Motor Fault Diagnosis and Detection with Convolutional Autoencoder (CAE) Based on Analysis of Electrical Energy Data

This study develops a Convolutional Autoencoder (CAE) and deep neural network (DNN)-based model optimized for real-time signal processing and high accuracy in motor fault diagnosis. This model learns complex patterns from voltage and current data and precisely analyzes them in combination with DNN t...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) Vol. 13; no. 19; p. 3946
Main Authors: Choi, YuRim, Joe, Inwhee
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.10.2024
Subjects:
ISSN:2079-9292, 2079-9292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study develops a Convolutional Autoencoder (CAE) and deep neural network (DNN)-based model optimized for real-time signal processing and high accuracy in motor fault diagnosis. This model learns complex patterns from voltage and current data and precisely analyzes them in combination with DNN through latent space representation. Traditional diagnostic methods relied on vibration and current sensors, empirical knowledge, or harmonic and threshold-based monitoring, but they had limitations in recognizing complex patterns and providing accurate diagnoses. Our model significantly enhances the accuracy of power data analysis and fault diagnosis by mapping each phase (R, S, and T) of the electrical system to the red, green, and blue (RGB) channels of image processing and applying various signal processing techniques. Optimized for real-time data streaming, this model demonstrated high practicality and effectiveness in an actual industrial environment, achieving 99.9% accuracy, 99.8% recall, and 99.9% precision. Specifically, it was able to more accurately diagnose motor efficiency and fault risks by utilizing power system analysis indicators such as phase voltage, total harmonic distortion (THD), and voltage unbalance. This integrated approach significantly enhances the real-time applicability of electric motor fault diagnosis and is expected to provide a crucial foundation for various industrial applications in the future.
AbstractList This study develops a Convolutional Autoencoder (CAE) and deep neural network (DNN)-based model optimized for real-time signal processing and high accuracy in motor fault diagnosis. This model learns complex patterns from voltage and current data and precisely analyzes them in combination with DNN through latent space representation. Traditional diagnostic methods relied on vibration and current sensors, empirical knowledge, or harmonic and threshold-based monitoring, but they had limitations in recognizing complex patterns and providing accurate diagnoses. Our model significantly enhances the accuracy of power data analysis and fault diagnosis by mapping each phase (R, S, and T) of the electrical system to the red, green, and blue (RGB) channels of image processing and applying various signal processing techniques. Optimized for real-time data streaming, this model demonstrated high practicality and effectiveness in an actual industrial environment, achieving 99.9% accuracy, 99.8% recall, and 99.9% precision. Specifically, it was able to more accurately diagnose motor efficiency and fault risks by utilizing power system analysis indicators such as phase voltage, total harmonic distortion (THD), and voltage unbalance. This integrated approach significantly enhances the real-time applicability of electric motor fault diagnosis and is expected to provide a crucial foundation for various industrial applications in the future.
Audience Academic
Author Joe, Inwhee
Choi, YuRim
Author_xml – sequence: 1
  givenname: YuRim
  orcidid: 0009-0001-6763-4476
  surname: Choi
  fullname: Choi, YuRim
– sequence: 2
  givenname: Inwhee
  surname: Joe
  fullname: Joe, Inwhee
BookMark eNp9kU1PAyEQhonRxFr7C7yQeNFDKx_dD45rP9SkxoueNxRmK80WKrCa_nup9WCMkTlAZt7nZTJzho6ts4DQBSUjzgW5gRZU9M4aFSingotxfoR6jBRiKJhgxz_ep2gQwpqkIygvOemh-Oii83guuzbiqZEr64IJWFqNpxCTsXEWf5j4iifOvru22ydki6suOrDKafD4alLNrvGtDKBxUlepvtubuAbPvnozKhEzC361w1MZ5Tk6aWQbYPB999HLfPY8uR8unu4eJtViqHhO47AhUpeZUNk4k0sNBNiyVDJTSgtGKSu0ICXwkjWFUiLP6JgkeUEkU4VuoOS8jy4Pvlvv3joIsV67zqf2Qs0pzXOaZSVLqtFBtZIt1MY2LnqpUmjYGJVm3ZiUr0rKSc4KThLAD4DyLgQPTb31ZiP9rqak3q-k_mMliRK_KGWi3I8zfWfaf9lPtdaXzA
CitedBy_id crossref_primary_10_3390_machines13060457
crossref_primary_10_1109_ACCESS_2025_3596859
crossref_primary_10_3390_act14030113
crossref_primary_10_1515_ijeeps_2024_0283
crossref_primary_10_1016_j_eswa_2025_128056
Cites_doi 10.1007/s42417-020-00253-y
10.1109/ACCESS.2022.3180153
10.1016/j.ymssp.2024.111629
10.1007/s40313-020-00579-8
10.1109/JSEN.2020.2995109
10.1016/j.ymssp.2023.110489
10.3390/electronics13020354
10.1007/s10489-020-01859-1
10.1109/ACCESS.2021.3076571
10.3390/s22041310
10.1016/j.energy.2021.121877
10.1016/j.eswa.2021.115000
10.1016/j.jfranklin.2022.11.004
10.1007/s10845-020-01591-0
10.1109/DEMPED.2019.8864915
10.3390/s222410002
10.1016/j.ymssp.2022.109832
10.3390/s23031305
10.3390/en17102340
10.1007/s40430-024-04890-2
10.1007/s10462-021-09993-z
10.3390/app10186385
10.3390/electronics11172746
10.1109/TASE.2019.2913628
10.1109/TIM.2023.3276513
10.3390/en13030723
10.1007/s00521-021-06668-2
10.1007/s10845-023-02198-x
10.3390/en14217152
10.3390/app10155251
10.1007/s40747-021-00637-x
10.1186/s10033-021-00568-1
10.1109/JAS.2019.1911393
10.3390/s23239311
10.1007/s10462-020-09934-2
10.3390/en16176345
10.1109/TNNLS.2021.3060494
10.1007/s11465-022-0736-9
10.3390/s21041044
10.3390/s21227587
10.1109/TIE.2020.2978710
10.1016/j.jprocont.2021.06.003
10.3390/app12042158
10.1016/j.scitotenv.2019.02.069
10.1109/TIM.2019.2925247
10.1007/s00170-022-10525-4
10.1007/s10845-020-01600-2
10.3390/en13061475
10.1109/TII.2020.2966326
10.1109/TR.2022.3180273
10.1016/j.cie.2019.106024
10.1007/s13748-020-00217-z
10.3390/app14031198
10.1109/TIA.2019.2958908
10.1016/j.cie.2020.107060
10.1007/s10845-023-02221-1
10.1007/s10845-024-02444-w
10.1007/s40430-023-04537-8
10.1007/s40430-023-04471-9
10.1016/j.aej.2023.12.065
10.1109/ICEMS.2019.8922036
10.3390/en15238938
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics13193946
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID A813062730
10_3390_electronics13193946
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c361t-f0ad859c545abde0e2b8ca5ccd921127d908e382f7cc965140d8570a2c7dfe833
IEDL.DBID P5Z
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001331870800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Sat Jul 26 00:21:08 EDT 2025
Tue Nov 04 18:17:41 EST 2025
Tue Nov 18 21:29:46 EST 2025
Sat Nov 29 07:13:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-f0ad859c545abde0e2b8ca5ccd921127d908e382f7cc965140d8570a2c7dfe833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-6763-4476
OpenAccessLink https://www.proquest.com/docview/3116615582?pq-origsite=%requestingapplication%
PQID 3116615582
PQPubID 2032404
ParticipantIDs proquest_journals_3116615582
gale_infotracacademiconefile_A813062730
crossref_primary_10_3390_electronics13193946
crossref_citationtrail_10_3390_electronics13193946
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Langarica (ref_9) 2020; 17
Sawaqed (ref_24) 2020; 9
ref_13
ref_57
ref_12
ref_11
ref_55
Jia (ref_26) 2022; 8
Hamdaoui (ref_23) 2023; 45
Cai (ref_48) 2021; 177
Liang (ref_62) 2020; 56
Souza (ref_49) 2021; 153
Errigo (ref_2) 2022; 49
ref_18
ref_16
ref_15
ref_59
Sonmez (ref_47) 2023; 45
Elkateb (ref_21) 2024; 88
Huang (ref_37) 2021; 104
Yu (ref_61) 2020; 16
Bappy (ref_45) 2023; 124
Tao (ref_50) 2023; 360
Roy (ref_56) 2020; 20
ref_20
ref_64
Liu (ref_34) 2023; 35
ref_27
Zhou (ref_30) 2023; 200
Prosvirin (ref_60) 2021; 9
Chen (ref_31) 2021; 32
Shao (ref_58) 2020; 69
Khorram (ref_40) 2021; 51
Zhao (ref_52) 2023; 72
Cai (ref_3) 2019; 665
Gundewar (ref_53) 2021; 9
Ventricci (ref_14) 2024; 46
ref_32
Wolkiewicz (ref_43) 2022; 10
An (ref_5) 2023; 72
Abid (ref_10) 2021; 54
Zhou (ref_25) 2023; 35
Principi (ref_41) 2019; 6
ref_39
Pan (ref_36) 2021; 34
ref_38
Wang (ref_51) 2022; 33
Du (ref_35) 2020; 2020
Adekitan (ref_63) 2020; 31
Yazici (ref_33) 2022; 34
Huang (ref_65) 2022; 55
Hsu (ref_17) 2021; 32
ref_46
Sousa (ref_1) 2022; 239
ref_44
ref_42
Zou (ref_28) 2024; 219
Jang (ref_22) 2023; 10
Jiang (ref_29) 2023; 185
Gyftakis (ref_54) 2021; 68
ref_8
ref_4
ref_7
Carvalho (ref_19) 2019; 137
ref_6
References_xml – volume: 9
  start-page: 643
  year: 2021
  ident: ref_53
  article-title: Condition Monitoring and Fault Diagnosis of Induction Motor
  publication-title: J. Vib. Eng. Technol.
  doi: 10.1007/s42417-020-00253-y
– volume: 10
  start-page: 59979
  year: 2022
  ident: ref_43
  article-title: Fault Diagnosis and Fault-Tolerant Control of PMSM Drives-State of the Art and Future Challenges
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3180153
– volume: 219
  start-page: 111629
  year: 2024
  ident: ref_28
  article-title: Toward accurate extraction of bearing fault modulation characteristics with novel time -frequency modulation bispectrum and modulation Gini index analysis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2024.111629
– volume: 31
  start-page: 718
  year: 2020
  ident: ref_63
  article-title: A New Definition of Voltage Unbalance Using Supply Phase Shift
  publication-title: J. Control Autom. Electr. Syst.
  doi: 10.1007/s40313-020-00579-8
– volume: 20
  start-page: 10792
  year: 2020
  ident: ref_56
  article-title: Autocorrelation Aided Random Forest Classifier-Based Bearing Fault Detection Framework
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2995109
– volume: 200
  start-page: 110489
  year: 2023
  ident: ref_30
  article-title: Rotating machinery fault-induced vibration signal modulation effects: A review with mechanisms, extraction methods and applications for diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2023.110489
– ident: ref_38
  doi: 10.3390/electronics13020354
– volume: 51
  start-page: 736
  year: 2021
  ident: ref_40
  article-title: End-to-end CNN plus LSTM deep learning approach for bearing fault diagnosis
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01859-1
– volume: 9
  start-page: 65838
  year: 2021
  ident: ref_60
  article-title: Global and Local Feature Extraction Using a Convolutional Autoencoder and Neural Networks for Diagnosing Centrifugal Pump Mechanical Faults
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3076571
– ident: ref_8
  doi: 10.3390/s22041310
– volume: 2020
  start-page: 1274380
  year: 2020
  ident: ref_35
  article-title: Fault Diagnosis under Variable Working Conditions Based on STFT and Transfer Deep Residual Network
  publication-title: Shock Vib.
– volume: 239
  start-page: 121877
  year: 2022
  ident: ref_1
  article-title: Assessment criteria of the feasibility of replacement standard efficiency electric motors with high-efficiency motors
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121877
– volume: 177
  start-page: 115000
  year: 2021
  ident: ref_48
  article-title: Data-driven early fault diagnostic methodology of permanent magnet synchronous motor
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115000
– volume: 360
  start-page: 1454
  year: 2023
  ident: ref_50
  article-title: Unsupervised cross-domain rolling bearing fault diagnosis based on time-frequency information fusion
  publication-title: J. Frankl. Inst.-Eng. Appl. Math.
  doi: 10.1016/j.jfranklin.2022.11.004
– volume: 32
  start-page: 823
  year: 2021
  ident: ref_17
  article-title: Multiple time-series convolutional neural network for fault detection and diagnosis and empirical study in semiconductor manufacturing
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-020-01591-0
– ident: ref_59
  doi: 10.1109/DEMPED.2019.8864915
– ident: ref_16
  doi: 10.3390/s222410002
– volume: 185
  start-page: 109832
  year: 2023
  ident: ref_29
  article-title: A time-frequency spectral amplitude modulation method and its applications in rolling bearing fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109832
– ident: ref_15
  doi: 10.3390/s23031305
– ident: ref_42
  doi: 10.3390/en17102340
– volume: 46
  start-page: 337
  year: 2024
  ident: ref_14
  article-title: Motor fault classification using hybrid short-time Fourier transform and wavelet transform with vibration signal and convolutional neural network
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-024-04890-2
– volume: 55
  start-page: 1289
  year: 2022
  ident: ref_65
  article-title: A novel fault diagnosis method based on CNN and LSTM and its application in fault diagnosis for complex systems
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-09993-z
– ident: ref_55
  doi: 10.3390/app10186385
– ident: ref_46
  doi: 10.3390/electronics11172746
– volume: 17
  start-page: 284
  year: 2020
  ident: ref_9
  article-title: An Industrial Internet Application for Real-Time Fault Diagnosis in Industrial Motors
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2019.2913628
– volume: 72
  start-page: 12
  year: 2023
  ident: ref_5
  article-title: Edge Solution for Real-Time Motor Fault Diagnosis Based on Efficient Convolutional Neural Network
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2023.3276513
– ident: ref_64
  doi: 10.3390/en13030723
– volume: 34
  start-page: 4803
  year: 2022
  ident: ref_33
  article-title: A novel deep learning approach for intelligent fault diagnosis applications based on time-frequency images
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06668-2
– volume: 35
  start-page: 3197
  year: 2023
  ident: ref_34
  article-title: A multisensory time-frequency features fusion method for rotating machinery fault diagnosis under nonstationary case
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-023-02198-x
– volume: 10
  start-page: 204
  year: 2023
  ident: ref_22
  article-title: Vibration data feature extraction and deep learning-based preprocessing method for highly accurate motor fault diagnosis
  publication-title: J. Comput. Des. Eng.
– ident: ref_4
  doi: 10.3390/en14217152
– ident: ref_13
  doi: 10.3390/app10155251
– volume: 8
  start-page: 2663
  year: 2022
  ident: ref_26
  article-title: Feature dimensionality reduction: A review
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-021-00637-x
– volume: 34
  start-page: 72
  year: 2021
  ident: ref_36
  article-title: Deep Learning Based Data Fusion for Sensor Fault Diagnosis and Tolerance in Autonomous Vehicles
  publication-title: Chin. J. Mech. Eng.
  doi: 10.1186/s10033-021-00568-1
– volume: 6
  start-page: 441
  year: 2019
  ident: ref_41
  article-title: Unsupervised Electric Motor Fault Detection by Using Deep Autoencoders
  publication-title: IEEE-CAA J. Autom. Sin.
  doi: 10.1109/JAS.2019.1911393
– ident: ref_44
  doi: 10.3390/s23239311
– volume: 54
  start-page: 3639
  year: 2021
  ident: ref_10
  article-title: A review on fault detection and diagnosis techniques: Basics and beyond
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09934-2
– ident: ref_11
  doi: 10.3390/en16176345
– volume: 33
  start-page: 4757
  year: 2022
  ident: ref_51
  article-title: Feature-Level Attention-Guided Multitask CNN for Fault Diagnosis and Working Conditions Identification of Rolling Bearing
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3060494
– ident: ref_18
  doi: 10.1007/s11465-022-0736-9
– ident: ref_20
  doi: 10.3390/s21041044
– ident: ref_12
  doi: 10.3390/s21227587
– volume: 68
  start-page: 3475
  year: 2021
  ident: ref_54
  article-title: Reliable Detection of Stator Interturn Faults of Very Low Severity Level in Induction Motors
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.2978710
– volume: 104
  start-page: 54
  year: 2021
  ident: ref_37
  article-title: A multi-rate sampling data fusion method for fault diagnosis and its industrial applications
  publication-title: J. Process. Control
  doi: 10.1016/j.jprocont.2021.06.003
– ident: ref_39
  doi: 10.3390/app12042158
– volume: 665
  start-page: 23
  year: 2019
  ident: ref_3
  article-title: Promoting sustainability of manufacturing industry through the lean energy-saving and emission-reduction strategy
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.069
– volume: 69
  start-page: 2658
  year: 2020
  ident: ref_58
  article-title: DCNN-Based Multi-Signal Induction Motor Fault Diagnosis
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2019.2925247
– volume: 124
  start-page: 1321
  year: 2023
  ident: ref_45
  article-title: Multi-channel sensor fusion for real-time bearing fault diagnosis by frequency-domain multilinear principal component analysis
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-022-10525-4
– volume: 32
  start-page: 971
  year: 2021
  ident: ref_31
  article-title: Bearing fault diagnosis base on multi-scale CNN and LSTM model
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-020-01600-2
– ident: ref_57
  doi: 10.3390/en13061475
– volume: 16
  start-page: 6347
  year: 2020
  ident: ref_61
  article-title: One-Dimensional Residual Convolutional Autoencoder Based Feature Learning for Gearbox Fault Diagnosis
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.2966326
– volume: 72
  start-page: 692
  year: 2023
  ident: ref_52
  article-title: Intelligent Diagnosis Using Continuous Wavelet Transform and Gauss Convolutional Deep Belief Network
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2022.3180273
– volume: 137
  start-page: 106024
  year: 2019
  ident: ref_19
  article-title: A systematic literature review of machine learning methods applied to predictive maintenance
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2019.106024
– volume: 9
  start-page: 341
  year: 2020
  ident: ref_24
  article-title: Bearing fault diagnostic using machine learning algorithms
  publication-title: Prog. Artif. Intell.
  doi: 10.1007/s13748-020-00217-z
– ident: ref_32
  doi: 10.3390/app14031198
– volume: 56
  start-page: 1205
  year: 2020
  ident: ref_62
  article-title: Induction Motors Fault Diagnosis Using Finite Element Method: A Review
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2019.2958908
– volume: 153
  start-page: 107060
  year: 2021
  ident: ref_49
  article-title: Deep learning for diagnosis and classification of faults in industrial rotating machinery
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.107060
– volume: 35
  start-page: 3523
  year: 2023
  ident: ref_25
  article-title: Trustworthy and intelligent fault diagnosis with effective denoising and evidential stacked GRU neural network
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-023-02221-1
– ident: ref_27
  doi: 10.1007/s10845-024-02444-w
– volume: 45
  start-page: 644
  year: 2023
  ident: ref_47
  article-title: A new deep learning model combining CNN for engine fault diagnosis
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-023-04537-8
– volume: 49
  start-page: 101694
  year: 2022
  ident: ref_2
  article-title: Techno-economic-environmental impacts of industrial energy assessment: Sustainable industrial motor systems of small and medium-sized enterprises
  publication-title: Sustain. Energy Technol. Assess.
– volume: 45
  start-page: 576
  year: 2023
  ident: ref_23
  article-title: Improved signal processing for bearing fault diagnosis in noisy environments using signal denoising, time-frequency transform, and deep learning
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-023-04471-9
– volume: 88
  start-page: 298
  year: 2024
  ident: ref_21
  article-title: Machine learning and IoT-Based predictive maintenance approach for industrial applications
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2023.12.065
– ident: ref_6
  doi: 10.1109/ICEMS.2019.8922036
– ident: ref_7
  doi: 10.3390/en15238938
SSID ssj0000913830
Score 2.33663
Snippet This study develops a Convolutional Autoencoder (CAE) and deep neural network (DNN)-based model optimized for real-time signal processing and high accuracy in...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 3946
SubjectTerms Accuracy
Artificial intelligence
Artificial neural networks
Data analysis
Data processing
Data transmission
Deep learning
Efficiency
Electric motors
Electric potential
Electric power systems
Energy consumption
Fault diagnosis
Harmonic distortion
Image processing
Industrial applications
Information management
Integrated approach
Knowledge representation
Machine learning
Neural networks
Pattern recognition
Preventive maintenance
Productivity
Real time
Sensors
Signal processing
Systems analysis
Vibration analysis
Vibration monitoring
Voltage
Title Motor Fault Diagnosis and Detection with Convolutional Autoencoder (CAE) Based on Analysis of Electrical Energy Data
URI https://www.proquest.com/docview/3116615582
Volume 13
WOSCitedRecordID wos001331870800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6apIf20PQVum2y6FBoCzWxJdmWTmGz66U97GJKC2kvRqsHBIKdrL055rdXY2uTHEIuudqyEJ4ZzUOj7wP4LI2QqYxd5JxlEV8Z522Omohzk9NMcW2168km8uVSnJ3JMhTc2tBWud0T-43aNBpr5McsSTI8QxP05PIqQtYoPF0NFBo7sIcoCUjdUKb_bmssiHkpWDyADTGf3R_fccu0iVc-JjHwveeQHt6We18z33_qKl_DqxBlksmgFm_gma3fwst72IPvoFs0Pt0mc7W56MhsaLg7b4mqDZnZrm_QqglWacm0qa-DguKcm65B8Etj1-TrdFJ8I6feERriR28BTkjjSNH_AtQAUvTXC8lMdeo9_JkXv6c_okDBEGmWJV3kYmVEKrWPs9TK2NjSldAq1dpInznS3MhYWCaoy7WWmQ--YoOI-Yrq3DgrGDuA3bqp7QcgXFCeO56m1FHubKby2Bkpc8WVTrSwI6BbOVQ64JMjTcZF5fMUFF71gPBG8P32o8sBnuPx4V9QwBUar59bq3AHwa8QYbCqifAuPfMRXTyCw62Aq2DVbXUn3Y-Pv_4EL6gPfoamv0PY7dYbewTP9XV33q7HsHdaLMtfY9hZ3BTjXmX9s_Lnovz7H4zv-Os
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWyTgQHmKbQv4AAIkoiaOk9iHCi37UFftrvZQpHIKXj-kSlXSbrxF_VP8Rjx5tD1UvfXAOY6V2J9nPo_H3wB8FJqLRIQ2sNbEAVtq69cc1QFjOqOpZMooWxebyOZzfnIiFhvwt7sLg2mVnU2sDbUuFcbI9-IoSvEMjdPv5xcBVo3C09WuhEYDi0Nz9cdv2ar96cjP7ydKJ-Pj4UHQVhUIVJxGLrCh1DwRylMHudQmNHTJlUyU0sJvhmimRchNzKnNlBKp5xOhRhF4SVWmreEYAPUmf5Mh2HuwuZjOFr-uozqossnjsJE3imMR7t1Us6kiD_dYINW-5QLvdgS1d5ts_W_j8hyetTyaDBrgv4ANU7yEp7fUFV-Bm5WuXJGJXJ85MmpSCk8rIgtNRsbVKWgFwTg0GZbFZbsEsc-1K1HeU5sV-TIcjL-SH97Va-JbdxIupLRkXA85YpyM6wuUZCSdfA0_H-S330CvKAvzFgjjlGWWJQm1lFmTyiy0WohMMqkixU0faDfvuWoV2LEQyFnud2IIlvwOsPTh2_VL540Ayf3NPyOgcjRPvm8l21sW_gtR6CsfcE9aUs9Zwz7sdoDKW7tV5Tdo2r7_8Qd4fHA8O8qPpvPDHXhCPdVrUhx3oedWa_MOHqlLd1qt3rdLhMDvh0bfP68JU7A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBSE4lLfYUsAHECARreM8bB8QWja7oiqs9gBSxSX1-iFVqpKy8Rbx1_h1ePJoe6h664FzHCuPb8bfjMffALyWRshMUhc5Z5MoXRkXbI6ZKE0NZ7lKtdWubTbBFwtxeCiXW_B3OAuDZZWDT2wdtak15sjHSRznuIcm2Nj1ZRHLYv7p9FeEHaRwp3Vop9FB5MD--R3Ct-bjfhH-9RvG5rPv0y9R32Eg0kke-8hRZUQmdaARamUstWwltMq0NjIERowbSYVNBHNca5kHbkENCsIrprlxVmAyNLj_WzzEmFhOuMx-nud3UG9TJLQTOkoSSccXfW2aOAA_kUi6Ly2GVy8J7To3v_8_f6EHsNOzazLpzOEhbNnqEdy7pLn4GPy32tdrMlebE0-KrtDwuCGqMqSwvi1Mqwhmp8m0rs56w8Q5N75G0U9j1-TddDJ7Tz4HAmBIGD0Iu5DakVn7-RH5ZNYeqySF8uoJ_LiR134K21Vd2WdAUsFS7tIsY46lzuaKU2ek5CpVOtbCjoANGCh1r8uO7UFOyhCfIXDKK4Azgg_nN512siTXD3-L4CrRaYW5terPXoQnRPmvciIClckDk6Uj2BvAVfberCkvkLV7_eVXcCdArvy6vzh4DndZ4H9d3eMebPv1xr6A2_rMHzfrl62tEDi6aej9A66BWxM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Motor+Fault+Diagnosis+and+Detection+with+Convolutional+Autoencoder+%28CAE%29+Based+on+Analysis+of+Electrical+Energy+Data&rft.jtitle=Electronics+%28Basel%29&rft.au=Choi%2C+YuRim&rft.au=Joe%2C+Inwhee&rft.date=2024-10-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=13&rft.issue=19&rft.spage=3946&rft_id=info:doi/10.3390%2Felectronics13193946&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics13193946
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon