Big Data for Energy Management and Energy-Efficient Buildings

European buildings are producing a massive amount of data from a wide spectrum of energy-related sources, such as smart meters’ data, sensors and other Internet of things devices, creating new research challenges. In this context, the aim of this paper is to present a high-level data-driven architec...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energies (Basel) Ročník 13; číslo 7; s. 1555
Hlavní autor: Marinakis, Vangelis
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 2020
Témata:
ISSN:1996-1073, 1996-1073
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract European buildings are producing a massive amount of data from a wide spectrum of energy-related sources, such as smart meters’ data, sensors and other Internet of things devices, creating new research challenges. In this context, the aim of this paper is to present a high-level data-driven architecture for buildings data exchange, management and real-time processing. This multi-disciplinary big data environment enables the integration of cross-domain data, combined with emerging artificial intelligence algorithms and distributed ledgers technology. Semantically enhanced, interlinked and multilingual repositories of heterogeneous types of data are coupled with a set of visualization, querying and exploration tools, suitable application programming interfaces (APIs) for data exchange, as well as a suite of configurable and ready-to-use analytical components that implement a series of advanced machine learning and deep learning algorithms. The results from the pilot application of the proposed framework are presented and discussed. The data-driven architecture enables reliable and effective policymaking, as well as supports the creation and exploitation of innovative energy efficiency services through the utilization of a wide variety of data, for the effective operation of buildings.
AbstractList European buildings are producing a massive amount of data from a wide spectrum of energy-related sources, such as smart meters’ data, sensors and other Internet of things devices, creating new research challenges. In this context, the aim of this paper is to present a high-level data-driven architecture for buildings data exchange, management and real-time processing. This multi-disciplinary big data environment enables the integration of cross-domain data, combined with emerging artificial intelligence algorithms and distributed ledgers technology. Semantically enhanced, interlinked and multilingual repositories of heterogeneous types of data are coupled with a set of visualization, querying and exploration tools, suitable application programming interfaces (APIs) for data exchange, as well as a suite of configurable and ready-to-use analytical components that implement a series of advanced machine learning and deep learning algorithms. The results from the pilot application of the proposed framework are presented and discussed. The data-driven architecture enables reliable and effective policymaking, as well as supports the creation and exploitation of innovative energy efficiency services through the utilization of a wide variety of data, for the effective operation of buildings.
Author Marinakis, Vangelis
Author_xml – sequence: 1
  givenname: Vangelis
  orcidid: 0000-0001-5488-4006
  surname: Marinakis
  fullname: Marinakis, Vangelis
BookMark eNptUMFKAzEQDVLBWnvxCxa8CavJTpPdPXiwtWqh4kXPYZqdLCltUrPbQ__era0o4lxmeLz3ePPOWc8HT4xdCn4DUPJb8gJ4LqSUJ6wvylKlgufQ-3WfsWHTLHk3AAIA-uxu7OrkAVtMbIjJ1FOsd8kLeqxpTb5N0FdHNJ1a64zbg-OtW1XO180FO7W4amh43AP2_jh9mzyn89en2eR-nhpQok2tRRILAyisMViMYCQlKcKcTLZYFMQrW0mRVZlRXXxblgRWCFUIKxGpzGHAZgffKuBSb6JbY9zpgE5_ASHWGmPrzIp09xoabhRBrkbILRa2FLAgksrwjLLO6-rgtYnhY0tNq5dhG30XX2dQjJQsVKY6Fj-wTAxNE8lq41psXfBtRLfSgut95_qn805y_UfyHfQf8idUjoJH
CitedBy_id crossref_primary_10_1155_2021_3113584
crossref_primary_10_1016_j_autcon_2022_104130
crossref_primary_10_3390_en14144341
crossref_primary_10_1016_j_autcon_2021_103760
crossref_primary_10_3390_app13031666
crossref_primary_10_3390_info15110725
crossref_primary_10_3390_en16217315
crossref_primary_10_3390_en14154624
crossref_primary_10_1109_ACCESS_2021_3137352
crossref_primary_10_3390_en17010111
crossref_primary_10_3233_IDT_210210
crossref_primary_10_3390_en14113164
crossref_primary_10_1155_2021_6748920
crossref_primary_10_1109_ACCESS_2024_3514209
crossref_primary_10_1088_1757_899X_1148_1_012001
crossref_primary_10_3390_su17094099
crossref_primary_10_1016_j_scs_2022_103873
crossref_primary_10_3390_app13042749
crossref_primary_10_1016_j_renene_2025_124314
crossref_primary_10_1016_j_rser_2024_114472
crossref_primary_10_3390_en17030570
crossref_primary_10_3390_s22155544
crossref_primary_10_1016_j_buildenv_2024_111855
crossref_primary_10_3390_en14227719
crossref_primary_10_3390_en16104025
crossref_primary_10_3390_su15043742
crossref_primary_10_1061_JCCEE5_CPENG_5341
crossref_primary_10_3390_a17050192
crossref_primary_10_1051_e3sconf_202454905007
crossref_primary_10_3390_en13226084
crossref_primary_10_3390_en15072568
crossref_primary_10_1049_stg2_12161
crossref_primary_10_1007_s43621_024_00483_0
crossref_primary_10_1109_ACCESS_2024_3372379
crossref_primary_10_3390_su132313322
crossref_primary_10_1680_jensu_22_00013
crossref_primary_10_3390_electronics11233960
crossref_primary_10_1109_TII_2021_3130052
crossref_primary_10_3390_electronics11233962
crossref_primary_10_3390_buildings15111811
crossref_primary_10_3390_en14134038
crossref_primary_10_1016_j_enbuild_2022_111836
crossref_primary_10_3390_su16041365
crossref_primary_10_1080_23789689_2025_2526227
crossref_primary_10_3390_su17010111
crossref_primary_10_1007_s11356_021_12739_7
crossref_primary_10_1007_s12351_022_00727_9
crossref_primary_10_1063_5_0256238
crossref_primary_10_3390_app10103505
crossref_primary_10_3390_mining5020034
crossref_primary_10_3390_en14123654
crossref_primary_10_3390_buildings14061726
crossref_primary_10_1016_j_enbuild_2021_111073
crossref_primary_10_1109_ACCESS_2021_3057543
crossref_primary_10_1016_j_rineng_2023_101645
crossref_primary_10_3390_en15062066
crossref_primary_10_3390_buildings15030338
crossref_primary_10_1016_j_enbuild_2024_113903
crossref_primary_10_3390_en15041500
crossref_primary_10_3390_en16196893
crossref_primary_10_1109_TEM_2023_3348991
crossref_primary_10_3390_eng6030047
crossref_primary_10_3390_su122410575
crossref_primary_10_1186_s42162_025_00524_6
crossref_primary_10_3390_app12157882
crossref_primary_10_1007_s12652_020_02317_z
crossref_primary_10_3390_buildings15152631
crossref_primary_10_3390_app15148103
crossref_primary_10_1016_j_energy_2022_124839
crossref_primary_10_1155_2021_1110503
crossref_primary_10_3390_a18030173
Cites_doi 10.1016/j.enbuild.2019.04.029
10.1016/j.ejor.2019.01.017
10.1109/SP.2017.41
10.1016/j.scs.2015.12.001
10.1016/j.energy.2018.05.169
10.1088/1748-9326/8/2/024009
10.1016/j.renene.2018.12.014
10.1016/j.rser.2015.11.050
10.1109/FOCS.2014.56
10.1080/15567249.2018.1494763
10.1016/j.rser.2012.01.018
10.1109/ICE.2017.8280006
10.3390/en13030571
10.1016/j.buildenv.2006.10.024
10.1016/j.ijforecast.2018.12.007
10.1049/iet-stg.2018.0261
10.1016/j.rser.2017.05.124
10.1016/j.rser.2019.109244
10.1016/j.proeng.2015.08.462
10.1016/j.rser.2017.09.108
10.1016/j.ejor.2020.01.007
10.1109/TSG.2016.2548565
10.1016/j.autcon.2013.10.020
10.1016/j.apenergy.2014.04.016
10.1016/j.enbuild.2017.10.085
10.1016/j.enbuild.2015.12.050
10.1016/j.rser.2017.04.095
10.1016/j.enbuild.2004.09.009
10.1016/j.apenergy.2017.03.070
10.3390/en11061473
10.1016/j.apenergy.2019.114339
10.1016/j.renene.2015.11.073
10.3390/s17051034
10.1016/j.enbuild.2017.11.008
10.1016/j.enbuild.2016.01.030
10.1109/JSYST.2015.2419273
10.1016/j.omega.2016.07.005
10.1016/j.apenergy.2018.07.074
10.1016/j.procs.2013.06.067
10.1016/j.enbuild.2018.05.057
10.1109/TSG.2016.2562123
10.1016/j.enpol.2008.12.011
10.1016/j.rser.2018.03.088
10.3390/en12060970
10.1007/978-3-319-89845-2_51
10.1145/2638728.2638809
10.3390/s18020610
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en13071555
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_003ac0c6e3764a0fa8f913bee56c02e2
10_3390_en13071555
GroupedDBID 29G
2WC
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-ffae1bc3a1fcca843455e6ea7ec2bb8e0dfd512d2c6715f99e3f11681f5aae973
IEDL.DBID PIMPY
ISICitedReferencesCount 81
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537688400024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Tue Oct 14 19:04:41 EDT 2025
Mon Oct 20 02:53:52 EDT 2025
Sat Nov 29 07:18:41 EST 2025
Tue Nov 18 22:12:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-ffae1bc3a1fcca843455e6ea7ec2bb8e0dfd512d2c6715f99e3f11681f5aae973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5488-4006
OpenAccessLink https://www.proquest.com/publiccontent/docview/2384658626?pq-origsite=%requestingapplication%
PQID 2384658626
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_003ac0c6e3764a0fa8f913bee56c02e2
proquest_journals_2384658626
crossref_citationtrail_10_3390_en13071555
crossref_primary_10_3390_en13071555
PublicationCentury 2000
PublicationDate 2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Behera (ref_64) 2018; 21
Zeng (ref_31) 2019; 194
ref_58
ref_13
Chen (ref_28) 2017; 204
ref_57
ref_12
ref_55
ref_10
ref_54
Fan (ref_29) 2014; 127
ref_18
Zhou (ref_32) 2016; 56
ref_17
Petidis (ref_4) 2018; 174
ref_15
Wei (ref_21) 2018; 82
ref_59
Ahmad (ref_24) 2018; 158
Lapalu (ref_38) 2013; 19
Wang (ref_30) 2018; 159
ref_61
ref_60
Deb (ref_25) 2016; 121
cr-split#-ref_11.2
ref_69
Wen (ref_16) 2018; 91
Doukas (ref_73) 2012; 16
cr-split#-ref_11.1
Spiliotis (ref_66) 2020; 36
Lee (ref_56) 2014; 41
ref_63
ref_62
ref_26
Doukas (ref_78) 2018; 13
Mocanu (ref_52) 2016; 116
ref_71
Naganathan (ref_40) 2015; 118
ref_70
Wang (ref_19) 2016; 7
ref_79
ref_33
Spiliotis (ref_51) 2020; 284
ref_75
Doukas (ref_47) 2007; 42
Bracco (ref_68) 2017; 11
Dong (ref_27) 2005; 37
Li (ref_76) 2019; 113
ref_39
(ref_77) 2019; 24
Miller (ref_36) 2018; 81
Batlles (ref_65) 2019; 135
Bracco (ref_67) 2018; 228
Andrew (ref_34) 2013; 8
Marinakis (ref_74) 2017; 69
cr-split#-ref_9.2
cr-split#-ref_9.1
ref_82
Spiliotis (ref_53) 2020; 261
Tsoutsos (ref_72) 2009; 37
ref_81
ref_80
Yu (ref_23) 2016; 25
Fan (ref_37) 2018; 159
ref_46
Heinermann (ref_35) 2016; 89
ref_45
Sheng (ref_20) 2018; 9
ref_44
Amasyali (ref_22) 2018; 81
ref_43
ref_42
ref_41
ref_1
Doukas (ref_3) 2020; 280
ref_2
ref_49
Bhattarai (ref_14) 2019; 2
ref_48
ref_8
ref_5
ref_7
ref_6
References_xml – volume: 194
  start-page: 289
  year: 2019
  ident: ref_31
  article-title: Comparative study of data driven methods in building electricity use prediction
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.04.029
– ident: #cr-split#-ref_11.2
– volume: 280
  start-page: 1
  year: 2020
  ident: ref_3
  article-title: Decision support models in climate policy
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2019.01.017
– ident: ref_43
  doi: 10.1109/SP.2017.41
– ident: ref_49
– ident: ref_5
– ident: ref_55
– ident: ref_80
– volume: 25
  start-page: 33
  year: 2016
  ident: ref_23
  article-title: Advances and challenges in building engineering and data mining applications for energy-efficient communities
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2015.12.001
– volume: 158
  start-page: 17
  year: 2018
  ident: ref_24
  article-title: Supervised based machine learning models for short, medium and long-term energy prediction in distinct building environment
  publication-title: Energy
  doi: 10.1016/j.energy.2018.05.169
– volume: 8
  start-page: 024009
  year: 2013
  ident: ref_34
  article-title: Using machine learning to predict wind turbine power output
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/8/2/024009
– volume: 135
  start-page: 303
  year: 2019
  ident: ref_65
  article-title: Hourly PV production estimation by means of an exportable multiple linear regression model
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.12.014
– volume: 56
  start-page: 215
  year: 2016
  ident: ref_32
  article-title: Big data driven smart energy management: From big data to big insights
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.11.050
– ident: ref_44
  doi: 10.1109/FOCS.2014.56
– volume: 24
  start-page: 125
  year: 2019
  ident: ref_77
  article-title: Supporting tool for multi-scale energy planning through procedures of data enrichment
  publication-title: Int. J. Sustain. Energy Plan. Manag.
– volume: 13
  start-page: 320
  year: 2018
  ident: ref_78
  article-title: On the appraisal of “Triple-A” energy efficiency investments
  publication-title: Energy Sources Part B Econ. Plan. Policy
  doi: 10.1080/15567249.2018.1494763
– ident: ref_42
– ident: ref_61
– ident: ref_1
– volume: 16
  start-page: 1949
  year: 2012
  ident: ref_73
  article-title: Assessing energy sustainability of rural communities using Principal Component Analysis
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.01.018
– ident: ref_58
– ident: ref_18
  doi: 10.1109/ICE.2017.8280006
– ident: ref_26
  doi: 10.3390/en13030571
– volume: 42
  start-page: 3562
  year: 2007
  ident: ref_47
  article-title: Intelligent building energy management system using rule sets
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2006.10.024
– volume: 36
  start-page: 37
  year: 2020
  ident: ref_66
  article-title: Are forecasting competitions data representative of the reality?
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2018.12.007
– volume: 2
  start-page: 141
  year: 2019
  ident: ref_14
  article-title: Big data analytics in smart grids: State-of-the-art, challenges, opportunities, and future directions
  publication-title: IET Smart Grid
  doi: 10.1049/iet-stg.2018.0261
– volume: 81
  start-page: 1365
  year: 2018
  ident: ref_36
  article-title: A review of unsupervised statistical learning and visual analytics techniques applied to performance analysis of non-residential buildings
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.05.124
– ident: ref_8
– volume: 113
  start-page: 109244
  year: 2019
  ident: ref_76
  article-title: Review of building energy performance certification schemes towards future improvement
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.109244
– volume: 118
  start-page: 1189
  year: 2015
  ident: ref_40
  article-title: Semi-supervised Energy Modeling (SSEM) for building clusters using machine learning techniques
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2015.08.462
– volume: 82
  start-page: 1027
  year: 2018
  ident: ref_21
  article-title: A review of data-driven approaches for prediction and classification of building energy consumption
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.09.108
– ident: ref_48
– volume: 284
  start-page: 550
  year: 2020
  ident: ref_51
  article-title: Generalizing the Theta method for automatic forecasting
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2020.01.007
– ident: ref_69
– ident: ref_10
– volume: 7
  start-page: 2437
  year: 2016
  ident: ref_19
  article-title: Clustering of electricity consumption behavior dynamics toward big data applications
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2016.2548565
– volume: 41
  start-page: 96
  year: 2014
  ident: ref_56
  article-title: BIM and ontology-based approach for building cost estimation
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2013.10.020
– ident: ref_62
– volume: 127
  start-page: 1
  year: 2014
  ident: ref_29
  article-title: Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.04.016
– ident: ref_17
– ident: ref_45
– volume: 159
  start-page: 109
  year: 2018
  ident: ref_30
  article-title: A novel ensemble learning approach to support building energy use prediction
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.10.085
– ident: ref_59
– volume: 121
  start-page: 284
  year: 2016
  ident: ref_25
  article-title: Forecasting diurnal cooling energy load for institutional buildings using Artificial Neural Networks
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.12.050
– volume: 81
  start-page: 1192
  year: 2018
  ident: ref_22
  article-title: A review of data-driven building energy consumption prediction studies
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.04.095
– ident: ref_7
– volume: 37
  start-page: 545
  year: 2005
  ident: ref_27
  article-title: Applying support vector machines to predict building energy consumption in tropical region
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2004.09.009
– volume: 204
  start-page: 1363
  year: 2017
  ident: ref_28
  article-title: Short-term prediction of electric demand in building sector via hybrid support vector regression
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.03.070
– ident: ref_79
  doi: 10.3390/en11061473
– ident: #cr-split#-ref_9.2
– volume: 261
  start-page: 114339
  year: 2020
  ident: ref_53
  article-title: Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114339
– ident: ref_82
– volume: 89
  start-page: 671
  year: 2016
  ident: ref_35
  article-title: Machine learning ensembles for wind power prediction
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.11.073
– ident: ref_39
  doi: 10.3390/s17051034
– ident: ref_63
– volume: 159
  start-page: 296
  year: 2018
  ident: ref_37
  article-title: Unsupervised data analytics in mining big building operational data for energy efficiency enhancement: A review
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.11.008
– volume: 116
  start-page: 646
  year: 2016
  ident: ref_52
  article-title: Unsupervised energy prediction in a Smart Grid context using reinforcement cross-building transfer learning
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.01.030
– volume: 11
  start-page: 1799
  year: 2017
  ident: ref_68
  article-title: An Energy Management System for the Savona Campus Smart Polygeneration Microgrid
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2015.2419273
– volume: 69
  start-page: 1
  year: 2017
  ident: ref_74
  article-title: Multicriteria decision support in local energy planning: An evaluation of alternative scenarios for the Sustainable Energy Action Plan
  publication-title: Omega
  doi: 10.1016/j.omega.2016.07.005
– volume: 228
  start-page: 2288
  year: 2018
  ident: ref_67
  article-title: Energy planning of sustainable districts: Towards the exploitation of small size intermittent renewables in urban areas
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.07.074
– ident: #cr-split#-ref_11.1
– ident: ref_6
– ident: ref_75
– ident: ref_50
– ident: #cr-split#-ref_9.1
– ident: ref_81
– ident: ref_33
– ident: ref_54
– ident: ref_2
– volume: 19
  start-page: 503
  year: 2013
  ident: ref_38
  article-title: Unsupervised mining of activities for smart home prediction
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2013.06.067
– ident: ref_46
– volume: 174
  start-page: 347
  year: 2018
  ident: ref_4
  article-title: Energy saving and thermal comfort interventions based on occupants’ needs: A students’ residence building case
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.05.057
– ident: ref_12
– volume: 9
  start-page: 695
  year: 2018
  ident: ref_20
  article-title: A novel association rule mining method of big data for power transformers state parameters based on probabilistic graph model
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2016.2562123
– ident: ref_15
– volume: 37
  start-page: 1587
  year: 2009
  ident: ref_72
  article-title: Sustainable energy planning by using multi-criteria analysis application in the island of Crete
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2008.12.011
– volume: 91
  start-page: 59
  year: 2018
  ident: ref_16
  article-title: Compression of smart meter big data: A survey
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.03.088
– ident: ref_60
– volume: 21
  start-page: 428
  year: 2018
  ident: ref_64
  article-title: Solar photovoltaic power forecasting using optimized modified extreme learning machine technique
  publication-title: Eng. Sci. Technol. Int. J.
– ident: ref_70
  doi: 10.3390/en12060970
– ident: ref_71
  doi: 10.1007/978-3-319-89845-2_51
– ident: ref_41
  doi: 10.1145/2638728.2638809
– ident: ref_57
– ident: ref_13
  doi: 10.3390/s18020610
SSID ssj0000331333
Score 2.5608008
Snippet European buildings are producing a massive amount of data from a wide spectrum of energy-related sources, such as smart meters’ data, sensors and other...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1555
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Big Data
Building management systems
Data analysis
Data exchange
data-driven architecture
Decision making
decision support
Deep learning
Energy consumption
Energy efficiency
Energy management
energy services
energy-efficient buildings
Environmental policy
Green buildings
Hypothesis testing
Internet of Things
Neural networks
Privacy
Stakeholders
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5k8aAH8YmrqxT04qGYNH0kR1d38bR4UNhbSZMJCFJlt-7vd5J2H6LgRehpSGn7TTMzX0i-AbhWyrlEZSy2VjIiKEbFEq2OnfP5UPPUaRaaTRSTiZxO1dNGqy-_J6yVB26B883GtGEmR5oJqWZOS6e4qBCz3LAEQ_RlhdogUyEGC0HkS7R6pIJ4_S3WFK0Lyp7ZtwwUhPp_xOGQXMb7sNdVhdFd-zYHsIX1IexuaAUegV_Gjh50oyMqM6NROLIXrTevRLq2nTUeBVkIbxx2Ta_nx_AyHj3fP8Zd74PYiJw3hJVGXhmhuSOMZSrSLMMcdYEmqSqJzDpLudomJqePckqhcJznkrtMa1SFOIFe_V7jKURpxYwX0vLH3lPPcJKCbs2krYyhK-_DzRKP0nTC4L4_xVtJBMFjV66x68PVauxHK4fx66ihh3U1wktYBwM5tuwcW_7l2D4Mlk4pu3k1L6nASKlmIhZ29h_POIedxPPnsKQygF4z-8QL2DaL5nU-uwy_1BfKKNBA
  priority: 102
  providerName: Directory of Open Access Journals
Title Big Data for Energy Management and Energy-Efficient Buildings
URI https://www.proquest.com/docview/2384658626
https://doaj.org/article/003ac0c6e3764a0fa8f913bee56c02e2
Volume 13
WOSCitedRecordID wos000537688400024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB6VhAMcaHmpARpZggsHK2uvX3tCpHXUHhJFVZHgZK33gZCQkyahx_52ZjabhArEqZLlw3otWfvtzsw33v0G4EIIa2ORslDrgiFBUSIsjJahteQPZZRYyVyxiXw0Km5vxdgfj577bZUrm-gM9VLtmfZtoxHu6YmijHkPHU2CvhOj8avp75BqSNG_Vl9QYwvaJLzFWtAe_xiO79Y5F8Y5UjK-VCnlyPZ7pkEbnqNPTf_xS06-_5V1di5n8PH_fuwn2POhZ3C9nCv78ME0B7D7QpDwEChXHnyTCxlgLBuU7lxgsNkhE8hG-9awdNoT1Nj3lbXnR3AzKH99_R76Aguh4lm0QECkiWrFZWQRyCLhSZqazMjcqLiuC8O01RgQ6FhlOEZWCMNtFGVFZFMpjcj5MbSaSWM-Q5DUTJFaF52tT4hGxTm-mha6VgqvrAOXq-GtlFcfpyIYjxWyEIKi2kDRgfN13-lSc-PNXn1Cad2DdLJdw2R2X_llR8qnUjGVGbSjiWRWFlZEvDYmzRSLTdyBsxWAlV-882qD18n7j09hJyb67TIyZ9BazJ7MF9hWfxYP81kX2v1yNP7ZdTQf78O_ZdfPyGcGpO7C
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61W6TSA6-CWCgQCThwiOpHXj4gROlWXbVd7aFI5ZQ69hghoWzZ3bbiT_Ebmckmu5VA3HpAyslxLCvzaT7P2P4G4I0xISiTitj7QlCA4kxcoLdxCMyHVibBiqbYRD4aFWdnZrwGv7q7MHyssvOJjaP2E8c58l2iloTYktbfHy5-xFw1indXuxIaC1gc4c9rCtlm74f7ZN-3Sh0MTj8dxm1VgdjpTM5pFhZl5bSVgWZfJDpJU8zQ5uhUVRUofPDEgl65LJdpMAZ1kDIrZEitRZNrGncdNhICu-jBxnh4Mv6yzOoIrSno0wsdVK2N2MWaWIIG4ruEN5ivKRDwh_9vSO3g_v_2Ox7AvXb5HH1c4P0hrGH9CLZuiCpuA-f7o307txGtx6NBc7cxWp3yiWzt29Z40OhncONeWx189hg-38r8n0CvntT4FKKkEo4Vx1gfIOFQUOX0aVr4yjl6sj686wxYulZBnQt5fC8pkmJjlytj9-H1su_FQjfkr732GAfLHqz13TRMpl_L1nWweqt1wmVIXJBYEWwRjNQVYpo5oVD1YaeDSNk6oFm5wsezf79-BZuHpyfH5fFwdPQc7ipOJzQZph3ozaeX-ALuuKv5t9n0ZYv1CM5vG0-_AdakQCY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFCF6oDyKmtLCSsCBwyp-7MsHhEiTiKooihBIvS1ee1xVQpuSpK361_rrGG-8SSVQbz0g7ck7a3l3ZufzjO1vAN4p5ZxQKYutLRgFKEbFBVodO-fxUPPEadYUm8jH4-LkRE024KY9C-O3VbY-sXHUdmp8jrxH0JIQWtL8u-fCtojJYPTp_HfsK0j5lda2nMbSRI7x-orCt_nHowHp-r0Qo-H3wy9xqDAQG5nxBY1II6-M1NzRmxSJTNIUM9Q5GlFVBTLrLCGiFSbLeeqUQuk4zwruUq1R5ZL6fQCbuaSgpwOb_eF48m2V4WFSUgAol5yoUirWw5oQgzry5wpvoWBTLOAvLGgAbrT9P3-ap_AkTKujz8v_4BlsYP0ctm6RLb4Avw4QDfRCRzRPj4bNmcdovfsn0rUNrfGw4dXwjf1QNXy-Az_uZfwvoVNPa9yFKKmY8Uxknjcg8SGiyOnRtLCVMXRlXfjQKrM0gVndF_j4VVKE5RVfrhXfhbcr2fMln8g_pfreJlYSngO8aZjOTsvgUjyrqzbMZEgYkWjmdOEUlxVimhkmUHRhvzWXMjimebm2lb27b7-BR2RE5dej8fEreCx8lqFJPO1DZzG7wAN4aC4XZ_PZ62D2Efy8b3P6A3kPSMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Big+Data+for+Energy+Management+and+Energy-Efficient+Buildings&rft.jtitle=Energies+%28Basel%29&rft.au=Marinakis%2C+Vangelis&rft.date=2020&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=13&rft.issue=7&rft.spage=1555&rft_id=info:doi/10.3390%2Fen13071555&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon