Performance Comparison and Current Challenges of Using Machine Learning Techniques in Cybersecurity

Cyberspace has become an indispensable factor for all areas of the modern world. The world is becoming more and more dependent on the internet for everyday living. The increasing dependency on the internet has also widened the risks of malicious threats. On account of growing cybersecurity risks, cy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) Jg. 13; H. 10; S. 2509
Hauptverfasser: Shaukat, Kamran, Luo, Suhuai, Varadharajan, Vijay, Hameed, Ibrahim, Chen, Shan, Liu, Dongxi, Li, Jiaming
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.05.2020
Schlagworte:
ISSN:1996-1073, 1996-1073
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Cyberspace has become an indispensable factor for all areas of the modern world. The world is becoming more and more dependent on the internet for everyday living. The increasing dependency on the internet has also widened the risks of malicious threats. On account of growing cybersecurity risks, cybersecurity has become the most pivotal element in the cyber world to battle against all cyber threats, attacks, and frauds. The expanding cyberspace is highly exposed to the intensifying possibility of being attacked by interminable cyber threats. The objective of this survey is to bestow a brief review of different machine learning (ML) techniques to get to the bottom of all the developments made in detection methods for potential cybersecurity risks. These cybersecurity risk detection methods mainly comprise of fraud detection, intrusion detection, spam detection, and malware detection. In this review paper, we build upon the existing literature of applications of ML models in cybersecurity and provide a comprehensive review of ML techniques in cybersecurity. To the best of our knowledge, we have made the first attempt to give a comparison of the time complexity of commonly used ML models in cybersecurity. We have comprehensively compared each classifier’s performance based on frequently used datasets and sub-domains of cyber threats. This work also provides a brief introduction of machine learning models besides commonly used security datasets. Despite having all the primary precedence, cybersecurity has its constraints compromises, and challenges. This work also expounds on the enormous current challenges and limitations faced during the application of machine learning techniques in cybersecurity.
AbstractList Cyberspace has become an indispensable factor for all areas of the modern world. The world is becoming more and more dependent on the internet for everyday living. The increasing dependency on the internet has also widened the risks of malicious threats. On account of growing cybersecurity risks, cybersecurity has become the most pivotal element in the cyber world to battle against all cyber threats, attacks, and frauds. The expanding cyberspace is highly exposed to the intensifying possibility of being attacked by interminable cyber threats. The objective of this survey is to bestow a brief review of different machine learning (ML) techniques to get to the bottom of all the developments made in detection methods for potential cybersecurity risks. These cybersecurity risk detection methods mainly comprise of fraud detection, intrusion detection, spam detection, and malware detection. In this review paper, we build upon the existing literature of applications of ML models in cybersecurity and provide a comprehensive review of ML techniques in cybersecurity. To the best of our knowledge, we have made the first attempt to give a comparison of the time complexity of commonly used ML models in cybersecurity. We have comprehensively compared each classifier’s performance based on frequently used datasets and sub-domains of cyber threats. This work also provides a brief introduction of machine learning models besides commonly used security datasets. Despite having all the primary precedence, cybersecurity has its constraints compromises, and challenges. This work also expounds on the enormous current challenges and limitations faced during the application of machine learning techniques in cybersecurity.
Author Shaukat, Kamran
Luo, Suhuai
Li, Jiaming
Hameed, Ibrahim
Chen, Shan
Varadharajan, Vijay
Liu, Dongxi
Author_xml – sequence: 1
  givenname: Kamran
  orcidid: 0000-0003-2174-3383
  surname: Shaukat
  fullname: Shaukat, Kamran
– sequence: 2
  givenname: Suhuai
  surname: Luo
  fullname: Luo, Suhuai
– sequence: 3
  givenname: Vijay
  surname: Varadharajan
  fullname: Varadharajan, Vijay
– sequence: 4
  givenname: Ibrahim
  orcidid: 0000-0003-1252-260X
  surname: Hameed
  fullname: Hameed, Ibrahim
– sequence: 5
  givenname: Shan
  surname: Chen
  fullname: Chen, Shan
– sequence: 6
  givenname: Dongxi
  surname: Liu
  fullname: Liu, Dongxi
– sequence: 7
  givenname: Jiaming
  surname: Li
  fullname: Li, Jiaming
BookMark eNptkU2PEzEMhiO0SCzLXvgFkbghlXU-JpM5ohEsKxXBYfcceTJOm2qalGR66L9nShGsEL7YevX4tS2_ZlcpJ2LsrYAPSnVwR0koAbKB7gW7Fl1nVgJadfWsfsVua93BEkoJpdQ189-phFz2mDzxPu8PWGLNiWMaeX8shdLM-y1OE6UNVZ4Df6oxbfhX9NuYiK8JSzoLj-S3Kf44LlBMvD8NVCr5Y4nz6Q17GXCqdPs737Cnz58e-y-r9bf7h_7jeuWVEfOKSOtWeDnarjXgoRlVwBBab4TEoQHrZbCdscMIYpHloFAP0Hoh7GiCRHXDHi6-Y8adO5S4x3JyGaP7JeSycVjm6CdyfhgE2sFqDUabES2BIdnZDmEUAbvF693F61Dy-ajZ7fKxpGV9JzXoBrSWzUK9v1C-5FoLhT9TBbjzT9zfnyww_AP7OOMcc5oLxul_LT8BZjmQaA
CitedBy_id crossref_primary_10_1002_int_23088
crossref_primary_10_1007_s11227_023_05726_x
crossref_primary_10_1038_s41598_025_05257_w
crossref_primary_10_1177_21582440221096445
crossref_primary_10_1016_j_ipm_2022_103132
crossref_primary_10_1016_j_engappai_2023_107213
crossref_primary_10_1109_ACCESS_2024_3482728
crossref_primary_10_3390_s23084149
crossref_primary_10_1038_s41598_025_02008_9
crossref_primary_10_1145_3657647
crossref_primary_10_1093_comjnl_bxaf049
crossref_primary_10_1109_ACCESS_2022_3204171
crossref_primary_10_3389_frai_2024_1414122
crossref_primary_10_32604_cmc_2022_023007
crossref_primary_10_1108_IJPCC_12_2023_0358
crossref_primary_10_3390_math10173120
crossref_primary_10_1016_j_bspc_2024_106605
crossref_primary_10_32604_cmc_2022_018742
crossref_primary_10_3390_electronics11081282
crossref_primary_10_3390_pr10050838
crossref_primary_10_1016_j_patcog_2024_110493
crossref_primary_10_32604_cmc_2022_019152
crossref_primary_10_3390_s21248280
crossref_primary_10_1016_j_patcog_2024_111182
crossref_primary_10_3390_info12100398
crossref_primary_10_3390_su13084120
crossref_primary_10_1007_s10586_024_05034_w
crossref_primary_10_3390_e24050638
crossref_primary_10_1007_s00521_024_10436_3
crossref_primary_10_3390_electronics10060647
crossref_primary_10_3390_s22020454
crossref_primary_10_3390_jcm13030680
crossref_primary_10_32604_cmes_2023_046658
crossref_primary_10_32604_jcs_2024_056164
crossref_primary_10_1063_5_0207658
crossref_primary_10_1109_ACCESS_2024_3387728
crossref_primary_10_1016_j_knosys_2023_110254
crossref_primary_10_32604_cmc_2022_026621
crossref_primary_10_32604_csse_2023_037127
crossref_primary_10_3390_app112110353
crossref_primary_10_1016_j_eswa_2024_124095
crossref_primary_10_32604_cmc_2022_018295
crossref_primary_10_3390_app12010283
crossref_primary_10_1016_j_iswa_2023_200222
crossref_primary_10_1016_j_scitotenv_2024_173843
crossref_primary_10_1109_ACCESS_2020_3033784
crossref_primary_10_3390_electronics11131931
crossref_primary_10_3390_app13010581
crossref_primary_10_32604_cmc_2022_019847
crossref_primary_10_32604_cmc_2024_044890
crossref_primary_10_1016_j_engappai_2024_107999
crossref_primary_10_3390_app11135863
crossref_primary_10_1007_s40313_023_01057_7
crossref_primary_10_3390_electronics11040524
crossref_primary_10_3390_s22249837
crossref_primary_10_3390_s23031386
crossref_primary_10_1016_j_engappai_2023_106471
crossref_primary_10_3390_info15050262
crossref_primary_10_3390_app122111174
crossref_primary_10_3390_cryptography7020021
crossref_primary_10_1016_j_asoc_2022_108768
crossref_primary_10_1155_acis_1013769
crossref_primary_10_21833_ijaas_2025_06_009
crossref_primary_10_32604_cmc_2024_057279
crossref_primary_10_3390_fi17080365
crossref_primary_10_3390_en18020268
crossref_primary_10_1007_s42979_023_02375_y
crossref_primary_10_3390_s22072593
crossref_primary_10_1109_ACCESS_2020_3041951
crossref_primary_10_32604_cmc_2023_038758
crossref_primary_10_1109_ACCESS_2024_3464866
crossref_primary_10_32604_cmc_2023_038639
crossref_primary_10_3390_app12157441
crossref_primary_10_3390_s22020432
crossref_primary_10_1016_j_chbr_2025_100668
crossref_primary_10_1016_j_eswa_2021_115076
crossref_primary_10_3390_electronics13030555
crossref_primary_10_32604_cmc_2022_024501
crossref_primary_10_3390_app12052589
crossref_primary_10_1016_j_adhoc_2023_103257
crossref_primary_10_1007_s42979_023_01822_0
crossref_primary_10_1155_2022_7384803
crossref_primary_10_1007_s10462_023_10557_6
crossref_primary_10_1109_ACCESS_2023_3303113
crossref_primary_10_3390_diagnostics12123145
crossref_primary_10_3390_s23063000
crossref_primary_10_1016_j_engappai_2022_105634
crossref_primary_10_1007_s10586_023_04168_7
crossref_primary_10_1016_j_engappai_2022_105639
crossref_primary_10_1016_j_cosrev_2024_100686
crossref_primary_10_1016_j_sigpro_2024_109874
crossref_primary_10_3390_computers14070281
crossref_primary_10_3390_su14106082
crossref_primary_10_1007_s12083_024_01829_1
crossref_primary_10_1155_2022_2532580
crossref_primary_10_1109_ACCESS_2020_3010729
crossref_primary_10_1109_ACCESS_2022_3164392
crossref_primary_10_1007_s41870_024_01982_z
crossref_primary_10_1007_s10207_024_00901_4
crossref_primary_10_3390_diagnostics12123138
crossref_primary_10_3390_math10081289
crossref_primary_10_3390_math10121966
crossref_primary_10_1016_j_heliyon_2025_e41846
crossref_primary_10_1016_j_cosrev_2023_100573
crossref_primary_10_1155_2022_1833507
crossref_primary_10_32604_cmc_2024_048883
crossref_primary_10_1016_j_adhoc_2022_103063
crossref_primary_10_3390_app11031095
crossref_primary_10_1016_j_engappai_2023_107667
crossref_primary_10_1109_ACCESS_2024_3422077
crossref_primary_10_1007_s12652_020_02578_8
crossref_primary_10_1016_j_bspc_2025_107731
crossref_primary_10_1109_JBHI_2024_3417229
crossref_primary_10_1016_j_bspc_2025_107969
crossref_primary_10_1016_j_heliyon_2023_e16149
crossref_primary_10_1038_s41598_025_10291_9
crossref_primary_10_3389_feduc_2024_1375853
crossref_primary_10_3390_app112411845
crossref_primary_10_1186_s40537_025_01157_y
crossref_primary_10_3390_electronics13234757
crossref_primary_10_1016_j_compeleceng_2025_110097
crossref_primary_10_1016_j_cogsys_2024_101243
crossref_primary_10_1057_s41288_022_00266_6
crossref_primary_10_1016_j_mvr_2024_104753
crossref_primary_10_1016_j_cmpb_2022_107162
crossref_primary_10_1093_comjnl_bxac110
crossref_primary_10_1016_j_procs_2024_09_690
crossref_primary_10_32604_cmc_2023_042308
crossref_primary_10_3390_s22186934
crossref_primary_10_1016_j_engappai_2022_105461
crossref_primary_10_1016_j_engappai_2023_106030
crossref_primary_10_1109_ACCESS_2024_3372187
crossref_primary_10_3390_e24030349
crossref_primary_10_3390_jsan11030047
crossref_primary_10_3390_app12147337
crossref_primary_10_1016_j_cose_2023_103318
crossref_primary_10_32604_cmc_2024_051778
crossref_primary_10_1007_s11517_024_03107_x
crossref_primary_10_1007_s42452_025_06773_0
crossref_primary_10_3390_app112210860
crossref_primary_10_1016_j_engappai_2023_107801
crossref_primary_10_1016_j_heliyon_2024_e40874
crossref_primary_10_3390_electronics12112495
crossref_primary_10_32604_cmc_2022_019001
crossref_primary_10_1016_j_eswa_2023_120538
crossref_primary_10_3390_en15113951
crossref_primary_10_3390_en15238778
crossref_primary_10_1016_j_compeleceng_2023_108773
crossref_primary_10_3390_app12052307
crossref_primary_10_3390_computers11110158
crossref_primary_10_32604_cmc_2023_036020
Cites_doi 10.1109/NAECON.2015.7443094
10.1109/TKDE.2008.234
10.1007/s11416-018-0325-y
10.1109/COMST.2018.2847722
10.1201/9780429504044-2
10.5815/ijmecs.2013.12.05
10.1109/TST.2016.7399288
10.4018/978-1-5225-9611-0.ch004
10.1016/j.ijinfomgt.2019.07.011
10.1016/j.heliyon.2019.e01802
10.1145/2487788.2488056
10.1109/ACCESS.2019.2895334
10.1002/nem.2049
10.1109/TNN.2006.879766
10.1109/ICoAC.2014.7229711
10.1016/j.ins.2011.08.020
10.1109/MELCON.2014.6820574
10.3390/info10040122
10.7763/IJCTE.2011.V3.287
10.1016/j.cose.2011.12.012
10.1007/s11227-015-1604-8
10.1007/s00778-006-0002-5
10.1109/INTECH.2016.7845073
10.1016/j.procs.2015.02.149
10.1109/ACCESS.2018.2844349
10.1109/ACT.2010.33
10.1007/s00521-017-2914-y
10.1109/ACCESS.2019.2948382
10.1109/TCSS.2016.2516039
10.14445/22312803/IJCTT-V7P106
10.1007/s10586-017-0971-8
10.1007/978-3-319-46298-1_30
10.1109/ICTAI.2007.65
10.1109/ACCESS.2017.2666785
10.1186/2190-8532-1-1
10.1016/j.comnet.2020.107247
10.1023/A:1009715923555
10.1016/j.cose.2018.11.001
10.5755/j01.itc.48.2.23091
10.1109/COMPSAC.2015.241
10.1016/j.procs.2016.07.238
10.2298/CSIS190122008J
10.1109/ICCCNT45670.2019.8944796
10.1007/s11416-008-0082-4
10.1109/ISDA.2013.6920760
10.1109/COMST.2015.2494502
10.1109/ICIEA.2013.6566472
10.1007/s10586-017-1117-8
10.26483/ijarcs.v9i2.5571
10.1007/s11416-015-0244-0
10.1007/s11219-017-9368-4
10.1109/ICNTE.2015.7029925
10.4172/2153-0602.1000181
10.1007/978-3-319-24770-0_8
10.1016/j.aci.2018.01.004
10.1561/2000000039
10.1109/TNET.2019.2899124
10.4236/jcc.2015.34006
10.4018/IJKDB.2018010102
10.1016/j.patrec.2011.03.022
10.1007/s13042-018-00906-1
10.1109/ICBDA.2016.7509829
10.3390/s19224952
10.1109/INMIC.2016.7840072
10.1109/DCOSS.2019.00059
10.1145/1167253.1167288
10.3390/computers8030059
10.1007/978-81-322-2529-4_51
10.1007/s00521-017-3305-0
10.1016/j.patcog.2017.10.013
10.1109/ICNC.2012.6234576
10.1109/ACCESS.2019.2953095
10.1109/2.485891
10.1109/SECON.2016.7506774
10.1109/CISDA.2009.5356528
10.1109/ACCESS.2018.2836950
10.1016/j.eswa.2010.06.066
10.4018/978-1-5225-9611-0.ch007
10.3390/app9020239
10.1109/CISIS.2010.116
10.4249/scholarpedia.5947
10.1201/9780429440953-10
10.1016/j.jnca.2012.10.004
10.1007/978-981-10-3376-6_29
10.1631/FITEE.1800573
10.1007/s00521-010-0487-0
10.1109/CNSR.2007.22
10.1007/978-981-10-8681-6_67
10.5220/0007470705280535
10.1109/SKIMA.2014.7083539
10.1108/09685221211286548
10.1109/QiR.2015.7374895
10.3390/electronics9010097
10.1007/978-3-642-23496-5_13
10.1109/FSKD.2014.6980972
10.1109/ICBDACI.2017.8070809
10.22215/timreview/835
10.1016/j.inffus.2019.01.002
10.1109/TASLP.2017.2769220
10.1016/j.knosys.2014.03.015
10.23919/CYCON.2018.8405026
10.1109/ICCECE.2017.8526232
10.1109/ACCESS.2019.2903723
10.1016/j.bushor.2019.11.003
10.1093/cybsec/tyw011
10.1080/19361610.2018.1463136
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/en13102509
DatabaseName CrossRef
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_cbb1a8b8440646da8e06e2989a0d1fa9
10_3390_en13102509
GroupedDBID 29G
2WC
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c361t-ee4471c2d89760c05d3faff7c612ab508c2f8968bd01ff72b3a4b07c118d6f2a3
IEDL.DBID BENPR
ISICitedReferencesCount 177
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000539257300102&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Fri Oct 03 12:46:05 EDT 2025
Mon Jun 30 11:15:06 EDT 2025
Sat Nov 29 07:12:57 EST 2025
Tue Nov 18 21:29:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-ee4471c2d89760c05d3faff7c612ab508c2f8968bd01ff72b3a4b07c118d6f2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2174-3383
0000-0003-1252-260X
OpenAccessLink https://www.proquest.com/docview/2404504425?pq-origsite=%requestingapplication%
PQID 2404504425
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_cbb1a8b8440646da8e06e2989a0d1fa9
proquest_journals_2404504425
crossref_primary_10_3390_en13102509
crossref_citationtrail_10_3390_en13102509
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Gelly (ref_71) 2017; 26
ref_93
Zhang (ref_128) 2019; 7
ref_139
(ref_157) 2016; 2
ref_90
Michie (ref_6) 1994; 13
Mishra (ref_107) 2018; 21
ref_11
ref_98
ref_97
Saxena (ref_84) 2014; 98
ref_95
Karthika (ref_103) 2015; 14
Canhoto (ref_13) 2019; 63
Vincent (ref_75) 2010; 11
ref_17
ref_16
Barba (ref_69) 2006; 17
Gu (ref_72) 2018; 77
Bassiouni (ref_148) 2018; 13
Salehi (ref_109) 2014; 2014
ref_126
Jain (ref_104) 2018; 8
ref_125
Chandrasekar (ref_27) 2018; 9
Khammas (ref_167) 2015; 77
ref_25
ref_24
ref_122
Rao (ref_18) 2019; 31
ref_20
Xin (ref_33) 2018; 6
Dey (ref_15) 2019; 49
He (ref_127) 2016; 2
Javed (ref_54) 2015; 5
Zhu (ref_99) 2018; 30
ref_26
ref_159
Feng (ref_91) 2018; 6
Malik (ref_117) 2018; 21
Li (ref_47) 2018; 19
ref_79
ref_78
ref_153
ref_152
ref_76
ref_73
Rizk (ref_135) 2019; 15
Jain (ref_80) 1996; 29
ref_160
Ferrag (ref_62) 2020; 50
Khan (ref_94) 2007; 16
Shrivas (ref_137) 2014; 99
Burges (ref_77) 1998; 2
ref_83
ref_82
ref_81
Buczak (ref_45) 2015; 18
Moon (ref_118) 2017; 73
Kwon (ref_51) 2019; 22
Gao (ref_149) 2019; 7
Gandotra (ref_34) 2014; 5
ref_142
ref_88
ref_141
ref_87
Awad (ref_86) 2011; 3
ref_143
ref_85
ref_146
ref_145
Sharma (ref_124) 2013; 10
Zhang (ref_123) 2014; 64
Santos (ref_119) 2013; 231
ref_50
Li (ref_134) 2015; 9
Kevric (ref_111) 2017; 28
Shabtai (ref_138) 2012; 1
ref_58
Torres (ref_43) 2019; 10
ref_57
Shaukat (ref_12) 2017; 1
Zseby (ref_41) 2019; 15
ref_56
Foqaha (ref_147) 2016; 8
ref_53
Panigrahi (ref_59) 2018; 7
ref_52
Horng (ref_96) 2011; 38
Shiravi (ref_66) 2012; 31
Jo (ref_132) 2015; 11
Ammar (ref_133) 2015; 3
Biggio (ref_30) 2011; 32
ref_61
ref_60
ref_169
Panda (ref_163) 2007; 7
Jusas (ref_32) 2019; 16
Vinayakumar (ref_155) 2019; 7
Shijo (ref_102) 2015; 46
Shukur (ref_22) 2019; 8
ref_68
ref_161
ref_67
ref_164
ref_65
ref_166
ref_64
ref_165
Alauthman (ref_19) 2019; 26
ref_63
Afek (ref_23) 2019; 27
Jusas (ref_10) 2019; 48
Ye (ref_129) 2008; 4
Alkaht (ref_130) 2016; 11
Deng (ref_70) 2014; 7
Rathi (ref_151) 2013; 5
Gupta (ref_154) 2016; 93
ref_115
ref_114
ref_116
Jiang (ref_162) 2008; 21
Latiff (ref_28) 2017; 5
ref_36
Dharamkar (ref_35) 2014; 7
Soranamageswari (ref_140) 2011; 3
ref_31
ref_110
ref_113
Siddiqui (ref_150) 2009; 6
Maqsood (ref_14) 2020; 50
Renuka (ref_170) 2015; 2
ref_39
Purkait (ref_55) 2012; 20
Yuan (ref_131) 2016; 21
ref_38
ref_37
Sheikhan (ref_144) 2012; 21
Phan (ref_136) 2019; 29
Gaikwad (ref_112) 2014; 5
Lee (ref_92) 2019; 7
Dada (ref_21) 2019; 5
ref_106
ref_105
ref_108
Craigen (ref_2) 2014; 4
Islam (ref_120) 2013; 36
ref_46
Hinton (ref_74) 2009; 4
Yan (ref_121) 2018; 26
ref_44
ref_100
ref_42
Najadat (ref_89) 2014; 1
Galal (ref_158) 2016; 12
ref_40
ref_101
ref_1
ref_3
Chen (ref_29) 2015; 2
Bhat (ref_168) 2013; 2
ref_49
ref_9
Ucci (ref_48) 2019; 81
ref_8
ref_5
ref_4
ref_7
Lilhore (ref_156) 2017; 4
References_xml – ident: ref_125
  doi: 10.1109/NAECON.2015.7443094
– volume: 21
  start-page: 1361
  year: 2008
  ident: ref_162
  article-title: A novel Bayes model: Hidden naive Bayes
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.234
– volume: 5
  start-page: 6976
  year: 2014
  ident: ref_112
  article-title: Intrusion detection system using ripple down rule learner and genetic algorithm
  publication-title: Int. J. Comput. Sci. Inf. Technol.
– volume: 15
  start-page: 109
  year: 2019
  ident: ref_41
  article-title: Malware propagation in smart grid networks: Metrics, simulation and comparison of three malware types
  publication-title: J. Comput. Virol. Hacking Tech.
  doi: 10.1007/s11416-018-0325-y
– volume: 21
  start-page: 686
  year: 2018
  ident: ref_107
  article-title: Tutorials. A detailed investigation and analysis of using machine learning techniques for intrusion detection
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2018.2847722
– volume: 26
  start-page: 48
  year: 2019
  ident: ref_19
  article-title: Machine Learning for phishing Detection and Mitigation
  publication-title: Mach. Learn. Comput. Cyber Secur. Princ. Algorithmsand Pract.
  doi: 10.1201/9780429504044-2
– ident: ref_100
– volume: 5
  start-page: 31
  year: 2013
  ident: ref_151
  article-title: Spam mail detection through data mining-A comparative performance analysis
  publication-title: Int. J. Mod. Educ. Comput. Sci.
  doi: 10.5815/ijmecs.2013.12.05
– ident: ref_88
– volume: 21
  start-page: 114
  year: 2016
  ident: ref_131
  article-title: Droiddetector: Android malware characterization and detection using deep learning
  publication-title: Tsinghua Sci. Technol.
  doi: 10.1109/TST.2016.7399288
– ident: ref_108
– ident: ref_83
  doi: 10.4018/978-1-5225-9611-0.ch004
– ident: ref_1
– volume: 50
  start-page: 432
  year: 2020
  ident: ref_14
  article-title: A local and global event sentiment based efficient stock exchange forecasting using deep learning
  publication-title: Int. J. Inf. Manag.
  doi: 10.1016/j.ijinfomgt.2019.07.011
– ident: ref_146
– volume: 5
  start-page: e01802
  year: 2019
  ident: ref_21
  article-title: Machine learning for email spam filtering: Review, approaches and open research problems
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2019.e01802
– ident: ref_166
– ident: ref_101
  doi: 10.1145/2487788.2488056
– volume: 7
  start-page: 41525
  year: 2019
  ident: ref_155
  article-title: Deep Learning Approach for Intelligent Intrusion Detection System
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2895334
– ident: ref_4
– ident: ref_31
– ident: ref_56
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref_75
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 29
  start-page: e2049
  year: 2019
  ident: ref_136
  article-title: User identification via neural network based language models
  publication-title: Int. J. Netw. Manag.
  doi: 10.1002/nem.2049
– volume: 17
  start-page: 1316
  year: 2006
  ident: ref_69
  article-title: A convolutional neural network approach for objective video quality assessment
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.879766
– volume: 1
  start-page: 1
  year: 2014
  ident: ref_89
  article-title: Mobile sms spam filtering based on mixing classifiers
  publication-title: Int. J. Adv. Comput. Res.
– ident: ref_95
  doi: 10.1109/ICoAC.2014.7229711
– volume: 231
  start-page: 64
  year: 2013
  ident: ref_119
  article-title: Opcode sequences as representation of executables for data-mining-based unknown malware detection
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.08.020
– ident: ref_122
  doi: 10.1109/MELCON.2014.6820574
– ident: ref_52
  doi: 10.3390/info10040122
– volume: 3
  start-page: 84
  year: 2011
  ident: ref_140
  article-title: A novel approach towards image spam classification
  publication-title: Int. J. Comput. Theory Eng.
  doi: 10.7763/IJCTE.2011.V3.287
– volume: 31
  start-page: 357
  year: 2012
  ident: ref_66
  article-title: Toward developing a systematic approach to generate benchmark datasets for intrusion detection
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2011.12.012
– volume: 3
  start-page: 173
  year: 2011
  ident: ref_86
  article-title: Machine learning methods for spam e-mail classification
  publication-title: Int. J. Comput. Sci. Inf. Technol.
– volume: 73
  start-page: 2881
  year: 2017
  ident: ref_118
  article-title: DTB-IDS: An intrusion detection system based on decision tree using behavior analysis for preventing APT attacks
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-015-1604-8
– volume: 16
  start-page: 507
  year: 2007
  ident: ref_94
  article-title: A new intrusion detection system using support vector machines and hierarchical clustering
  publication-title: VLDB J.
  doi: 10.1007/s00778-006-0002-5
– ident: ref_110
  doi: 10.1109/INTECH.2016.7845073
– volume: 46
  start-page: 804
  year: 2015
  ident: ref_102
  article-title: Integrated static and dynamic analysis for malware detection
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.02.149
– ident: ref_53
– volume: 8
  start-page: 257
  year: 2019
  ident: ref_22
  article-title: Credit Card Fraud Detection Using Machine Learning Methodology
  publication-title: Int. J. Comput. Sci. Mob. Comput.
– volume: 6
  start-page: 30996
  year: 2018
  ident: ref_91
  article-title: A Novel Dynamic Android Malware Detection System With Ensemble Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2844349
– ident: ref_5
  doi: 10.1109/ACT.2010.33
– ident: ref_3
– volume: 30
  start-page: 3353
  year: 2018
  ident: ref_99
  article-title: HEMD: A highly efficient random forest-based malware detection framework for Android
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-2914-y
– volume: 9
  start-page: 205
  year: 2015
  ident: ref_134
  article-title: A hybrid malicious code detection method based on deep learning
  publication-title: J. Secur. Appl.
– volume: 7
  start-page: 154560
  year: 2019
  ident: ref_149
  article-title: A Distributed Network Intrusion Detection System for Distributed Denial of Service Attacks in Vehicular Ad Hoc Network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2948382
– volume: 6
  start-page: 48
  year: 2009
  ident: ref_150
  article-title: Detecting internet worms using data mining techniques
  publication-title: J. Syst. Cybern. Inform.
– volume: 2
  start-page: 56
  year: 2013
  ident: ref_168
  article-title: Machine learning approach for intrusion detection on cloud virtual machines
  publication-title: Int. J. Appl. Innov. Eng. Manag.
– volume: 2
  start-page: 65
  year: 2015
  ident: ref_29
  article-title: A performance evaluation of machine learning-based streaming spam tweets detection
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2016.2516039
– volume: 7
  start-page: 100
  year: 2014
  ident: ref_35
  article-title: A review of cyber attack classification technique based on data mining and neural network approach
  publication-title: Int. J. Comput. Trends Technol.
  doi: 10.14445/22312803/IJCTT-V7P106
– volume: 21
  start-page: 667
  year: 2018
  ident: ref_117
  article-title: A hybrid technique using binary particle swarm optimization and decision tree pruning for network intrusion detection
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-017-0971-8
– ident: ref_65
  doi: 10.1007/978-3-319-46298-1_30
– ident: ref_85
  doi: 10.1109/ICTAI.2007.65
– ident: ref_67
– ident: ref_106
– volume: 5
  start-page: 15650
  year: 2017
  ident: ref_28
  article-title: A review on mobile SMS spam filtering techniques
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2666785
– ident: ref_44
– volume: 14
  start-page: 171
  year: 2015
  ident: ref_103
  article-title: A hybrid ACO based feature selection method for email spam classification
  publication-title: WSEAS Trans. Comput.
– volume: 1
  start-page: 1
  year: 2012
  ident: ref_138
  article-title: Detecting unknown malicious code by applying classification techniques on opcode patterns
  publication-title: Secur. Inform.
  doi: 10.1186/2190-8532-1-1
– ident: ref_152
  doi: 10.1016/j.comnet.2020.107247
– ident: ref_73
– volume: 2
  start-page: 121
  year: 1998
  ident: ref_77
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009715923555
– volume: 81
  start-page: 123
  year: 2019
  ident: ref_48
  article-title: Survey of machine learning techniques for malware analysis
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2018.11.001
– volume: 48
  start-page: 225
  year: 2019
  ident: ref_10
  article-title: Classification of motor imagery using combination of feature extraction and reduction methods for brain-computer interface
  publication-title: Inf. Technol. Control
  doi: 10.5755/j01.itc.48.2.23091
– ident: ref_164
  doi: 10.1109/COMPSAC.2015.241
– volume: 93
  start-page: 824
  year: 2016
  ident: ref_154
  article-title: A framework for fast and efficient cyber security network intrusion detection using apache spark
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.07.238
– volume: 16
  start-page: 491
  year: 2019
  ident: ref_32
  article-title: Logical filter approach for early stage cyber-attack detection
  publication-title: Comput. Sci. Inf. Syst.
  doi: 10.2298/CSIS190122008J
– ident: ref_50
– ident: ref_98
  doi: 10.1109/ICCCNT45670.2019.8944796
– volume: 4
  start-page: 323
  year: 2008
  ident: ref_129
  article-title: An intelligent PE-malware detection system based on association mining
  publication-title: J. Comput. Virol.
  doi: 10.1007/s11416-008-0082-4
– ident: ref_81
– ident: ref_142
  doi: 10.1109/ISDA.2013.6920760
– volume: 18
  start-page: 1153
  year: 2015
  ident: ref_45
  article-title: A survey of data mining and machine learning methods for cyber security intrusion detection
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2015.2494502
– ident: ref_145
  doi: 10.1109/ICIEA.2013.6566472
– volume: 22
  start-page: 949
  year: 2019
  ident: ref_51
  article-title: A survey of deep learning-based network anomaly detection
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-017-1117-8
– volume: 9
  start-page: 402
  year: 2018
  ident: ref_27
  article-title: Classification techniques using spam filtering email
  publication-title: Int. J. Adv. Res. Comput. Sci.
  doi: 10.26483/ijarcs.v9i2.5571
– volume: 12
  start-page: 59
  year: 2016
  ident: ref_158
  article-title: Behavior-based features model for malware detection
  publication-title: J. Comput. Virol. Hacking Tech.
  doi: 10.1007/s11416-015-0244-0
– volume: 26
  start-page: 891
  year: 2018
  ident: ref_121
  article-title: A survey on dynamic mobile malware detection
  publication-title: Softw. Qual. J.
  doi: 10.1007/s11219-017-9368-4
– ident: ref_64
– ident: ref_115
  doi: 10.1109/ICNTE.2015.7029925
– ident: ref_9
  doi: 10.4172/2153-0602.1000181
– ident: ref_126
– ident: ref_11
  doi: 10.1007/978-3-319-24770-0_8
– ident: ref_36
– volume: 5
  start-page: 56
  year: 2014
  ident: ref_34
  article-title: Malware analysis and classification: A survey
  publication-title: J. Inf. Secur.
– volume: 15
  start-page: 81
  year: 2019
  ident: ref_135
  article-title: Deep belief networks and cortical algorithms: A comparative study for supervised classification
  publication-title: Appl. Comput. Inform.
  doi: 10.1016/j.aci.2018.01.004
– volume: 7
  start-page: 197
  year: 2014
  ident: ref_70
  article-title: Deep learning: Methods and applications
  publication-title: Found. Trends Signal Process.
  doi: 10.1561/2000000039
– volume: 27
  start-page: 691
  year: 2019
  ident: ref_23
  article-title: Zero-day signature extraction for high-volume attacks
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/TNET.2019.2899124
– volume: 3
  start-page: 52
  year: 2015
  ident: ref_133
  article-title: A decision tree classifier for intrusion detection priority tagging
  publication-title: J. Comput. Commun.
  doi: 10.4236/jcc.2015.34006
– volume: 8
  start-page: 12
  year: 2018
  ident: ref_104
  article-title: Spam detection on social media using semantic convolutional neural network
  publication-title: Int. J. Knowl. Discov. Bioinform.
  doi: 10.4018/IJKDB.2018010102
– volume: 32
  start-page: 1436
  year: 2011
  ident: ref_30
  article-title: A survey and experimental evaluation of image spam filtering techniques
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2011.03.022
– volume: 1
  start-page: 84
  year: 2017
  ident: ref_12
  article-title: A Socio-Technological analysis of Cyber Crime and Cyber Security in Pakistan
  publication-title: Transylv. Rev.
– ident: ref_165
– ident: ref_78
– volume: 10
  start-page: 2823
  year: 2019
  ident: ref_43
  article-title: Machine learning techniques applied to cybersecurity
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-018-00906-1
– ident: ref_153
  doi: 10.1109/ICBDA.2016.7509829
– volume: 4
  start-page: 786
  year: 2017
  ident: ref_156
  article-title: Network intrusion detection system based on modified Random forest classifiers for kdd cup-99 and nsl-kdd Dataset
  publication-title: Int. Res. J. Eng. Technol.
– ident: ref_49
– ident: ref_40
  doi: 10.3390/s19224952
– ident: ref_113
– ident: ref_8
  doi: 10.1109/INMIC.2016.7840072
– ident: ref_159
– ident: ref_114
  doi: 10.1109/DCOSS.2019.00059
– ident: ref_90
  doi: 10.1145/1167253.1167288
– volume: 77
  start-page: 234
  year: 2015
  ident: ref_167
  article-title: Feature selection and machine learning classification for malware detection
  publication-title: J. Teknol.
– ident: ref_143
  doi: 10.3390/computers8030059
– ident: ref_93
  doi: 10.1007/978-81-322-2529-4_51
– volume: 31
  start-page: 3851
  year: 2019
  ident: ref_18
  article-title: Detection of phishing websites using an efficient feature-based machine learning framework
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-3305-0
– volume: 99
  start-page: 8
  year: 2014
  ident: ref_137
  article-title: An ensemble model for classification of attacks with feature selection based on KDD99 and NSL-KDD data set
  publication-title: Int. J. Comput. Appl.
– volume: 77
  start-page: 354
  year: 2018
  ident: ref_72
  article-title: Recent advances in convolutional neural networks
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.10.013
– ident: ref_58
– volume: 2
  start-page: 218
  year: 2016
  ident: ref_157
  article-title: Enhanced Method for Intrusion Detection over KDD Cup 99 Dataset
  publication-title: Int. J. Curr. Trends Eng. Technol.
– ident: ref_141
  doi: 10.1109/ICNC.2012.6234576
– volume: 7
  start-page: 165607
  year: 2019
  ident: ref_92
  article-title: Cyber Threat Detection Based on Artificial Neural Networks Using Event Profiles
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2953095
– ident: ref_139
– volume: 29
  start-page: 31
  year: 1996
  ident: ref_80
  article-title: Artificial neural networks: A tutorial
  publication-title: Computer
  doi: 10.1109/2.485891
– volume: 50
  start-page: 102419
  year: 2020
  ident: ref_62
  article-title: Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study
  publication-title: J. Inf. Secur. Appl.
– ident: ref_116
  doi: 10.1109/SECON.2016.7506774
– ident: ref_61
  doi: 10.1109/CISDA.2009.5356528
– volume: 6
  start-page: 35365
  year: 2018
  ident: ref_33
  article-title: Machine learning and deep learning methods for cybersecurity
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2836950
– volume: 38
  start-page: 306
  year: 2011
  ident: ref_96
  article-title: A novel intrusion detection system based on hierarchical clustering and support vector machines
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.06.066
– volume: 5
  start-page: 1
  year: 2015
  ident: ref_54
  article-title: A survey-data privacy through different methods
  publication-title: J. Netw. Commun. Emerg. Technol.
– ident: ref_38
– volume: 2014
  start-page: 9
  year: 2014
  ident: ref_109
  article-title: Using feature generation from API calls for malware detection
  publication-title: Security
– ident: ref_17
– ident: ref_25
  doi: 10.4018/978-1-5225-9611-0.ch007
– ident: ref_42
  doi: 10.3390/app9020239
– ident: ref_160
  doi: 10.1109/CISIS.2010.116
– ident: ref_7
– volume: 4
  start-page: 5947
  year: 2009
  ident: ref_74
  article-title: Deep belief networks
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.5947
– ident: ref_20
  doi: 10.1201/9780429440953-10
– volume: 36
  start-page: 646
  year: 2013
  ident: ref_120
  article-title: Classification of malware based on integrated static and dynamic features
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2012.10.004
– ident: ref_76
– volume: 28
  start-page: 1051
  year: 2017
  ident: ref_111
  article-title: An effective combining classifier approach using tree algorithms for network intrusion detection
  publication-title: Applications
– ident: ref_26
  doi: 10.1007/978-981-10-3376-6_29
– volume: 19
  start-page: 1462
  year: 2018
  ident: ref_47
  article-title: Cyber security meets artificial intelligence: A survey
  publication-title: Front. Inf. Technol. Electron. Eng.
  doi: 10.1631/FITEE.1800573
– volume: 21
  start-page: 1185
  year: 2012
  ident: ref_144
  article-title: Intrusion detection using reduced-size RNN based on feature grouping
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-010-0487-0
– ident: ref_82
– volume: 98
  start-page: 25
  year: 2014
  ident: ref_84
  article-title: Intrusion detection in KDD99 dataset using SVM-PSO and feature reduction with information gain
  publication-title: Int. J. Comput. Appl.
– ident: ref_169
  doi: 10.1109/CNSR.2007.22
– ident: ref_37
– ident: ref_63
– volume: 11
  start-page: 33
  year: 2015
  ident: ref_132
  article-title: A comparative study on the performance of intrusion detection using decision tree and artificial neural network models
  publication-title: J. Korea Soc. Digit. Ind. Inf. Manag.
– ident: ref_16
  doi: 10.1007/978-981-10-8681-6_67
– ident: ref_24
  doi: 10.5220/0007470705280535
– volume: 7
  start-page: 479
  year: 2018
  ident: ref_59
  article-title: A detailed analysis of CICIDS2017 dataset for designing Intrusion Detection Systems
  publication-title: Int. J. Eng. Technol.
– volume: 13
  start-page: 1
  year: 1994
  ident: ref_6
  article-title: Machine learning
  publication-title: Neural Stat. Classif.
– ident: ref_87
  doi: 10.1109/SKIMA.2014.7083539
– ident: ref_79
– volume: 20
  start-page: 382
  year: 2012
  ident: ref_55
  article-title: Phishing counter measures and their effectiveness–literature review
  publication-title: Inf. Manag. Comput. Secur.
  doi: 10.1108/09685221211286548
– ident: ref_97
  doi: 10.1109/QiR.2015.7374895
– ident: ref_105
  doi: 10.3390/electronics9010097
– volume: 10
  start-page: 23
  year: 2013
  ident: ref_124
  article-title: Adaptive approach for spam detection
  publication-title: Int. J. Comput. Sci. Issues
– ident: ref_161
  doi: 10.1007/978-3-642-23496-5_13
– ident: ref_60
  doi: 10.1109/FSKD.2014.6980972
– volume: 7
  start-page: 258
  year: 2007
  ident: ref_163
  article-title: Network intrusion detection using naive bayes
  publication-title: Int. J. Comput. Sci. Netw. Secur.
– ident: ref_68
  doi: 10.1109/ICBDACI.2017.8070809
– volume: 4
  start-page: 13
  year: 2014
  ident: ref_2
  article-title: Defining cybersecurity
  publication-title: Technol. Innov. Manag. Rev.
  doi: 10.22215/timreview/835
– volume: 8
  start-page: 17
  year: 2016
  ident: ref_147
  article-title: Email spam classification using hybrid approach of RBF neural network and particle swarm optimization
  publication-title: Int. J. Netw. Secur. Appl.
– volume: 49
  start-page: 205
  year: 2019
  ident: ref_15
  article-title: A machine learning based intrusion detection scheme for data fusion in mobile clouds involving heterogeneous client networks
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.01.002
– volume: 26
  start-page: 646
  year: 2017
  ident: ref_71
  article-title: Optimization of RNN-based speech activity detection
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2017.2769220
– volume: 64
  start-page: 22
  year: 2014
  ident: ref_123
  article-title: Binary PSO with mutation operator for feature selection using decision tree applied to spam detection
  publication-title: Knowl. -Based Syst.
  doi: 10.1016/j.knosys.2014.03.015
– ident: ref_39
  doi: 10.23919/CYCON.2018.8405026
– ident: ref_46
  doi: 10.1109/ICCECE.2017.8526232
– volume: 7
  start-page: 31711
  year: 2019
  ident: ref_128
  article-title: Intrusion detection for IoT based on improved genetic algorithm and deep belief network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2903723
– volume: 11
  start-page: 2
  year: 2016
  ident: ref_130
  article-title: Filtering SPAM Using Several Stages Neural Networks
  publication-title: Int. Rev. Comp. Softw.
– volume: 63
  start-page: 183
  year: 2019
  ident: ref_13
  article-title: Artificial intelligence and machine learning as business tools: A framework for diagnosing value destruction potential
  publication-title: Bus. Horiz.
  doi: 10.1016/j.bushor.2019.11.003
– ident: ref_57
– volume: 2
  start-page: 99
  year: 2016
  ident: ref_127
  article-title: How would information disclosure influence organizations’ outbound spam volume? Evidence from a field experiment
  publication-title: J. Cybersecur.
  doi: 10.1093/cybsec/tyw011
– volume: 2
  start-page: 22
  year: 2015
  ident: ref_170
  article-title: Improving E-mail spam classification using ant colony optimization algorithm
  publication-title: Int. J. Comput. Appl.
– volume: 13
  start-page: 315
  year: 2018
  ident: ref_148
  article-title: Ham and Spam E-Mails Classification Using Machine Learning Techniques
  publication-title: J. Appl. Secur. Res.
  doi: 10.1080/19361610.2018.1463136
SSID ssj0000331333
Score 2.6299343
SecondaryResourceType review_article
Snippet Cyberspace has become an indispensable factor for all areas of the modern world. The world is becoming more and more dependent on the internet for everyday...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2509
SubjectTerms Artificial intelligence
Cybercrime
Cybersecurity
Datasets
Decision trees
Internet
intrusion detection system
Intrusion detection systems
Machine learning
Malware
malware detection
Performance evaluation
spam classification
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF1EPOhB_MRqlQW9eAjdZLfJ7lGDxYulhwq9hdmPSEFSaavgv3ey2bQVBS9el4GEmezMezB5j5AbxzVyHC0jAQoioThEygESVw19jfTB8hi82UQ2HMrJRI02rL7qnbBGHrhJXM9oHYPUUuDkEakF6VjqatlwYDYuwf-6h6hng0z5Hsw5ki_e6JFy5PU9V8WIZHDgq28TyAv1_-jDfrgMDsh-QIX0rnmbQ7LlqiOyt6EVeEzMaL3iT_OVeyCFytIgskTz1hllQWcl9dsA9MlvSzoahFRf6LhVbV3QaUXzT40AMJjYnZDnwcM4f4yCQ0JkeBovI-cEDheTWImoghnWt7yEsswM4hbQiL1MUkqVSm1ZjMeJ5iA0ywyyCpuWCfBTsl3NKndGaCl0xrUycWa44FKC4i7Vmtkss0w51iG3bdYKE-TDaxeL1wJpRJ3hYp3hDrlexb41ohm_Rt3XyV9F1ELX_gDLX4TyF3-Vv0O6bemKcPsWBaIU0WcC29H5fzzjguwmNcv2a45dsr2cv7tLsmM-ltPF_Mp_eF8ghN7c
  priority: 102
  providerName: Directory of Open Access Journals
Title Performance Comparison and Current Challenges of Using Machine Learning Techniques in Cybersecurity
URI https://www.proquest.com/docview/2404504425
https://doaj.org/article/cbb1a8b8440646da8e06e2989a0d1fa9
Volume 13
WOSCitedRecordID wos000539257300102&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFA06utCFb_FNQDcuimmTaZOV6DCiixmKKOiq5FURpKPTUXDjt3uTSWcUxY2bLtJQSm-Se05yew5CR5Yq4DiKR0wKGTFBZSSsBOKqZFsBfTA0lt5sIuv3-d2dyMOGWx3KKps10S_UZqDdHvkJZB7WJgyG2OnzS-Rco9zparDQmEVzTqmMtdDcebefX092WQilQMLoWJeUAr8_sVUMiAYSv_iWibxg_4_12CeZi-X_vt4KWgrwEp-Nx8MqmrHVGlr8Ijq4jnQ-_VcAdyY2hFhWBge1JtxpLFZqPCixLyvAPV92aXFQZH3AN438a40fK9x5V4AkgxveBrq96N50LqNgtRBpmsajyFoGWUonhgM8IZq0DS1lWWYaAJBUAOJ0UnKRcmVIDM2JopIpkmmgJyYtE0k3UasaVHYL4ZKpjCqh40xTRjmXgtpUKWKyzBBhyTY6bj57oYMOubPDeCqAj7gQFdMQbaPDSd_nsfrGr73OXfQmPZxitm8YDB-KMAELrVQsueIMEAxLjeSWpNbJz0ti4lLCQ_aawBZhGtfFNKo7f9_eRQuJI-K-EnIPtUbDV7uP5vXb6LEeHoRReeAJP1x7H11oy696-f0nukPxgA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9swGH7FyqTBYV-AYGPM0rYDhwgndhP7ME3QDVFBqx46CU7BX0FIKIWm28Sf4jfyOnVa0BA3Dlwdy0riJ-9XXj8PwFfHNOY4WkRcSRVxyVQkncLEVau2xvTBsljVYhNZvy-Oj-VgAW6aszC-rbKxibWhtiPja-Q76Hl4m3KE2I_Lq8irRvm_q42ExhQWh-76H6Zs1ffuT9zfb0my_2vYOYiCqkBkWBpPIuc4GmSTWIGemBratqxQRZEZ9PVKY7xikkLIVGhLYxxONFNc08xgJG7TIlEM130Bi_5ORAsWB93e4GRW1aGMYdLHpjyojEm648oYIygMNOQ9z1cLBPxn_2untv_mub2Ot_A6hM9kd4r3d7DgyvewfIdUcQXMYH4WgnRmMotElZYENirSaSRkKjIqSN02QXp1W6kjgXH2jAwbetuKnJekc60xUg5qf6vw-0mecg1a5ah060AKrjOmpYkzwzgTQknmUq2pzTJLpaMbsN1sc24Cz7qX-7jIMd_ykMjnkNiAL7O5l1N2kQdn7Xm0zGZ4RvB6YDQ-y4OByY3WsRJacIzQeGqVcDR1nl5fURsXChfZbICUBzNV5XMUfXj88md4dTDsHeVH3f7hR1hKfNGh7vrchNZk_Md9gpfm7-S8Gm-FL4LA6VOj7hYuCkuO
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VFiE40NKCKLTUEnDgEK0TexP7gBDdsmJVusqhSO0p9WdVCWXLZgH1r_HrGGed3VZU3Hrg6liREj_PvHEm7wG8cUxjjaNFwpVUCZdMJdIpLFy16mssHyxLVWs2UYzH4uRElivwu_sXJrRVdjGxDdR2YsIZeQ8zD-9TjhDr-dgWUR4MP1x-T4KDVPjS2tlpzCFy6K5-YfnWvB8d4Fq_zbLhp-PB5yQ6DCSG5ekscY5jcDaZFZiVqaF9y7zyvjCY95VG7mIyL2QutKUpDmeaKa5pYZCV29xniuF978EaUnKOe2ytHB2Vp4sTHsoYFoBsronKmKQ9V6fIppB0yBtZsDUL-CsXtAluuP4_v5oNeBxpNfk43wdPYMXVm_DomtjiFphy-Y8EGSzsF4mqLYkqVWTQWcs0ZOJJ205Bjtp2U0eiEu05Oe5kbxtyUZPBlUYGHV0An8LXO3nKZ7BaT2r3HIjnumBamrQwjDMhlGQu15raorBUOroN77olr0zUXw82IN8qrMMCPKolPLbh9WLu5Vx15NZZ-wE5ixlBKbwdmEzPqxh4KqN1qoQWHJkbz60SjuYuyO4ralOv8CY7HaiqGL6aaomoF_--vAcPEGrVl9H48CU8zMJZRNsMugOrs-kPtwv3zc_ZRTN9FTcHgbO7Bt0fRjJUTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Comparison+and+Current+Challenges+of+Using+Machine+Learning+Techniques+in+Cybersecurity&rft.jtitle=Energies+%28Basel%29&rft.au=Shaukat%2C+Kamran&rft.au=Luo%2C+Suhuai&rft.au=Varadharajan%2C+Vijay&rft.au=Hameed%2C+Ibrahim+A&rft.date=2020-05-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=13&rft.issue=10&rft.spage=2509&rft_id=info:doi/10.3390%2Fen13102509&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon