Energy-Efficient Edge Caching and Task Deployment Algorithm Enabled by Deep Q-Learning for MEC
Container technology enables rapid deployment of computing services, while edge computing reduces the latency of task computing and improves performance. However, there are limits to the types, number and performance of containers that can be supported by different edge servers, and a sensible task...
Uložené v:
| Vydané v: | Electronics (Basel) Ročník 11; číslo 24; s. 4121 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.12.2022
|
| Predmet: | |
| ISSN: | 2079-9292, 2079-9292 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Container technology enables rapid deployment of computing services, while edge computing reduces the latency of task computing and improves performance. However, there are limits to the types, number and performance of containers that can be supported by different edge servers, and a sensible task deployment strategy and rapid response to the policy is a must. Therefore, by jointly optimizing the strategies of task deployment, offloading decisions, edge cache and resource allocation, this paper aims to minimize the overall energy consumption of a mobile edge computing (MEC) system composed of multiple mobile devices (MD) and multiple edge servers integrated with different containers. The problem is formalized as a combinatorial optimization problem containing multiple discrete variables when constraints of container type, transmission power, latency, task offloading and deployment strategies are satisfied. To solve the NP-hard problem and achieve fast response for sub-optimal policy, this paper proposes an energy-efficient edge caching and task deployment policy based on Deep Q-Learning (DQCD). Firstly, the pruning and optimization of the exponential action space consisting of offloading decisions, task deployment and caching policy is completed to accelerate the training of the model. Then, the iterative optimization of the training model is completed using a deep neural network. Finally, the sub-optimal task deployment, offloading and caching policies are obtained based on the training model. Simulation results demonstrate that the proposed algorithm is able to converge the model in very few iterations and results in a great improvement in terms of reducing system energy consumption and policy response delay compared to other algorithms. |
|---|---|
| AbstractList | Container technology enables rapid deployment of computing services, while edge computing reduces the latency of task computing and improves performance. However, there are limits to the types, number and performance of containers that can be supported by different edge servers, and a sensible task deployment strategy and rapid response to the policy is a must. Therefore, by jointly optimizing the strategies of task deployment, offloading decisions, edge cache and resource allocation, this paper aims to minimize the overall energy consumption of a mobile edge computing (MEC) system composed of multiple mobile devices (MD) and multiple edge servers integrated with different containers. The problem is formalized as a combinatorial optimization problem containing multiple discrete variables when constraints of container type, transmission power, latency, task offloading and deployment strategies are satisfied. To solve the NP-hard problem and achieve fast response for sub-optimal policy, this paper proposes an energy-efficient edge caching and task deployment policy based on Deep Q-Learning (DQCD). Firstly, the pruning and optimization of the exponential action space consisting of offloading decisions, task deployment and caching policy is completed to accelerate the training of the model. Then, the iterative optimization of the training model is completed using a deep neural network. Finally, the sub-optimal task deployment, offloading and caching policies are obtained based on the training model. Simulation results demonstrate that the proposed algorithm is able to converge the model in very few iterations and results in a great improvement in terms of reducing system energy consumption and policy response delay compared to other algorithms. |
| Audience | Academic |
| Author | Wang, Peng Li, Yang Ma, Li Du, Chunlai |
| Author_xml | – sequence: 1 givenname: Li surname: Ma fullname: Ma, Li – sequence: 2 givenname: Peng orcidid: 0000-0002-2150-1969 surname: Wang fullname: Wang, Peng – sequence: 3 givenname: Chunlai surname: Du fullname: Du, Chunlai – sequence: 4 givenname: Yang orcidid: 0000-0003-0350-3183 surname: Li fullname: Li, Yang |
| BookMark | eNp9kc1LwzAUwINMcM79BV4CnjuTpl85jlo_YCLCvFrS9KXLbJOadof-92bMg4iYd0h4-f3yeHmXaGasAYSuKVkxxskttCBHZ42WA6VhFNGQnqF5SFIe8JCHsx_nC7Qchj3xi1OWMTJH74UB10xBoZSWGsyIi7oBnAu506bBwtR4K4YPfAd9a6fuCKzbxjo97jpcGFG1UONq8vfQ49dgA8KZo6isw89FfoXOlWgHWH7vC_R2X2zzx2Dz8vCUrzeBZAkdA1XVhFYiYoQzooiqWRVXaSpCSuLMN0VYUpMIgHOliFAig8iLifSYVHHE2QLdnN7tnf08wDCWe3twxpcswzROkpRnUeyp1YlqRAulNsqOTkgfNXRa-l9V2ufXaRTHPEsT6gV-EqSzw-BAlVKPYtTWeFG3JSXlcQTlHyPwLvvl9k53wk3_Wl8Tt46u |
| CitedBy_id | crossref_primary_10_3390_drones7040226 crossref_primary_10_3390_electronics14153090 |
| Cites_doi | 10.1109/JIOT.2018.2863688 10.1109/ACCESS.2020.2991734 10.1109/JIOT.2019.2900550 10.1109/CyberC.2017.78 10.1109/INFCOMW.2016.7562228 10.1109/JIOT.2018.2876279 10.1109/WCNC.2019.8885747 10.1016/j.comcom.2016.08.011 10.1109/TWC.2018.2821664 10.1016/j.future.2019.08.001 10.1109/ICC.2017.7997102 10.1007/s11276-016-1309-9 10.1109/ICC.2017.7997454 10.1109/INFOCOM.2016.7524497 10.1145/2493432.2493470 10.1109/INFOCOM.2018.8485977 10.1109/TVT.2018.2890685 10.1109/VTCFall.2018.8690980 10.1007/978-3-030-73216-5_26 10.1016/j.aeue.2021.153888 10.1109/ICC45855.2022.9838489 10.1109/MC.2017.3641638 10.1007/s42979-020-0106-9 10.1109/IWQoS.2016.7590439 10.1038/nature14236 10.1109/LWC.2021.3057114 10.1109/TVT.2018.2881191 10.1038/nature14539 10.1109/COMST.2017.2682318 10.1109/MCOM.2017.1700246 10.1109/TSMCC.2011.2169403 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.3390/electronics11244121 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | A745598761 10_3390_electronics11244121 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c361t-fbd01ba430930f0fd3b5b77a21058112036d04ee99ff0afa8e4c366c3b5cf5493 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000900997200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2079-9292 |
| IngestDate | Sun Nov 09 06:26:49 EST 2025 Tue Nov 04 18:44:09 EST 2025 Sat Nov 29 07:09:21 EST 2025 Tue Nov 18 19:47:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-fbd01ba430930f0fd3b5b77a21058112036d04ee99ff0afa8e4c366c3b5cf5493 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2150-1969 0000-0003-0350-3183 |
| OpenAccessLink | https://www.proquest.com/docview/2756679845?pq-origsite=%requestingapplication% |
| PQID | 2756679845 |
| PQPubID | 2032404 |
| ParticipantIDs | proquest_journals_2756679845 gale_infotracacademiconefile_A745598761 crossref_citationtrail_10_3390_electronics11244121 crossref_primary_10_3390_electronics11244121 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_13 Cao (ref_16) 2020; 8 ref_12 ref_33 ref_10 ref_32 Hesham (ref_17) 2021; 138 Mnih (ref_25) 2015; 518 ref_15 Jeong (ref_11) 2018; 24 LeCun (ref_30) 2015; 521 Aruna (ref_4) 2020; 1 Ananthanarayanan (ref_2) 2017; 50 Li (ref_18) 2017; 105 Bi (ref_21) 2018; 17 Seo (ref_5) 2021; 10 Peng (ref_28) 2018; 5 Chen (ref_8) 2018; 6 Min (ref_31) 2019; 68 Mach (ref_14) 2017; 19 ref_23 Shin (ref_29) 2011; 42 ref_1 Tran (ref_22) 2018; 68 ref_3 He (ref_19) 2017; 55 ref_27 ref_26 ref_9 Wang (ref_20) 2020; 102 Lei (ref_7) 2019; 6 ref_6 Dinh (ref_24) 2017; 65 |
| References_xml | – volume: 5 start-page: 4351 year: 2018 ident: ref_28 article-title: Indoor floor plan construction through sensing data collected from smartphones publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2863688 – volume: 8 start-page: 85714 year: 2020 ident: ref_16 article-title: An overview on edge computing research publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2991734 – volume: 6 start-page: 5345 year: 2019 ident: ref_7 article-title: Joint computation offloading and multiuser scheduling using approximate dynamic pro-gramming in nb-iot edge computing system publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2900550 – ident: ref_13 doi: 10.1109/CyberC.2017.78 – ident: ref_12 doi: 10.1109/INFCOMW.2016.7562228 – volume: 6 start-page: 4005 year: 2018 ident: ref_8 article-title: Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2876279 – ident: ref_3 doi: 10.1109/WCNC.2019.8885747 – volume: 105 start-page: 33 year: 2017 ident: ref_18 article-title: Smartphone-assisted energy efficient data communication for wearable devices publication-title: Comput. Commun. doi: 10.1016/j.comcom.2016.08.011 – volume: 17 start-page: 4177 year: 2018 ident: ref_21 article-title: Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2018.2821664 – volume: 102 start-page: 66 year: 2020 ident: ref_20 article-title: Cognitive multi-agent empowering mobile edge computing for resource caching and collaboration publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.08.001 – ident: ref_10 doi: 10.1109/ICC.2017.7997102 – volume: 24 start-page: 27 year: 2018 ident: ref_11 article-title: Sala: Smartphone-assisted localization algorithm for positioning indoor iot devices publication-title: Wirel. Netw. doi: 10.1007/s11276-016-1309-9 – ident: ref_26 doi: 10.1109/ICC.2017.7997454 – ident: ref_23 doi: 10.1109/INFOCOM.2016.7524497 – ident: ref_27 doi: 10.1145/2493432.2493470 – ident: ref_1 doi: 10.1109/INFOCOM.2018.8485977 – volume: 68 start-page: 1930 year: 2019 ident: ref_31 article-title: Learning-based computation offloading for iot devices with energy harvesting publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2018.2890685 – ident: ref_33 – ident: ref_32 doi: 10.1109/VTCFall.2018.8690980 – ident: ref_9 doi: 10.1007/978-3-030-73216-5_26 – volume: 138 start-page: 153888 year: 2021 ident: ref_17 article-title: Energy harvesting schemes for wearable devices publication-title: AEU-Int. J. Electron. Commun. doi: 10.1016/j.aeue.2021.153888 – ident: ref_6 doi: 10.1109/ICC45855.2022.9838489 – volume: 50 start-page: 58 year: 2017 ident: ref_2 article-title: Real-time video analytics: The killer app for edge computing publication-title: Computer doi: 10.1109/MC.2017.3641638 – volume: 1 start-page: 91 year: 2020 ident: ref_4 article-title: Performance and scalability improvement using iot-based edge computing container technologies publication-title: SN Comput. Sci. doi: 10.1007/s42979-020-0106-9 – ident: ref_15 doi: 10.1109/IWQoS.2016.7590439 – volume: 518 start-page: 529 year: 2015 ident: ref_25 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: 10 start-page: 1061 year: 2021 ident: ref_5 article-title: A novel joint mobile cache and power management scheme for energy-efficient mobile augmented reality service in mobile edge computing publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2021.3057114 – volume: 68 start-page: 856 year: 2018 ident: ref_22 article-title: Joint task offloading and resource allocation for multi-server mobile-edge computing networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2018.2881191 – volume: 521 start-page: 436 year: 2015 ident: ref_30 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 65 start-page: 3571 year: 2017 ident: ref_24 article-title: Offloading in mobile edge computing: Task allocation and computational frequency scaling publication-title: IEEE Trans. Commun. – volume: 19 start-page: 1628 year: 2017 ident: ref_14 article-title: Mobile edge computing: A survey on architecture and computation offloading publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2017.2682318 – volume: 55 start-page: 31 year: 2017 ident: ref_19 article-title: Software-defined networks with mobile edge computing and caching for smart cities: A big data deep reinforcement learning approach publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2017.1700246 – volume: 42 start-page: 889 year: 2011 ident: ref_29 article-title: Unsupervised construction of an indoor floor plan using a smartphone publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) doi: 10.1109/TSMCC.2011.2169403 |
| SSID | ssj0000913830 |
| Score | 2.2457516 |
| Snippet | Container technology enables rapid deployment of computing services, while edge computing reduces the latency of task computing and improves performance.... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 4121 |
| SubjectTerms | Algorithms Analysis Artificial neural networks Augmented reality Cache memory Caching Cellular telephones Combinatorial analysis Communication Computation offloading Containers Decisions Disk caching Edge computing Electronic devices Energy consumption Energy efficiency Iterative methods Machine learning Mobile computing Neural networks Optimization Performance enhancement Resource allocation Servers Training User needs Wearable computers |
| Title | Energy-Efficient Edge Caching and Task Deployment Algorithm Enabled by Deep Q-Learning for MEC |
| URI | https://www.proquest.com/docview/2756679845 |
| Volume | 11 |
| WOSCitedRecordID | wos000900997200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: P5Z dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7x6KEcCn0goDTyoVIvWNld7_NUhXQjeki0rYIUOHTl9SOtgBDYtBIXfntnNg4PKcqF69reXXlsj7-x5_sAPiPo0UlkJE-NDnho0phnCH64L5RC9yesH8pGbCIZDNLRKCtcwK121yoXa2KzUOtrRTHyNtGU04lBGH2d3nBSjaLTVSehsQ6bxJJA0g1FdP4QYyHOy1R4c7Ihgei-_agtU_vk2fzAf-aQli_Lja_pbb_0L3fgjdtlss58WLyFNTN5B1tPuAffw6-8yfrjecMhga6H5XpsWHd-uZLJiWZDWV-wb4YkgSmGyDqXY_zW7PcVy5uMK82qOyw3U_aDO57WMcNNMOvn3Q9w2suH3RPuxBa4ErE_47bSnl_JkE5GPetZLaqoShKJkDBKsa_Q02kvNCbLrPWklakJsWGssJqyCDLFLmxMridmD5hGyG2Nxb2KFiGOhQxhcGWSuJK4lxGZ2Idg0eOlckzkJIhxWSIiITOVS8y0D0cPjaZzIo7V1b-QKUuapvhuJV22Af4hEV6VnSQkavokxpqHC1OWbv7W5aMdD1YXf4TXASVENBdcDmFjdvvXfIJX6t_sT33bgs3jfFD8bMF6_z5vNYMTnxXf-8XZfy3-7rc |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BRQIObaFF0ELxoYhLLZLYeR0qtFqCQMAKpEVCPTR1_FgQsGzJthV_qr-xM3kAlRA3Dpz9UBx_nofH8w3AZ3R6TBxaxRNrAi5tEvEUnR_uC61R_QnnS1UVm4h7veT0ND2agL9tLgw9q2xlYiWozbWmO_JNoimniIEMt0Y_OVWNouhqW0KjhsW-vf2DLlv5dW8b93c9CHayfneXN1UFuBaRP-auMJ5fKEkhQM95zogiLOJYoe8TJmh9oEg3nrQ2TZ3zlFOJlTgw0thNO_SmBM47Ca-kRHzh-TkKv93d6RDHZiK8mtxIiNTbvK9lU_qkSf3A_08BPq4GKt228-al_ZW38Lqxolmnhv08TNjhAsw94FZ8B9-zKquRZxVHBqpWlpmBZd368ShTQ8P6qrxg25ZKHtMdKetcDnBt47MrllUZZYYVt9huR-yYNzy0A4ZGPjvMuu_h5FkWuAhTw-uhXQJmZJQ669AWM0Ii1lN08wsbR4VCW02kYhmCdodz3TCtU8GPyxw9LoJF_ggsluHL3aBRTTTydPcNgk5OYgjn1qrJpsAvJEKvvBNLot6PI-y50kInb-RTmd_j5sPTzWsws9s_PMgP9nr7H2E2oOSP6jHPCkyNb37ZVZjWv8fn5c2n6igw-PHcKPsHe4VHKA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK7gaowefIBGFKUPGC50dma653UwZrM7GwmyWRJMCAeGnn6sBNxdmVXDX_PXWTUPwIRw48C5H5me_roe3VVfAWyg02Pi0CqeWBNwaZOIp-j8cF9ojepPOF-qqthEPBolBwfpeAn-trkwFFbZysRKUJuZpjvyLtGU04uBDLuuCYsYD4af5z85VZCil9a2nEYNkR178Qfdt_LT9gD3-mMQDLP9_hfeVBjgWkT-grvCeH6hJD0Hes5zRhRhEccK_aAwQUsExbvxpLVp6pynnEqsxIGRxm7aoWclcN4H8DCWUUKnaxweXt7vEN9mIrya6EiI1Ote1bUpfdKqfuD_pwxvVgmVnhs-v89_6AU8a6xr1quPw0tYstNleHqNc3EFjrIq25FnFXcGqlyWmYll_TqolKmpYfuqPGUDS6WQ6e6U9c4muLbF9x8sqzLNDCsusN3O2R5v-GknDI1_tpv1X8G3O1nga-hMZ1P7BpiRUeqsQxvNCIlnIEX3v7BxVCi04UQqViFodzvXDQM7FQI5y9ETI4jkN0BkFbYuB81rApLbu28SjHISTzi3Vk2WBX4hEX3lvVgSJX8cYc-1FkZ5I7fK_ApDb29vXofHCK786_Zo5x08CSgnpIrxWYPO4vyXfQ-P9O_FSXn-oToVDI7vGmT_AIO4T_s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-Efficient+Edge+Caching+and+Task+Deployment+Algorithm+Enabled+by+Deep+Q-Learning+for+MEC&rft.jtitle=Electronics+%28Basel%29&rft.au=Ma%2C+Li&rft.au=Wang%2C+Peng&rft.au=Du%2C+Chunlai&rft.au=Li%2C+Yang&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=11&rft.issue=24&rft_id=info:doi/10.3390%2Felectronics11244121&rft.externalDocID=A745598761 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |