Energy-Efficient Edge Caching and Task Deployment Algorithm Enabled by Deep Q-Learning for MEC

Container technology enables rapid deployment of computing services, while edge computing reduces the latency of task computing and improves performance. However, there are limits to the types, number and performance of containers that can be supported by different edge servers, and a sensible task...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Electronics (Basel) Ročník 11; číslo 24; s. 4121
Hlavní autori: Ma, Li, Wang, Peng, Du, Chunlai, Li, Yang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.12.2022
Predmet:
ISSN:2079-9292, 2079-9292
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Container technology enables rapid deployment of computing services, while edge computing reduces the latency of task computing and improves performance. However, there are limits to the types, number and performance of containers that can be supported by different edge servers, and a sensible task deployment strategy and rapid response to the policy is a must. Therefore, by jointly optimizing the strategies of task deployment, offloading decisions, edge cache and resource allocation, this paper aims to minimize the overall energy consumption of a mobile edge computing (MEC) system composed of multiple mobile devices (MD) and multiple edge servers integrated with different containers. The problem is formalized as a combinatorial optimization problem containing multiple discrete variables when constraints of container type, transmission power, latency, task offloading and deployment strategies are satisfied. To solve the NP-hard problem and achieve fast response for sub-optimal policy, this paper proposes an energy-efficient edge caching and task deployment policy based on Deep Q-Learning (DQCD). Firstly, the pruning and optimization of the exponential action space consisting of offloading decisions, task deployment and caching policy is completed to accelerate the training of the model. Then, the iterative optimization of the training model is completed using a deep neural network. Finally, the sub-optimal task deployment, offloading and caching policies are obtained based on the training model. Simulation results demonstrate that the proposed algorithm is able to converge the model in very few iterations and results in a great improvement in terms of reducing system energy consumption and policy response delay compared to other algorithms.
AbstractList Container technology enables rapid deployment of computing services, while edge computing reduces the latency of task computing and improves performance. However, there are limits to the types, number and performance of containers that can be supported by different edge servers, and a sensible task deployment strategy and rapid response to the policy is a must. Therefore, by jointly optimizing the strategies of task deployment, offloading decisions, edge cache and resource allocation, this paper aims to minimize the overall energy consumption of a mobile edge computing (MEC) system composed of multiple mobile devices (MD) and multiple edge servers integrated with different containers. The problem is formalized as a combinatorial optimization problem containing multiple discrete variables when constraints of container type, transmission power, latency, task offloading and deployment strategies are satisfied. To solve the NP-hard problem and achieve fast response for sub-optimal policy, this paper proposes an energy-efficient edge caching and task deployment policy based on Deep Q-Learning (DQCD). Firstly, the pruning and optimization of the exponential action space consisting of offloading decisions, task deployment and caching policy is completed to accelerate the training of the model. Then, the iterative optimization of the training model is completed using a deep neural network. Finally, the sub-optimal task deployment, offloading and caching policies are obtained based on the training model. Simulation results demonstrate that the proposed algorithm is able to converge the model in very few iterations and results in a great improvement in terms of reducing system energy consumption and policy response delay compared to other algorithms.
Audience Academic
Author Wang, Peng
Li, Yang
Ma, Li
Du, Chunlai
Author_xml – sequence: 1
  givenname: Li
  surname: Ma
  fullname: Ma, Li
– sequence: 2
  givenname: Peng
  orcidid: 0000-0002-2150-1969
  surname: Wang
  fullname: Wang, Peng
– sequence: 3
  givenname: Chunlai
  surname: Du
  fullname: Du, Chunlai
– sequence: 4
  givenname: Yang
  orcidid: 0000-0003-0350-3183
  surname: Li
  fullname: Li, Yang
BookMark eNp9kc1LwzAUwINMcM79BV4CnjuTpl85jlo_YCLCvFrS9KXLbJOadof-92bMg4iYd0h4-f3yeHmXaGasAYSuKVkxxskttCBHZ42WA6VhFNGQnqF5SFIe8JCHsx_nC7Qchj3xi1OWMTJH74UB10xBoZSWGsyIi7oBnAu506bBwtR4K4YPfAd9a6fuCKzbxjo97jpcGFG1UONq8vfQ49dgA8KZo6isw89FfoXOlWgHWH7vC_R2X2zzx2Dz8vCUrzeBZAkdA1XVhFYiYoQzooiqWRVXaSpCSuLMN0VYUpMIgHOliFAig8iLifSYVHHE2QLdnN7tnf08wDCWe3twxpcswzROkpRnUeyp1YlqRAulNsqOTkgfNXRa-l9V2ufXaRTHPEsT6gV-EqSzw-BAlVKPYtTWeFG3JSXlcQTlHyPwLvvl9k53wk3_Wl8Tt46u
CitedBy_id crossref_primary_10_3390_drones7040226
crossref_primary_10_3390_electronics14153090
Cites_doi 10.1109/JIOT.2018.2863688
10.1109/ACCESS.2020.2991734
10.1109/JIOT.2019.2900550
10.1109/CyberC.2017.78
10.1109/INFCOMW.2016.7562228
10.1109/JIOT.2018.2876279
10.1109/WCNC.2019.8885747
10.1016/j.comcom.2016.08.011
10.1109/TWC.2018.2821664
10.1016/j.future.2019.08.001
10.1109/ICC.2017.7997102
10.1007/s11276-016-1309-9
10.1109/ICC.2017.7997454
10.1109/INFOCOM.2016.7524497
10.1145/2493432.2493470
10.1109/INFOCOM.2018.8485977
10.1109/TVT.2018.2890685
10.1109/VTCFall.2018.8690980
10.1007/978-3-030-73216-5_26
10.1016/j.aeue.2021.153888
10.1109/ICC45855.2022.9838489
10.1109/MC.2017.3641638
10.1007/s42979-020-0106-9
10.1109/IWQoS.2016.7590439
10.1038/nature14236
10.1109/LWC.2021.3057114
10.1109/TVT.2018.2881191
10.1038/nature14539
10.1109/COMST.2017.2682318
10.1109/MCOM.2017.1700246
10.1109/TSMCC.2011.2169403
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.3390/electronics11244121
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID A745598761
10_3390_electronics11244121
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c361t-fbd01ba430930f0fd3b5b77a21058112036d04ee99ff0afa8e4c366c3b5cf5493
IEDL.DBID P5Z
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000900997200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Sun Nov 09 06:26:49 EST 2025
Tue Nov 04 18:44:09 EST 2025
Sat Nov 29 07:09:21 EST 2025
Tue Nov 18 19:47:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-fbd01ba430930f0fd3b5b77a21058112036d04ee99ff0afa8e4c366c3b5cf5493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2150-1969
0000-0003-0350-3183
OpenAccessLink https://www.proquest.com/docview/2756679845?pq-origsite=%requestingapplication%
PQID 2756679845
PQPubID 2032404
ParticipantIDs proquest_journals_2756679845
gale_infotracacademiconefile_A745598761
crossref_citationtrail_10_3390_electronics11244121
crossref_primary_10_3390_electronics11244121
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_13
Cao (ref_16) 2020; 8
ref_12
ref_33
ref_10
ref_32
Hesham (ref_17) 2021; 138
Mnih (ref_25) 2015; 518
ref_15
Jeong (ref_11) 2018; 24
LeCun (ref_30) 2015; 521
Aruna (ref_4) 2020; 1
Ananthanarayanan (ref_2) 2017; 50
Li (ref_18) 2017; 105
Bi (ref_21) 2018; 17
Seo (ref_5) 2021; 10
Peng (ref_28) 2018; 5
Chen (ref_8) 2018; 6
Min (ref_31) 2019; 68
Mach (ref_14) 2017; 19
ref_23
Shin (ref_29) 2011; 42
ref_1
Tran (ref_22) 2018; 68
ref_3
He (ref_19) 2017; 55
ref_27
ref_26
ref_9
Wang (ref_20) 2020; 102
Lei (ref_7) 2019; 6
ref_6
Dinh (ref_24) 2017; 65
References_xml – volume: 5
  start-page: 4351
  year: 2018
  ident: ref_28
  article-title: Indoor floor plan construction through sensing data collected from smartphones
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2863688
– volume: 8
  start-page: 85714
  year: 2020
  ident: ref_16
  article-title: An overview on edge computing research
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2991734
– volume: 6
  start-page: 5345
  year: 2019
  ident: ref_7
  article-title: Joint computation offloading and multiuser scheduling using approximate dynamic pro-gramming in nb-iot edge computing system
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2900550
– ident: ref_13
  doi: 10.1109/CyberC.2017.78
– ident: ref_12
  doi: 10.1109/INFCOMW.2016.7562228
– volume: 6
  start-page: 4005
  year: 2018
  ident: ref_8
  article-title: Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2876279
– ident: ref_3
  doi: 10.1109/WCNC.2019.8885747
– volume: 105
  start-page: 33
  year: 2017
  ident: ref_18
  article-title: Smartphone-assisted energy efficient data communication for wearable devices
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2016.08.011
– volume: 17
  start-page: 4177
  year: 2018
  ident: ref_21
  article-title: Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2018.2821664
– volume: 102
  start-page: 66
  year: 2020
  ident: ref_20
  article-title: Cognitive multi-agent empowering mobile edge computing for resource caching and collaboration
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.08.001
– ident: ref_10
  doi: 10.1109/ICC.2017.7997102
– volume: 24
  start-page: 27
  year: 2018
  ident: ref_11
  article-title: Sala: Smartphone-assisted localization algorithm for positioning indoor iot devices
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-016-1309-9
– ident: ref_26
  doi: 10.1109/ICC.2017.7997454
– ident: ref_23
  doi: 10.1109/INFOCOM.2016.7524497
– ident: ref_27
  doi: 10.1145/2493432.2493470
– ident: ref_1
  doi: 10.1109/INFOCOM.2018.8485977
– volume: 68
  start-page: 1930
  year: 2019
  ident: ref_31
  article-title: Learning-based computation offloading for iot devices with energy harvesting
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2018.2890685
– ident: ref_33
– ident: ref_32
  doi: 10.1109/VTCFall.2018.8690980
– ident: ref_9
  doi: 10.1007/978-3-030-73216-5_26
– volume: 138
  start-page: 153888
  year: 2021
  ident: ref_17
  article-title: Energy harvesting schemes for wearable devices
  publication-title: AEU-Int. J. Electron. Commun.
  doi: 10.1016/j.aeue.2021.153888
– ident: ref_6
  doi: 10.1109/ICC45855.2022.9838489
– volume: 50
  start-page: 58
  year: 2017
  ident: ref_2
  article-title: Real-time video analytics: The killer app for edge computing
  publication-title: Computer
  doi: 10.1109/MC.2017.3641638
– volume: 1
  start-page: 91
  year: 2020
  ident: ref_4
  article-title: Performance and scalability improvement using iot-based edge computing container technologies
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-020-0106-9
– ident: ref_15
  doi: 10.1109/IWQoS.2016.7590439
– volume: 518
  start-page: 529
  year: 2015
  ident: ref_25
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 10
  start-page: 1061
  year: 2021
  ident: ref_5
  article-title: A novel joint mobile cache and power management scheme for energy-efficient mobile augmented reality service in mobile edge computing
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2021.3057114
– volume: 68
  start-page: 856
  year: 2018
  ident: ref_22
  article-title: Joint task offloading and resource allocation for multi-server mobile-edge computing networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2018.2881191
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_30
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 65
  start-page: 3571
  year: 2017
  ident: ref_24
  article-title: Offloading in mobile edge computing: Task allocation and computational frequency scaling
  publication-title: IEEE Trans. Commun.
– volume: 19
  start-page: 1628
  year: 2017
  ident: ref_14
  article-title: Mobile edge computing: A survey on architecture and computation offloading
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2017.2682318
– volume: 55
  start-page: 31
  year: 2017
  ident: ref_19
  article-title: Software-defined networks with mobile edge computing and caching for smart cities: A big data deep reinforcement learning approach
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2017.1700246
– volume: 42
  start-page: 889
  year: 2011
  ident: ref_29
  article-title: Unsupervised construction of an indoor floor plan using a smartphone
  publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.)
  doi: 10.1109/TSMCC.2011.2169403
SSID ssj0000913830
Score 2.2457516
Snippet Container technology enables rapid deployment of computing services, while edge computing reduces the latency of task computing and improves performance....
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 4121
SubjectTerms Algorithms
Analysis
Artificial neural networks
Augmented reality
Cache memory
Caching
Cellular telephones
Combinatorial analysis
Communication
Computation offloading
Containers
Decisions
Disk caching
Edge computing
Electronic devices
Energy consumption
Energy efficiency
Iterative methods
Machine learning
Mobile computing
Neural networks
Optimization
Performance enhancement
Resource allocation
Servers
Training
User needs
Wearable computers
Title Energy-Efficient Edge Caching and Task Deployment Algorithm Enabled by Deep Q-Learning for MEC
URI https://www.proquest.com/docview/2756679845
Volume 11
WOSCitedRecordID wos000900997200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7x6KEcCn0goDTyoVIvWNld7_NUhXQjeki0rYIUOHTl9SOtgBDYtBIXfntnNg4PKcqF69reXXlsj7-x5_sAPiPo0UlkJE-NDnho0phnCH64L5RC9yesH8pGbCIZDNLRKCtcwK121yoXa2KzUOtrRTHyNtGU04lBGH2d3nBSjaLTVSehsQ6bxJJA0g1FdP4QYyHOy1R4c7Ihgei-_agtU_vk2fzAf-aQli_Lja_pbb_0L3fgjdtlss58WLyFNTN5B1tPuAffw6-8yfrjecMhga6H5XpsWHd-uZLJiWZDWV-wb4YkgSmGyDqXY_zW7PcVy5uMK82qOyw3U_aDO57WMcNNMOvn3Q9w2suH3RPuxBa4ErE_47bSnl_JkE5GPetZLaqoShKJkDBKsa_Q02kvNCbLrPWklakJsWGssJqyCDLFLmxMridmD5hGyG2Nxb2KFiGOhQxhcGWSuJK4lxGZ2Idg0eOlckzkJIhxWSIiITOVS8y0D0cPjaZzIo7V1b-QKUuapvhuJV22Af4hEV6VnSQkavokxpqHC1OWbv7W5aMdD1YXf4TXASVENBdcDmFjdvvXfIJX6t_sT33bgs3jfFD8bMF6_z5vNYMTnxXf-8XZfy3-7rc
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BRQIObaFF0ELxoYhLLZLYeR0qtFqCQMAKpEVCPTR1_FgQsGzJthV_qr-xM3kAlRA3Dpz9UBx_nofH8w3AZ3R6TBxaxRNrAi5tEvEUnR_uC61R_QnnS1UVm4h7veT0ND2agL9tLgw9q2xlYiWozbWmO_JNoimniIEMt0Y_OVWNouhqW0KjhsW-vf2DLlv5dW8b93c9CHayfneXN1UFuBaRP-auMJ5fKEkhQM95zogiLOJYoe8TJmh9oEg3nrQ2TZ3zlFOJlTgw0thNO_SmBM47Ca-kRHzh-TkKv93d6RDHZiK8mtxIiNTbvK9lU_qkSf3A_08BPq4GKt228-al_ZW38Lqxolmnhv08TNjhAsw94FZ8B9-zKquRZxVHBqpWlpmBZd368ShTQ8P6qrxg25ZKHtMdKetcDnBt47MrllUZZYYVt9huR-yYNzy0A4ZGPjvMuu_h5FkWuAhTw-uhXQJmZJQ669AWM0Ii1lN08wsbR4VCW02kYhmCdodz3TCtU8GPyxw9LoJF_ggsluHL3aBRTTTydPcNgk5OYgjn1qrJpsAvJEKvvBNLot6PI-y50kInb-RTmd_j5sPTzWsws9s_PMgP9nr7H2E2oOSP6jHPCkyNb37ZVZjWv8fn5c2n6igw-PHcKPsHe4VHKA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK7gaowefIBGFKUPGC50dma653UwZrM7GwmyWRJMCAeGnn6sBNxdmVXDX_PXWTUPwIRw48C5H5me_roe3VVfAWyg02Pi0CqeWBNwaZOIp-j8cF9ojepPOF-qqthEPBolBwfpeAn-trkwFFbZysRKUJuZpjvyLtGU04uBDLuuCYsYD4af5z85VZCil9a2nEYNkR178Qfdt_LT9gD3-mMQDLP9_hfeVBjgWkT-grvCeH6hJD0Hes5zRhRhEccK_aAwQUsExbvxpLVp6pynnEqsxIGRxm7aoWclcN4H8DCWUUKnaxweXt7vEN9mIrya6EiI1Ote1bUpfdKqfuD_pwxvVgmVnhs-v89_6AU8a6xr1quPw0tYstNleHqNc3EFjrIq25FnFXcGqlyWmYll_TqolKmpYfuqPGUDS6WQ6e6U9c4muLbF9x8sqzLNDCsusN3O2R5v-GknDI1_tpv1X8G3O1nga-hMZ1P7BpiRUeqsQxvNCIlnIEX3v7BxVCi04UQqViFodzvXDQM7FQI5y9ETI4jkN0BkFbYuB81rApLbu28SjHISTzi3Vk2WBX4hEX3lvVgSJX8cYc-1FkZ5I7fK_ApDb29vXofHCK786_Zo5x08CSgnpIrxWYPO4vyXfQ-P9O_FSXn-oToVDI7vGmT_AIO4T_s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-Efficient+Edge+Caching+and+Task+Deployment+Algorithm+Enabled+by+Deep+Q-Learning+for+MEC&rft.jtitle=Electronics+%28Basel%29&rft.au=Ma%2C+Li&rft.au=Wang%2C+Peng&rft.au=Du%2C+Chunlai&rft.au=Li%2C+Yang&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=11&rft.issue=24&rft_id=info:doi/10.3390%2Felectronics11244121&rft.externalDocID=A745598761
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon