Instantaneous Metabolic Energetics: Data-Driven Modeling Using Function-Based Surrogates and Gradient Boosting

Objective: Current methods for measuring metabolic energy expenditure (MEE) constrain experiment design and only provide time-averaged values. We propose a novel two-stage predictive model using surrogate learners in the first stage for physiological dynamics and gradient-boosted regression trees in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 13; s. 56793 - 56807
Hlavní autoři: Buglino, Christopher, Peng, William Z., Ashlyn, Stacy, Song, Hyunjong, Hillstrom, Howard J., Kim, Joo H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Objective: Current methods for measuring metabolic energy expenditure (MEE) constrain experiment design and only provide time-averaged values. We propose a novel two-stage predictive model using surrogate learners in the first stage for physiological dynamics and gradient-boosted regression trees in the second stage to learn a generalized representation of instantaneous, whole-body MEE. Methods: Kinematic, kinetic, metabolic, and surface electromyograph data were recorded for nine human subjects in level, over-ground walking at 100%, 70%, 85%, 115%, and 130% subject-preferred speeds. We use surrogate learners to encode fundamental information about the time-varying properties of MEE. A gradient-boosted machine-learning model was then trained on the surrogate functions' outputs. For robustness, an information-theoretic data selection step was added during model training. The trained model uses joint torques and angular velocities to predict instantaneous, whole-body MEE during walking. Results: The model accurately predicts instantaneous MEE without subject-specific input parameters. Shapley Additive Explanations were used to investigate energetic features of the learned MEE function and demonstrate alignment with literature. We find similarities between the model's MEE predictions, muscle mechanical work rate, and normal ground reaction forces, suggesting a link between MEE and the work required to raise the center of mass. Conclusion: The proposed approach provides an alternative to experimental MEE measurement while balancing the generalizability and complexity trade-off typically imposed on existing computational, predictive models. Significance: Evaluating MEE of human motion can provide insight into underlying biomechanics and inform clinical and engineering practices.
AbstractList Objective: Current methods for measuring metabolic energy expenditure (MEE) constrain experiment design and only provide time-averaged values. We propose a novel two-stage predictive model using surrogate learners in the first stage for physiological dynamics and gradient-boosted regression trees in the second stage to learn a generalized representation of instantaneous, whole-body MEE. Methods: Kinematic, kinetic, metabolic, and surface electromyograph data were recorded for nine human subjects in level, over-ground walking at 100%, 70%, 85%, 115%, and 130% subject-preferred speeds. We use surrogate learners to encode fundamental information about the time-varying properties of MEE. A gradient-boosted machine-learning model was then trained on the surrogate functions' outputs. For robustness, an information-theoretic data selection step was added during model training. The trained model uses joint torques and angular velocities to predict instantaneous, whole-body MEE during walking. Results: The model accurately predicts instantaneous MEE without subject-specific input parameters. Shapley Additive Explanations were used to investigate energetic features of the learned MEE function and demonstrate alignment with literature. We find similarities between the model's MEE predictions, muscle mechanical work rate, and normal ground reaction forces, suggesting a link between MEE and the work required to raise the center of mass. Conclusion: The proposed approach provides an alternative to experimental MEE measurement while balancing the generalizability and complexity trade-off typically imposed on existing computational, predictive models. Significance: Evaluating MEE of human motion can provide insight into underlying biomechanics and inform clinical and engineering practices.
Author Buglino, Christopher
Ashlyn, Stacy
Hillstrom, Howard J.
Kim, Joo H.
Song, Hyunjong
Peng, William Z.
Author_xml – sequence: 1
  givenname: Christopher
  orcidid: 0009-0004-0958-6041
  surname: Buglino
  fullname: Buglino, Christopher
  organization: Department of Mechanical and Aerospace Engineering, New York University (NYU), Brooklyn, NY, USA
– sequence: 2
  givenname: William Z.
  orcidid: 0000-0002-3612-3315
  surname: Peng
  fullname: Peng, William Z.
  organization: Department of Mechanical and Aerospace Engineering, New York University (NYU), Brooklyn, NY, USA
– sequence: 3
  givenname: Stacy
  surname: Ashlyn
  fullname: Ashlyn, Stacy
  organization: Department of Mechanical and Aerospace Engineering, New York University (NYU), Brooklyn, NY, USA
– sequence: 4
  givenname: Hyunjong
  orcidid: 0000-0002-3470-8221
  surname: Song
  fullname: Song, Hyunjong
  organization: Department of Mechanical and Aerospace Engineering, New York University (NYU), Brooklyn, NY, USA
– sequence: 5
  givenname: Howard J.
  orcidid: 0000-0002-6440-1917
  surname: Hillstrom
  fullname: Hillstrom, Howard J.
  organization: Leon Root, MD Motion Analysis Laboratory, Hospital for Special Surgery, New York City, NY, USA
– sequence: 6
  givenname: Joo H.
  orcidid: 0000-0003-0305-5405
  surname: Kim
  fullname: Kim, Joo H.
  email: joo.h.kim@nyu.edu
  organization: Department of Mechanical and Aerospace Engineering, New York University (NYU), Brooklyn, NY, USA
BookMark eNpNUcFu3CAQRVUqNU3zBe0BqWdvgMHY7i3ZbNKVEvWwzRkBHq9YbSEFXKl_X7aOoozQDBq992bgfSRnIQYk5DNnK87ZcHW9Xm92u5Vgol1B27a8F-_IueBqaKAFdfbm_oFc5nxgNfraartzErYhFxPqwThn-ojF2Hj0jm4Cpj0W7_I3emuKaW6T_4OBPsYRjz7s6VM-5bs5uOJjaG5MxpHu5pTi3hTM1ISR3iczegyF3sSYS8V_Iu8nc8x4-VIvyNPd5uf6e_Pw4367vn5oHChemslKBahYLyVjVhimDCg1dS2wYVITdwi2d0Ip1g3cwMiwA7QIZuBWOGXhgmwX3TGag35O_pdJf3U0Xv9vxLTXJtXHHVHz-omKY2etdBKUs520yrFhRMY4F7JqfV20nlP8PWMu-hDnFOr6GnivYJB1rYqCBeVSzDnh9DqVM33ySS8-6ZNP-sWnyvqysDwivmEMUkDP4R-to5Au
CODEN IAECCG
Cites_doi 10.1115/1.4023390
10.1242/jeb.000950
10.1016/j.jbiomech.2012.03.032
10.1080/10255840612331393266
10.1063/5.0101432
10.2522/ptj.20090125
10.1139/h08-117
10.3389/fbioe.2020.00622
10.3390/s16010066
10.1115/1.4024755
10.3389/fped.2018.00257
10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
10.1016/S0966-6362(01)00155-2
10.1371/journal.pone.0157243
10.1007/978-1-4612-0919-5_38
10.1371/journal.pone.0222037
10.1016/j.jelekin.2011.07.003
10.1016/j.gaitpost.2007.03.009
10.2307/1268522
10.1152/japplphysiol.00023.2004
10.1002/cnm.2721
10.1251/bpo124
10.1103/PhysRev.106.620
10.1242/jeb.006767
10.1152/japplphysiol.00445.2014
10.1249/01.mss.0000176684.24008.6f
10.1109/TBME.1980.326652
10.1017/S0263574715000983
10.1123/jab.20.4.367
10.1115/DETC2013-13633
10.1006/jtbi.1997.0407
10.1242/jeb.075697
10.1371/journal.pone.0168070
10.18637/jss.v031.i07
10.1007/s10439-009-9852-5
10.1016/j.gaitpost.2013.12.007
10.18637/jss.v067.i01
10.1016/j.jbiomech.2007.03.022
10.1152/ajpheart.00569.2015
10.1088/1741-2552/abc741
10.1152/jappl.1993.75.5.2288
10.1186/s12984-024-01424-8
10.1016/j.jbiomech.2006.11.013
10.1017/wtc.2023.9
10.1115/1.4029304
10.1109/MRA.2007.380653
10.1242/jeb.150011
10.1016/j.jbiomech.2005.03.025
10.1113/jphysiol.1949.sp004363
10.1371/journal.pone.0150378
10.1371/journal.pcbi.1008280
10.1249/mss.0000000000000232
10.1002/9780470549148
10.3390/app14125210
10.1515/crll.1911.140.1
10.1109/TBME.2023.3331271
10.1098/rsif.2010.0084
10.1006/acha.1995.1015
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3555182
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 56807
ExternalDocumentID oai_doaj_org_article_111061e7bb4c436cb74b6c09de001124
10_1109_ACCESS_2025_3555182
10942381
Genre orig-research
GrantInformation_xml – fundername: U.S. National Science Foundation
  grantid: CMMI-1436636
  funderid: 10.13039/100000001
– fundername: Mitsui USA Foundation Scholarship
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-fb463e6084400b2a06a366f75309f6f1ce3b8c2660791a3d0e73ebe3a91b2c6b3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001459579400049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:38:41 EDT 2025
Mon Jun 30 11:54:44 EDT 2025
Sat Nov 29 08:03:00 EST 2025
Wed Aug 27 02:04:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-fb463e6084400b2a06a366f75309f6f1ce3b8c2660791a3d0e73ebe3a91b2c6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0305-5405
0000-0002-6440-1917
0009-0004-0958-6041
0000-0002-3612-3315
0000-0002-3470-8221
OpenAccessLink https://doaj.org/article/111061e7bb4c436cb74b6c09de001124
PQID 3186394530
PQPubID 4845423
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_111061e7bb4c436cb74b6c09de001124
crossref_primary_10_1109_ACCESS_2025_3555182
proquest_journals_3186394530
ieee_primary_10942381
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
Sutton (ref50) 2020
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Zajac (ref20) 1989; 17
ref46
ref45
ref47
ref42
ref41
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Shi (ref49) 2021
ref35
ref34
ref37
ref36
ref31
ref30
Bischl (ref52) 2017
ref33
ref32
Schur (ref68) 1911; 140
Ghorbani (ref51)
ref2
ref1
ref39
ref38
Lundberg (ref61)
Nason (ref44) 2016
Ke (ref48)
ref24
ref23
ref26
ref25
ref64
Kim (ref67)
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
References_xml – ident: ref19
  doi: 10.1115/1.4023390
– ident: ref14
  doi: 10.1242/jeb.000950
– ident: ref27
  doi: 10.1016/j.jbiomech.2012.03.032
– ident: ref35
  doi: 10.1080/10255840612331393266
– ident: ref7
  doi: 10.1063/5.0101432
– ident: ref2
  doi: 10.2522/ptj.20090125
– ident: ref36
  doi: 10.1139/h08-117
– ident: ref15
  doi: 10.3389/fbioe.2020.00622
– ident: ref59
  doi: 10.3390/s16010066
– volume-title: Wavethresh: Wavelets Statistics and Transforms
  year: 2016
  ident: ref44
– ident: ref60
  doi: 10.1115/1.4024755
– ident: ref8
  doi: 10.3389/fped.2018.00257
– ident: ref41
  doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
– ident: ref33
  doi: 10.1016/S0966-6362(01)00155-2
– ident: ref42
  doi: 10.1371/journal.pone.0157243
– volume-title: Reinforcement Learning: An Introduction
  year: 2020
  ident: ref50
– ident: ref58
  doi: 10.1007/978-1-4612-0919-5_38
– ident: ref4
  doi: 10.1371/journal.pone.0222037
– ident: ref13
  doi: 10.1016/j.jelekin.2011.07.003
– ident: ref56
  doi: 10.1016/j.gaitpost.2007.03.009
– ident: ref53
  doi: 10.2307/1268522
– ident: ref55
  doi: 10.1152/japplphysiol.00023.2004
– ident: ref30
  doi: 10.1002/cnm.2721
– ident: ref38
  doi: 10.1251/bpo124
– start-page: 2242
  volume-title: Proc. 36th Int. Conf. Mach. Learn.
  ident: ref51
  article-title: Data shapley: Equitable valuation of data for machine learning
– ident: ref46
  doi: 10.1103/PhysRev.106.620
– ident: ref64
  doi: 10.1242/jeb.006767
– ident: ref26
  doi: 10.1152/japplphysiol.00445.2014
– ident: ref10
  doi: 10.1249/01.mss.0000176684.24008.6f
– volume-title: LightGBM: Light Gradient Boosting Machine
  year: 2021
  ident: ref49
– volume-title: R: A Language and Environment for Statistical Computing
  ident: ref47
– ident: ref37
  doi: 10.1109/TBME.1980.326652
– ident: ref6
  doi: 10.1017/S0263574715000983
– ident: ref9
  doi: 10.1123/jab.20.4.367
– ident: ref18
  doi: 10.1115/DETC2013-13633
– ident: ref25
  doi: 10.1006/jtbi.1997.0407
– ident: ref16
  doi: 10.1242/jeb.075697
– ident: ref31
  doi: 10.1371/journal.pone.0168070
– volume: 17
  start-page: 359
  issue: 4
  year: 1989
  ident: ref20
  article-title: Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control
  publication-title: Crit. Rev. Biomed. Eng.
– ident: ref39
  doi: 10.18637/jss.v031.i07
– ident: ref12
  doi: 10.1007/s10439-009-9852-5
– ident: ref32
  doi: 10.1016/j.gaitpost.2013.12.007
– start-page: 4768
  volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst.
  ident: ref61
  article-title: A unified approach to interpreting model predictions
– ident: ref54
  doi: 10.18637/jss.v067.i01
– start-page: 448
  volume-title: Proc. Int. Soc. Biomechanics Congr.
  ident: ref67
  article-title: Improving estimation accuracy of energy expenditure during running from a single IMU by estimating mechanical power via estimating ground reaction force
– ident: ref23
  doi: 10.1016/j.jbiomech.2007.03.022
– ident: ref24
  doi: 10.1152/ajpheart.00569.2015
– ident: ref40
  doi: 10.1088/1741-2552/abc741
– ident: ref45
  doi: 10.1152/jappl.1993.75.5.2288
– ident: ref65
  doi: 10.1186/s12984-024-01424-8
– ident: ref63
  doi: 10.1016/j.jbiomech.2006.11.013
– ident: ref5
  doi: 10.1017/wtc.2023.9
– ident: ref11
  doi: 10.1115/1.4029304
– ident: ref1
  doi: 10.1109/MRA.2007.380653
– ident: ref21
  doi: 10.1242/jeb.150011
– ident: ref17
  doi: 10.1016/j.jbiomech.2005.03.025
– ident: ref34
  doi: 10.1113/jphysiol.1949.sp004363
– ident: ref22
  doi: 10.1371/journal.pone.0150378
– ident: ref28
  doi: 10.1371/journal.pcbi.1008280
– ident: ref57
  doi: 10.1249/mss.0000000000000232
– ident: ref66
  doi: 10.1002/9780470549148
– start-page: 3149
  volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst.
  ident: ref48
  article-title: LightGBM: A highly efficient gradient boosting decision tree
– ident: ref29
  doi: 10.3390/app14125210
– volume: 140
  start-page: 1
  year: 1911
  ident: ref68
  article-title: Bemerkungen zur theorie der beschränkten bilinearformen mit unendlich vielen veränderlichen
  publication-title: J. für die reine und angewandte Mathematik
  doi: 10.1515/crll.1911.140.1
– ident: ref3
  doi: 10.1109/TBME.2023.3331271
– ident: ref62
  doi: 10.1098/rsif.2010.0084
– ident: ref43
  doi: 10.1006/acha.1995.1015
– year: 2017
  ident: ref52
  article-title: MlrMBO: A modular framework for model-based optimization of expensive black-box functions
  publication-title: arXiv:1703.03373
SSID ssj0000816957
Score 2.3413184
Snippet Objective: Current methods for measuring metabolic energy expenditure (MEE) constrain experiment design and only provide time-averaged values. We propose a...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 56793
SubjectTerms Angular velocity
Biological system modeling
Biomechanics
Computational modeling
Data models
Design of experiments
Electromyography
Force
gradient boosting
Human motion
Information theory
instantaneous metabolic energy expenditure
joint space
Kinematics
Legged locomotion
Machine learning
Mathematical models
Measurement methods
Metabolism
Muscles
Prediction models
predictive model
Predictive models
Regression analysis
surrogate methods
Walking
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbaqgc4QClFbGmRDxzr4sSOHXPrbrtQqVRIPNRbZDsTqRJKUJLl93fGSasixAEphyiaKLa_jOfheTD2LokdiEpkTROFbnQuHNoRAlRRGyN9E1O1zx9X9vq6vLlxX-Zk9ZQLAwAp-AxO6Tad5ddd3JCrDDncaRIx22zbWjMlaz04VKiDhCvsXFkISd-frVY4CbQB8-IUxWqRlfkf0icV6Z-7qvy1FSf5sn7-nyPbY89mRZKfTci_YFvQ7rOnj8oLvmTtZdL98AK07_lnGBHxn7eRX1DCH2UvDh_4uR-9OO9p0-PUGI3S03kKJOBrlHmEm1iiqKv5103fd-R1G7hva_6xT9FiI1923UDB0wfs-_ri2-qTmPsriKhMNoomaKPAyFIjI4fcS-OVMQ0aMNI1pskiqFAiVkZal3lVS7AKMVfeZSGPJqhXbKftWnjNuLaQS6TWQXpKri-RqCyLPITa1grkgp3cr3v1ayqjUSXzQ7pqgqkimKoZpgVbEjYPpFQDOz3ARa9mliLbBZURsCHoqJWJwepgonQ1kJ6b6wU7IKAefW_CaMGO7qGuZoYdKtzaUFfTOPXDf7z2hj2hIU7ulyO2M_YbOGa78fd4O_Rv0794B9Vn3Lg
  priority: 102
  providerName: IEEE
Title Instantaneous Metabolic Energetics: Data-Driven Modeling Using Function-Based Surrogates and Gradient Boosting
URI https://ieeexplore.ieee.org/document/10942381
https://www.proquest.com/docview/3186394530
https://doaj.org/article/111061e7bb4c436cb74b6c09de001124
Volume 13
WOSCitedRecordID wos001459579400049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-QwFA8iHvSw-MnO-kEOezSaNmnaeHPGGV1QEdwVbyFJUxCks7TVo3-776VVRjx4EUoPJZDm_ZL3Ed77PUJ-R7MTvGBJVXkmK5kyDXEECyIrleK28pHt8-4yv74u7u_1zUKrL8wJ6-mBe8Edw1kEkxNy56SXQnmXS6c812VAbyaNTKA81wvBVNTBRaJ0lg80QwnXx6eTCawIAsI0OwIbmyVF-sEURcb-ocXKJ70cjc1snfwYvER62v_dBlkK9SZZW-AO3CL1n-jYwRMgeKdXoQM4Hx88nWI1H5Ymtif0zHaWnTWo0Sh2PcPacxqzBOgMDBqCwsZgx0p6-9Q0c7xSa6mtS3rexFSwjo7n8xYzo7fJv9n07-SCDc0TmBcq6VjlpBJB8ULCKXWp5coKpSqITriuVJX4IFwBQCgQXmJFyUMuAFBhdeJSr5zYIcv1vA4_CZV5SDmMlo5brJwvYFBRZKlzZV6KwEfk8E2O5n_PkWFibMG16cVuUOxmEPuIjFHW70OR4Dp-ANjNALv5CvYR2UakFubTEr2PEdl7g84Mp7E1oLfAEZOw9F_fMfcuWcX19Bcxe2S5a57CPlnxz91D2xzEjQjvq5fpQSwnfAXYSuBp
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagIFEOPIu6UMAHjrg4sePE3LrbLq3YrpAoqDfLdhypEkqqJNvfz4zjVkVVD0g5RNFEsf1lPA_Pg5BPUewEL1jWNJ7JRuZMgx3BgihqpbhtfKz2-XtVrtfV-bn-kZLVYy5MCCEGn4V9vI1n-XXnN-gqAw7XEkXMQ_IIW2eldK0blwr2kNBFmWoLAfGXg8UCpgFWYF7sg2Atsir_R_7EMv2pr8qdzThKmOXz_xzbC_IsqZL0YML-JXkQ2lfk6a0Cg69JexK1P7gCWPj0NIyA-Z8LT48w5Q_zF4ev9NCOlh32uO1RbI2GCeo0hhLQJUg9RI7NQdjV9Oem7zv0uw3UtjX91sd4sZHOu27A8Okd8mt5dLY4ZqnDAvNCZSNrnFQiKF5JYGWXW66sUKoBE4brRjWZD8JVgJbipc6sqHkoBaAurM5c7pUTb8hW27Vhl1BZhpwDtXTcYnp9BURVVeTO1WUtAp-Rz9frbi6nQhomGiBcmwkmgzCZBNOMzBGbG1Ksgh0fwKKbxFRovYA6EkrnpJdCeVdKpzzXdUBNN5czsoNA3frehNGM7F1DbRLLDgY2N9DWJEz97T2vfSRPjs9OV2Z1sv7-jmzjcCdnzB7ZGvtNeE8e-6vxYug_xP_yL3sk4AE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Instantaneous+Metabolic+Energetics%3A+Data-Driven+Modeling+Using+Function-Based+Surrogates+and+Gradient+Boosting&rft.jtitle=IEEE+access&rft.au=Buglino%2C+Christopher&rft.au=Peng%2C+William+Z.&rft.au=Ashlyn%2C+Stacy&rft.au=Song%2C+Hyunjong&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=56793&rft.epage=56807&rft_id=info:doi/10.1109%2FACCESS.2025.3555182&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3555182
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon