Malware Detection Based on API Call Sequence Analysis: A Gated Recurrent Unit–Generative Adversarial Network Model Approach

Malware remains a major threat to computer systems, with a vast number of new samples being identified and documented regularly. Windows systems are particularly vulnerable to malicious programs like viruses, worms, and trojans. Dynamic analysis, which involves observing malware behavior during exec...

Full description

Saved in:
Bibliographic Details
Published in:Future internet Vol. 16; no. 10; p. 369
Main Authors: Owoh, Nsikak, Adejoh, John, Hosseinzadeh, Salaheddin, Ashawa, Moses, Osamor, Jude, Qureshi, Ayyaz
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.10.2024
Subjects:
ISSN:1999-5903, 1999-5903
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Malware remains a major threat to computer systems, with a vast number of new samples being identified and documented regularly. Windows systems are particularly vulnerable to malicious programs like viruses, worms, and trojans. Dynamic analysis, which involves observing malware behavior during execution in a controlled environment, has emerged as a powerful technique for detection. This approach often focuses on analyzing Application Programming Interface (API) calls, which represent the interactions between the malware and the operating system. Recent advances in deep learning have shown promise in improving malware detection accuracy using API call sequence data. However, the potential of Generative Adversarial Networks (GANs) for this purpose remains largely unexplored. This paper proposes a novel hybrid deep learning model combining Gated Recurrent Units (GRUs) and GANs to enhance malware detection based on API call sequences from Windows portable executable files. We evaluate our GRU–GAN model against other approaches like Bidirectional Long Short-Term Memory (BiLSTM) and Bidirectional Gated Recurrent Unit (BiGRU) on multiple datasets. Results demonstrated the superior performance of our hybrid model, achieving 98.9% accuracy on the most challenging dataset. It outperformed existing models in resource utilization, with faster training and testing times and low memory usage.
AbstractList Malware remains a major threat to computer systems, with a vast number of new samples being identified and documented regularly. Windows systems are particularly vulnerable to malicious programs like viruses, worms, and trojans. Dynamic analysis, which involves observing malware behavior during execution in a controlled environment, has emerged as a powerful technique for detection. This approach often focuses on analyzing Application Programming Interface (API) calls, which represent the interactions between the malware and the operating system. Recent advances in deep learning have shown promise in improving malware detection accuracy using API call sequence data. However, the potential of Generative Adversarial Networks (GANs) for this purpose remains largely unexplored. This paper proposes a novel hybrid deep learning model combining Gated Recurrent Units (GRUs) and GANs to enhance malware detection based on API call sequences from Windows portable executable files. We evaluate our GRU–GAN model against other approaches like Bidirectional Long Short-Term Memory (BiLSTM) and Bidirectional Gated Recurrent Unit (BiGRU) on multiple datasets. Results demonstrated the superior performance of our hybrid model, achieving 98.9% accuracy on the most challenging dataset. It outperformed existing models in resource utilization, with faster training and testing times and low memory usage.
Author Ashawa, Moses
Osamor, Jude
Hosseinzadeh, Salaheddin
Qureshi, Ayyaz
Adejoh, John
Owoh, Nsikak
Author_xml – sequence: 1
  givenname: Nsikak
  surname: Owoh
  fullname: Owoh, Nsikak
– sequence: 2
  givenname: John
  orcidid: 0009-0007-6133-6092
  surname: Adejoh
  fullname: Adejoh, John
– sequence: 3
  givenname: Salaheddin
  orcidid: 0000-0001-6253-5287
  surname: Hosseinzadeh
  fullname: Hosseinzadeh, Salaheddin
– sequence: 4
  givenname: Moses
  orcidid: 0000-0002-1016-0791
  surname: Ashawa
  fullname: Ashawa, Moses
– sequence: 5
  givenname: Jude
  surname: Osamor
  fullname: Osamor, Jude
– sequence: 6
  givenname: Ayyaz
  surname: Qureshi
  fullname: Qureshi, Ayyaz
BookMark eNptkU1uFDEQhS0UJEKSDSewxA5pgn-63ZhdM4TJSAlBQNZWtV0NHkx7sD2JsoiUO3BDToKHQQQhvKmS6_Mr-b3HZG-KExLyhLNjKTV7PnquOGNS6Qdkn2utZ61mcu-v_hE5ynnF6pFaKNXtk9tzCNeQkL7Ggrb4ONFXkNHR2vTvlnQOIdAP-G2Dk0XaTxBuss8vaU8XUCr2Hu0mJZwKvZx8-XH3fYETJij-qtLuClOG5CHQt1iuY_pCz6PDQPv1OkWwnw_JwxFCxqPf9YBcvjn5OD-dnV0slvP-bGal4mU2DlYDx9ZxOXDoQAA6NijHmnZ0XAnGsUHVtSBaJRrbaqe40yi3s7Zzozwgy52ui7Ay6-S_QroxEbz5dRHTJwOpeBvQvBiVk2wQnWOsGVg7jFK5phMCG6kRsGo93WnVL1RbcjGruEnVmGwkF0zJRrCmUs92lE0x54Tjn62cmW1a5j6tCrN_YOsLbMMoCXz435Of44SZTQ
CitedBy_id crossref_primary_10_1177_14727978251318813
crossref_primary_10_1109_TAI_2025_3537966
crossref_primary_10_1038_s41598_025_08556_4
crossref_primary_10_5753_jisa_2025_4905
Cites_doi 10.7717/peerj-cs.285
10.1109/ACCESS.2024.3358454
10.1109/ITNEC.2019.8728992
10.1109/JCSSE58229.2023.10202128
10.1007/s11416-021-00383-1
10.1371/journal.pone.0298809
10.1016/j.cose.2021.102247
10.1016/j.gltp.2021.01.004
10.3390/app12199403
10.1155/2015/659101
10.1016/j.jnca.2019.102526
10.1016/j.jnca.2023.103704
10.3390/app13074097
10.1007/978-3-031-25891-6_4
10.1109/ACCESS.2019.2963724
10.1007/978-3-031-37963-5_53
10.1145/3559540
10.1016/j.cose.2020.101773
10.1016/j.cose.2021.102221
10.1145/3073559
10.1016/j.cosrev.2022.100529
10.7717/peerj-cs.1319
10.18517/ijaseit.8.4-2.6827
10.1109/UBMK55850.2022.9919580
10.3390/app13095439
10.1016/j.jnca.2018.09.013
10.1145/3571070
10.1016/j.cose.2023.103582
10.1007/s11277-020-07166-9
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.3390/fi16100369
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1999-5903
ExternalDocumentID oai_doaj_org_article_8f6d30b27d004b05bf36d4722e439eae
10_3390_fi16100369
GroupedDBID -DT
.4I
5VS
7WY
8FE
8FG
8FL
AADQD
AAFWJ
AAKPC
AAYXX
ABDBF
ABUWG
ACIHN
ADBBV
ADMLS
AEAQA
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BEZIV
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
EAP
EBS
EJD
ESX
FRNLG
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
K60
K6V
K6~
K7-
KQ8
M0C
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
RNS
TR2
3V.
7SC
7XB
8AL
8FD
8FK
ACUHS
JQ2
L.-
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c361t-fbc9a1e5d13b1a7a2aed0b6d045fd16201e4e675a25624c59d61d9e3d16257df3
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001341944800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1999-5903
IngestDate Fri Oct 03 12:50:34 EDT 2025
Sat Jul 26 00:33:36 EDT 2025
Sat Nov 29 07:16:22 EST 2025
Tue Nov 18 20:54:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-fbc9a1e5d13b1a7a2aed0b6d045fd16201e4e675a25624c59d61d9e3d16257df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0007-6133-6092
0000-0001-6253-5287
0000-0002-1016-0791
OpenAccessLink https://doaj.org/article/8f6d30b27d004b05bf36d4722e439eae
PQID 3120634204
PQPubID 2032396
ParticipantIDs doaj_primary_oai_doaj_org_article_8f6d30b27d004b05bf36d4722e439eae
proquest_journals_3120634204
crossref_primary_10_3390_fi16100369
crossref_citationtrail_10_3390_fi16100369
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Future internet
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ye (ref_23) 2017; 50
ref_35
ref_12
ref_11
Sharma (ref_15) 2021; 2
Vardi (ref_25) 2023; 66
Sihwail (ref_9) 2018; 8
Yuan (ref_16) 2021; 104
ref_30
Maniriho (ref_29) 2023; 218
Goodfellow (ref_43) 2014; 27
ref_19
Brown (ref_28) 2024; 137
ref_18
ref_39
ref_38
Yousuf (ref_10) 2023; 9
ref_37
Suaboot (ref_36) 2020; 92
Gopinath (ref_26) 2023; 47
Khan (ref_20) 2024; 12
Gibert (ref_5) 2020; 153
Morato (ref_32) 2018; 124
ref_24
Doe (ref_13) 2022; 15
ref_22
ref_44
Aslan (ref_7) 2020; 8
ref_42
Hwang (ref_33) 2020; 112
ref_41
ref_40
ref_1
Brophy (ref_21) 2023; 55
ref_3
ref_2
Catak (ref_14) 2020; 6
Ki (ref_31) 2015; 11
Pinhero (ref_17) 2021; 105
ref_27
ref_8
ref_4
ref_6
Lajevardi (ref_34) 2022; 18
References_xml – volume: 6
  start-page: e285
  year: 2020
  ident: ref_14
  article-title: Deep learning based Sequential model for malware analysis using Windows exe API Calls
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.285
– volume: 12
  start-page: 27683
  year: 2024
  ident: ref_20
  article-title: Design and Performance Analysis of an Anti-Malware System based on Generative Adversarial Network Framework
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3358454
– ident: ref_30
  doi: 10.1109/ITNEC.2019.8728992
– ident: ref_3
– ident: ref_24
– ident: ref_41
  doi: 10.1109/JCSSE58229.2023.10202128
– ident: ref_11
– volume: 18
  start-page: 81
  year: 2022
  ident: ref_34
  article-title: Markhor: Malware detection using fuzzy similarity of system call dependency sequences
  publication-title: J. Comput. Virol. Hacking Tech.
  doi: 10.1007/s11416-021-00383-1
– ident: ref_39
– ident: ref_42
  doi: 10.1371/journal.pone.0298809
– ident: ref_37
– volume: 105
  start-page: 102247
  year: 2021
  ident: ref_17
  article-title: Malware detection employed by visualization and deep neural network
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2021.102247
– volume: 2
  start-page: 24
  year: 2021
  ident: ref_15
  article-title: Machine learning and deep learning applications-a vision
  publication-title: Glob. Transit. Proc.
  doi: 10.1016/j.gltp.2021.01.004
– ident: ref_18
– ident: ref_35
  doi: 10.3390/app12199403
– ident: ref_44
– volume: 11
  start-page: 659101
  year: 2015
  ident: ref_31
  article-title: A novel approach to detect malware based on API call sequence analysis
  publication-title: Int. J. Distrib. Sens. Netw.
  doi: 10.1155/2015/659101
– ident: ref_8
– ident: ref_4
– volume: 153
  start-page: 102526
  year: 2020
  ident: ref_5
  article-title: The rise of machine learning for detection and classification of malware: Research developments, trends and challenges
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2019.102526
– volume: 218
  start-page: 103704
  year: 2023
  ident: ref_29
  article-title: API-MalDetect: Automated malware detection framework for windows based on API calls and deep learning techniques
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2023.103704
– ident: ref_1
  doi: 10.3390/app13074097
– ident: ref_19
  doi: 10.1007/978-3-031-25891-6_4
– ident: ref_27
– volume: 8
  start-page: 6249
  year: 2020
  ident: ref_7
  article-title: A comprehensive review on malware detection approaches
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2963724
– ident: ref_40
  doi: 10.1007/978-3-031-37963-5_53
– volume: 15
  start-page: 305
  year: 2022
  ident: ref_13
  article-title: Analyzing API Calls for Legitimacy in Malware Detection
  publication-title: J. Cyber Secur.
– ident: ref_12
– volume: 27
  start-page: 1
  year: 2014
  ident: ref_43
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 55
  start-page: 199
  year: 2023
  ident: ref_21
  article-title: Generative adversarial networks in time series: A systematic literature review
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3559540
– volume: 92
  start-page: 101773
  year: 2020
  ident: ref_36
  article-title: Sub-curve HMM: A malware detection approach based on partial analysis of API call sequences
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2020.101773
– volume: 104
  start-page: 102221
  year: 2021
  ident: ref_16
  article-title: Deep learning for insider threat detection: Review, challenges and opportunities
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2021.102221
– ident: ref_38
– volume: 50
  start-page: 1
  year: 2017
  ident: ref_23
  article-title: A survey on malware detection using data mining techniques
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/3073559
– volume: 47
  start-page: 100529
  year: 2023
  ident: ref_26
  article-title: A comprehensive survey on deep learning based malware detection techniques
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2022.100529
– volume: 9
  start-page: e1319
  year: 2023
  ident: ref_10
  article-title: Windows malware detection based on static analysis with multiple features
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.1319
– ident: ref_22
– volume: 8
  start-page: 1662
  year: 2018
  ident: ref_9
  article-title: A survey on malware analysis techniques: Static, dynamic, hybrid and memory analysis
  publication-title: Int. J. Adv. Sci. Eng. Inf. Technol
  doi: 10.18517/ijaseit.8.4-2.6827
– ident: ref_6
  doi: 10.1109/UBMK55850.2022.9919580
– ident: ref_2
  doi: 10.3390/app13095439
– volume: 124
  start-page: 14
  year: 2018
  ident: ref_32
  article-title: Ransomware early detection by the analysis of file sharing traffic
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2018.09.013
– volume: 66
  start-page: 86
  year: 2023
  ident: ref_25
  article-title: On the implicit bias in deep-learning algorithms
  publication-title: Commun. ACM
  doi: 10.1145/3571070
– volume: 137
  start-page: 103582
  year: 2024
  ident: ref_28
  article-title: Automated machine learning for deep learning based malware detection
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2023.103582
– volume: 112
  start-page: 2597
  year: 2020
  ident: ref_33
  article-title: Two-stage ransomware detection using dynamic analysis and machine learning techniques
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-020-07166-9
SSID ssj0000392667
Score 2.334118
Snippet Malware remains a major threat to computer systems, with a vast number of new samples being identified and documented regularly. Windows systems are...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 369
SubjectTerms Accuracy
Algorithms
API call sequence
Application programming interface
Computer worms
Cybersecurity
Datasets
Deep learning
dynamic malware analysis
Efficiency
Gated Recurrent Unit
Generative Adversarial Network
Generative adversarial networks
Machine learning
Malware
malware detection
Performance evaluation
Resource utilization
Sequences
Software
Windows (computer programs)
SummonAdditionalLinks – databaseName: ABI/INFORM Global
  dbid: M0C
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELZ4HeBAaQERoJUleulhhXe9a7NcUEiL4ECE-pC4rfwYI6QogSTACYn_wD_klzCz64Siol64rWwfLI1n5pvZ0fcx9tUUhQxYWiXaaZfkWpfoUnmOHq9lIcC7zDdiE7rb3Ts_L89iw20UxyonMbEO1H7gqEe-K9MMs2meifzg6joh1Sj6uxolNGbZPCEbGuk7FZ1pj0Vg8ldKN6ykEqv73XCJCIc4WMpXeaim6_8nGtcp5ujDey-3wpYjuOTt5jV8ZDPQ_8SW_qIcXGX3p6Z3Z4bAv8O4nsLq80NMZJ7jR_vshHdMr8d_xflqPqEs2edtTn02z39Sf54YnTih1aeHx4a3moImr8WdR4aeNO824-WctNbwRpG5fI39Ofrxu3OcRAmGxEmVjpNgXWlSKHwqbWq0yQx4YZVHIBh8qhA9QA5YcxhETlnuitKr1Jcgaa_QPsh1Ntcf9GGD8dJbBZAhHEMEA1JYYZ0VAAEQ1JggWuzbxCCVi_zkJJPRq7BOIeNVL8ZrsZ3p2auGlePNU4dk1-kJYtKuFwbDiyo6ZrUXlMfLZNpjuLCisEEqTwyagFANDLTY9sTkVXTvUfVi783_b2-xxQxRUDP9t83mxsMb-MwW3O34cjT8Ur_WZyCU9KY
  priority: 102
  providerName: ProQuest
Title Malware Detection Based on API Call Sequence Analysis: A Gated Recurrent Unit–Generative Adversarial Network Model Approach
URI https://www.proquest.com/docview/3120634204
https://doaj.org/article/8f6d30b27d004b05bf36d4722e439eae
Volume 16
WOSCitedRecordID wos001341944800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: 7WY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: M0C
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1999-5903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392667
  issn: 1999-5903
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NahsxEB7atIfkEPoX4sY1gvbSwxLtalfK9ma7DgnFZklbmvSy6GcEBuMW22lOgb5D3jBP0tFqnbi00EsvQqwEK2ZGM9-I4RuAN7oohKfUKlFW2SRXqqQrled045UoODqbudhsQk0mR-fnZbXR6ivUhEV64Ci4wyMvneAmU47UaXhhvJAuMBwihVLUGLwvV-VGMtX4YAr7UqrIRyoorz_0U8I2gX2l_C0CNUT9f_jhJrgcP4HdFhWyfjzNU3iA82ews8EV-Byux3p2pRfI3uOqKZ-aswFFIMdo0q9O2VDPZuxjWxjN1lwj71ifhQcyx87Cw3qgYmIBZt7-vImE08HbsaYr81IHW2STWBfOQpM0OlFLOf4CPh-PPg1PkrZ3QmKFTFeJN7bUKRYuFSbVSmcaHTfSEYLzLpUU9jFHShY0QZ4st0XpZOpKFGGtUM6LPdiaf5vjPrDSGYmYEY4i6IGkC26s4YgeCY1ozzvwdi3P2rbE4qG_xaymBCPIvr6XfQde3-39Huk0_rprENRytyNQYDcfyDDq1jDqfxlGB7prpdbtvVzWIs0Ik-UZz1_-j38cwHZGICcW93Vha7W4xFfw2P5YTZeLHjxUXy568GgwmlRnvcZAafygEhrHfEhjVXyl9ep0XF38AjAO7fs
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qBQm64I0IFBgJWLCwOp6xPXElhNKWqlHaqIIidefO4xpVipKSpFQskPoP_AcfxZdwrx8pCMSuC3aWPbL8OPfeM-PrcwBe2DTVJU2tIuONjxJjcgqpJKGINzqVGLwKtdmEGQ67h4f5_hJ8b_-F4bbKNidWiTpMPK-Rr-lYUTVNlEzenHyK2DWKv662Fho1LAb45YymbLPX_S16vy-V2n57sLkTNa4CkddZPI9K53MbYxpi7WJrrLIYpMsCcZsyxBkVREyQaLQlMqASn-Yhi0OOmo-lJpSaznsFria6aziuBiZarOlIIhtZZmoVVK1zuVYeE6NizZf8t7pX2QP8kf2rkrZ96397GLfhZkOeRa9G-x1YwvFdWPlFUvEefN2zozM7RbGF86rLbCw2qFAHQRu9_b7YtKOReN_0j4tWkmVd9ASvIwbxjr8_sGKVYDb-4_xbrcvNRUFU5tUzyyErhnX7vGAvObqiRpn9Pny4lPt_AMvjyRgfgsiDyxAV0U1iaKilk847iVgikTZbyg68agFQ-EZ_nW1ARgXNwxgsxQVYOvB8MfakVh3566gNxtFiBCuFVzsm049Fk3iKbpkFuhhlAqVDJ1NX6iywQigSFUWLHVhtIVY06WtWXODr0b8PP4PrOwd7u8Vufzh4DDcUMb6603EVlufTU3wC1_zn-fFs-rSKFAFHl43Gn3HwUhc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VghAc-G1FaIGVgAMHK-td21tXQihtiIgKUcSPVHEx691ZVClKShKoOCDxDrwNj8OTMOOfFATi1gM3y15Za_ubmW92x98APLBpqgOlVpFxxkWJMTmZVJKQxRudSvRO-brZhBmNdg4P8_EafG__heGyytYnVo7azxyvkXd1rCiaJkom3dCURYz7gyfHHyLuIMU7rW07jRoiB_j5hNK3xeNhn771Q6UGT1_vP4uaDgOR01m8jELpchtj6mNdxtZYZdHLMvPEc4KPMwqOmCBRakvEQCUuzX0W-xw1X0uND5ruew7OG8oxuZxwnL5dre9IIh5ZZmpFVK1z2Q1HxK5Y_yX_LQZWrQL-iARVeBtc_Z9fzDW40pBq0aut4Dqs4fQGXP5FavEmfHlhJyd2jqKPy6r6bCr2KIB7QQe98VDs28lEvGrqykUr1bIreoLXF714yfsSrGQlmKX_-Pqt1uvmYCGqptYLy6YsRnVZveAeczSjRrF9A96cyfNvwvp0NsVbIHJfZoiKaCgxN9SylKUrJWJAInM2yA48asFQuEaXnduDTArKzxg4xSlwOnB_Nfa4ViP566g9xtRqBCuIVydm8_dF45CKnZB5mowyntxkKdMy6MyzcigSRUWLHdhu4VY0bm1RnGLt9r8v34OLBMLi-XB0sAWXFBHBugByG9aX8494By64T8ujxfxuZTQC3p01GH8CBDdbOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Malware+Detection+Based+on+API+Call+Sequence+Analysis%3A+A+Gated+Recurrent+Unit%E2%80%93Generative+Adversarial+Network+Model+Approach&rft.jtitle=Future+internet&rft.au=Owoh%2C+Nsikak&rft.au=Adejoh%2C+John&rft.au=Hosseinzadeh%2C+Salaheddin&rft.au=Ashawa%2C+Moses&rft.date=2024-10-01&rft.issn=1999-5903&rft.eissn=1999-5903&rft.volume=16&rft.issue=10&rft.spage=369&rft_id=info:doi/10.3390%2Ffi16100369&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_fi16100369
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-5903&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-5903&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-5903&client=summon