafe7aB7F3phhVCYeIVDbmJ6RhPKU2Xghu0iTSQRWGMqkUQRSjVGsdDKcsUIiSW2tPcoJXmeRRwJgfZBa1JM1AGAwlhkKtNaGxyJsMqkiHSuCBIkV5SgAJzOPjObNvwZzNW9MWXWGcw5IwA31gO_Fpbz2j0oyhHzS4jFrmiYaAPJEOaR5GnOzc-RiMwIOSciAO2ZU5hfiBWbeyQA586nS4bBuveD2F0dLn_XEdiIrQ6w695ug1ZdvqtjsC4-6nFVnrhJ-APqFuaw
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEC5i4sFLNKi4SZSG5CSM2o-ZngYvMSQoSMghQjw1_VwWyW6YneTsT8hv9JekumY2j4sg3maGGmiqq7q-7qr-CmDfKKNLRq36pHJTKSV85Tz6o25qRCNcxNoRu_53fXLSnp-b0zX4vLoLM_BD3B24Fc-g9bo4uPNDFxIEtTiJYdaLD7x09n4CG5xLXWxaqNP7ExbEPjWRZopyvQihg1jxkyrz8f73RxGJiPsfoc2HmJWCzvHz_xvuC9gcwSY7GKxjC9bS_CX8pDu3f37fLIcsPLsY37uFX_Ssd8tfDBH1bEp1AmxoMc1KtIsMpWNKl6xLRLga6GyRjZ0npq_gx_HR2eHXamywUAWMW6pyGNtbUxvXJIQdpZq0jjqorEyUUXLZZCVFyKlwxoSooir097LR3rfcyRDka1ifL-bpDbCAEm1qc86IJ6VKbQw8-6Rl0D4ZLSewt1KyvRx4NCzlv5WxRTWWVDOBL0X_dxKF-5o-LLqpHV3JCkoe1hmhmVSOR9d4h5ukwHGEzukwgd3V7NnRIZcWly4tcetm9ATe0zz9ZRj28NuZoKftfxHegWeidAemmu5dWO-7q_QWnobrfrbs3pFx3gJvjebh
  priority: 102
  providerName: Wiley-Blackwell
Title Multi‐station multi‐robot task assignment method based on deep reinforcement learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcit2.12394
https://www.proquest.com/docview/3187360597
https://doaj.org/article/2076845f12534a1da6ba826c1d4daa7c
Volume 10
WOSCitedRecordID wos001354257800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib050729737
  issn: 2468-2322
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: K7-
  dateStart: 20170601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: BENPR
  dateStart: 20170601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: PIMPY
  dateStart: 20170601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: WIN
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: 24P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFH5iwGEXNMQmukFlaZyQwprYiePjQK2oWKsIdQJOluMfVTWtRU3giPgT-Bv3l_DspFN7YZddrDjxwfpe7PfZz_4ewIlggvuIWtRjLosYS8pIlTgeeZYiG4kTk6qgrv-Dj8f57a0o1lJ9-TNhjTxwA5zfAclyljp0xJSp2KisVEiJdWyYUYprP_v2uFhbTIXdFeQ9KeUrPVImvulZnZzFPhH4hgcKQv0b7HKdowYnM_gAey07JN-bXu3Dlp0fwF24JPvn-aVqwubkd1tfLspFTWpV_SJIgWfTENgnTU5o4t2TIdjaWHtPljYopOqwGUjaVBHTj_Bz0J9cXEZtRoRIo6NhkUJnnItUqMwiT_DHP1PDNXNMGGpoTDPHaKKd9SIvGgFiXq-eZrws81hRrekn2J4v5vYQiMYWuc2dc0gAKbO50bErLaeal1Zw2oGvK5TkfSN8IUPAmgnpsZQByw6cewD_tvBi1eEFmlC2JpT_MmEHjlbwy3YEVRLnGk5xrSV4B06DSd7ohrwYTpLw9Pl_dOgLvE98mt9wOPsItuvlgz2GXf1Yz6plF94lrOjCznl_XFx3w3-H5RWPsBw99fFLMRwVd1i7GY5fAb1a4AE
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VFgkuUASIhRYsARekUGI7cXxAVVtaddVlxWGRysk4_lmtEJslCSBuPAJPwkPxJIydhLaX3nrglkSW5XjGM5894_kAnkkuRYioJa-4zxPOaZnoEtejyDNEIym1mY7V9SdiOi1OT-W7Nfg93IUJaZWDTYyG2lYmnJHvoO4Jhthbit3VlySwRoXo6kCh0anFifvxHbdszevxG5Tvc0qPDmcHx0nPKpAYNNY80ejQCplJnTv0tSGFMrPCcM-lZZalLPecUeNdKJRiLLc81HxnuSjLItXMGIb9XoMNznA8IQgskrMzHURbGRNDFVQud8yipS_TQD9-we9FeoALmPY8Mo6u7ej2_zYpm3CrB9Fkr9P6O7DmlnfhQ7xL_Ofnr6bLLiCf-_e6KquWtLr5RHCnsJjH_AfSUWeT4MUtwdbWuRWpXSwka-KZKekZNeb34P2V_M19WF9WS_cAiMEWhSu894iTGXeFNakvnWBGlE4KNoKng1jVqqsPomJcn0sVhK-i8EewHyT-r0Wo6R0_VPVc9SZC0RgUzTxCTsZ1anVeatz8mRRHqLUwI9galED1hqZRZxowghdRhy4ZhjoYz2h8enh5X0_gxvHs7URNxtOTR3CTBs7jmKm-Bett_dVtw3XzrV009eO4AAh8vGrl-gtFuEBR
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQYgLDwFiSwFLcEIKEHsSx0corKioVnsoUjlZjh-rVcXuKht65ifwG_kljCfZll6QELckmkiW7fF88_A3AC8NGp0zasVbTHWBKNvCtaSPuq4IjZQyVI7Z9Y_1bNacnpr5WJuT78IM_BAXAbesGXxeZwWPm5AGhxMzSaZf9vJ1mVt7X4cbWNEhm4mdcX4ZYiHwUzFrpsz3iwg7yB1BKZo3l79fMUnM3H8Fbv4JWtnqTO_-53jvwZ0Rbop3w_64D9fi6gF85Vu3v3783A55ePFtfO_W7boXvdueCcLUywVXCoihybTI9i4Ikg4xbkQXmXLVc3RRjL0nFg_hy_TjyeGnYmyxUHiyXFg4su6NqYyrIwGPXE9aBe0xoQkqqFLVCZX0KWbWGB8wYCbAV7Vu26Z0ynv1CPZW61V8DMKTRBOblBIhSoWxCb5MbdTK6zYarSbwYjfLdjMwaVjOgKOxeWosT80E3ucFuJDI7Nf8Yd0t7KhMVnL6sEoEzhS6Mri6deQm-ZJG6Jz2EzjYLZ8dVXJr6fDSipw3oyfwihfqL8Owh0cnkp_2_0X4Odyaf5ja46PZ5ydwW-ZWwVzgfQB7ffc9PoWb_rxfbrtnvFF_A-O16kc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi%E2%80%90station+multi%E2%80%90robot+task+assignment+method+based+on+deep+reinforcement+learning&rft.jtitle=CAAI+Transactions+on+Intelligence+Technology&rft.au=Junnan+Zhang&rft.au=Ke+Wang&rft.au=Chaoxu+Mu&rft.date=2025-02-01&rft.pub=Wiley&rft.eissn=2468-2322&rft.volume=10&rft.issue=1&rft.spage=134&rft.epage=146&rft_id=info:doi/10.1049%2Fcit2.12394&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2076845f12534a1da6ba826c1d4daa7c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-2322&client=summon