Research on the Construction and Application of Earthquake Emergency Information Knowledge Graph Based on Large Language Models

To address the challenges of semantic parsing of multi-source heterogeneous information and the delayed emergency response decisions caused by insufficient relational reasoning capabilities in earthquake emergency management, this study proposes a domain knowledge extraction method for earthquakes b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 13; s. 127742 - 127757
Hlavní autoři: Zhou, Wentao, Huang, Meng, Liu, Shuai, You, Qiao, Meng, Fanxin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To address the challenges of semantic parsing of multi-source heterogeneous information and the delayed emergency response decisions caused by insufficient relational reasoning capabilities in earthquake emergency management, this study proposes a domain knowledge extraction method for earthquakes based on a large language model combined with a three-level prompt engineering system (TPES-LLM) of "instruction fine-tuning - demand awareness - case matching. "The method deploys a local large language model using LangChain +QWEN2.5-7B, integrates earthquake domain knowledge through LoRa fine-tuning based on earthquake experts' classifications and industry standards, and injects seismic knowledge into the model. The multi-head attention mechanism weights are optimized based on the co-occurrence frequency of historical earthquake entities, and demand-aware knowledge identifies key textual features that significantly impact knowledge extraction. Training is performed on 36 known earthquake disaster events to learn the association patterns of entities, relationships, and events hidden within the earthquake case data for case matching. This method significantly enhances the accuracy of entity recognition and the efficiency of relation extraction for complex disaster-related texts. Additionally, a bidirectional graph attention network (Bi-GAT) is designed to enable bidirectional propagation and dynamic aggregation of node features. The path confidence constraint algorithm (PCCA) is used to achieve deep semantic associations of earthquake disaster elements. Based on the Neo4j graph database, an earthquake emergency knowledge graph is constructed. Experimental results from real earthquake events such as the 2022 Luding 6.8-magnitude earthquake, the 2024 Jishishan 6.2-magnitude earthquake, and the 2025 Dingri 6.8-magnitude earthquake show that the accuracy of intelligent Q&A retrieval for the earthquake emergency knowledge graph reaches 89.62%, 87.28%, and 90.23%, respectively. The earthquake emergency knowledge graph based on large language models constructed in this study provides intelligent decision support for earthquake emergencies, with significant application value.
AbstractList To address the challenges of semantic parsing of multi-source heterogeneous information and the delayed emergency response decisions caused by insufficient relational reasoning capabilities in earthquake emergency management, this study proposes a domain knowledge extraction method for earthquakes based on a large language model combined with a three-level prompt engineering system (TPES-LLM) of "instruction fine-tuning - demand awareness - case matching. "The method deploys a local large language model using LangChain +QWEN2.5-7B, integrates earthquake domain knowledge through LoRa fine-tuning based on earthquake experts' classifications and industry standards, and injects seismic knowledge into the model. The multi-head attention mechanism weights are optimized based on the co-occurrence frequency of historical earthquake entities, and demand-aware knowledge identifies key textual features that significantly impact knowledge extraction. Training is performed on 36 known earthquake disaster events to learn the association patterns of entities, relationships, and events hidden within the earthquake case data for case matching. This method significantly enhances the accuracy of entity recognition and the efficiency of relation extraction for complex disaster-related texts. Additionally, a bidirectional graph attention network (Bi-GAT) is designed to enable bidirectional propagation and dynamic aggregation of node features. The path confidence constraint algorithm (PCCA) is used to achieve deep semantic associations of earthquake disaster elements. Based on the Neo4j graph database, an earthquake emergency knowledge graph is constructed. Experimental results from real earthquake events such as the 2022 Luding 6.8-magnitude earthquake, the 2024 Jishishan 6.2-magnitude earthquake, and the 2025 Dingri 6.8-magnitude earthquake show that the accuracy of intelligent Q&A retrieval for the earthquake emergency knowledge graph reaches 89.62%, 87.28%, and 90.23%, respectively. The earthquake emergency knowledge graph based on large language models constructed in this study provides intelligent decision support for earthquake emergencies, with significant application value.
Author Huang, Meng
Liu, Shuai
Zhou, Wentao
You, Qiao
Meng, Fanxin
Author_xml – sequence: 1
  givenname: Wentao
  orcidid: 0009-0006-3179-5178
  surname: Zhou
  fullname: Zhou, Wentao
  organization: Institute of Disaster Prevention, Langfang, China
– sequence: 2
  givenname: Meng
  orcidid: 0009-0000-9107-9102
  surname: Huang
  fullname: Huang, Meng
  email: hm@cidp.edu.cn
  organization: Institute of Disaster Prevention, Langfang, China
– sequence: 3
  givenname: Shuai
  surname: Liu
  fullname: Liu, Shuai
  organization: Institute of Disaster Prevention, Langfang, China
– sequence: 4
  givenname: Qiao
  orcidid: 0009-0003-2576-4832
  surname: You
  fullname: You, Qiao
  organization: Institute of Disaster Prevention, Langfang, China
– sequence: 5
  givenname: Fanxin
  surname: Meng
  fullname: Meng, Fanxin
  organization: Sichuan Disaster Reduction Center, Chengdu, China
BookMark eNpNUU1vEzEUXKEiUUp_ARwscU7qz419DKu0RA1ConC2vPZzsmFjb-1doZ746zjdCvDBfm80M-9Z87a6CDFAVb0neEkIVjfrptk8PCwppmLJhKzZCr-qLimp1YIJVl_8V7-prnM-4nJkgcTqsvr9DTKYZA8oBjQeADUx5DFNduwKYIJD62HoO2ue--jRxqTx8DiZn4A2J0h7CPYJbYOP6TRz7kP81YPbA7pLZjigTyaDO7vvTGGXO-wnU4ov0UGf31WvvekzXL-8V9WP28335vNi9_Vu26x3C8tqMi5AchASO8zAYUzbWoJUQjjZMumJopxygRkzvECuZcoK3PKVt7yl1HJM2VW1nX1dNEc9pO5k0pOOptPPQEx7XT7W2R60crX3lqoaLONMecWtASwNgC2TnSpeH2evIcXHCfKoj3FKoayvGeV1WUxiUlhsZtkUc07g_04lWJ-D03Nw-hycfgmuqD7Mqg4A_ikIXolaMPYH8EuW6w
CODEN IAECCG
Cites_doi 10.1109/PRAI55851.2022.9904215
10.1016/j.jag.2025.104423
10.1016/j.scs.2023.105113
10.1016/j.neucom.2021.10.101
10.1016/j.aei.2023.101900
10.18653/v1/2022.emnlp-main.759
10.1007/s10694-024-01544-6
10.3390/su10103429
10.1007/s00521-020-05057-5
10.1016/j.neucom.2022.02.002
10.1016/j.neucom.2024.127571
10.1145/3604931
10.1093/gji/ggae436
10.1016/j.knosys.2023.111323
10.1016/j.inffus.2020.03.014
10.1109/TNNLS.2021.3070843
10.1145/3544548.3581402
10.1016/j.eswa.2019.112948
10.3233/sw-180333
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3586370
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 127757
ExternalDocumentID oai_doaj_org_article_9d6ffc296ec3439f94cae08aeec02bd9
10_1109_ACCESS_2025_3586370
11075653
Genre orig-research
GrantInformation_xml – fundername: Sichuan Province Key Research and Development Project “Construction and Demonstration of Earthquake Emergency Response Assistance System Based on Digital Twin Technology”
  grantid: 2023YFS0437
– fundername: Science and Technology Innovation Program for Postgraduate Students in Institute of Disaster Prevention (IDP) subsidized by the Fundamental Research Funds for the Central Universities
  grantid: ZY20250324
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c361t-e84e580d03ed002b68e8955d8b38f1924245033a45d8db39c50b47fc4b22c4023
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001544669800042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:13 EDT 2025
Sat Nov 01 14:30:29 EDT 2025
Sat Nov 29 07:40:42 EST 2025
Wed Aug 27 02:13:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c361t-e84e580d03ed002b68e8955d8b38f1924245033a45d8db39c50b47fc4b22c4023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0006-3179-5178
0009-0000-9107-9102
0009-0003-2576-4832
OpenAccessLink https://ieeexplore.ieee.org/document/11075653
PQID 3246895801
PQPubID 4845423
PageCount 16
ParticipantIDs ieee_primary_11075653
crossref_primary_10_1109_ACCESS_2025_3586370
proquest_journals_3246895801
doaj_primary_oai_doaj_org_article_9d6ffc296ec3439f94cae08aeec02bd9
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Hu (ref26); 1
Guiyang (ref12) 2024; 2024
Zheng (ref40) 2025
ref14
Razeghi (ref22) 2022
ref31
Minglun (ref37) 2025; 2025
ref30
ref10
ref2
ref1
ref16
Fengying (ref17) 2022; 35
Hu (ref25) 2021
Huang (ref13) 2024; 43
Zhongjiang (ref41) 2024; 45
Jing (ref34) 2022; 48
Jingru (ref23) 2020; 4
Weidong (ref27) 2025; 2025
Yulan (ref18) 2025; 48
ref42
Zhang (ref33) 2024; 18
ref21
Fei (ref24); 35
ref43
Nie (ref20) 2002
Zhang (ref11) 2023; 17
ref28
Minghua (ref35) 2024; 64
Bai (ref19) 2010; 33
ref29
ref8
ref7
Yang (ref32) 2025; 45
Feng (ref36) 2024; 18
Bin (ref38) 2025; 45
ref9
Jianjia (ref15) 2025; 2025
ref4
ref3
ref6
ref5
Yang (ref39) 2025; 42
References_xml – ident: ref10
  doi: 10.1109/PRAI55851.2022.9904215
– ident: ref14
  doi: 10.1016/j.jag.2025.104423
– ident: ref6
  doi: 10.1016/j.scs.2023.105113
– volume: 45
  start-page: 1865
  issue: 6
  year: 2024
  ident: ref41
  article-title: Long-tail noise detection in knowledge graphs based on confidence
  publication-title: Comput. Eng. Design
– ident: ref42
  doi: 10.1016/j.neucom.2021.10.101
– start-page: 105
  issue: 3
  year: 2002
  ident: ref20
  article-title: Construction of a basic database for earthquake emergency response
  publication-title: Earthquake
– ident: ref7
  doi: 10.1016/j.aei.2023.101900
– volume: 35
  start-page: 15460
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref24
  article-title: Lasuie: Unifying information extraction with latent adaptive structure-aware generative language model
– volume: 2024
  start-page: 1
  year: 2024
  ident: ref12
  article-title: Research on knowledge injection methods for large language models aimed at process specification texts
  publication-title: Comput. Sci. Exploration
– volume: 43
  start-page: 46
  issue: 4
  year: 2024
  ident: ref13
  article-title: Research on rainstorm disaster chain mining and prediction based on knowledge graph
  publication-title: Frontiers Eng. Manage. Technol.
– ident: ref21
  doi: 10.18653/v1/2022.emnlp-main.759
– volume: 48
  start-page: 2556
  issue: 12
  year: 2022
  ident: ref34
  article-title: Named entity recognition in nuclear power domain based on ELMo-GCN
  publication-title: J. Beihang Univ.
– ident: ref4
  doi: 10.1007/s10694-024-01544-6
– ident: ref1
  doi: 10.3390/su10103429
– volume: 45
  start-page: 785
  issue: 3
  year: 2025
  ident: ref32
  article-title: Construction of a digital twin water conservancy knowledge graph integrating large language models and prompt learning
  publication-title: Comput. Appl.
– volume: 2025
  start-page: 1
  year: 2025
  ident: ref37
  article-title: GAGAT: A global perception knowledge graph reasoning model based on graph attention network
  publication-title: Data Anal. Knowl. Discovery
– volume: 42
  start-page: 82
  issue: 1
  year: 2025
  ident: ref39
  article-title: Knowledge graph completion method based on improved graph convolutional neural network
  publication-title: Comput. Appl. Softw.
– ident: ref8
  doi: 10.1007/s00521-020-05057-5
– volume: 4
  start-page: 33
  issue: 10
  year: 2020
  ident: ref23
  article-title: A BiLSTM-CRF model for protected health information in Chinese
  publication-title: Data Anal. Knowl. Discovery
– volume: 1
  start-page: 1
  issue: 2
  volume-title: Proc. ICLR
  ident: ref26
  article-title: LoRA: Low-rank adaptation of large language models
– ident: ref28
  doi: 10.1016/j.neucom.2022.02.002
– volume: 45
  start-page: 12
  issue: 4
  year: 2025
  ident: ref38
  article-title: Dual graph attention recommendation model integrating social relationships and knowledge graph
  publication-title: Mod. Inf.
– ident: ref3
  doi: 10.1016/j.neucom.2024.127571
– volume: 2025
  start-page: 1
  year: 2025
  ident: ref27
  article-title: Research on the construction method of Northeast Anti-Japanese allied red figures knowledge graph based on large models and LoRA
  publication-title: Inf. Theory Pract.
– ident: ref9
  doi: 10.1145/3604931
– volume: 18
  start-page: 1637
  issue: 6
  year: 2024
  ident: ref36
  article-title: Construction and application of a water engineering scheduling knowledge graph based on large language models
  publication-title: Comput. Sci. Explor.
– ident: ref43
  doi: 10.1093/gji/ggae436
– ident: ref5
  doi: 10.1016/j.knosys.2023.111323
– volume: 35
  start-page: 1025
  issue: 11
  year: 2022
  ident: ref17
  article-title: Knowledge graph multi-hop reasoning model integrating semantic information
  publication-title: Pattern Recognit. Artif. Intell.
– volume: 17
  start-page: 2377
  issue: 10
  year: 2023
  ident: ref11
  article-title: Research on question answering systems integrating large language models and knowledge graphs
  publication-title: Comput. Sci. Explor.
– volume: 48
  start-page: 51
  issue: 2
  year: 2025
  ident: ref18
  article-title: Graph attention network representation learning algorithm based on adaptive differentiated graph convolution
  publication-title: Mod. Electron. Technol.
– volume: 18
  start-page: 2656
  issue: 10
  year: 2024
  ident: ref33
  article-title: Research on knowledge graph construction and application based on large language models
  publication-title: Comput. Sci. Explor.
– year: 2022
  ident: ref22
  article-title: Impact of pretraining term frequencies on few-shot reasoning
  publication-title: arXiv:2202.07206
– start-page: 1
  year: 2025
  ident: ref40
  article-title: Intelligent planning method of distribution network based on knowledge graph and graph convolutional neural network
  publication-title: Comput. Eng.
– ident: ref2
  doi: 10.1016/j.inffus.2020.03.014
– ident: ref29
  doi: 10.1109/TNNLS.2021.3070843
– year: 2021
  ident: ref25
  article-title: LoRA: Low-rank adaptation of large language models
  publication-title: arXiv:2106.09685
– volume: 33
  start-page: 111
  issue: 1
  year: 2010
  ident: ref19
  article-title: Preliminary study on classification of field information in earthquake emergency response
  publication-title: Seismological Res.
– ident: ref30
  doi: 10.1145/3544548.3581402
– volume: 64
  start-page: 1228
  issue: 8
  year: 2024
  ident: ref35
  article-title: Automatic construction and retrieval technology of knowledge graph in the field of electronic information based on large models
  publication-title: Telecommun. Technol.
– ident: ref16
  doi: 10.1016/j.eswa.2019.112948
– volume: 2025
  start-page: 1
  year: 2025
  ident: ref15
  article-title: Research on the construction and application of knowledge graphs for typical emergency scenarios
  publication-title: J. Saf. Environ.
– ident: ref31
  doi: 10.3233/sw-180333
SSID ssj0000816957
Score 2.3343444
Snippet To address the challenges of semantic parsing of multi-source heterogeneous information and the delayed emergency response decisions caused by insufficient...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 127742
SubjectTerms Accuracy
Attention
Bi-GAT
Cognition
Correlation
Data mining
Disasters
Earthquake construction
Earthquakes
Emergency management
Emergency response
Emergency services
Feature extraction
Knowledge
Knowledge graphs
Knowledge representation
Large language models
Matching
Neo4j
NLP
PCCA
Prompt engineering
Semantics
TPES-LLM
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07SwQxEA4iFlqITzxfpLB0NbtJNkl5HqeCIhYKdiFPFGVPPbX1rzvJ7uqBhY3NFmFJNpnZmfmSzDcIHdQmsLIMojAAdQpWRVbYQH3BjJAqltyakBOFL8XVlby7U9czpb7SnbCWHrhduGPl6xhdpergKDjPqJgzgUjowpHK-py6R4SaAVPZBsuyVlx0NEMlUcfD0QhmBICw4keUy5qm8sQzrigz9nclVn7Z5exsTlfQchcl4mH7datoLjRraGmGO3AdffZ35vCkwRDF4VR6syeDxabxePhzNo0nEY9hrvcv7-Yx4HGfc4m7bKT8zkW_vYbPEos1PgEH51Pvl-m2ODzbnU2cyqc9TTfQ7en4ZnRedNUUCkfr8q0IkgUuiSc0eDCDtpZBKs69tFTGBMMqlo40DYMmb6lynFgmomO2qhygTLqJ5ptJE7YQpoREURoepRfMgM0TzBtPE1SyIN5ygA77hdXPLWmGzmCDKN3KQSc56E4OA3SSFv_71cR4nRtAD3SnB_ovPRigjSS6n_EA10KwSgdot5el7n7PqYYosobJg3fe_o-xd9Bimk-7M7OL5kHYYQ8tuI-3h-nrftbML44N6BA
  priority: 102
  providerName: Directory of Open Access Journals
Title Research on the Construction and Application of Earthquake Emergency Information Knowledge Graph Based on Large Language Models
URI https://ieeexplore.ieee.org/document/11075653
https://www.proquest.com/docview/3246895801
https://doaj.org/article/9d6ffc296ec3439f94cae08aeec02bd9
Volume 13
WOSCitedRecordID wos001544669800042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PbxUhECa28aAHbbXG11_h4NFtdxdY4Pj68qpJa-NBk94IC0M0mn3qaz3af70zLNs2MR68kA1hdyHfAPMNzAxjbzoPsmlAVx6pTiXbJKseRKyk18amRvUesqPwub64MJeX9mNxVs--MACQL5_BET3ms_y4CtdkKjsmroIKiNhgG1p3o7PWnUGFMkhYpUtkoaa2x_PFAgeBHLBVR0KZTlBG4ge7Tw7SX7Kq_LUU5_3l9Pl_9myLPSuKJJ-PyG-zRzC8YE8fhBd8yW6ma3V8NXBU9Dhl55zixXI_RD6_P77mq8SXKEdffl77b8CXk1smLw5Luc3ZZIHj7yjQNT_BPTDS18_pQjmWo_GTU4a17-sd9vl0-WnxvioJF6oguuaqAiNBmTrWAiKulH1nwFiloumFScTUWkmnnl5iVeyFDarupU5B9m0bkIiKV2xzWA3wmnFR10k3XiUTtfS4LGoZfRTEpnqUgGbG3k5AuB9jXA2X-Uht3YibI9xcwW3GTgisu6YUFDtXIAquzDFnY5dSaG0HQaCelawMHmqD0hZwMNHO2A4hd_-_AtqM7U_YuzKD1w4VzQ4Hjxv47j9e22NPqIujPWafbSJ-cMAeh99XX9e_DjO5x_LDn-VhFtRbq6TmGw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BQQIOfBaxUMAHjqR1Yjuxj9vVlqIuKw5F6s1y7LFAoCywLVf-OmPHaSshDlyiKHISW2_smTf2zAC8aR3KusauckR1KtlEWfUoQiVdp02sVe8wBwqvuvVan52ZjyVYPcfCIGI-fIb76Tbv5YeNv0iusoPEVcgAETfhlpKy4WO41qVLJdWQMKoruYVqbg7miwUNg1hgo_aF0q1INYmv6Z-cpr_UVflrMc4a5ujBf_btIdwvpiSbj9g_ghs4PIZ71xIMPoHf08E6thkYmXos1eecMsYyNwQ2v9rAZpvIliRJn39cuK_IllNgJishS7nNyeSDY-9Sqmt2SFowpK-v0pFyuo7uT5ZqrH3b7sKno-Xp4rgqJRcqL9r6vEItUWkeuMBAa2XfatRGqaB7oWPiao1M-55O0qPQC-MV72UXveybxhMVFU9hZ9gM-AyY4Dx2tVNRh046Whg7GVwQiU_1JAP1DN5OQNjvY2YNmxkJN3bEzSbcbMFtBocJrMumKS12fkAo2DLLrAltjL4xLXpBllY00jvkmuTN02CCmcFuQu7qfwW0GexN2Nsyh7eWTM2WBk8q_Pk_XnsNd45PP6zs6v365AXcTd0dvTN7sENY4ku47X-df9n-fJUF9Q_uNec8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+the+Construction+and+Application+of+Earthquake+Emergency+Information+Knowledge+Graph+Based+on+Large+Language+Models&rft.jtitle=IEEE+access&rft.au=Zhou%2C+Wentao&rft.au=Huang%2C+Meng&rft.au=Liu%2C+Shuai&rft.au=You%2C+Qiao&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=127742&rft.epage=127757&rft_id=info:doi/10.1109%2FACCESS.2025.3586370&rft.externalDocID=11075653
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon