On the Sum-Rate of RIS-Assisted MIMO Multiple-Access Channels Over Spatially Correlated Rician Fading

Reconfigurable intelligent surface (RIS) stands out as a promising technology by enhancing the electromagnetic wave propagation environment with its passive reflecting elements. In this paper, we focus on the ergodic sum-rate analysis and maximization of the RIS-assisted uplink multiuser multiple-in...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications Vol. 69; no. 12; pp. 8228 - 8241
Main Authors: Xu, Kaizhe, Zhang, Jun, Yang, Xi, Ma, Shaodan, Yang, Guanghua
Format: Journal Article
Language:English
Published: New York IEEE 01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0090-6778, 1558-0857
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reconfigurable intelligent surface (RIS) stands out as a promising technology by enhancing the electromagnetic wave propagation environment with its passive reflecting elements. In this paper, we focus on the ergodic sum-rate analysis and maximization of the RIS-assisted uplink multiuser multiple-input multiple-output (MIMO) multiple-access channel (MAC) under Rician fading by exploiting full statistical channel state information (CSI). The spatial correlations at the base station, the users, and the RIS are also considered. By using the replica method originated in statistical physics, the closed-form asymptotic ergodic sum-rate of the system is first derived in the large-system regime on the account of the unique channel structure of the RIS-assisted MIMO-MAC system. Then, based on the derived asymptotic ergodic sum-rate, we propose an alternating optimization (AO) algorithm to jointly design the transmit covariance matrix of users and the phase-shifting matrix of RIS with full statistical CSI. Simulation results are also demonstrated to verify the accuracy of the derived asymptotic ergodic sum-rate and the superiority of the proposed AO algorithm. The results reveal that the derived closed-form asymptotic ergodic sum-rate matches very well with the Monte Carlo results even for a small number of antennas, and the proposed AO algorithm can achieve up to 10 bps/Hz gain at high signal-to-noise (SNR) regime, which is therefore valuable for future RIS-assisted MIMO-MAC system designs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2021.3111022