Performance Comparison and Current Challenges of Using Machine Learning Techniques in Cybersecurity
Cyberspace has become an indispensable factor for all areas of the modern world. The world is becoming more and more dependent on the internet for everyday living. The increasing dependency on the internet has also widened the risks of malicious threats. On account of growing cybersecurity risks, cy...
Gespeichert in:
| Veröffentlicht in: | Energies (Basel) Jg. 13; H. 10; S. 2509 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.05.2020
|
| Schlagworte: | |
| ISSN: | 1996-1073, 1996-1073 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Cyberspace has become an indispensable factor for all areas of the modern world. The world is becoming more and more dependent on the internet for everyday living. The increasing dependency on the internet has also widened the risks of malicious threats. On account of growing cybersecurity risks, cybersecurity has become the most pivotal element in the cyber world to battle against all cyber threats, attacks, and frauds. The expanding cyberspace is highly exposed to the intensifying possibility of being attacked by interminable cyber threats. The objective of this survey is to bestow a brief review of different machine learning (ML) techniques to get to the bottom of all the developments made in detection methods for potential cybersecurity risks. These cybersecurity risk detection methods mainly comprise of fraud detection, intrusion detection, spam detection, and malware detection. In this review paper, we build upon the existing literature of applications of ML models in cybersecurity and provide a comprehensive review of ML techniques in cybersecurity. To the best of our knowledge, we have made the first attempt to give a comparison of the time complexity of commonly used ML models in cybersecurity. We have comprehensively compared each classifier’s performance based on frequently used datasets and sub-domains of cyber threats. This work also provides a brief introduction of machine learning models besides commonly used security datasets. Despite having all the primary precedence, cybersecurity has its constraints compromises, and challenges. This work also expounds on the enormous current challenges and limitations faced during the application of machine learning techniques in cybersecurity. |
|---|---|
| AbstractList | Cyberspace has become an indispensable factor for all areas of the modern world. The world is becoming more and more dependent on the internet for everyday living. The increasing dependency on the internet has also widened the risks of malicious threats. On account of growing cybersecurity risks, cybersecurity has become the most pivotal element in the cyber world to battle against all cyber threats, attacks, and frauds. The expanding cyberspace is highly exposed to the intensifying possibility of being attacked by interminable cyber threats. The objective of this survey is to bestow a brief review of different machine learning (ML) techniques to get to the bottom of all the developments made in detection methods for potential cybersecurity risks. These cybersecurity risk detection methods mainly comprise of fraud detection, intrusion detection, spam detection, and malware detection. In this review paper, we build upon the existing literature of applications of ML models in cybersecurity and provide a comprehensive review of ML techniques in cybersecurity. To the best of our knowledge, we have made the first attempt to give a comparison of the time complexity of commonly used ML models in cybersecurity. We have comprehensively compared each classifier’s performance based on frequently used datasets and sub-domains of cyber threats. This work also provides a brief introduction of machine learning models besides commonly used security datasets. Despite having all the primary precedence, cybersecurity has its constraints compromises, and challenges. This work also expounds on the enormous current challenges and limitations faced during the application of machine learning techniques in cybersecurity. |
| Author | Shaukat, Kamran Luo, Suhuai Li, Jiaming Hameed, Ibrahim Chen, Shan Varadharajan, Vijay Liu, Dongxi |
| Author_xml | – sequence: 1 givenname: Kamran orcidid: 0000-0003-2174-3383 surname: Shaukat fullname: Shaukat, Kamran – sequence: 2 givenname: Suhuai surname: Luo fullname: Luo, Suhuai – sequence: 3 givenname: Vijay surname: Varadharajan fullname: Varadharajan, Vijay – sequence: 4 givenname: Ibrahim orcidid: 0000-0003-1252-260X surname: Hameed fullname: Hameed, Ibrahim – sequence: 5 givenname: Shan surname: Chen fullname: Chen, Shan – sequence: 6 givenname: Dongxi surname: Liu fullname: Liu, Dongxi – sequence: 7 givenname: Jiaming surname: Li fullname: Li, Jiaming |
| BookMark | eNptkU2PEzEMhiO0SCzLXvgFkbghlXU-JpM5ohEsKxXBYfcceTJOm2qalGR66L9nShGsEL7YevX4tS2_ZlcpJ2LsrYAPSnVwR0koAbKB7gW7Fl1nVgJadfWsfsVua93BEkoJpdQ189-phFz2mDzxPu8PWGLNiWMaeX8shdLM-y1OE6UNVZ4Df6oxbfhX9NuYiK8JSzoLj-S3Kf44LlBMvD8NVCr5Y4nz6Q17GXCqdPs737Cnz58e-y-r9bf7h_7jeuWVEfOKSOtWeDnarjXgoRlVwBBab4TEoQHrZbCdscMIYpHloFAP0Hoh7GiCRHXDHi6-Y8adO5S4x3JyGaP7JeSycVjm6CdyfhgE2sFqDUabES2BIdnZDmEUAbvF693F61Dy-ajZ7fKxpGV9JzXoBrSWzUK9v1C-5FoLhT9TBbjzT9zfnyww_AP7OOMcc5oLxul_LT8BZjmQaA |
| CitedBy_id | crossref_primary_10_1002_int_23088 crossref_primary_10_1007_s11227_023_05726_x crossref_primary_10_1038_s41598_025_05257_w crossref_primary_10_1177_21582440221096445 crossref_primary_10_1016_j_ipm_2022_103132 crossref_primary_10_1016_j_engappai_2023_107213 crossref_primary_10_1109_ACCESS_2024_3482728 crossref_primary_10_3390_s23084149 crossref_primary_10_1038_s41598_025_02008_9 crossref_primary_10_1145_3657647 crossref_primary_10_1093_comjnl_bxaf049 crossref_primary_10_1109_ACCESS_2022_3204171 crossref_primary_10_3389_frai_2024_1414122 crossref_primary_10_32604_cmc_2022_023007 crossref_primary_10_1108_IJPCC_12_2023_0358 crossref_primary_10_3390_math10173120 crossref_primary_10_1016_j_bspc_2024_106605 crossref_primary_10_32604_cmc_2022_018742 crossref_primary_10_3390_electronics11081282 crossref_primary_10_3390_pr10050838 crossref_primary_10_1016_j_patcog_2024_110493 crossref_primary_10_32604_cmc_2022_019152 crossref_primary_10_3390_s21248280 crossref_primary_10_1016_j_patcog_2024_111182 crossref_primary_10_3390_info12100398 crossref_primary_10_3390_su13084120 crossref_primary_10_1007_s10586_024_05034_w crossref_primary_10_3390_e24050638 crossref_primary_10_1007_s00521_024_10436_3 crossref_primary_10_3390_electronics10060647 crossref_primary_10_3390_s22020454 crossref_primary_10_3390_jcm13030680 crossref_primary_10_32604_cmes_2023_046658 crossref_primary_10_32604_jcs_2024_056164 crossref_primary_10_1063_5_0207658 crossref_primary_10_1109_ACCESS_2024_3387728 crossref_primary_10_1016_j_knosys_2023_110254 crossref_primary_10_32604_cmc_2022_026621 crossref_primary_10_32604_csse_2023_037127 crossref_primary_10_3390_app112110353 crossref_primary_10_1016_j_eswa_2024_124095 crossref_primary_10_32604_cmc_2022_018295 crossref_primary_10_3390_app12010283 crossref_primary_10_1016_j_iswa_2023_200222 crossref_primary_10_1016_j_scitotenv_2024_173843 crossref_primary_10_1109_ACCESS_2020_3033784 crossref_primary_10_3390_electronics11131931 crossref_primary_10_3390_app13010581 crossref_primary_10_32604_cmc_2022_019847 crossref_primary_10_32604_cmc_2024_044890 crossref_primary_10_1016_j_engappai_2024_107999 crossref_primary_10_3390_app11135863 crossref_primary_10_1007_s40313_023_01057_7 crossref_primary_10_3390_electronics11040524 crossref_primary_10_3390_s22249837 crossref_primary_10_3390_s23031386 crossref_primary_10_1016_j_engappai_2023_106471 crossref_primary_10_3390_info15050262 crossref_primary_10_3390_app122111174 crossref_primary_10_3390_cryptography7020021 crossref_primary_10_1016_j_asoc_2022_108768 crossref_primary_10_1155_acis_1013769 crossref_primary_10_21833_ijaas_2025_06_009 crossref_primary_10_32604_cmc_2024_057279 crossref_primary_10_3390_fi17080365 crossref_primary_10_3390_en18020268 crossref_primary_10_1007_s42979_023_02375_y crossref_primary_10_3390_s22072593 crossref_primary_10_1109_ACCESS_2020_3041951 crossref_primary_10_32604_cmc_2023_038758 crossref_primary_10_1109_ACCESS_2024_3464866 crossref_primary_10_32604_cmc_2023_038639 crossref_primary_10_3390_app12157441 crossref_primary_10_3390_s22020432 crossref_primary_10_1016_j_chbr_2025_100668 crossref_primary_10_1016_j_eswa_2021_115076 crossref_primary_10_3390_electronics13030555 crossref_primary_10_32604_cmc_2022_024501 crossref_primary_10_3390_app12052589 crossref_primary_10_1016_j_adhoc_2023_103257 crossref_primary_10_1007_s42979_023_01822_0 crossref_primary_10_1155_2022_7384803 crossref_primary_10_1007_s10462_023_10557_6 crossref_primary_10_1109_ACCESS_2023_3303113 crossref_primary_10_3390_diagnostics12123145 crossref_primary_10_3390_s23063000 crossref_primary_10_1016_j_engappai_2022_105634 crossref_primary_10_1007_s10586_023_04168_7 crossref_primary_10_1016_j_engappai_2022_105639 crossref_primary_10_1016_j_cosrev_2024_100686 crossref_primary_10_1016_j_sigpro_2024_109874 crossref_primary_10_3390_computers14070281 crossref_primary_10_3390_su14106082 crossref_primary_10_1007_s12083_024_01829_1 crossref_primary_10_1155_2022_2532580 crossref_primary_10_1109_ACCESS_2020_3010729 crossref_primary_10_1109_ACCESS_2022_3164392 crossref_primary_10_1007_s41870_024_01982_z crossref_primary_10_1007_s10207_024_00901_4 crossref_primary_10_3390_diagnostics12123138 crossref_primary_10_3390_math10081289 crossref_primary_10_3390_math10121966 crossref_primary_10_1016_j_heliyon_2025_e41846 crossref_primary_10_1016_j_cosrev_2023_100573 crossref_primary_10_1155_2022_1833507 crossref_primary_10_32604_cmc_2024_048883 crossref_primary_10_1016_j_adhoc_2022_103063 crossref_primary_10_3390_app11031095 crossref_primary_10_1016_j_engappai_2023_107667 crossref_primary_10_1109_ACCESS_2024_3422077 crossref_primary_10_1007_s12652_020_02578_8 crossref_primary_10_1016_j_bspc_2025_107731 crossref_primary_10_1109_JBHI_2024_3417229 crossref_primary_10_1016_j_bspc_2025_107969 crossref_primary_10_1016_j_heliyon_2023_e16149 crossref_primary_10_1038_s41598_025_10291_9 crossref_primary_10_3389_feduc_2024_1375853 crossref_primary_10_3390_app112411845 crossref_primary_10_1186_s40537_025_01157_y crossref_primary_10_3390_electronics13234757 crossref_primary_10_1016_j_compeleceng_2025_110097 crossref_primary_10_1016_j_cogsys_2024_101243 crossref_primary_10_1057_s41288_022_00266_6 crossref_primary_10_1016_j_mvr_2024_104753 crossref_primary_10_1016_j_cmpb_2022_107162 crossref_primary_10_1093_comjnl_bxac110 crossref_primary_10_1016_j_procs_2024_09_690 crossref_primary_10_32604_cmc_2023_042308 crossref_primary_10_3390_s22186934 crossref_primary_10_1016_j_engappai_2022_105461 crossref_primary_10_1016_j_engappai_2023_106030 crossref_primary_10_1109_ACCESS_2024_3372187 crossref_primary_10_3390_e24030349 crossref_primary_10_3390_jsan11030047 crossref_primary_10_3390_app12147337 crossref_primary_10_1016_j_cose_2023_103318 crossref_primary_10_32604_cmc_2024_051778 crossref_primary_10_1007_s11517_024_03107_x crossref_primary_10_1007_s42452_025_06773_0 crossref_primary_10_3390_app112210860 crossref_primary_10_1016_j_engappai_2023_107801 crossref_primary_10_1016_j_heliyon_2024_e40874 crossref_primary_10_3390_electronics12112495 crossref_primary_10_32604_cmc_2022_019001 crossref_primary_10_1016_j_eswa_2023_120538 crossref_primary_10_3390_en15113951 crossref_primary_10_3390_en15238778 crossref_primary_10_1016_j_compeleceng_2023_108773 crossref_primary_10_3390_app12052307 crossref_primary_10_3390_computers11110158 crossref_primary_10_32604_cmc_2023_036020 |
| Cites_doi | 10.1109/NAECON.2015.7443094 10.1109/TKDE.2008.234 10.1007/s11416-018-0325-y 10.1109/COMST.2018.2847722 10.1201/9780429504044-2 10.5815/ijmecs.2013.12.05 10.1109/TST.2016.7399288 10.4018/978-1-5225-9611-0.ch004 10.1016/j.ijinfomgt.2019.07.011 10.1016/j.heliyon.2019.e01802 10.1145/2487788.2488056 10.1109/ACCESS.2019.2895334 10.1002/nem.2049 10.1109/TNN.2006.879766 10.1109/ICoAC.2014.7229711 10.1016/j.ins.2011.08.020 10.1109/MELCON.2014.6820574 10.3390/info10040122 10.7763/IJCTE.2011.V3.287 10.1016/j.cose.2011.12.012 10.1007/s11227-015-1604-8 10.1007/s00778-006-0002-5 10.1109/INTECH.2016.7845073 10.1016/j.procs.2015.02.149 10.1109/ACCESS.2018.2844349 10.1109/ACT.2010.33 10.1007/s00521-017-2914-y 10.1109/ACCESS.2019.2948382 10.1109/TCSS.2016.2516039 10.14445/22312803/IJCTT-V7P106 10.1007/s10586-017-0971-8 10.1007/978-3-319-46298-1_30 10.1109/ICTAI.2007.65 10.1109/ACCESS.2017.2666785 10.1186/2190-8532-1-1 10.1016/j.comnet.2020.107247 10.1023/A:1009715923555 10.1016/j.cose.2018.11.001 10.5755/j01.itc.48.2.23091 10.1109/COMPSAC.2015.241 10.1016/j.procs.2016.07.238 10.2298/CSIS190122008J 10.1109/ICCCNT45670.2019.8944796 10.1007/s11416-008-0082-4 10.1109/ISDA.2013.6920760 10.1109/COMST.2015.2494502 10.1109/ICIEA.2013.6566472 10.1007/s10586-017-1117-8 10.26483/ijarcs.v9i2.5571 10.1007/s11416-015-0244-0 10.1007/s11219-017-9368-4 10.1109/ICNTE.2015.7029925 10.4172/2153-0602.1000181 10.1007/978-3-319-24770-0_8 10.1016/j.aci.2018.01.004 10.1561/2000000039 10.1109/TNET.2019.2899124 10.4236/jcc.2015.34006 10.4018/IJKDB.2018010102 10.1016/j.patrec.2011.03.022 10.1007/s13042-018-00906-1 10.1109/ICBDA.2016.7509829 10.3390/s19224952 10.1109/INMIC.2016.7840072 10.1109/DCOSS.2019.00059 10.1145/1167253.1167288 10.3390/computers8030059 10.1007/978-81-322-2529-4_51 10.1007/s00521-017-3305-0 10.1016/j.patcog.2017.10.013 10.1109/ICNC.2012.6234576 10.1109/ACCESS.2019.2953095 10.1109/2.485891 10.1109/SECON.2016.7506774 10.1109/CISDA.2009.5356528 10.1109/ACCESS.2018.2836950 10.1016/j.eswa.2010.06.066 10.4018/978-1-5225-9611-0.ch007 10.3390/app9020239 10.1109/CISIS.2010.116 10.4249/scholarpedia.5947 10.1201/9780429440953-10 10.1016/j.jnca.2012.10.004 10.1007/978-981-10-3376-6_29 10.1631/FITEE.1800573 10.1007/s00521-010-0487-0 10.1109/CNSR.2007.22 10.1007/978-981-10-8681-6_67 10.5220/0007470705280535 10.1109/SKIMA.2014.7083539 10.1108/09685221211286548 10.1109/QiR.2015.7374895 10.3390/electronics9010097 10.1007/978-3-642-23496-5_13 10.1109/FSKD.2014.6980972 10.1109/ICBDACI.2017.8070809 10.22215/timreview/835 10.1016/j.inffus.2019.01.002 10.1109/TASLP.2017.2769220 10.1016/j.knosys.2014.03.015 10.23919/CYCON.2018.8405026 10.1109/ICCECE.2017.8526232 10.1109/ACCESS.2019.2903723 10.1016/j.bushor.2019.11.003 10.1093/cybsec/tyw011 10.1080/19361610.2018.1463136 |
| ContentType | Journal Article |
| Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
| DOI | 10.3390/en13102509 |
| DatabaseName | CrossRef ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_cbb1a8b8440646da8e06e2989a0d1fa9 10_3390_en13102509 |
| GroupedDBID | 29G 2WC 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c361t-ee4471c2d89760c05d3faff7c612ab508c2f8968bd01ff72b3a4b07c118d6f2a3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 177 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000539257300102&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1073 |
| IngestDate | Fri Oct 03 12:46:05 EDT 2025 Mon Jun 30 11:15:06 EDT 2025 Sat Nov 29 07:12:57 EST 2025 Tue Nov 18 21:29:04 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c361t-ee4471c2d89760c05d3faff7c612ab508c2f8968bd01ff72b3a4b07c118d6f2a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2174-3383 0000-0003-1252-260X |
| OpenAccessLink | https://www.proquest.com/docview/2404504425?pq-origsite=%requestingapplication% |
| PQID | 2404504425 |
| PQPubID | 2032402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_cbb1a8b8440646da8e06e2989a0d1fa9 proquest_journals_2404504425 crossref_primary_10_3390_en13102509 crossref_citationtrail_10_3390_en13102509 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-05-01 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2020 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Gelly (ref_71) 2017; 26 ref_93 Zhang (ref_128) 2019; 7 ref_139 (ref_157) 2016; 2 ref_90 Michie (ref_6) 1994; 13 Mishra (ref_107) 2018; 21 ref_11 ref_98 ref_97 Saxena (ref_84) 2014; 98 ref_95 Karthika (ref_103) 2015; 14 Canhoto (ref_13) 2019; 63 Vincent (ref_75) 2010; 11 ref_17 ref_16 Barba (ref_69) 2006; 17 Gu (ref_72) 2018; 77 Bassiouni (ref_148) 2018; 13 Salehi (ref_109) 2014; 2014 ref_126 Jain (ref_104) 2018; 8 ref_125 Chandrasekar (ref_27) 2018; 9 Khammas (ref_167) 2015; 77 ref_25 ref_24 ref_122 Rao (ref_18) 2019; 31 ref_20 Xin (ref_33) 2018; 6 Dey (ref_15) 2019; 49 He (ref_127) 2016; 2 Javed (ref_54) 2015; 5 Zhu (ref_99) 2018; 30 ref_26 ref_159 Feng (ref_91) 2018; 6 Malik (ref_117) 2018; 21 Li (ref_47) 2018; 19 ref_79 ref_78 ref_153 ref_152 ref_76 ref_73 Rizk (ref_135) 2019; 15 Jain (ref_80) 1996; 29 ref_160 Ferrag (ref_62) 2020; 50 Khan (ref_94) 2007; 16 Shrivas (ref_137) 2014; 99 Burges (ref_77) 1998; 2 ref_83 ref_82 ref_81 Buczak (ref_45) 2015; 18 Moon (ref_118) 2017; 73 Kwon (ref_51) 2019; 22 Gao (ref_149) 2019; 7 Gandotra (ref_34) 2014; 5 ref_142 ref_88 ref_141 ref_87 Awad (ref_86) 2011; 3 ref_143 ref_85 ref_146 ref_145 Sharma (ref_124) 2013; 10 Zhang (ref_123) 2014; 64 Santos (ref_119) 2013; 231 ref_50 Li (ref_134) 2015; 9 Kevric (ref_111) 2017; 28 Shabtai (ref_138) 2012; 1 ref_58 Torres (ref_43) 2019; 10 ref_57 Shaukat (ref_12) 2017; 1 Zseby (ref_41) 2019; 15 ref_56 Foqaha (ref_147) 2016; 8 ref_53 Panigrahi (ref_59) 2018; 7 ref_52 Horng (ref_96) 2011; 38 Shiravi (ref_66) 2012; 31 Jo (ref_132) 2015; 11 Ammar (ref_133) 2015; 3 Biggio (ref_30) 2011; 32 ref_61 ref_60 ref_169 Panda (ref_163) 2007; 7 Jusas (ref_32) 2019; 16 Vinayakumar (ref_155) 2019; 7 Shijo (ref_102) 2015; 46 Shukur (ref_22) 2019; 8 ref_68 ref_161 ref_67 ref_164 ref_65 ref_166 ref_64 ref_165 Alauthman (ref_19) 2019; 26 ref_63 Afek (ref_23) 2019; 27 Jusas (ref_10) 2019; 48 Ye (ref_129) 2008; 4 Alkaht (ref_130) 2016; 11 Deng (ref_70) 2014; 7 Rathi (ref_151) 2013; 5 Gupta (ref_154) 2016; 93 ref_115 ref_114 ref_116 Jiang (ref_162) 2008; 21 Latiff (ref_28) 2017; 5 ref_36 Dharamkar (ref_35) 2014; 7 Soranamageswari (ref_140) 2011; 3 ref_31 ref_110 ref_113 Siddiqui (ref_150) 2009; 6 Maqsood (ref_14) 2020; 50 Renuka (ref_170) 2015; 2 ref_39 Purkait (ref_55) 2012; 20 Yuan (ref_131) 2016; 21 ref_38 ref_37 Sheikhan (ref_144) 2012; 21 Phan (ref_136) 2019; 29 Gaikwad (ref_112) 2014; 5 Lee (ref_92) 2019; 7 Dada (ref_21) 2019; 5 ref_106 ref_105 ref_108 Craigen (ref_2) 2014; 4 Islam (ref_120) 2013; 36 ref_46 Hinton (ref_74) 2009; 4 Yan (ref_121) 2018; 26 ref_44 ref_100 ref_42 Najadat (ref_89) 2014; 1 Galal (ref_158) 2016; 12 ref_40 ref_101 ref_1 ref_3 Chen (ref_29) 2015; 2 Bhat (ref_168) 2013; 2 ref_49 ref_9 Ucci (ref_48) 2019; 81 ref_8 ref_5 ref_4 ref_7 Lilhore (ref_156) 2017; 4 |
| References_xml | – ident: ref_125 doi: 10.1109/NAECON.2015.7443094 – volume: 21 start-page: 1361 year: 2008 ident: ref_162 article-title: A novel Bayes model: Hidden naive Bayes publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2008.234 – volume: 5 start-page: 6976 year: 2014 ident: ref_112 article-title: Intrusion detection system using ripple down rule learner and genetic algorithm publication-title: Int. J. Comput. Sci. Inf. Technol. – volume: 15 start-page: 109 year: 2019 ident: ref_41 article-title: Malware propagation in smart grid networks: Metrics, simulation and comparison of three malware types publication-title: J. Comput. Virol. Hacking Tech. doi: 10.1007/s11416-018-0325-y – volume: 21 start-page: 686 year: 2018 ident: ref_107 article-title: Tutorials. A detailed investigation and analysis of using machine learning techniques for intrusion detection publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2018.2847722 – volume: 26 start-page: 48 year: 2019 ident: ref_19 article-title: Machine Learning for phishing Detection and Mitigation publication-title: Mach. Learn. Comput. Cyber Secur. Princ. Algorithmsand Pract. doi: 10.1201/9780429504044-2 – ident: ref_100 – volume: 5 start-page: 31 year: 2013 ident: ref_151 article-title: Spam mail detection through data mining-A comparative performance analysis publication-title: Int. J. Mod. Educ. Comput. Sci. doi: 10.5815/ijmecs.2013.12.05 – ident: ref_88 – volume: 21 start-page: 114 year: 2016 ident: ref_131 article-title: Droiddetector: Android malware characterization and detection using deep learning publication-title: Tsinghua Sci. Technol. doi: 10.1109/TST.2016.7399288 – ident: ref_108 – ident: ref_83 doi: 10.4018/978-1-5225-9611-0.ch004 – ident: ref_1 – volume: 50 start-page: 432 year: 2020 ident: ref_14 article-title: A local and global event sentiment based efficient stock exchange forecasting using deep learning publication-title: Int. J. Inf. Manag. doi: 10.1016/j.ijinfomgt.2019.07.011 – ident: ref_146 – volume: 5 start-page: e01802 year: 2019 ident: ref_21 article-title: Machine learning for email spam filtering: Review, approaches and open research problems publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e01802 – ident: ref_166 – ident: ref_101 doi: 10.1145/2487788.2488056 – volume: 7 start-page: 41525 year: 2019 ident: ref_155 article-title: Deep Learning Approach for Intelligent Intrusion Detection System publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2895334 – ident: ref_4 – ident: ref_31 – ident: ref_56 – volume: 11 start-page: 3371 year: 2010 ident: ref_75 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 29 start-page: e2049 year: 2019 ident: ref_136 article-title: User identification via neural network based language models publication-title: Int. J. Netw. Manag. doi: 10.1002/nem.2049 – volume: 17 start-page: 1316 year: 2006 ident: ref_69 article-title: A convolutional neural network approach for objective video quality assessment publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2006.879766 – volume: 1 start-page: 1 year: 2014 ident: ref_89 article-title: Mobile sms spam filtering based on mixing classifiers publication-title: Int. J. Adv. Comput. Res. – ident: ref_95 doi: 10.1109/ICoAC.2014.7229711 – volume: 231 start-page: 64 year: 2013 ident: ref_119 article-title: Opcode sequences as representation of executables for data-mining-based unknown malware detection publication-title: Inf. Sci. doi: 10.1016/j.ins.2011.08.020 – ident: ref_122 doi: 10.1109/MELCON.2014.6820574 – ident: ref_52 doi: 10.3390/info10040122 – volume: 3 start-page: 84 year: 2011 ident: ref_140 article-title: A novel approach towards image spam classification publication-title: Int. J. Comput. Theory Eng. doi: 10.7763/IJCTE.2011.V3.287 – volume: 31 start-page: 357 year: 2012 ident: ref_66 article-title: Toward developing a systematic approach to generate benchmark datasets for intrusion detection publication-title: Comput. Secur. doi: 10.1016/j.cose.2011.12.012 – volume: 3 start-page: 173 year: 2011 ident: ref_86 article-title: Machine learning methods for spam e-mail classification publication-title: Int. J. Comput. Sci. Inf. Technol. – volume: 73 start-page: 2881 year: 2017 ident: ref_118 article-title: DTB-IDS: An intrusion detection system based on decision tree using behavior analysis for preventing APT attacks publication-title: J. Supercomput. doi: 10.1007/s11227-015-1604-8 – volume: 16 start-page: 507 year: 2007 ident: ref_94 article-title: A new intrusion detection system using support vector machines and hierarchical clustering publication-title: VLDB J. doi: 10.1007/s00778-006-0002-5 – ident: ref_110 doi: 10.1109/INTECH.2016.7845073 – volume: 46 start-page: 804 year: 2015 ident: ref_102 article-title: Integrated static and dynamic analysis for malware detection publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.02.149 – ident: ref_53 – volume: 8 start-page: 257 year: 2019 ident: ref_22 article-title: Credit Card Fraud Detection Using Machine Learning Methodology publication-title: Int. J. Comput. Sci. Mob. Comput. – volume: 6 start-page: 30996 year: 2018 ident: ref_91 article-title: A Novel Dynamic Android Malware Detection System With Ensemble Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2844349 – ident: ref_5 doi: 10.1109/ACT.2010.33 – ident: ref_3 – volume: 30 start-page: 3353 year: 2018 ident: ref_99 article-title: HEMD: A highly efficient random forest-based malware detection framework for Android publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-2914-y – volume: 9 start-page: 205 year: 2015 ident: ref_134 article-title: A hybrid malicious code detection method based on deep learning publication-title: J. Secur. Appl. – volume: 7 start-page: 154560 year: 2019 ident: ref_149 article-title: A Distributed Network Intrusion Detection System for Distributed Denial of Service Attacks in Vehicular Ad Hoc Network publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2948382 – volume: 6 start-page: 48 year: 2009 ident: ref_150 article-title: Detecting internet worms using data mining techniques publication-title: J. Syst. Cybern. Inform. – volume: 2 start-page: 56 year: 2013 ident: ref_168 article-title: Machine learning approach for intrusion detection on cloud virtual machines publication-title: Int. J. Appl. Innov. Eng. Manag. – volume: 2 start-page: 65 year: 2015 ident: ref_29 article-title: A performance evaluation of machine learning-based streaming spam tweets detection publication-title: IEEE Trans. Comput. Soc. Syst. doi: 10.1109/TCSS.2016.2516039 – volume: 7 start-page: 100 year: 2014 ident: ref_35 article-title: A review of cyber attack classification technique based on data mining and neural network approach publication-title: Int. J. Comput. Trends Technol. doi: 10.14445/22312803/IJCTT-V7P106 – volume: 21 start-page: 667 year: 2018 ident: ref_117 article-title: A hybrid technique using binary particle swarm optimization and decision tree pruning for network intrusion detection publication-title: Clust. Comput. doi: 10.1007/s10586-017-0971-8 – ident: ref_65 doi: 10.1007/978-3-319-46298-1_30 – ident: ref_85 doi: 10.1109/ICTAI.2007.65 – ident: ref_67 – ident: ref_106 – volume: 5 start-page: 15650 year: 2017 ident: ref_28 article-title: A review on mobile SMS spam filtering techniques publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2666785 – ident: ref_44 – volume: 14 start-page: 171 year: 2015 ident: ref_103 article-title: A hybrid ACO based feature selection method for email spam classification publication-title: WSEAS Trans. Comput. – volume: 1 start-page: 1 year: 2012 ident: ref_138 article-title: Detecting unknown malicious code by applying classification techniques on opcode patterns publication-title: Secur. Inform. doi: 10.1186/2190-8532-1-1 – ident: ref_152 doi: 10.1016/j.comnet.2020.107247 – ident: ref_73 – volume: 2 start-page: 121 year: 1998 ident: ref_77 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009715923555 – volume: 81 start-page: 123 year: 2019 ident: ref_48 article-title: Survey of machine learning techniques for malware analysis publication-title: Comput. Secur. doi: 10.1016/j.cose.2018.11.001 – volume: 48 start-page: 225 year: 2019 ident: ref_10 article-title: Classification of motor imagery using combination of feature extraction and reduction methods for brain-computer interface publication-title: Inf. Technol. Control doi: 10.5755/j01.itc.48.2.23091 – ident: ref_164 doi: 10.1109/COMPSAC.2015.241 – volume: 93 start-page: 824 year: 2016 ident: ref_154 article-title: A framework for fast and efficient cyber security network intrusion detection using apache spark publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.07.238 – volume: 16 start-page: 491 year: 2019 ident: ref_32 article-title: Logical filter approach for early stage cyber-attack detection publication-title: Comput. Sci. Inf. Syst. doi: 10.2298/CSIS190122008J – ident: ref_50 – ident: ref_98 doi: 10.1109/ICCCNT45670.2019.8944796 – volume: 4 start-page: 323 year: 2008 ident: ref_129 article-title: An intelligent PE-malware detection system based on association mining publication-title: J. Comput. Virol. doi: 10.1007/s11416-008-0082-4 – ident: ref_81 – ident: ref_142 doi: 10.1109/ISDA.2013.6920760 – volume: 18 start-page: 1153 year: 2015 ident: ref_45 article-title: A survey of data mining and machine learning methods for cyber security intrusion detection publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2015.2494502 – ident: ref_145 doi: 10.1109/ICIEA.2013.6566472 – volume: 22 start-page: 949 year: 2019 ident: ref_51 article-title: A survey of deep learning-based network anomaly detection publication-title: Clust. Comput. doi: 10.1007/s10586-017-1117-8 – volume: 9 start-page: 402 year: 2018 ident: ref_27 article-title: Classification techniques using spam filtering email publication-title: Int. J. Adv. Res. Comput. Sci. doi: 10.26483/ijarcs.v9i2.5571 – volume: 12 start-page: 59 year: 2016 ident: ref_158 article-title: Behavior-based features model for malware detection publication-title: J. Comput. Virol. Hacking Tech. doi: 10.1007/s11416-015-0244-0 – volume: 26 start-page: 891 year: 2018 ident: ref_121 article-title: A survey on dynamic mobile malware detection publication-title: Softw. Qual. J. doi: 10.1007/s11219-017-9368-4 – ident: ref_64 – ident: ref_115 doi: 10.1109/ICNTE.2015.7029925 – ident: ref_9 doi: 10.4172/2153-0602.1000181 – ident: ref_126 – ident: ref_11 doi: 10.1007/978-3-319-24770-0_8 – ident: ref_36 – volume: 5 start-page: 56 year: 2014 ident: ref_34 article-title: Malware analysis and classification: A survey publication-title: J. Inf. Secur. – volume: 15 start-page: 81 year: 2019 ident: ref_135 article-title: Deep belief networks and cortical algorithms: A comparative study for supervised classification publication-title: Appl. Comput. Inform. doi: 10.1016/j.aci.2018.01.004 – volume: 7 start-page: 197 year: 2014 ident: ref_70 article-title: Deep learning: Methods and applications publication-title: Found. Trends Signal Process. doi: 10.1561/2000000039 – volume: 27 start-page: 691 year: 2019 ident: ref_23 article-title: Zero-day signature extraction for high-volume attacks publication-title: IEEE/ACM Trans. Netw. doi: 10.1109/TNET.2019.2899124 – volume: 3 start-page: 52 year: 2015 ident: ref_133 article-title: A decision tree classifier for intrusion detection priority tagging publication-title: J. Comput. Commun. doi: 10.4236/jcc.2015.34006 – volume: 8 start-page: 12 year: 2018 ident: ref_104 article-title: Spam detection on social media using semantic convolutional neural network publication-title: Int. J. Knowl. Discov. Bioinform. doi: 10.4018/IJKDB.2018010102 – volume: 32 start-page: 1436 year: 2011 ident: ref_30 article-title: A survey and experimental evaluation of image spam filtering techniques publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2011.03.022 – volume: 1 start-page: 84 year: 2017 ident: ref_12 article-title: A Socio-Technological analysis of Cyber Crime and Cyber Security in Pakistan publication-title: Transylv. Rev. – ident: ref_165 – ident: ref_78 – volume: 10 start-page: 2823 year: 2019 ident: ref_43 article-title: Machine learning techniques applied to cybersecurity publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-018-00906-1 – ident: ref_153 doi: 10.1109/ICBDA.2016.7509829 – volume: 4 start-page: 786 year: 2017 ident: ref_156 article-title: Network intrusion detection system based on modified Random forest classifiers for kdd cup-99 and nsl-kdd Dataset publication-title: Int. Res. J. Eng. Technol. – ident: ref_49 – ident: ref_40 doi: 10.3390/s19224952 – ident: ref_113 – ident: ref_8 doi: 10.1109/INMIC.2016.7840072 – ident: ref_159 – ident: ref_114 doi: 10.1109/DCOSS.2019.00059 – ident: ref_90 doi: 10.1145/1167253.1167288 – volume: 77 start-page: 234 year: 2015 ident: ref_167 article-title: Feature selection and machine learning classification for malware detection publication-title: J. Teknol. – ident: ref_143 doi: 10.3390/computers8030059 – ident: ref_93 doi: 10.1007/978-81-322-2529-4_51 – volume: 31 start-page: 3851 year: 2019 ident: ref_18 article-title: Detection of phishing websites using an efficient feature-based machine learning framework publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-3305-0 – volume: 99 start-page: 8 year: 2014 ident: ref_137 article-title: An ensemble model for classification of attacks with feature selection based on KDD99 and NSL-KDD data set publication-title: Int. J. Comput. Appl. – volume: 77 start-page: 354 year: 2018 ident: ref_72 article-title: Recent advances in convolutional neural networks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.10.013 – ident: ref_58 – volume: 2 start-page: 218 year: 2016 ident: ref_157 article-title: Enhanced Method for Intrusion Detection over KDD Cup 99 Dataset publication-title: Int. J. Curr. Trends Eng. Technol. – ident: ref_141 doi: 10.1109/ICNC.2012.6234576 – volume: 7 start-page: 165607 year: 2019 ident: ref_92 article-title: Cyber Threat Detection Based on Artificial Neural Networks Using Event Profiles publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2953095 – ident: ref_139 – volume: 29 start-page: 31 year: 1996 ident: ref_80 article-title: Artificial neural networks: A tutorial publication-title: Computer doi: 10.1109/2.485891 – volume: 50 start-page: 102419 year: 2020 ident: ref_62 article-title: Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study publication-title: J. Inf. Secur. Appl. – ident: ref_116 doi: 10.1109/SECON.2016.7506774 – ident: ref_61 doi: 10.1109/CISDA.2009.5356528 – volume: 6 start-page: 35365 year: 2018 ident: ref_33 article-title: Machine learning and deep learning methods for cybersecurity publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2836950 – volume: 38 start-page: 306 year: 2011 ident: ref_96 article-title: A novel intrusion detection system based on hierarchical clustering and support vector machines publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.06.066 – volume: 5 start-page: 1 year: 2015 ident: ref_54 article-title: A survey-data privacy through different methods publication-title: J. Netw. Commun. Emerg. Technol. – ident: ref_38 – volume: 2014 start-page: 9 year: 2014 ident: ref_109 article-title: Using feature generation from API calls for malware detection publication-title: Security – ident: ref_17 – ident: ref_25 doi: 10.4018/978-1-5225-9611-0.ch007 – ident: ref_42 doi: 10.3390/app9020239 – ident: ref_160 doi: 10.1109/CISIS.2010.116 – ident: ref_7 – volume: 4 start-page: 5947 year: 2009 ident: ref_74 article-title: Deep belief networks publication-title: Scholarpedia doi: 10.4249/scholarpedia.5947 – ident: ref_20 doi: 10.1201/9780429440953-10 – volume: 36 start-page: 646 year: 2013 ident: ref_120 article-title: Classification of malware based on integrated static and dynamic features publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2012.10.004 – ident: ref_76 – volume: 28 start-page: 1051 year: 2017 ident: ref_111 article-title: An effective combining classifier approach using tree algorithms for network intrusion detection publication-title: Applications – ident: ref_26 doi: 10.1007/978-981-10-3376-6_29 – volume: 19 start-page: 1462 year: 2018 ident: ref_47 article-title: Cyber security meets artificial intelligence: A survey publication-title: Front. Inf. Technol. Electron. Eng. doi: 10.1631/FITEE.1800573 – volume: 21 start-page: 1185 year: 2012 ident: ref_144 article-title: Intrusion detection using reduced-size RNN based on feature grouping publication-title: Neural Comput. Appl. doi: 10.1007/s00521-010-0487-0 – ident: ref_82 – volume: 98 start-page: 25 year: 2014 ident: ref_84 article-title: Intrusion detection in KDD99 dataset using SVM-PSO and feature reduction with information gain publication-title: Int. J. Comput. Appl. – ident: ref_169 doi: 10.1109/CNSR.2007.22 – ident: ref_37 – ident: ref_63 – volume: 11 start-page: 33 year: 2015 ident: ref_132 article-title: A comparative study on the performance of intrusion detection using decision tree and artificial neural network models publication-title: J. Korea Soc. Digit. Ind. Inf. Manag. – ident: ref_16 doi: 10.1007/978-981-10-8681-6_67 – ident: ref_24 doi: 10.5220/0007470705280535 – volume: 7 start-page: 479 year: 2018 ident: ref_59 article-title: A detailed analysis of CICIDS2017 dataset for designing Intrusion Detection Systems publication-title: Int. J. Eng. Technol. – volume: 13 start-page: 1 year: 1994 ident: ref_6 article-title: Machine learning publication-title: Neural Stat. Classif. – ident: ref_87 doi: 10.1109/SKIMA.2014.7083539 – ident: ref_79 – volume: 20 start-page: 382 year: 2012 ident: ref_55 article-title: Phishing counter measures and their effectiveness–literature review publication-title: Inf. Manag. Comput. Secur. doi: 10.1108/09685221211286548 – ident: ref_97 doi: 10.1109/QiR.2015.7374895 – ident: ref_105 doi: 10.3390/electronics9010097 – volume: 10 start-page: 23 year: 2013 ident: ref_124 article-title: Adaptive approach for spam detection publication-title: Int. J. Comput. Sci. Issues – ident: ref_161 doi: 10.1007/978-3-642-23496-5_13 – ident: ref_60 doi: 10.1109/FSKD.2014.6980972 – volume: 7 start-page: 258 year: 2007 ident: ref_163 article-title: Network intrusion detection using naive bayes publication-title: Int. J. Comput. Sci. Netw. Secur. – ident: ref_68 doi: 10.1109/ICBDACI.2017.8070809 – volume: 4 start-page: 13 year: 2014 ident: ref_2 article-title: Defining cybersecurity publication-title: Technol. Innov. Manag. Rev. doi: 10.22215/timreview/835 – volume: 8 start-page: 17 year: 2016 ident: ref_147 article-title: Email spam classification using hybrid approach of RBF neural network and particle swarm optimization publication-title: Int. J. Netw. Secur. Appl. – volume: 49 start-page: 205 year: 2019 ident: ref_15 article-title: A machine learning based intrusion detection scheme for data fusion in mobile clouds involving heterogeneous client networks publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.01.002 – volume: 26 start-page: 646 year: 2017 ident: ref_71 article-title: Optimization of RNN-based speech activity detection publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2017.2769220 – volume: 64 start-page: 22 year: 2014 ident: ref_123 article-title: Binary PSO with mutation operator for feature selection using decision tree applied to spam detection publication-title: Knowl. -Based Syst. doi: 10.1016/j.knosys.2014.03.015 – ident: ref_39 doi: 10.23919/CYCON.2018.8405026 – ident: ref_46 doi: 10.1109/ICCECE.2017.8526232 – volume: 7 start-page: 31711 year: 2019 ident: ref_128 article-title: Intrusion detection for IoT based on improved genetic algorithm and deep belief network publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2903723 – volume: 11 start-page: 2 year: 2016 ident: ref_130 article-title: Filtering SPAM Using Several Stages Neural Networks publication-title: Int. Rev. Comp. Softw. – volume: 63 start-page: 183 year: 2019 ident: ref_13 article-title: Artificial intelligence and machine learning as business tools: A framework for diagnosing value destruction potential publication-title: Bus. Horiz. doi: 10.1016/j.bushor.2019.11.003 – ident: ref_57 – volume: 2 start-page: 99 year: 2016 ident: ref_127 article-title: How would information disclosure influence organizations’ outbound spam volume? Evidence from a field experiment publication-title: J. Cybersecur. doi: 10.1093/cybsec/tyw011 – volume: 2 start-page: 22 year: 2015 ident: ref_170 article-title: Improving E-mail spam classification using ant colony optimization algorithm publication-title: Int. J. Comput. Appl. – volume: 13 start-page: 315 year: 2018 ident: ref_148 article-title: Ham and Spam E-Mails Classification Using Machine Learning Techniques publication-title: J. Appl. Secur. Res. doi: 10.1080/19361610.2018.1463136 |
| SSID | ssj0000331333 |
| Score | 2.6299343 |
| SecondaryResourceType | review_article |
| Snippet | Cyberspace has become an indispensable factor for all areas of the modern world. The world is becoming more and more dependent on the internet for everyday... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 2509 |
| SubjectTerms | Artificial intelligence Cybercrime Cybersecurity Datasets Decision trees Internet intrusion detection system Intrusion detection systems Machine learning Malware malware detection Performance evaluation spam classification |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF1EPOhB_MRqlQW9eAjdZLfJ7lGDxYulhwq9hdmPSEFSaavgv3ey2bQVBS9el4GEmezMezB5j5AbxzVyHC0jAQoioThEygESVw19jfTB8hi82UQ2HMrJRI02rL7qnbBGHrhJXM9oHYPUUuDkEakF6VjqatlwYDYuwf-6h6hng0z5Hsw5ki_e6JFy5PU9V8WIZHDgq28TyAv1_-jDfrgMDsh-QIX0rnmbQ7LlqiOyt6EVeEzMaL3iT_OVeyCFytIgskTz1hllQWcl9dsA9MlvSzoahFRf6LhVbV3QaUXzT40AMJjYnZDnwcM4f4yCQ0JkeBovI-cEDheTWImoghnWt7yEsswM4hbQiL1MUkqVSm1ZjMeJ5iA0ywyyCpuWCfBTsl3NKndGaCl0xrUycWa44FKC4i7Vmtkss0w51iG3bdYKE-TDaxeL1wJpRJ3hYp3hDrlexb41ohm_Rt3XyV9F1ELX_gDLX4TyF3-Vv0O6bemKcPsWBaIU0WcC29H5fzzjguwmNcv2a45dsr2cv7tLsmM-ltPF_Mp_eF8ghN7c priority: 102 providerName: Directory of Open Access Journals |
| Title | Performance Comparison and Current Challenges of Using Machine Learning Techniques in Cybersecurity |
| URI | https://www.proquest.com/docview/2404504425 https://doaj.org/article/cbb1a8b8440646da8e06e2989a0d1fa9 |
| Volume | 13 |
| WOSCitedRecordID | wos000539257300102&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFA06utCFb_FNQDcuimmTaZOV6DCiixmKKOiq5FURpKPTUXDjt3uTSWcUxY2bLtJQSm-Se05yew5CR5Yq4DiKR0wKGTFBZSSsBOKqZFsBfTA0lt5sIuv3-d2dyMOGWx3KKps10S_UZqDdHvkJZB7WJgyG2OnzS-Rco9zparDQmEVzTqmMtdDcebefX092WQilQMLoWJeUAr8_sVUMiAYSv_iWibxg_4_12CeZi-X_vt4KWgrwEp-Nx8MqmrHVGlr8Ijq4jnQ-_VcAdyY2hFhWBge1JtxpLFZqPCixLyvAPV92aXFQZH3AN438a40fK9x5V4AkgxveBrq96N50LqNgtRBpmsajyFoGWUonhgM8IZq0DS1lWWYaAJBUAOJ0UnKRcmVIDM2JopIpkmmgJyYtE0k3UasaVHYL4ZKpjCqh40xTRjmXgtpUKWKyzBBhyTY6bj57oYMOubPDeCqAj7gQFdMQbaPDSd_nsfrGr73OXfQmPZxitm8YDB-KMAELrVQsueIMEAxLjeSWpNbJz0ti4lLCQ_aawBZhGtfFNKo7f9_eRQuJI-K-EnIPtUbDV7uP5vXb6LEeHoRReeAJP1x7H11oy696-f0nukPxgA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9swGH7FyqTBYV-AYGPM0rYDhwgndhP7ME3QDVFBqx46CU7BX0FIKIWm28Sf4jfyOnVa0BA3Dlwdy0riJ-9XXj8PwFfHNOY4WkRcSRVxyVQkncLEVau2xvTBsljVYhNZvy-Oj-VgAW6aszC-rbKxibWhtiPja-Q76Hl4m3KE2I_Lq8irRvm_q42ExhQWh-76H6Zs1ffuT9zfb0my_2vYOYiCqkBkWBpPIuc4GmSTWIGemBratqxQRZEZ9PVKY7xikkLIVGhLYxxONFNc08xgJG7TIlEM130Bi_5ORAsWB93e4GRW1aGMYdLHpjyojEm648oYIygMNOQ9z1cLBPxn_2untv_mub2Ot_A6hM9kd4r3d7DgyvewfIdUcQXMYH4WgnRmMotElZYENirSaSRkKjIqSN02QXp1W6kjgXH2jAwbetuKnJekc60xUg5qf6vw-0mecg1a5ah060AKrjOmpYkzwzgTQknmUq2pzTJLpaMbsN1sc24Cz7qX-7jIMd_ykMjnkNiAL7O5l1N2kQdn7Xm0zGZ4RvB6YDQ-y4OByY3WsRJacIzQeGqVcDR1nl5fURsXChfZbICUBzNV5XMUfXj88md4dTDsHeVH3f7hR1hKfNGh7vrchNZk_Md9gpfm7-S8Gm-FL4LA6VOj7hYuCkuO |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VFiE40NKCKLTUEnDgEK0TexP7gBDdsmJVusqhSO0p9WdVCWXLZgH1r_HrGGed3VZU3Hrg6liREj_PvHEm7wG8cUxjjaNFwpVUCZdMJdIpLFy16mssHyxLVWs2UYzH4uRElivwu_sXJrRVdjGxDdR2YsIZeQ8zD-9TjhDr-dgWUR4MP1x-T4KDVPjS2tlpzCFy6K5-YfnWvB8d4Fq_zbLhp-PB5yQ6DCSG5ekscY5jcDaZFZiVqaF9y7zyvjCY95VG7mIyL2QutKUpDmeaKa5pYZCV29xniuF978EaUnKOe2ytHB2Vp4sTHsoYFoBsronKmKQ9V6fIppB0yBtZsDUL-CsXtAluuP4_v5oNeBxpNfk43wdPYMXVm_DomtjiFphy-Y8EGSzsF4mqLYkqVWTQWcs0ZOJJ205Bjtp2U0eiEu05Oe5kbxtyUZPBlUYGHV0An8LXO3nKZ7BaT2r3HIjnumBamrQwjDMhlGQu15raorBUOroN77olr0zUXw82IN8qrMMCPKolPLbh9WLu5Vx15NZZ-wE5ixlBKbwdmEzPqxh4KqN1qoQWHJkbz60SjuYuyO4ralOv8CY7HaiqGL6aaomoF_--vAcPEGrVl9H48CU8zMJZRNsMugOrs-kPtwv3zc_ZRTN9FTcHgbO7Bt0fRjJUTg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Comparison+and+Current+Challenges+of+Using+Machine+Learning+Techniques+in+Cybersecurity&rft.jtitle=Energies+%28Basel%29&rft.au=Shaukat%2C+Kamran&rft.au=Luo%2C+Suhuai&rft.au=Varadharajan%2C+Vijay&rft.au=Hameed%2C+Ibrahim+A&rft.date=2020-05-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=13&rft.issue=10&rft.spage=2509&rft_id=info:doi/10.3390%2Fen13102509&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |