Distributed Optimization Strategy for Voltage Regulation in PV-Integrated Power Systems with Limited Sensor Deployment
This paper presents a distributed optimization strategy for reactive power–voltage control in distribution networks with high photovoltaic (PV) penetration under limited sensor deployment scenarios. To address voltage violations and minimize network power losses, a novel distributed optimization fra...
Gespeichert in:
| Veröffentlicht in: | Energies (Basel) Jg. 18; H. 14; S. 3598 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.07.2025
|
| Schlagworte: | |
| ISSN: | 1996-1073, 1996-1073 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper presents a distributed optimization strategy for reactive power–voltage control in distribution networks with high photovoltaic (PV) penetration under limited sensor deployment scenarios. To address voltage violations and minimize network power losses, a novel distributed optimization framework is developed that utilizes selective nodal measurements from PV-integrated nodes and critical T-junction locations, coupled with inter-node communication for information exchange. The methodology integrates an adaptive step size algorithm within a dynamic projected primal–dual distributed optimization framework, eliminating manual parameter tuning requirements while ensuring theoretical convergence guarantees through Lyapunov stability analysis. Comprehensive validation on the IEEE 33-bus distribution test system demonstrates that the proposed strategy achieves significant performance improvements. The distributed control framework reduces measurement infrastructure requirements while maintaining near-optimal performance, demonstrating superior economic efficiency and operational reliability. These results establish the practical viability of the proposed approach for real-world distribution network applications with high renewable energy integration, providing a cost-effective solution for voltage regulation under incomplete observability conditions. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1996-1073 1996-1073 |
| DOI: | 10.3390/en18143598 |