Instantaneous Metabolic Energetics: Data-Driven Modeling Using Function-Based Surrogates and Gradient Boosting
Objective: Current methods for measuring metabolic energy expenditure (MEE) constrain experiment design and only provide time-averaged values. We propose a novel two-stage predictive model using surrogate learners in the first stage for physiological dynamics and gradient-boosted regression trees in...
Uloženo v:
| Vydáno v: | IEEE access Ročník 13; s. 56793 - 56807 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Objective: Current methods for measuring metabolic energy expenditure (MEE) constrain experiment design and only provide time-averaged values. We propose a novel two-stage predictive model using surrogate learners in the first stage for physiological dynamics and gradient-boosted regression trees in the second stage to learn a generalized representation of instantaneous, whole-body MEE. Methods: Kinematic, kinetic, metabolic, and surface electromyograph data were recorded for nine human subjects in level, over-ground walking at 100%, 70%, 85%, 115%, and 130% subject-preferred speeds. We use surrogate learners to encode fundamental information about the time-varying properties of MEE. A gradient-boosted machine-learning model was then trained on the surrogate functions' outputs. For robustness, an information-theoretic data selection step was added during model training. The trained model uses joint torques and angular velocities to predict instantaneous, whole-body MEE during walking. Results: The model accurately predicts instantaneous MEE without subject-specific input parameters. Shapley Additive Explanations were used to investigate energetic features of the learned MEE function and demonstrate alignment with literature. We find similarities between the model's MEE predictions, muscle mechanical work rate, and normal ground reaction forces, suggesting a link between MEE and the work required to raise the center of mass. Conclusion: The proposed approach provides an alternative to experimental MEE measurement while balancing the generalizability and complexity trade-off typically imposed on existing computational, predictive models. Significance: Evaluating MEE of human motion can provide insight into underlying biomechanics and inform clinical and engineering practices. |
|---|---|
| AbstractList | Objective: Current methods for measuring metabolic energy expenditure (MEE) constrain experiment design and only provide time-averaged values. We propose a novel two-stage predictive model using surrogate learners in the first stage for physiological dynamics and gradient-boosted regression trees in the second stage to learn a generalized representation of instantaneous, whole-body MEE. Methods: Kinematic, kinetic, metabolic, and surface electromyograph data were recorded for nine human subjects in level, over-ground walking at 100%, 70%, 85%, 115%, and 130% subject-preferred speeds. We use surrogate learners to encode fundamental information about the time-varying properties of MEE. A gradient-boosted machine-learning model was then trained on the surrogate functions' outputs. For robustness, an information-theoretic data selection step was added during model training. The trained model uses joint torques and angular velocities to predict instantaneous, whole-body MEE during walking. Results: The model accurately predicts instantaneous MEE without subject-specific input parameters. Shapley Additive Explanations were used to investigate energetic features of the learned MEE function and demonstrate alignment with literature. We find similarities between the model's MEE predictions, muscle mechanical work rate, and normal ground reaction forces, suggesting a link between MEE and the work required to raise the center of mass. Conclusion: The proposed approach provides an alternative to experimental MEE measurement while balancing the generalizability and complexity trade-off typically imposed on existing computational, predictive models. Significance: Evaluating MEE of human motion can provide insight into underlying biomechanics and inform clinical and engineering practices. |
| Author | Buglino, Christopher Ashlyn, Stacy Hillstrom, Howard J. Kim, Joo H. Song, Hyunjong Peng, William Z. |
| Author_xml | – sequence: 1 givenname: Christopher orcidid: 0009-0004-0958-6041 surname: Buglino fullname: Buglino, Christopher organization: Department of Mechanical and Aerospace Engineering, New York University (NYU), Brooklyn, NY, USA – sequence: 2 givenname: William Z. orcidid: 0000-0002-3612-3315 surname: Peng fullname: Peng, William Z. organization: Department of Mechanical and Aerospace Engineering, New York University (NYU), Brooklyn, NY, USA – sequence: 3 givenname: Stacy surname: Ashlyn fullname: Ashlyn, Stacy organization: Department of Mechanical and Aerospace Engineering, New York University (NYU), Brooklyn, NY, USA – sequence: 4 givenname: Hyunjong orcidid: 0000-0002-3470-8221 surname: Song fullname: Song, Hyunjong organization: Department of Mechanical and Aerospace Engineering, New York University (NYU), Brooklyn, NY, USA – sequence: 5 givenname: Howard J. orcidid: 0000-0002-6440-1917 surname: Hillstrom fullname: Hillstrom, Howard J. organization: Leon Root, MD Motion Analysis Laboratory, Hospital for Special Surgery, New York City, NY, USA – sequence: 6 givenname: Joo H. orcidid: 0000-0003-0305-5405 surname: Kim fullname: Kim, Joo H. email: joo.h.kim@nyu.edu organization: Department of Mechanical and Aerospace Engineering, New York University (NYU), Brooklyn, NY, USA |
| BookMark | eNpNUcFu3CAQRVUqNU3zBe0BqWdvgMHY7i3ZbNKVEvWwzRkBHq9YbSEFXKl_X7aOoozQDBq992bgfSRnIQYk5DNnK87ZcHW9Xm92u5Vgol1B27a8F-_IueBqaKAFdfbm_oFc5nxgNfraartzErYhFxPqwThn-ojF2Hj0jm4Cpj0W7_I3emuKaW6T_4OBPsYRjz7s6VM-5bs5uOJjaG5MxpHu5pTi3hTM1ISR3iczegyF3sSYS8V_Iu8nc8x4-VIvyNPd5uf6e_Pw4367vn5oHChemslKBahYLyVjVhimDCg1dS2wYVITdwi2d0Ip1g3cwMiwA7QIZuBWOGXhgmwX3TGag35O_pdJf3U0Xv9vxLTXJtXHHVHz-omKY2etdBKUs520yrFhRMY4F7JqfV20nlP8PWMu-hDnFOr6GnivYJB1rYqCBeVSzDnh9DqVM33ySS8-6ZNP-sWnyvqysDwivmEMUkDP4R-to5Au |
| CODEN | IAECCG |
| Cites_doi | 10.1115/1.4023390 10.1242/jeb.000950 10.1016/j.jbiomech.2012.03.032 10.1080/10255840612331393266 10.1063/5.0101432 10.2522/ptj.20090125 10.1139/h08-117 10.3389/fbioe.2020.00622 10.3390/s16010066 10.1115/1.4024755 10.3389/fped.2018.00257 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 10.1016/S0966-6362(01)00155-2 10.1371/journal.pone.0157243 10.1007/978-1-4612-0919-5_38 10.1371/journal.pone.0222037 10.1016/j.jelekin.2011.07.003 10.1016/j.gaitpost.2007.03.009 10.2307/1268522 10.1152/japplphysiol.00023.2004 10.1002/cnm.2721 10.1251/bpo124 10.1103/PhysRev.106.620 10.1242/jeb.006767 10.1152/japplphysiol.00445.2014 10.1249/01.mss.0000176684.24008.6f 10.1109/TBME.1980.326652 10.1017/S0263574715000983 10.1123/jab.20.4.367 10.1115/DETC2013-13633 10.1006/jtbi.1997.0407 10.1242/jeb.075697 10.1371/journal.pone.0168070 10.18637/jss.v031.i07 10.1007/s10439-009-9852-5 10.1016/j.gaitpost.2013.12.007 10.18637/jss.v067.i01 10.1016/j.jbiomech.2007.03.022 10.1152/ajpheart.00569.2015 10.1088/1741-2552/abc741 10.1152/jappl.1993.75.5.2288 10.1186/s12984-024-01424-8 10.1016/j.jbiomech.2006.11.013 10.1017/wtc.2023.9 10.1115/1.4029304 10.1109/MRA.2007.380653 10.1242/jeb.150011 10.1016/j.jbiomech.2005.03.025 10.1113/jphysiol.1949.sp004363 10.1371/journal.pone.0150378 10.1371/journal.pcbi.1008280 10.1249/mss.0000000000000232 10.1002/9780470549148 10.3390/app14125210 10.1515/crll.1911.140.1 10.1109/TBME.2023.3331271 10.1098/rsif.2010.0084 10.1006/acha.1995.1015 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2025.3555182 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 56807 |
| ExternalDocumentID | oai_doaj_org_article_111061e7bb4c436cb74b6c09de001124 10_1109_ACCESS_2025_3555182 10942381 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: U.S. National Science Foundation grantid: CMMI-1436636 funderid: 10.13039/100000001 – fundername: Mitsui USA Foundation Scholarship |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c361t-fb463e6084400b2a06a366f75309f6f1ce3b8c2660791a3d0e73ebe3a91b2c6b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001459579400049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:38:41 EDT 2025 Mon Jun 30 11:54:44 EDT 2025 Sat Nov 29 08:03:00 EST 2025 Wed Aug 27 02:04:58 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-fb463e6084400b2a06a366f75309f6f1ce3b8c2660791a3d0e73ebe3a91b2c6b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0305-5405 0000-0002-6440-1917 0009-0004-0958-6041 0000-0002-3612-3315 0000-0002-3470-8221 |
| OpenAccessLink | https://doaj.org/article/111061e7bb4c436cb74b6c09de001124 |
| PQID | 3186394530 |
| PQPubID | 4845423 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_111061e7bb4c436cb74b6c09de001124 crossref_primary_10_1109_ACCESS_2025_3555182 proquest_journals_3186394530 ieee_primary_10942381 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 Sutton (ref50) 2020 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Zajac (ref20) 1989; 17 ref46 ref45 ref47 ref42 ref41 ref43 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Shi (ref49) 2021 ref35 ref34 ref37 ref36 ref31 ref30 Bischl (ref52) 2017 ref33 ref32 Schur (ref68) 1911; 140 Ghorbani (ref51) ref2 ref1 ref39 ref38 Lundberg (ref61) Nason (ref44) 2016 Ke (ref48) ref24 ref23 ref26 ref25 ref64 Kim (ref67) ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 |
| References_xml | – ident: ref19 doi: 10.1115/1.4023390 – ident: ref14 doi: 10.1242/jeb.000950 – ident: ref27 doi: 10.1016/j.jbiomech.2012.03.032 – ident: ref35 doi: 10.1080/10255840612331393266 – ident: ref7 doi: 10.1063/5.0101432 – ident: ref2 doi: 10.2522/ptj.20090125 – ident: ref36 doi: 10.1139/h08-117 – ident: ref15 doi: 10.3389/fbioe.2020.00622 – ident: ref59 doi: 10.3390/s16010066 – volume-title: Wavethresh: Wavelets Statistics and Transforms year: 2016 ident: ref44 – ident: ref60 doi: 10.1115/1.4024755 – ident: ref8 doi: 10.3389/fped.2018.00257 – ident: ref41 doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 – ident: ref33 doi: 10.1016/S0966-6362(01)00155-2 – ident: ref42 doi: 10.1371/journal.pone.0157243 – volume-title: Reinforcement Learning: An Introduction year: 2020 ident: ref50 – ident: ref58 doi: 10.1007/978-1-4612-0919-5_38 – ident: ref4 doi: 10.1371/journal.pone.0222037 – ident: ref13 doi: 10.1016/j.jelekin.2011.07.003 – ident: ref56 doi: 10.1016/j.gaitpost.2007.03.009 – ident: ref53 doi: 10.2307/1268522 – ident: ref55 doi: 10.1152/japplphysiol.00023.2004 – ident: ref30 doi: 10.1002/cnm.2721 – ident: ref38 doi: 10.1251/bpo124 – start-page: 2242 volume-title: Proc. 36th Int. Conf. Mach. Learn. ident: ref51 article-title: Data shapley: Equitable valuation of data for machine learning – ident: ref46 doi: 10.1103/PhysRev.106.620 – ident: ref64 doi: 10.1242/jeb.006767 – ident: ref26 doi: 10.1152/japplphysiol.00445.2014 – ident: ref10 doi: 10.1249/01.mss.0000176684.24008.6f – volume-title: LightGBM: Light Gradient Boosting Machine year: 2021 ident: ref49 – volume-title: R: A Language and Environment for Statistical Computing ident: ref47 – ident: ref37 doi: 10.1109/TBME.1980.326652 – ident: ref6 doi: 10.1017/S0263574715000983 – ident: ref9 doi: 10.1123/jab.20.4.367 – ident: ref18 doi: 10.1115/DETC2013-13633 – ident: ref25 doi: 10.1006/jtbi.1997.0407 – ident: ref16 doi: 10.1242/jeb.075697 – ident: ref31 doi: 10.1371/journal.pone.0168070 – volume: 17 start-page: 359 issue: 4 year: 1989 ident: ref20 article-title: Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control publication-title: Crit. Rev. Biomed. Eng. – ident: ref39 doi: 10.18637/jss.v031.i07 – ident: ref12 doi: 10.1007/s10439-009-9852-5 – ident: ref32 doi: 10.1016/j.gaitpost.2013.12.007 – start-page: 4768 volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst. ident: ref61 article-title: A unified approach to interpreting model predictions – ident: ref54 doi: 10.18637/jss.v067.i01 – start-page: 448 volume-title: Proc. Int. Soc. Biomechanics Congr. ident: ref67 article-title: Improving estimation accuracy of energy expenditure during running from a single IMU by estimating mechanical power via estimating ground reaction force – ident: ref23 doi: 10.1016/j.jbiomech.2007.03.022 – ident: ref24 doi: 10.1152/ajpheart.00569.2015 – ident: ref40 doi: 10.1088/1741-2552/abc741 – ident: ref45 doi: 10.1152/jappl.1993.75.5.2288 – ident: ref65 doi: 10.1186/s12984-024-01424-8 – ident: ref63 doi: 10.1016/j.jbiomech.2006.11.013 – ident: ref5 doi: 10.1017/wtc.2023.9 – ident: ref11 doi: 10.1115/1.4029304 – ident: ref1 doi: 10.1109/MRA.2007.380653 – ident: ref21 doi: 10.1242/jeb.150011 – ident: ref17 doi: 10.1016/j.jbiomech.2005.03.025 – ident: ref34 doi: 10.1113/jphysiol.1949.sp004363 – ident: ref22 doi: 10.1371/journal.pone.0150378 – ident: ref28 doi: 10.1371/journal.pcbi.1008280 – ident: ref57 doi: 10.1249/mss.0000000000000232 – ident: ref66 doi: 10.1002/9780470549148 – start-page: 3149 volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst. ident: ref48 article-title: LightGBM: A highly efficient gradient boosting decision tree – ident: ref29 doi: 10.3390/app14125210 – volume: 140 start-page: 1 year: 1911 ident: ref68 article-title: Bemerkungen zur theorie der beschränkten bilinearformen mit unendlich vielen veränderlichen publication-title: J. für die reine und angewandte Mathematik doi: 10.1515/crll.1911.140.1 – ident: ref3 doi: 10.1109/TBME.2023.3331271 – ident: ref62 doi: 10.1098/rsif.2010.0084 – ident: ref43 doi: 10.1006/acha.1995.1015 – year: 2017 ident: ref52 article-title: MlrMBO: A modular framework for model-based optimization of expensive black-box functions publication-title: arXiv:1703.03373 |
| SSID | ssj0000816957 |
| Score | 2.3413184 |
| Snippet | Objective: Current methods for measuring metabolic energy expenditure (MEE) constrain experiment design and only provide time-averaged values. We propose a... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 56793 |
| SubjectTerms | Angular velocity Biological system modeling Biomechanics Computational modeling Data models Design of experiments Electromyography Force gradient boosting Human motion Information theory instantaneous metabolic energy expenditure joint space Kinematics Legged locomotion Machine learning Mathematical models Measurement methods Metabolism Muscles Prediction models predictive model Predictive models Regression analysis surrogate methods Walking |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbaqgc4QClFbGmRDxzr4sSOHXPrbrtQqVRIPNRbZDsTqRJKUJLl93fGSasixAEphyiaKLa_jOfheTD2LokdiEpkTROFbnQuHNoRAlRRGyN9E1O1zx9X9vq6vLlxX-Zk9ZQLAwAp-AxO6Tad5ddd3JCrDDncaRIx22zbWjMlaz04VKiDhCvsXFkISd-frVY4CbQB8-IUxWqRlfkf0icV6Z-7qvy1FSf5sn7-nyPbY89mRZKfTci_YFvQ7rOnj8oLvmTtZdL98AK07_lnGBHxn7eRX1DCH2UvDh_4uR-9OO9p0-PUGI3S03kKJOBrlHmEm1iiqKv5103fd-R1G7hva_6xT9FiI1923UDB0wfs-_ri2-qTmPsriKhMNoomaKPAyFIjI4fcS-OVMQ0aMNI1pskiqFAiVkZal3lVS7AKMVfeZSGPJqhXbKftWnjNuLaQS6TWQXpKri-RqCyLPITa1grkgp3cr3v1ayqjUSXzQ7pqgqkimKoZpgVbEjYPpFQDOz3ARa9mliLbBZURsCHoqJWJwepgonQ1kJ6b6wU7IKAefW_CaMGO7qGuZoYdKtzaUFfTOPXDf7z2hj2hIU7ulyO2M_YbOGa78fd4O_Rv0794B9Vn3Lg priority: 102 providerName: IEEE |
| Title | Instantaneous Metabolic Energetics: Data-Driven Modeling Using Function-Based Surrogates and Gradient Boosting |
| URI | https://ieeexplore.ieee.org/document/10942381 https://www.proquest.com/docview/3186394530 https://doaj.org/article/111061e7bb4c436cb74b6c09de001124 |
| Volume | 13 |
| WOSCitedRecordID | wos001459579400049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-QwFA8iHvSw-MnO-kEOezSaNmnaeHPGGV1QEdwVbyFJUxCks7TVo3-776VVRjx4EUoPJZDm_ZL3Ed77PUJ-R7MTvGBJVXkmK5kyDXEECyIrleK28pHt8-4yv74u7u_1zUKrL8wJ6-mBe8Edw1kEkxNy56SXQnmXS6c812VAbyaNTKA81wvBVNTBRaJ0lg80QwnXx6eTCawIAsI0OwIbmyVF-sEURcb-ocXKJ70cjc1snfwYvER62v_dBlkK9SZZW-AO3CL1n-jYwRMgeKdXoQM4Hx88nWI1H5Ymtif0zHaWnTWo0Sh2PcPacxqzBOgMDBqCwsZgx0p6-9Q0c7xSa6mtS3rexFSwjo7n8xYzo7fJv9n07-SCDc0TmBcq6VjlpBJB8ULCKXWp5coKpSqITriuVJX4IFwBQCgQXmJFyUMuAFBhdeJSr5zYIcv1vA4_CZV5SDmMlo5brJwvYFBRZKlzZV6KwEfk8E2O5n_PkWFibMG16cVuUOxmEPuIjFHW70OR4Dp-ANjNALv5CvYR2UakFubTEr2PEdl7g84Mp7E1oLfAEZOw9F_fMfcuWcX19Bcxe2S5a57CPlnxz91D2xzEjQjvq5fpQSwnfAXYSuBp |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagIFEOPIu6UMAHjrg4sePE3LrbLq3YrpAoqDfLdhypEkqqJNvfz4zjVkVVD0g5RNFEsf1lPA_Pg5BPUewEL1jWNJ7JRuZMgx3BgihqpbhtfKz2-XtVrtfV-bn-kZLVYy5MCCEGn4V9vI1n-XXnN-gqAw7XEkXMQ_IIW2eldK0blwr2kNBFmWoLAfGXg8UCpgFWYF7sg2Atsir_R_7EMv2pr8qdzThKmOXz_xzbC_IsqZL0YML-JXkQ2lfk6a0Cg69JexK1P7gCWPj0NIyA-Z8LT48w5Q_zF4ev9NCOlh32uO1RbI2GCeo0hhLQJUg9RI7NQdjV9Oem7zv0uw3UtjX91sd4sZHOu27A8Okd8mt5dLY4ZqnDAvNCZSNrnFQiKF5JYGWXW66sUKoBE4brRjWZD8JVgJbipc6sqHkoBaAurM5c7pUTb8hW27Vhl1BZhpwDtXTcYnp9BURVVeTO1WUtAp-Rz9frbi6nQhomGiBcmwkmgzCZBNOMzBGbG1Ksgh0fwKKbxFRovYA6EkrnpJdCeVdKpzzXdUBNN5czsoNA3frehNGM7F1DbRLLDgY2N9DWJEz97T2vfSRPjs9OV2Z1sv7-jmzjcCdnzB7ZGvtNeE8e-6vxYug_xP_yL3sk4AE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Instantaneous+Metabolic+Energetics%3A+Data-Driven+Modeling+Using+Function-Based+Surrogates+and+Gradient+Boosting&rft.jtitle=IEEE+access&rft.au=Buglino%2C+Christopher&rft.au=Peng%2C+William+Z.&rft.au=Ashlyn%2C+Stacy&rft.au=Song%2C+Hyunjong&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=56793&rft.epage=56807&rft_id=info:doi/10.1109%2FACCESS.2025.3555182&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3555182 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |