Fractional Tikhonov regularization for linear discrete ill-posed problems

Tikhonov regularization is one of the most popular methods for solving linear systems of equations or linear least-squares problems with a severely ill-conditioned matrix A . This method replaces the given problem by a penalized least-squares problem. The present paper discusses measuring the residu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BIT (Nordisk Tidskrift for Informationsbehandling) Ročník 51; číslo 1; s. 197 - 215
Hlavní autoři: Hochstenbach, Michiel E., Reichel, Lothar
Médium: Journal Article Konferenční příspěvek
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.03.2011
Springer
Témata:
ISSN:0006-3835, 1572-9125
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Tikhonov regularization is one of the most popular methods for solving linear systems of equations or linear least-squares problems with a severely ill-conditioned matrix A . This method replaces the given problem by a penalized least-squares problem. The present paper discusses measuring the residual error (discrepancy) in Tikhonov regularization with a seminorm that uses a fractional power of the Moore-Penrose pseudoinverse of AA T as weighting matrix. Properties of this regularization method are discussed. Numerical examples illustrate that the proposed scheme for a suitable fractional power may give approximate solutions of higher quality than standard Tikhonov regularization.
ISSN:0006-3835
1572-9125
DOI:10.1007/s10543-011-0313-9