Rapid Large-Scale Monitoring of Pine Wilt Disease Using Sentinel-1/2 Images in GEE

Pine wilt disease (PWD) is a severe forest disease caused by the infestation of pine wood nematodes. Due to its short disease cycle and strong transmission ability, it has caused significant damage to China’s forestry resources. To achieve large-scale monitoring of PWD, this study utilized machine l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forests Jg. 16; H. 6; S. 981
Hauptverfasser: Zhi, Junjun, Li, Lin, Fang, Yifan, Zhi, Dandan, Guang, Yi, Liu, Wangbin, Qu, Lean, Fu, Xinwu, Zhao, Haoshan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.06.2025
Schlagworte:
ISSN:1999-4907, 1999-4907
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Pine wilt disease (PWD) is a severe forest disease caused by the infestation of pine wood nematodes. Due to its short disease cycle and strong transmission ability, it has caused significant damage to China’s forestry resources. To achieve large-scale monitoring of PWD, this study utilized machine learning/deep learning algorithms with Sentinel-1/2 images in the Google Earth Engine cloud platform to implement province-wide PWD monitoring in Anhui Province, China. The study also analyzed the spatial distribution of PWD in Anhui Province from two perspectives—spatiotemporal patterns and influencing factors—aiming to investigate the spatiotemporal evolution patterns and the impact of influencing factors on the occurrence of PWD. The results show that (1) the random forest model exhibited the strongest performance, followed by the CNN model, while the DNN model performed the worst. Using the RF model to monitor PWD and calculate the affected area in Anhui Province from 2019 to 2024 yielded errors within 30% compared to official statistics. (2) PWD in Anhui Province showed a clear clustering trend, with global Moran’s indices all exceeding 0.79 from 2019 to 2024. The LISA map revealed a spread pattern from south to north and from west to east. (3) Topographic and temperature factors had the greatest influence on PWD distribution. SHAP analysis indicated that topographic and climatic factors were the primary drivers of PWD-affected areas, with slope and temperature being the two most significant contributing factors. This study helps to rapidly and accurately identify outbreak areas during epidemics and enables precise quarantine measures and targeted control efforts.
AbstractList Pine wilt disease (PWD) is a severe forest disease caused by the infestation of pine wood nematodes. Due to its short disease cycle and strong transmission ability, it has caused significant damage to China’s forestry resources. To achieve large-scale monitoring of PWD, this study utilized machine learning/deep learning algorithms with Sentinel-1/2 images in the Google Earth Engine cloud platform to implement province-wide PWD monitoring in Anhui Province, China. The study also analyzed the spatial distribution of PWD in Anhui Province from two perspectives—spatiotemporal patterns and influencing factors—aiming to investigate the spatiotemporal evolution patterns and the impact of influencing factors on the occurrence of PWD. The results show that (1) the random forest model exhibited the strongest performance, followed by the CNN model, while the DNN model performed the worst. Using the RF model to monitor PWD and calculate the affected area in Anhui Province from 2019 to 2024 yielded errors within 30% compared to official statistics. (2) PWD in Anhui Province showed a clear clustering trend, with global Moran’s indices all exceeding 0.79 from 2019 to 2024. The LISA map revealed a spread pattern from south to north and from west to east. (3) Topographic and temperature factors had the greatest influence on PWD distribution. SHAP analysis indicated that topographic and climatic factors were the primary drivers of PWD-affected areas, with slope and temperature being the two most significant contributing factors. This study helps to rapidly and accurately identify outbreak areas during epidemics and enables precise quarantine measures and targeted control efforts.
Audience Academic
Author Li, Lin
Zhi, Dandan
Zhao, Haoshan
Guang, Yi
Fang, Yifan
Qu, Lean
Zhi, Junjun
Liu, Wangbin
Fu, Xinwu
Author_xml – sequence: 1
  givenname: Junjun
  orcidid: 0000-0003-1965-447X
  surname: Zhi
  fullname: Zhi, Junjun
– sequence: 2
  givenname: Lin
  surname: Li
  fullname: Li, Lin
– sequence: 3
  givenname: Yifan
  surname: Fang
  fullname: Fang, Yifan
– sequence: 4
  givenname: Dandan
  surname: Zhi
  fullname: Zhi, Dandan
– sequence: 5
  givenname: Yi
  surname: Guang
  fullname: Guang, Yi
– sequence: 6
  givenname: Wangbin
  surname: Liu
  fullname: Liu, Wangbin
– sequence: 7
  givenname: Lean
  orcidid: 0000-0002-0204-8900
  surname: Qu
  fullname: Qu, Lean
– sequence: 8
  givenname: Xinwu
  surname: Fu
  fullname: Fu, Xinwu
– sequence: 9
  givenname: Haoshan
  surname: Zhao
  fullname: Zhao, Haoshan
BookMark eNptkU1PAjEQhhujiYgc_AdNPHlY6OwX2yNBRBKMBiQeN93ulJQsLbbLwX9vCcav0Dl00nned9KZK3JurEFCboD1k4SzgYKc5YwXcEY6wDmPUs6G57_yS9LzfsPCyYYFj9MOWSzETtd0Ltwao6UUDdIna3RrnTZrahV90Qbpm25aeq89Co905Q-lJZo2lJoIBjGdbcUaPdWGTieTa3KhROOx93V3yeph8jp-jObP09l4NI9kkkMbqSyVaQ0VYlVUvMZY1QpAJjhMMs4zkJVQRYCGUFUAdZZzBgoUV0UskBdV0iW3R9-ds-979G25sXtnQssyieOEAytY9kOtw99KbZRtnZBb7WU5KtLgmjPGA9U_QYWocatlmLLS4f2P4O4okM5671CVO6e3wn2UwMrDMsrvZQR28I-VuhWttiY00c0JxScSGYl9
CitedBy_id crossref_primary_10_1038_s41598_025_10696_6
Cites_doi 10.1016/j.foreco.2023.121612
10.1016/j.rse.2023.113793
10.1109/CVPRW59228.2023.00206
10.3390/f14020174
10.1016/j.rse.2023.113452
10.1016/j.isprsjprs.2021.08.016
10.3390/agriengineering2020019
10.3390/rs15133295
10.3390/rs13204065
10.1038/nature14539
10.3390/rs13183600
10.3390/rs14092028
10.5194/essd-11-1931-2019
10.1016/j.chaos.2024.114480
10.1016/j.ecolind.2025.113073
10.1109/ACCESS.2021.3073929
10.1016/j.isprsjprs.2020.11.005
10.1016/j.isprsjprs.2023.09.001
10.3390/rs14205164
10.3390/rs12142280
10.1109/JSTARS.2021.3102218
10.1080/01431161.2020.1766145
10.3390/f14102052
10.1016/j.ecolind.2021.108394
10.1016/j.isprsjprs.2013.11.013
10.5194/essd-15-4011-2023
10.1016/j.rse.2022.113332
10.1016/j.isprsjprs.2020.04.001
10.1016/j.rse.2024.114468
10.1016/j.foreco.2017.11.005
10.1080/13658810802443457
10.1016/j.compenvurbsys.2022.101845
10.3390/f15040596
10.1016/j.rse.2021.112822
10.3390/rs14235936
10.1016/j.isprsjprs.2020.11.024
10.3390/rs13112083
10.1038/s41467-023-38901-y
10.3390/rs14061526
10.1016/j.tfp.2025.100805
10.1016/j.rse.2021.112847
10.1016/j.compag.2024.108665
10.3390/f14081576
10.1109/TGRS.2022.3144165
10.1016/j.rse.2023.113759
10.1016/j.snb.2015.02.025
10.3390/rs14040913
10.1023/A:1010933404324
10.3390/rs15020360
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SN
7SS
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
M0K
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
DOI 10.3390/f16060981
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Natural Science Collection Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest SciTech Premium Collection‎ Natural Science Collection Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Agricultural Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest SciTech Collection
Ecology Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Agricultural Science Database
CrossRef

Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
EISSN 1999-4907
ExternalDocumentID A845696009
10_3390_f16060981
GeographicLocations China
Dabie Mountains
Anhui China
GeographicLocations_xml – name: China
– name: Anhui China
– name: Dabie Mountains
GroupedDBID 2XV
5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AENEX
AEUYN
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ATCPS
BANNL
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CITATION
ECGQY
EDH
HCIFZ
IAG
IAO
IEP
ITC
ITG
ITH
KQ8
LK5
M0K
M7R
MODMG
M~E
OK1
OZF
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
TR2
3V.
7SN
7SS
8FK
ABUWG
AZQEC
C1K
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-f54c4d1beeb8b9de2fdf11c3e7359951cbaf8f5471bb11d56901f1f9f82ae98b3
IEDL.DBID M0K
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001515632300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1999-4907
IngestDate Fri Jun 27 07:41:47 EDT 2025
Sat Nov 29 13:48:32 EST 2025
Sat Nov 29 10:30:50 EST 2025
Tue Nov 18 19:49:08 EST 2025
Sat Nov 29 07:12:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-f54c4d1beeb8b9de2fdf11c3e7359951cbaf8f5471bb11d56901f1f9f82ae98b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1965-447X
0000-0002-0204-8900
OpenAccessLink https://www.proquest.com/docview/3223910805?pq-origsite=%requestingapplication%
PQID 3223910805
PQPubID 2032398
ParticipantIDs proquest_journals_3223910805
gale_infotracmisc_A845696009
gale_infotracacademiconefile_A845696009
crossref_primary_10_3390_f16060981
crossref_citationtrail_10_3390_f16060981
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Forests
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References (ref_37) 2021; 100
Ren (ref_50) 2025; 170
Zhao (ref_9) 2023; 297
Hou (ref_1) 2024; 179
ref_12
Wieland (ref_49) 2023; 287
ref_52
Wang (ref_56) 2010; 24
ref_17
Li (ref_55) 2022; 96
Zhang (ref_7) 2020; 36
Meng (ref_39) 2022; 269
LeCun (ref_14) 2015; 521
Zhao (ref_30) 2022; 269
Mutanga (ref_13) 2014; 88
ref_24
Zang (ref_4) 2021; 171
ref_23
ref_22
ref_20
Tong (ref_40) 2024; 46
Yang (ref_35) 2023; 15
ref_29
ref_27
Ebrahimy (ref_45) 2021; 172
Wang (ref_2) 2024; 134
Li (ref_3) 2024; 217
Li (ref_43) 2021; 103
He (ref_21) 2022; 60
Ikegami (ref_54) 2018; 409
Oide (ref_11) 2022; 28
Wu (ref_31) 2023; 14
ref_36
ref_34
Jung (ref_6) 2024; 553
ref_33
ref_32
Deng (ref_16) 2020; 2
ref_38
Wang (ref_48) 2023; 297
Yu (ref_10) 2021; 101
Pan (ref_5) 2024; 315
Breiman (ref_46) 2001; 45
Tamiminia (ref_25) 2020; 164
ref_47
Yan (ref_41) 2015; 212
Peng (ref_26) 2019; 11
Lee (ref_53) 2025; 20
Konapala (ref_28) 2021; 180
Lu (ref_51) 2021; 133
Carroll (ref_42) 2023; 284
Park (ref_19) 2021; 14
Groth (ref_44) 2023; 204
ref_8
Li (ref_18) 2021; 9
Tao (ref_15) 2020; 41
References_xml – volume: 553
  start-page: 121612
  year: 2024
  ident: ref_6
  article-title: Analysis of the spread distance of pine wilt disease based on a high volume of spatiotemporal data recording of infected trees
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2023.121612
– volume: 297
  start-page: 113793
  year: 2023
  ident: ref_48
  article-title: Wetland mapping in East Asia by two-stage object-based Random Forest and hierarchical decision tree algorithms on Sentinel-1/2 images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2023.113793
– ident: ref_29
  doi: 10.1109/CVPRW59228.2023.00206
– ident: ref_27
  doi: 10.3390/f14020174
– volume: 28
  start-page: 100869
  year: 2022
  ident: ref_11
  article-title: Performance of machine learning algorithms for detecting pine wilt disease infection using visible color imagery by UAV remote sensing
  publication-title: Remote Sens. Appl. Soc. Environ.
– volume: 46
  start-page: 40
  year: 2024
  ident: ref_40
  article-title: Remote sensing recognition of pine wilt disease in Pinus massoniana forest combined with microwave and optical time-series images
  publication-title: J. Beijing For. Univ.
– volume: 287
  start-page: 113452
  year: 2023
  ident: ref_49
  article-title: Semantic segmentation of water bodies in very high-resolution satellite and aerial images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2023.113452
– volume: 180
  start-page: 163
  year: 2021
  ident: ref_28
  article-title: Exploring Sentinel-1 and Sentinel-2 diversity for flood inundation mapping using deep learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.08.016
– volume: 2
  start-page: 294
  year: 2020
  ident: ref_16
  article-title: Detection and Location of Dead Trees with Pine Wilt Disease Based on Deep Learning and UAV Remote Sensing
  publication-title: AgriEngineering
  doi: 10.3390/agriengineering2020019
– ident: ref_17
  doi: 10.3390/rs15133295
– ident: ref_23
  doi: 10.3390/rs13204065
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_14
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref_34
  doi: 10.3390/rs13183600
– ident: ref_36
  doi: 10.3390/rs14092028
– volume: 11
  start-page: 1931
  year: 2019
  ident: ref_26
  article-title: 1 km monthly temperature and precipitation dataset for China from 1901 to 2017
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-11-1931-2019
– volume: 134
  start-page: 104177
  year: 2024
  ident: ref_2
  article-title: A novel BH3DNet method for identifying pine wilt disease in Masson pine fusing UAS hyperspectral imagery and LiDAR data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 179
  start-page: 114480
  year: 2024
  ident: ref_1
  article-title: Dynamic analysis of pine wilt disease model with memory diffusion and nonlocal effect
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2024.114480
– volume: 170
  start-page: 113073
  year: 2025
  ident: ref_50
  article-title: MASFNet: Multi-level attention and spatial sampling fusion network for pine wilt disease trees detection
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2025.113073
– volume: 9
  start-page: 66346
  year: 2021
  ident: ref_18
  article-title: A Remote Sensing and Airborne Edge-Computing Based Detection System for Pine Wilt Disease
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3073929
– volume: 171
  start-page: 253
  year: 2021
  ident: ref_4
  article-title: Developing a spectral angle based vegetation index for detecting the early dying process of Chinese fir trees
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.11.005
– volume: 204
  start-page: 275
  year: 2023
  ident: ref_44
  article-title: Deep multitask learning with label interdependency distillation for multicriteria street-level image classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2023.09.001
– ident: ref_8
  doi: 10.3390/rs14205164
– ident: ref_12
  doi: 10.3390/rs12142280
– volume: 14
  start-page: 8350
  year: 2021
  ident: ref_19
  article-title: Multichannel Object Detection for Detecting Suspected Trees With Pine Wilt Disease Using Multispectral Drone Imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3102218
– volume: 41
  start-page: 8238
  year: 2020
  ident: ref_15
  article-title: Deep learning-based dead pine tree detection from unmanned aerial vehicle images
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2020.1766145
– ident: ref_33
  doi: 10.3390/f14102052
– volume: 133
  start-page: 108394
  year: 2021
  ident: ref_51
  article-title: The interaction of environmental factors increases the risk of spatiotemporal transmission of pine wilt disease
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2021.108394
– volume: 88
  start-page: 48
  year: 2014
  ident: ref_13
  article-title: Detecting Sirex noctilio grey-attacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.11.013
– volume: 15
  start-page: 4011
  year: 2023
  ident: ref_35
  article-title: Refined fine-scale mapping of tree cover using time series of Planet-NICFI and Sentinel-1 imagery for Southeast Asia (2016–2021)
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-15-4011-2023
– volume: 284
  start-page: 113332
  year: 2023
  ident: ref_42
  article-title: Optimizing WorldView-2, -3 cloud masking using machine learning approaches
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113332
– volume: 36
  start-page: 61
  year: 2020
  ident: ref_7
  article-title: Recognition of wilt wood caused by pine wilt nematode based on U-Net network and unmanned aerial vehicle images
  publication-title: Trans. Chin. Soc. Agric. Eng
– volume: 164
  start-page: 152
  year: 2020
  ident: ref_25
  article-title: Google Earth Engine for geo-big data applications: A meta-analysis and systematic review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.04.001
– volume: 101
  start-page: 102363
  year: 2021
  ident: ref_10
  article-title: A machine learning algorithm to detect pine wilt disease using UAV-based hyperspectral imagery and LiDAR data at the tree level
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 315
  start-page: 114468
  year: 2024
  ident: ref_5
  article-title: Impacts of pine species, infection response, and data type on the detection of Bursaphelenchus xylophilus using close-range hyperspectral remote sensing
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2024.114468
– volume: 103
  start-page: 102497
  year: 2021
  ident: ref_43
  article-title: Effectiveness of machine learning methods for water segmentation with ROI as the label: A case study of the Tuul River in Mongolia
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 409
  start-page: 343
  year: 2018
  ident: ref_54
  article-title: Estimate global risks of a forest disease under current and future climates using species distribution model and simple thermal model—Pine Wilt disease as a model case
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2017.11.005
– volume: 24
  start-page: 107
  year: 2010
  ident: ref_56
  article-title: Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658810802443457
– volume: 96
  start-page: 101845
  year: 2022
  ident: ref_55
  article-title: Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2022.101845
– ident: ref_38
  doi: 10.3390/f15040596
– volume: 269
  start-page: 112822
  year: 2022
  ident: ref_30
  article-title: Monthly mapping of forest harvesting using dense time series Sentinel-1 SAR imagery and deep learning
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112822
– ident: ref_20
  doi: 10.3390/rs14235936
– volume: 172
  start-page: 17
  year: 2021
  ident: ref_45
  article-title: Per-pixel land cover accuracy prediction: A random forest-based method with limited reference sample data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.11.024
– ident: ref_52
  doi: 10.3390/rs13112083
– volume: 14
  start-page: 3072
  year: 2023
  ident: ref_31
  article-title: Deep learning enables satellite-based monitoring of large populations of terrestrial mammals across heterogeneous landscape
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38901-y
– ident: ref_47
  doi: 10.3390/rs14061526
– volume: 20
  start-page: 100805
  year: 2025
  ident: ref_53
  article-title: Rapid spread and high prevalence of the pine wilt disease around wildfire areas
  publication-title: Trees For. People
  doi: 10.1016/j.tfp.2025.100805
– volume: 269
  start-page: 112847
  year: 2022
  ident: ref_39
  article-title: Landsat-based monitoring of southern pine beetle infestation severity and severity change in a temperate mixed forest
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112847
– volume: 217
  start-page: 108665
  year: 2024
  ident: ref_3
  article-title: Using only the red-edge bands is sufficient to detect tree stress: A case study on the early detection of PWD using hyperspectral drone images
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2024.108665
– ident: ref_22
  doi: 10.3390/f14081576
– volume: 60
  start-page: 4408715
  year: 2022
  ident: ref_21
  article-title: Swin Transformer Embedding UNet for Remote Sensing Image Semantic Segmentation
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2022.3144165
– volume: 297
  start-page: 113759
  year: 2023
  ident: ref_9
  article-title: Evaluating the potential of airborne hyperspectral LiDAR for assessing forest insects and diseases with 3D Radiative Transfer Modeling
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2023.113759
– volume: 212
  start-page: 353
  year: 2015
  ident: ref_41
  article-title: Feature selection and analysis on correlated gas sensor data with recursive feature elimination
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2015.02.025
– ident: ref_32
  doi: 10.3390/rs14040913
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_46
  article-title: Random Forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 100
  start-page: 102335
  year: 2021
  ident: ref_37
  article-title: Early detection of bark beetle infestation in Norway spruce forests of Central Europe using Sentinel-2
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_24
  doi: 10.3390/rs15020360
SSID ssj0000578924
Score 2.3483932
Snippet Pine wilt disease (PWD) is a severe forest disease caused by the infestation of pine wood nematodes. Due to its short disease cycle and strong transmission...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 981
SubjectTerms Accuracy
Algorithms
China
Chlorophyll
Clustering
Data mining
Datasets
Deep learning
Disease
Disease transmission
Efficiency
Epidemics
Forestry
Forests
Geospatial data
Infections
Machine learning
Monitoring
Neural networks
Pest outbreaks
Pine
Remote sensing
Spatial distribution
Statistical analysis
Trees
Wilt
Title Rapid Large-Scale Monitoring of Pine Wilt Disease Using Sentinel-1/2 Images in GEE
URI https://www.proquest.com/docview/3223910805
Volume 16
WOSCitedRecordID wos001515632300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: M0K
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: PCBAR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: PATMY
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: BENPR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: PIMPY
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB9arxRfatVKz15lkYJ9WS6bz92nYjVWsR7hrGCfQvYLDmzu9M4-9m93JsldOZC-9CUP2SEs-e3MzszOzg_gU2orVaFx5CLTisfSB1xHccVVHNhUSY0evmnIJrLRSN7eqqJLuM27ssqlTWwMtZ0aypEPceFFigriki-ze06sUXS62lFovIQeOsqKSvqugstVjgV9EYnxRdtQKMLofugFOuyBkmJtG3reGDc7zNnW_87tLbzpfEt23C6GbXjh6h14TeSbxOi2C-NxNZtY9p2Kv_k1guNYq9KU22NTzwp0ORnaiQU7bc9tWFNRwK6ppKh2d1wMQ3bxC03QnE1q9i3P38HNWf7j5Jx3nArcRKlYcJ_EJrZCO6cRCOtCb70QJnJZRK3HhNGVlyiUCa2FsAnxVXnhlZdh5RC7aA826mnt3gOrrFROZBHGtSqOQyfjxKdJqI13CLkVffi8_MWl6RqOE-_FXYmBB6FRrtDow-FKdNZ22XhO6IhwKknz8Dum6i4Q4Gyoh1V5jBNIMSALVB8Ga5KoMWZ9eAlj2WnsvPyL4f6_hz_AZkgcwE0mZgAbi4dH9xFemd-LyfzhAHpf81ExPmgWIj3_5PiuuLgqfj4BFGvmaQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFAEX3ohAAQuB4GJlvd6HfUCooimNmkZRW6RyWtYvKVLZhCaA-FP8Rmb2ERSp4tYDZ1uWd-fT55nxeD6AV5krdYnkyEVuNE9UiLiRScl1ErlMK4Mevq3FJvLJRJ2d6ekW_O7ewlBZZceJNVG7uaUc-QCBJzUVxKXvF984qUbR7WonodHA4tD_-okh2_LdaA_t-zqO94enHw54qyrArczEioc0sYkTxnuDW3E-Di4IYaXPJTXfEtaUQeGkXBgjhEtJsSmIoIOKS4-7l7juNdhOEOxRD7ano6Pp53VWB70fhRFN08JISh0NgsAQIdJKbBx8l9N_fabt3_nf_sZduN16z2y3gfs92PLVfbhB8qKkWfcAjo_LxcyxMZW38xOEn2cNaVH2ks0Dm6JTzZAJV2yvuZlidc0EO6GiqcqfczGI2egrkuySzSr2cTh8CJ-u5IseQa-aV_4xsNIp7UUuMXLXaG-vkjRkaWxs8AhqJ_rwtjNpYduW6qTscV5gaEXWL9bW78PL9dRF00fksklvCBcFcQuuY8v2iQTuhrp0Fbu4gQxDzkj3YWdjJnKC3RzuYFO0nLQs_mLmyb-HX8DNg9OjcTEeTQ6fwq2YFI_rvNMO9FYX3_0zuG5_rGbLi-ct_Bl8uWqM_QHLjkMU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFlVceCMCBSwEgouV9Xof9gGhQhKIWkVRClJvy_olRWo3aRNA_DV-HTP7CIpUceuB846s8frzZ489ng_gVeZKXSI5cpEbzRMVIm5kUnKdRC7TyuAO39ZiE_lkok5P9XQHfndvYSitsuPEmqjdwtIZeR-BJzUlxKX90KZFTAej98sLTgpSdNPayWk0EDnyv35i-LZ6Nx7gWL-O49Hwy8fPvFUY4FZmYs1DmtjECeO9Qbecj4MLQljpc0mFuIQ1ZVBolAtjhHApqTcFEXRQcemxJxLbvQF7OXqGgd_eh-FkOtuc8OBOSGF005QzklJH_SAwXIi0EluL4NVLQb2-je78z3_mLtxud9XssJkG92DHV_dhn2RHScvuAcxm5XLu2DGlvfMThKVnDZnRqSZbBDbFzTZDhlyzQXNjxepcCnZCyVSVP-OiH7PxOZLvis0r9mk4fAhfr6VHj2C3WlT-MbDSKe1FLjGi10kSe5WkIUtjY4NHsDvRg7fd8Ba2LbVOih9nBYZchIRig4QevNyYLpv6IlcZvSGMFMQ52I4t26cT6A1V7yoO0YEMQ9FI9-BgyxK5wm5_7iBUtFy1Kv7i58m_P7-AfQRWcTyeHD2FWzEJIdfHUQewu7787p_BTftjPV9dPm9nAoNv1w2xPwQqS64
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+Large-Scale+Monitoring+of+Pine+Wilt+Disease+Using+Sentinel-1%2F2+Images+in+GEE&rft.jtitle=Forests&rft.au=Zhi%2C+Junjun&rft.au=Li%2C+Lin&rft.au=Fang%2C+Yifan&rft.au=Zhi%2C+Dandan&rft.date=2025-06-01&rft.pub=MDPI+AG&rft.issn=1999-4907&rft.eissn=1999-4907&rft.volume=16&rft.issue=6&rft_id=info:doi/10.3390%2Ff16060981&rft.externalDocID=A845696009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4907&client=summon