Rapid Large-Scale Monitoring of Pine Wilt Disease Using Sentinel-1/2 Images in GEE
Pine wilt disease (PWD) is a severe forest disease caused by the infestation of pine wood nematodes. Due to its short disease cycle and strong transmission ability, it has caused significant damage to China’s forestry resources. To achieve large-scale monitoring of PWD, this study utilized machine l...
Gespeichert in:
| Veröffentlicht in: | Forests Jg. 16; H. 6; S. 981 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.06.2025
|
| Schlagworte: | |
| ISSN: | 1999-4907, 1999-4907 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Pine wilt disease (PWD) is a severe forest disease caused by the infestation of pine wood nematodes. Due to its short disease cycle and strong transmission ability, it has caused significant damage to China’s forestry resources. To achieve large-scale monitoring of PWD, this study utilized machine learning/deep learning algorithms with Sentinel-1/2 images in the Google Earth Engine cloud platform to implement province-wide PWD monitoring in Anhui Province, China. The study also analyzed the spatial distribution of PWD in Anhui Province from two perspectives—spatiotemporal patterns and influencing factors—aiming to investigate the spatiotemporal evolution patterns and the impact of influencing factors on the occurrence of PWD. The results show that (1) the random forest model exhibited the strongest performance, followed by the CNN model, while the DNN model performed the worst. Using the RF model to monitor PWD and calculate the affected area in Anhui Province from 2019 to 2024 yielded errors within 30% compared to official statistics. (2) PWD in Anhui Province showed a clear clustering trend, with global Moran’s indices all exceeding 0.79 from 2019 to 2024. The LISA map revealed a spread pattern from south to north and from west to east. (3) Topographic and temperature factors had the greatest influence on PWD distribution. SHAP analysis indicated that topographic and climatic factors were the primary drivers of PWD-affected areas, with slope and temperature being the two most significant contributing factors. This study helps to rapidly and accurately identify outbreak areas during epidemics and enables precise quarantine measures and targeted control efforts. |
|---|---|
| AbstractList | Pine wilt disease (PWD) is a severe forest disease caused by the infestation of pine wood nematodes. Due to its short disease cycle and strong transmission ability, it has caused significant damage to China’s forestry resources. To achieve large-scale monitoring of PWD, this study utilized machine learning/deep learning algorithms with Sentinel-1/2 images in the Google Earth Engine cloud platform to implement province-wide PWD monitoring in Anhui Province, China. The study also analyzed the spatial distribution of PWD in Anhui Province from two perspectives—spatiotemporal patterns and influencing factors—aiming to investigate the spatiotemporal evolution patterns and the impact of influencing factors on the occurrence of PWD. The results show that (1) the random forest model exhibited the strongest performance, followed by the CNN model, while the DNN model performed the worst. Using the RF model to monitor PWD and calculate the affected area in Anhui Province from 2019 to 2024 yielded errors within 30% compared to official statistics. (2) PWD in Anhui Province showed a clear clustering trend, with global Moran’s indices all exceeding 0.79 from 2019 to 2024. The LISA map revealed a spread pattern from south to north and from west to east. (3) Topographic and temperature factors had the greatest influence on PWD distribution. SHAP analysis indicated that topographic and climatic factors were the primary drivers of PWD-affected areas, with slope and temperature being the two most significant contributing factors. This study helps to rapidly and accurately identify outbreak areas during epidemics and enables precise quarantine measures and targeted control efforts. |
| Audience | Academic |
| Author | Li, Lin Zhi, Dandan Zhao, Haoshan Guang, Yi Fang, Yifan Qu, Lean Zhi, Junjun Liu, Wangbin Fu, Xinwu |
| Author_xml | – sequence: 1 givenname: Junjun orcidid: 0000-0003-1965-447X surname: Zhi fullname: Zhi, Junjun – sequence: 2 givenname: Lin surname: Li fullname: Li, Lin – sequence: 3 givenname: Yifan surname: Fang fullname: Fang, Yifan – sequence: 4 givenname: Dandan surname: Zhi fullname: Zhi, Dandan – sequence: 5 givenname: Yi surname: Guang fullname: Guang, Yi – sequence: 6 givenname: Wangbin surname: Liu fullname: Liu, Wangbin – sequence: 7 givenname: Lean orcidid: 0000-0002-0204-8900 surname: Qu fullname: Qu, Lean – sequence: 8 givenname: Xinwu surname: Fu fullname: Fu, Xinwu – sequence: 9 givenname: Haoshan surname: Zhao fullname: Zhao, Haoshan |
| BookMark | eNptkU1PAjEQhhujiYgc_AdNPHlY6OwX2yNBRBKMBiQeN93ulJQsLbbLwX9vCcav0Dl00nned9KZK3JurEFCboD1k4SzgYKc5YwXcEY6wDmPUs6G57_yS9LzfsPCyYYFj9MOWSzETtd0Ltwao6UUDdIna3RrnTZrahV90Qbpm25aeq89Co905Q-lJZo2lJoIBjGdbcUaPdWGTieTa3KhROOx93V3yeph8jp-jObP09l4NI9kkkMbqSyVaQ0VYlVUvMZY1QpAJjhMMs4zkJVQRYCGUFUAdZZzBgoUV0UskBdV0iW3R9-ds-979G25sXtnQssyieOEAytY9kOtw99KbZRtnZBb7WU5KtLgmjPGA9U_QYWocatlmLLS4f2P4O4okM5671CVO6e3wn2UwMrDMsrvZQR28I-VuhWttiY00c0JxScSGYl9 |
| CitedBy_id | crossref_primary_10_1038_s41598_025_10696_6 |
| Cites_doi | 10.1016/j.foreco.2023.121612 10.1016/j.rse.2023.113793 10.1109/CVPRW59228.2023.00206 10.3390/f14020174 10.1016/j.rse.2023.113452 10.1016/j.isprsjprs.2021.08.016 10.3390/agriengineering2020019 10.3390/rs15133295 10.3390/rs13204065 10.1038/nature14539 10.3390/rs13183600 10.3390/rs14092028 10.5194/essd-11-1931-2019 10.1016/j.chaos.2024.114480 10.1016/j.ecolind.2025.113073 10.1109/ACCESS.2021.3073929 10.1016/j.isprsjprs.2020.11.005 10.1016/j.isprsjprs.2023.09.001 10.3390/rs14205164 10.3390/rs12142280 10.1109/JSTARS.2021.3102218 10.1080/01431161.2020.1766145 10.3390/f14102052 10.1016/j.ecolind.2021.108394 10.1016/j.isprsjprs.2013.11.013 10.5194/essd-15-4011-2023 10.1016/j.rse.2022.113332 10.1016/j.isprsjprs.2020.04.001 10.1016/j.rse.2024.114468 10.1016/j.foreco.2017.11.005 10.1080/13658810802443457 10.1016/j.compenvurbsys.2022.101845 10.3390/f15040596 10.1016/j.rse.2021.112822 10.3390/rs14235936 10.1016/j.isprsjprs.2020.11.024 10.3390/rs13112083 10.1038/s41467-023-38901-y 10.3390/rs14061526 10.1016/j.tfp.2025.100805 10.1016/j.rse.2021.112847 10.1016/j.compag.2024.108665 10.3390/f14081576 10.1109/TGRS.2022.3144165 10.1016/j.rse.2023.113759 10.1016/j.snb.2015.02.025 10.3390/rs14040913 10.1023/A:1010933404324 10.3390/rs15020360 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SN 7SS 7X2 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO GNUQQ HCIFZ M0K PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY |
| DOI | 10.3390/f16060981 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Natural Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection ProQuest SciTech Premium Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Agricultural Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection |
| DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest SciTech Collection Ecology Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Agricultural Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Forestry |
| EISSN | 1999-4907 |
| ExternalDocumentID | A845696009 10_3390_f16060981 |
| GeographicLocations | China Dabie Mountains Anhui China |
| GeographicLocations_xml | – name: China – name: Anhui China – name: Dabie Mountains |
| GroupedDBID | 2XV 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AENEX AEUYN AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ATCPS BANNL BCNDV BENPR BHPHI BKSAR CCPQU CITATION ECGQY EDH HCIFZ IAG IAO IEP ITC ITG ITH KQ8 LK5 M0K M7R MODMG M~E OK1 OZF PATMY PCBAR PHGZM PHGZT PIMPY PROAC PYCSY TR2 3V. 7SN 7SS 8FK ABUWG AZQEC C1K DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c361t-f54c4d1beeb8b9de2fdf11c3e7359951cbaf8f5471bb11d56901f1f9f82ae98b3 |
| IEDL.DBID | M0K |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001515632300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1999-4907 |
| IngestDate | Fri Jun 27 07:41:47 EDT 2025 Sat Nov 29 13:48:32 EST 2025 Sat Nov 29 10:30:50 EST 2025 Tue Nov 18 19:49:08 EST 2025 Sat Nov 29 07:12:44 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-f54c4d1beeb8b9de2fdf11c3e7359951cbaf8f5471bb11d56901f1f9f82ae98b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1965-447X 0000-0002-0204-8900 |
| OpenAccessLink | https://www.proquest.com/docview/3223910805?pq-origsite=%requestingapplication% |
| PQID | 3223910805 |
| PQPubID | 2032398 |
| ParticipantIDs | proquest_journals_3223910805 gale_infotracmisc_A845696009 gale_infotracacademiconefile_A845696009 crossref_primary_10_3390_f16060981 crossref_citationtrail_10_3390_f16060981 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Forests |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | (ref_37) 2021; 100 Ren (ref_50) 2025; 170 Zhao (ref_9) 2023; 297 Hou (ref_1) 2024; 179 ref_12 Wieland (ref_49) 2023; 287 ref_52 Wang (ref_56) 2010; 24 ref_17 Li (ref_55) 2022; 96 Zhang (ref_7) 2020; 36 Meng (ref_39) 2022; 269 LeCun (ref_14) 2015; 521 Zhao (ref_30) 2022; 269 Mutanga (ref_13) 2014; 88 ref_24 Zang (ref_4) 2021; 171 ref_23 ref_22 ref_20 Tong (ref_40) 2024; 46 Yang (ref_35) 2023; 15 ref_29 ref_27 Ebrahimy (ref_45) 2021; 172 Wang (ref_2) 2024; 134 Li (ref_3) 2024; 217 Li (ref_43) 2021; 103 He (ref_21) 2022; 60 Ikegami (ref_54) 2018; 409 Oide (ref_11) 2022; 28 Wu (ref_31) 2023; 14 ref_36 ref_34 Jung (ref_6) 2024; 553 ref_33 ref_32 Deng (ref_16) 2020; 2 ref_38 Wang (ref_48) 2023; 297 Yu (ref_10) 2021; 101 Pan (ref_5) 2024; 315 Breiman (ref_46) 2001; 45 Tamiminia (ref_25) 2020; 164 ref_47 Yan (ref_41) 2015; 212 Peng (ref_26) 2019; 11 Lee (ref_53) 2025; 20 Konapala (ref_28) 2021; 180 Lu (ref_51) 2021; 133 Carroll (ref_42) 2023; 284 Park (ref_19) 2021; 14 Groth (ref_44) 2023; 204 ref_8 Li (ref_18) 2021; 9 Tao (ref_15) 2020; 41 |
| References_xml | – volume: 553 start-page: 121612 year: 2024 ident: ref_6 article-title: Analysis of the spread distance of pine wilt disease based on a high volume of spatiotemporal data recording of infected trees publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2023.121612 – volume: 297 start-page: 113793 year: 2023 ident: ref_48 article-title: Wetland mapping in East Asia by two-stage object-based Random Forest and hierarchical decision tree algorithms on Sentinel-1/2 images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2023.113793 – ident: ref_29 doi: 10.1109/CVPRW59228.2023.00206 – ident: ref_27 doi: 10.3390/f14020174 – volume: 28 start-page: 100869 year: 2022 ident: ref_11 article-title: Performance of machine learning algorithms for detecting pine wilt disease infection using visible color imagery by UAV remote sensing publication-title: Remote Sens. Appl. Soc. Environ. – volume: 46 start-page: 40 year: 2024 ident: ref_40 article-title: Remote sensing recognition of pine wilt disease in Pinus massoniana forest combined with microwave and optical time-series images publication-title: J. Beijing For. Univ. – volume: 287 start-page: 113452 year: 2023 ident: ref_49 article-title: Semantic segmentation of water bodies in very high-resolution satellite and aerial images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2023.113452 – volume: 180 start-page: 163 year: 2021 ident: ref_28 article-title: Exploring Sentinel-1 and Sentinel-2 diversity for flood inundation mapping using deep learning publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.08.016 – volume: 2 start-page: 294 year: 2020 ident: ref_16 article-title: Detection and Location of Dead Trees with Pine Wilt Disease Based on Deep Learning and UAV Remote Sensing publication-title: AgriEngineering doi: 10.3390/agriengineering2020019 – ident: ref_17 doi: 10.3390/rs15133295 – ident: ref_23 doi: 10.3390/rs13204065 – volume: 521 start-page: 436 year: 2015 ident: ref_14 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref_34 doi: 10.3390/rs13183600 – ident: ref_36 doi: 10.3390/rs14092028 – volume: 11 start-page: 1931 year: 2019 ident: ref_26 article-title: 1 km monthly temperature and precipitation dataset for China from 1901 to 2017 publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-11-1931-2019 – volume: 134 start-page: 104177 year: 2024 ident: ref_2 article-title: A novel BH3DNet method for identifying pine wilt disease in Masson pine fusing UAS hyperspectral imagery and LiDAR data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 179 start-page: 114480 year: 2024 ident: ref_1 article-title: Dynamic analysis of pine wilt disease model with memory diffusion and nonlocal effect publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2024.114480 – volume: 170 start-page: 113073 year: 2025 ident: ref_50 article-title: MASFNet: Multi-level attention and spatial sampling fusion network for pine wilt disease trees detection publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2025.113073 – volume: 9 start-page: 66346 year: 2021 ident: ref_18 article-title: A Remote Sensing and Airborne Edge-Computing Based Detection System for Pine Wilt Disease publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3073929 – volume: 171 start-page: 253 year: 2021 ident: ref_4 article-title: Developing a spectral angle based vegetation index for detecting the early dying process of Chinese fir trees publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.11.005 – volume: 204 start-page: 275 year: 2023 ident: ref_44 article-title: Deep multitask learning with label interdependency distillation for multicriteria street-level image classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2023.09.001 – ident: ref_8 doi: 10.3390/rs14205164 – ident: ref_12 doi: 10.3390/rs12142280 – volume: 14 start-page: 8350 year: 2021 ident: ref_19 article-title: Multichannel Object Detection for Detecting Suspected Trees With Pine Wilt Disease Using Multispectral Drone Imagery publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3102218 – volume: 41 start-page: 8238 year: 2020 ident: ref_15 article-title: Deep learning-based dead pine tree detection from unmanned aerial vehicle images publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2020.1766145 – ident: ref_33 doi: 10.3390/f14102052 – volume: 133 start-page: 108394 year: 2021 ident: ref_51 article-title: The interaction of environmental factors increases the risk of spatiotemporal transmission of pine wilt disease publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2021.108394 – volume: 88 start-page: 48 year: 2014 ident: ref_13 article-title: Detecting Sirex noctilio grey-attacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.11.013 – volume: 15 start-page: 4011 year: 2023 ident: ref_35 article-title: Refined fine-scale mapping of tree cover using time series of Planet-NICFI and Sentinel-1 imagery for Southeast Asia (2016–2021) publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-15-4011-2023 – volume: 284 start-page: 113332 year: 2023 ident: ref_42 article-title: Optimizing WorldView-2, -3 cloud masking using machine learning approaches publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113332 – volume: 36 start-page: 61 year: 2020 ident: ref_7 article-title: Recognition of wilt wood caused by pine wilt nematode based on U-Net network and unmanned aerial vehicle images publication-title: Trans. Chin. Soc. Agric. Eng – volume: 164 start-page: 152 year: 2020 ident: ref_25 article-title: Google Earth Engine for geo-big data applications: A meta-analysis and systematic review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.04.001 – volume: 101 start-page: 102363 year: 2021 ident: ref_10 article-title: A machine learning algorithm to detect pine wilt disease using UAV-based hyperspectral imagery and LiDAR data at the tree level publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 315 start-page: 114468 year: 2024 ident: ref_5 article-title: Impacts of pine species, infection response, and data type on the detection of Bursaphelenchus xylophilus using close-range hyperspectral remote sensing publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2024.114468 – volume: 103 start-page: 102497 year: 2021 ident: ref_43 article-title: Effectiveness of machine learning methods for water segmentation with ROI as the label: A case study of the Tuul River in Mongolia publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 409 start-page: 343 year: 2018 ident: ref_54 article-title: Estimate global risks of a forest disease under current and future climates using species distribution model and simple thermal model—Pine Wilt disease as a model case publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2017.11.005 – volume: 24 start-page: 107 year: 2010 ident: ref_56 article-title: Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658810802443457 – volume: 96 start-page: 101845 year: 2022 ident: ref_55 article-title: Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2022.101845 – ident: ref_38 doi: 10.3390/f15040596 – volume: 269 start-page: 112822 year: 2022 ident: ref_30 article-title: Monthly mapping of forest harvesting using dense time series Sentinel-1 SAR imagery and deep learning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112822 – ident: ref_20 doi: 10.3390/rs14235936 – volume: 172 start-page: 17 year: 2021 ident: ref_45 article-title: Per-pixel land cover accuracy prediction: A random forest-based method with limited reference sample data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.11.024 – ident: ref_52 doi: 10.3390/rs13112083 – volume: 14 start-page: 3072 year: 2023 ident: ref_31 article-title: Deep learning enables satellite-based monitoring of large populations of terrestrial mammals across heterogeneous landscape publication-title: Nat. Commun. doi: 10.1038/s41467-023-38901-y – ident: ref_47 doi: 10.3390/rs14061526 – volume: 20 start-page: 100805 year: 2025 ident: ref_53 article-title: Rapid spread and high prevalence of the pine wilt disease around wildfire areas publication-title: Trees For. People doi: 10.1016/j.tfp.2025.100805 – volume: 269 start-page: 112847 year: 2022 ident: ref_39 article-title: Landsat-based monitoring of southern pine beetle infestation severity and severity change in a temperate mixed forest publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112847 – volume: 217 start-page: 108665 year: 2024 ident: ref_3 article-title: Using only the red-edge bands is sufficient to detect tree stress: A case study on the early detection of PWD using hyperspectral drone images publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2024.108665 – ident: ref_22 doi: 10.3390/f14081576 – volume: 60 start-page: 4408715 year: 2022 ident: ref_21 article-title: Swin Transformer Embedding UNet for Remote Sensing Image Semantic Segmentation publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2022.3144165 – volume: 297 start-page: 113759 year: 2023 ident: ref_9 article-title: Evaluating the potential of airborne hyperspectral LiDAR for assessing forest insects and diseases with 3D Radiative Transfer Modeling publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2023.113759 – volume: 212 start-page: 353 year: 2015 ident: ref_41 article-title: Feature selection and analysis on correlated gas sensor data with recursive feature elimination publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2015.02.025 – ident: ref_32 doi: 10.3390/rs14040913 – volume: 45 start-page: 5 year: 2001 ident: ref_46 article-title: Random Forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 100 start-page: 102335 year: 2021 ident: ref_37 article-title: Early detection of bark beetle infestation in Norway spruce forests of Central Europe using Sentinel-2 publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_24 doi: 10.3390/rs15020360 |
| SSID | ssj0000578924 |
| Score | 2.3483932 |
| Snippet | Pine wilt disease (PWD) is a severe forest disease caused by the infestation of pine wood nematodes. Due to its short disease cycle and strong transmission... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 981 |
| SubjectTerms | Accuracy Algorithms China Chlorophyll Clustering Data mining Datasets Deep learning Disease Disease transmission Efficiency Epidemics Forestry Forests Geospatial data Infections Machine learning Monitoring Neural networks Pest outbreaks Pine Remote sensing Spatial distribution Statistical analysis Trees Wilt |
| Title | Rapid Large-Scale Monitoring of Pine Wilt Disease Using Sentinel-1/2 Images in GEE |
| URI | https://www.proquest.com/docview/3223910805 |
| Volume | 16 |
| WOSCitedRecordID | wos001515632300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-4907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000578924 issn: 1999-4907 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1999-4907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000578924 issn: 1999-4907 databaseCode: M0K dateStart: 20100301 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1999-4907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000578924 issn: 1999-4907 databaseCode: PCBAR dateStart: 20100301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1999-4907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000578924 issn: 1999-4907 databaseCode: PATMY dateStart: 20100301 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1999-4907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000578924 issn: 1999-4907 databaseCode: BENPR dateStart: 20100301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1999-4907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000578924 issn: 1999-4907 databaseCode: PIMPY dateStart: 20100301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB9arxRfatVKz15lkYJ9WS6bz92nYjVWsR7hrGCfQvYLDmzu9M4-9m93JsldOZC-9CUP2SEs-e3MzszOzg_gU2orVaFx5CLTisfSB1xHccVVHNhUSY0evmnIJrLRSN7eqqJLuM27ssqlTWwMtZ0aypEPceFFigriki-ze06sUXS62lFovIQeOsqKSvqugstVjgV9EYnxRdtQKMLofugFOuyBkmJtG3reGDc7zNnW_87tLbzpfEt23C6GbXjh6h14TeSbxOi2C-NxNZtY9p2Kv_k1guNYq9KU22NTzwp0ORnaiQU7bc9tWFNRwK6ppKh2d1wMQ3bxC03QnE1q9i3P38HNWf7j5Jx3nArcRKlYcJ_EJrZCO6cRCOtCb70QJnJZRK3HhNGVlyiUCa2FsAnxVXnhlZdh5RC7aA826mnt3gOrrFROZBHGtSqOQyfjxKdJqI13CLkVffi8_MWl6RqOE-_FXYmBB6FRrtDow-FKdNZ22XhO6IhwKknz8Dum6i4Q4Gyoh1V5jBNIMSALVB8Ga5KoMWZ9eAlj2WnsvPyL4f6_hz_AZkgcwE0mZgAbi4dH9xFemd-LyfzhAHpf81ExPmgWIj3_5PiuuLgqfj4BFGvmaQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFAEX3ohAAQuB4GJlvd6HfUCooimNmkZRW6RyWtYvKVLZhCaA-FP8Rmb2ERSp4tYDZ1uWd-fT55nxeD6AV5krdYnkyEVuNE9UiLiRScl1ErlMK4Mevq3FJvLJRJ2d6ekW_O7ewlBZZceJNVG7uaUc-QCBJzUVxKXvF984qUbR7WonodHA4tD_-okh2_LdaA_t-zqO94enHw54qyrArczEioc0sYkTxnuDW3E-Di4IYaXPJTXfEtaUQeGkXBgjhEtJsSmIoIOKS4-7l7juNdhOEOxRD7ano6Pp53VWB70fhRFN08JISh0NgsAQIdJKbBx8l9N_fabt3_nf_sZduN16z2y3gfs92PLVfbhB8qKkWfcAjo_LxcyxMZW38xOEn2cNaVH2ks0Dm6JTzZAJV2yvuZlidc0EO6GiqcqfczGI2egrkuySzSr2cTh8CJ-u5IseQa-aV_4xsNIp7UUuMXLXaG-vkjRkaWxs8AhqJ_rwtjNpYduW6qTscV5gaEXWL9bW78PL9dRF00fksklvCBcFcQuuY8v2iQTuhrp0Fbu4gQxDzkj3YWdjJnKC3RzuYFO0nLQs_mLmyb-HX8DNg9OjcTEeTQ6fwq2YFI_rvNMO9FYX3_0zuG5_rGbLi-ct_Bl8uWqM_QHLjkMU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFlVceCMCBSwEgouV9Xof9gGhQhKIWkVRClJvy_olRWo3aRNA_DV-HTP7CIpUceuB846s8frzZ489ng_gVeZKXSI5cpEbzRMVIm5kUnKdRC7TyuAO39ZiE_lkok5P9XQHfndvYSitsuPEmqjdwtIZeR-BJzUlxKX90KZFTAej98sLTgpSdNPayWk0EDnyv35i-LZ6Nx7gWL-O49Hwy8fPvFUY4FZmYs1DmtjECeO9Qbecj4MLQljpc0mFuIQ1ZVBolAtjhHApqTcFEXRQcemxJxLbvQF7OXqGgd_eh-FkOtuc8OBOSGF005QzklJH_SAwXIi0EluL4NVLQb2-je78z3_mLtxud9XssJkG92DHV_dhn2RHScvuAcxm5XLu2DGlvfMThKVnDZnRqSZbBDbFzTZDhlyzQXNjxepcCnZCyVSVP-OiH7PxOZLvis0r9mk4fAhfr6VHj2C3WlT-MbDSKe1FLjGi10kSe5WkIUtjY4NHsDvRg7fd8Ba2LbVOih9nBYZchIRig4QevNyYLpv6IlcZvSGMFMQ52I4t26cT6A1V7yoO0YEMQ9FI9-BgyxK5wm5_7iBUtFy1Kv7i58m_P7-AfQRWcTyeHD2FWzEJIdfHUQewu7787p_BTftjPV9dPm9nAoNv1w2xPwQqS64 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+Large-Scale+Monitoring+of+Pine+Wilt+Disease+Using+Sentinel-1%2F2+Images+in+GEE&rft.jtitle=Forests&rft.au=Zhi%2C+Junjun&rft.au=Li%2C+Lin&rft.au=Fang%2C+Yifan&rft.au=Zhi%2C+Dandan&rft.date=2025-06-01&rft.pub=MDPI+AG&rft.issn=1999-4907&rft.eissn=1999-4907&rft.volume=16&rft.issue=6&rft_id=info:doi/10.3390%2Ff16060981&rft.externalDocID=A845696009 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4907&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4907&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4907&client=summon |